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Dear Editor and Referees,

We appreciate your valuable feedback and insightful comments on our manuscript. Your suggestions have
been immensely helpful in refining and improving our work, and they have provided significant guidance for
our research. We have carefully addressed each comment and suggestion individually, providing detailed
explanations and implementing necessary revisions accordingly.

For clarity, we have enclosed the reviewer comments in boxes with sequentially numbered, while our responses
are presented in standard font. In our responses to referee comments, figure and table numbers are prefixed
with ’R’, whereas figures in the revised manuscript use standard numbering, and supplementary figures are
marked with ’S’. We hope that our explanations and modifications sufficiently address your concerns and
meet with approval.

We sincerely appreciate your time and effort in reviewing our manuscript and look forward to your feedback.

1



The Referee #1’s Comments

The Referee #1 General Comment

The manuscript presents a multi-layered perceptron (MLP) model designed for continuous learning to
enhance the three-dimensional reconstruction of nitrate concentrations in oceanic environments. This
approach improves the model’s generalization capabilities by incorporating the nonlinear relationships
among various marine surface environmental variables and surface nitrate levels. The model has
been successfully applied in the Mediterranean Sea and Northeast Atlantic. Additionally, the study
provides a reconstructed nitrate dataset spanning from 2010 to 2023, which holds significant value for
marine ecology and environmental research. Below are my comments and suggestions regarding the
manuscript:

Response:
We sincerely appreciate your comprehensive evaluation of our manuscript. Your thorough review and
insightful comments have been invaluable in enhancing the quality of our work. We have conducted
extensive validations and discussions to carefully address your concerns and have made comprehensive
revisions accordingly. We believe these modifications have strengthened the scientific rigor and clarity of our
manuscript, and we hope they adequately resolve your concerns. We look forward to your feedback in the
near future. Below, we provide detailed responses to each of your comments.

Major Comments:

The Referee #1’s Comment #1

The methodology for cross-validation should be elaborated upon. The current description does not
adequately clarify how cross-validation is conducted, nor does it explain the rationale for utilizing all
Argo data in the validation process.

Response:
Thank you for your comments. We are pleased to have the opportunity to clarify the cross-validation method-
ology. In this study, a 5-fold cross-validation was employed on the BGC-Argo dataset to assess the model’s
performance. Specifically, the BGC-Argo dataset was evenly divided into five subsets, either based on a
vertical observation cycle (as outlined in Section 3.1) or by individual site (as outlined in Section 3.2). During
each training and validation iteration, one subset served as the test set, while the remaining four subsets were
used for training. This process was repeated without overlap for five cycles, ensuring that each subset was
used as the test set exactly once. This approach allows for the entire BGC-Argo dataset to be validated and
statistical metrics to be evaluated. The primary advantage of this method is that it ensures each data point is
independently used for both training and validation, thus minimizing the impact of data partitioning bias on
performance evaluation. This methodology maximizes data utilization and provides a more robust assessment
of the model’s generalization capability. Additionally, we have enhanced the explanation in the revision
(please also see Line 260-264).
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The Referee #1’s Comment #2

The rationale for the inclusion of numerous variables needs to be articulated. A robust artificial
intelligence model should be grounded in physical principles; achieving favorable results without this
foundation may hinder the accurate representation of dynamic processes. It is essential to conduct
experiments to determine whether the exclusion of certain variables could enhance the simulation
outcomes. Furthermore, the absence of consideration for influential factors such as precipitation and
river runoff warrants explanation.

Response:
We are grateful for your invaluable comments, which have guided us to further examine the feature variables
we employed. Determining the optimal combination of features for a deep learning model is indeed a
challenging task, and we have made an effort to address this issue from the following perspectives.

Firstly, following with your comments, we systematically excluded variables and compared the cross-
validation simulation results based on profiles, as shown in Table R1. Table R1 is sorted by the increase
RMSE after the exclusion of each variable, with RMSE being the most crucial metric as it also serves as the
loss function supervising the model’s training. The RMSE increased to varying degrees after the exclusion
of variables, leading to the inference that the initial feature combination is one of the most optimal. Depth,
latitude, and longitude, the three spatial coordinates, remain the most significant variables, with the highest
RMSE increase when excluded. In particular, depth is used not only as a feature, but more importantly to
map depth profiles, so exclusions will show exaggerated variation. Figure R1 illustrates the performance of
the test set after excluding several key variables.

The feature ranking in Table R1 closely aligns with that in Figure 13 of the manuscript, though there are
some minor differences. Both discuss the importance of features, but the SHAP values in Figure 12 focus
on the contributions of the features, while the RMSE changes in Table R1 emphasize the irreplaceability of
features. For example, Z (Total terrain depth), which provides a unique perspective, has a small contribution
but significantly impacts the model when excluded. Furthermore, when excluding features, we combined
Jday1 (the cosine function of the Julian day) and Jday2 (the sine function of the Julian day), which have a
high contribution but a minimal impact on model performance when excluded. This is because Jday is a
heuristic feature that, while useful for providing temporal information, can be inferred through the periodic
variation of other variables. Figure R3 shows the correlation heatmap between nitrate and all input variables.
The current feature combination is sufficient and potentially redundant; some highly correlated features can
substitute one another to some extent, which is why the RMSE increase after excluding high-contribution
features like PAR is relatively small. However, the comparison experiments in Table R1 confirm that the
model can accommodate these correlated features and enhance its performance.

As for factors like precipitation and river runoff, we have already considered total precipitation (TP) as a
feature. However, river runoff is limited by the model’s scale. Currently, our model uses environmental
variables at the same spatial and temporal coordinates as the nitrate data, while the spatial location of river
runoff differs from that of oceanic nitrate. While river runoff significantly affects oceanic nitrate, we aim to
further investigate these features that are spatially distinct from nitrate in future studies. Meanwhile, coloured
dissolved organic matter (CDOM) at 412 nm has been considered as a candidate variable for the presence
of correlation in river runoff in previous studies [1], and the similar Coloured dissolved and detrital organic
materials absorption coefficient (CDM) has been utilised in our features.

In summary, the inclusion of 22 variables in our model follows two guiding principles. First, the model aims
to achieve optimal performance with this set of features, which, based on our current comparisons, represents
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Table R1: (Table S1 in the Supplement) Model’s 5-fold profile-based cross-validation performance after
sequentially excluding variables, with variables sorted by the increase in RMSE.

Excluded features R2 RMSE MBE MAE MedAE Slope k Intercept b RMSE increase ratio

Original feature set 0.98 0.592 -0.04 0.398 0.265 0.967 0.222

Depth 0.46 3.079 0.017 2.376 1.974 0.457 2.942 420.10%

Lat 0.973 0.686 0.003 0.48 0.342 0.954 0.245 15.88%

Lon 0.977 0.641 0.002 0.443 0.309 0.955 0.245 8.28%

SSH 0.978 0.637 -0.015 0.428 0.301 0.96 0.234 7.60%

ZSD 0.977 0.632 -0.016 0.442 0.314 0.958 0.246 6.76%

Z 0.977 0.63 -0.018 0.439 0.311 0.957 0.251 6.42%

ZEU 0.978 0.629 -0.013 0.438 0.309 0.957 0.248 6.25%

SST 0.978 0.629 -0.031 0.427 0.297 0.966 0.216 6.25%

CDM 0.978 0.628 -0.01 0.437 0.308 0.958 0.24 6.08%

ZHL 0.978 0.627 -0.007 0.438 0.31 0.957 0.241 5.91%

TP 0.978 0.625 -0.009 0.435 0.308 0.958 0.237 5.57%

V10 0.978 0.623 -0.016 0.434 0.308 0.957 0.249 5.24%

S10 0.979 0.622 -0.016 0.432 0.305 0.958 0.247 5.10%

U10 0.978 0.622 -0.017 0.432 0.303 0.958 0.248 5.07%

CF 0.978 0.621 0.002 0.431 0.304 0.96 0.218 4.90%

SP 0.978 0.621 -0.009 0.432 0.304 0.959 0.234 4.90%

Chl 0.978 0.617 -0.004 0.426 0.296 0.96 0.222 4.22%

MLD 0.978 0.616 -0.02 0.424 0.295 0.958 0.251 4.05%

NFLH 0.979 0.61 -0.023 0.419 0.289 0.961 0.237 3.04%

PAR 0.979 0.609 -0.024 0.419 0.29 0.961 0.239 2.87%

Jday 0.98 0.596 -0.024 0.407 0.28 0.966 0.212 0.68%

one of the best feature combinations. Second, we strive to incorporate as many features and influencing factors
previously used in marine nitrate estimation research as possible, ultimately discussing their contributions
within the context of the study region and the employed model, such as variables like CDM [1], Chl [2], wind
components (U10, V10, S10) [3], MLD [3], Jday [4], and so on. We have added Table R1 and Figure R1 as
supplementary material and added discussion to the manuscript (please also see Line 543-553 in the revision),
and Figure R2 has been added to the manuscript and discussed (please also see Line 513-521).
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Figure R1: (Figure S3 in the Supplement) Scatter plot of the model’s test set performance after excluding six
typical features. The red line indicates the fitted trend of the data, while the black dashed line denotes the 1:1
parity line.

The Referee #1’s Comment #3

The role of upper ocean phytoplankton should be critically evaluated, as they are significant sinks for
nitrate. The analysis suggests that phytoplankton are not influential, which raises concerns regarding
the validity of this finding. It is imperative to provide a detailed explanation of the model’s capacity to
capture the underlying physical and biological processes in the ocean. Is it possible that the inclusion
of numerous other variables has overshadowed the impact of chlorophyll a (Chla)?

Response:
Thank you for your insightful comments. Phytoplankton is indeed a classic factor influencing nitrate and is a
crucial parameter in its retrieval. Its contribution mechanism is of significant importance, and we have paid
close attention to this issue, conducting in-depth research to support our conclusions in the following three
aspects.

Firstly, the primary reason for the low contribution of Chl is the limitation of the spatial and temporal scope.
Mechanistically, phytoplankton is stimulated by nitrate in the spring, consuming nitrate and increasing
Chl, while in the autumn, the decay of phytoplankton leads to an increase in nitrate [2]. Although this
relationship is strong, the effect is usually confined to areas where phytoplankton growth is vigorous (in
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Figure R2: (Figure 14 in the Revision) Scatter plot of Chl contribution values across data samples. The x-axis
represents SHAP contribution values, while the y-axis represents depth. The color of scatter points indicates
the Chl feature values in each sample.

horizontal directions) and the upper layers of the ocean (in vertical directions), which constitute only a small
portion of the ocean’s three-dimensional field. Therefore, the influence of phytoplankton is diluted in ocean
regions with low productivity or in the mid-to-lower ocean layers, where the contribution of phytoplankton
is less significant. In this revision, we have performed more comprehensive sampling and calculations of
SHAP contributions, providing a more stable evaluation of feature contributions. Figure R2 shows the
distribution of Chl contribution among 200,000 samples, and Figure R9 (added as Figure 13 in the manuscript)
presents the improved SHAP value distribution. Samples with low chlorophyll occupy the majority, with
contributions clustered near zero, while high-Chl samples still provide significant contributions, increasing
nitrate estimates by more than one unit (Figure R2). Compared to other variables, the frequency distribution of
Chl contributions shows a more significant clustering around zero and a long tail for high values. Therefore, it
can reasonably be inferred that Chl still plays an important role in nitrate estimation in the upper ocean layers
when the feature value is high, but the low proportion of these data leads to a small average Chl contribution.

Secondly, as you mentioned, the inclusion of many other variables may somewhat obscure the impact of
Chl. As shown in the correlation heatmap in Figure R3 and the contribution distribution in Figure R9, many
variables highly correlated with Chl have high contributions, such as positively correlated CDM and negatively
correlated ZHL and SST. Since the model’s batch size for training is limited, with neuron weights adjusted by
256 data samples at each time, and considering the high proportion of low-Chl, low-contribution samples, the
model may lean towards more generalized water color parameters.

Thirdly, similar conclusions regarding the low contribution of chlorophyll have been found in related studies.
In another study on nitrate three-dimensional reconstruction, the contribution of Chl was also found to be low
[5]. For the Indian Ocean, oceanic dynamics outweighed thermal factors, followed by biochemical factors
(including Chl). In contrast, Chl typically shows a smaller contribution when using more parameters for three-
dimensional estimation, as the spatial range is smaller, while it contributes more when fewer parameters are
used for surface retrieval [1, 3, 2], as it provides features among strongly correlated surface biogeochemical
parameters.
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Figure R3: (Figure 12 in the Revision) Heatmap for the matrix of Pearson correlation coefficients between
nitrate and input variables. The size of the cell represents the absolute value of the correlation coefficient

In conclusion, we believe that the relatively low average contribution of Chl is reasonable and well-founded.
However, this is largely due to its low spatial coverage and does not contradict the mechanism that Chl is
an important driver of nitrate. We have added Figure R2 to the revision (Figure 14) and comprehensively
enhanced the discussion of Chl contribution (please also see Line 570-582 in the revision).

The Referee #1’s Comment #4

A more comprehensive discussion of the model’s limitations is necessary, particularly regarding
the consistency and discrepancies between the model’s results and existing literature, including its
performance in data-sparse regions.

Response:
Thank you for your valuable comments. We will provide a more comprehensive discussion of the model.
A. discussion of the model’s limitations
Our model has the following limitations: 1. Scale and Global Features: The model is based on water column
profiles for estimation and reconstruction, rather than incorporating broader-scale global features. This may
limit the model’s potential, though this approach was driven by the sparse nature of BGC-Argo measurements
and the costs associated with continual learning training. We aim to explore the application of global features
in future research. 2. Continual Learning Strategy: The effectiveness of our continual learning strategy
hinges on the relationship between the datasets, requiring a rich yet relatively accurate pretraining dataset
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Figure R4: (Figure 6 in the Revision) Performance of the model in site-based cross-validation on the test
set(a), spatial distribution (b), and model comparison (c-f). (c) shows the test performance without using
continual learning, along with the spatial distribution of increased RMSE (d). (e) depicts the validation
performance for simulated nitrate concentrations and the spatial distribution of increased RMSE compared to
this model.

(CMEMS nitrate) and a precise but smaller final training dataset (BGC-Argo nitrate). Fortunately, the nitrate
reconstruction task provides datasets that meet these needs and demonstrate the effectiveness of continual
learning. 3. Training Balance in Well-Sampled Regions: After continual learning, the model may experience
a slight decline in performance in the well-sampled BGC-Argo regions due to the retention of simulated
nitrate knowledge. Although this adverse effect is minor and sparse (as shown in Figure R4), it may be
addressed in future research to improve model performance. To the discussion of the characteristics of the
model based on the experimental results in Chapter 3, we add a paragraph on the limitations of the model in
the conclusion section (please also see Line 610-617).
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B. the consistency and discrepancies between the model’s results and existing literature
Our model achieves one of the highest levels of accuracy in current nitrate estimation studies and performs
robustly in the multiple validations implemented. Given the differences in study regions and datasets, it
is challenging to make a direct comparison between our model and existing literature. However, we have
actually compared the model improvements through reproduction. The key innovation of our model lies in the
use of continual learning, coupling numerical model nitrate knowledge to enhance generalization capability.
The MLP model serves as a benchmark for this coupling and is widely used for 3D estimations of ocean
parameters [6, 7]. Figure R4 (Figure 6 in the manuscript) shows the performance comparison of our model
with continual learning. In the station validation, we achieved significant improvements: R2 increased by
5.8% (from 0.928 to 0.877), and RMSE decreased by 23.3% (from 1.469 to 1.126), with regional RMSE
differences plotted. This demonstrates the effectiveness of continual learning and highlights the differences
compared to existing literature. Furthermore, continual learning, as a training strategy, has the potential to be
integrated into more advanced models.

C. its performance in data-sparse regions
Regarding the model’s performance in data-scarce regions, one of the reasons for choosing the Mediterranean
and northeastern Atlantic (NEA) as our study area was to verify whether effective global modeling could
be achieved in the context of data imbalance and environmental differences. NEA accounts for about 14%
of the dataset, but it is located in a vast and dynamic marine environment, making nitrate estimation more
challenging. In the cross-validation implemented in Sections 3.1 and 3.2, NEA showed reasonably robust
estimation performance, though slightly weaker than MED.

Currently, temporally and spatially continuous nitrate datasets available for comparison are scarce, with the
CMEMS nitrate dataset being one of the most accessible. Its spatial distribution is illustrated in Figure R5.
Our reconstructed results exhibit strong spatial consistency with CMEMS nitrate data, including in regions
not covered by BGC-Argo, such as the coastal areas of the UK and Norway. Furthermore, our approach
is primarily designed to validate model performance in data-sparse regions using an independent nitrate
measurement dataset, GLODAPv2, which focuses on the NEA, where BGC-Argo coverage is particularly
weak. As demonstrated in the validation presented in Section 3.3, the model maintains high estimation
accuracy for samples from this dataset and outperforms CMEMS nitrate data in comparative assessments.
Overall, the model’s performance in data-scarce regions is reliable and surpasses the performance of current
numerical models and deep learning methods. We have added Figure R5 to the Supplement (Figure S1) and
discussed extensively the performance of the model in data-sparse regions in Sections 3.2-3.4.

We hope these clarifications address your concerns, and we have enriched the manuscript discussion based on
the above points.

Minor Comments:

The Referee #1’s Comment #5

Line 5: Provide the full name for “CMEMS”.

Response:
Thank you for your careful review. The full name of CMEMS is the Copernicus Marine Environment
Monitoring Service, and we have updated the manuscript accordingly (please also see Line 5).
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Figure R5: (Figure S1 in the Supplement) Spatial distribution of CMEMS simulated nitrate field, with
columns representing four seasons and rows representing five depth slices.
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The Referee #1’s Comment #6

Line 36: Provide the full name for “SSN”

Response:
Thank you for your comment. We have provided the full name for "SSN" in Line 36. The acronym "SSN"
stands for sea surface nitrate, and we have updated the manuscript accordingly (please also see Line 36).

The Referee #1’s Comment #7

Line 45: Several studies, for example, Liu et al. (2022, http://doi.org/10.3390/rs14195021) have
considered other factors besides SST.

Response:
Thank you for your thorough review and insightful comments. We have incorporated the references and made
a careful comparison. Besides SST, Chl-a, and spatio-temporal coordinates, Liu et al. [8] used two features,
the diffuse attenuation coefficient at 490 nm (Kd490) and sea surface salinity (SSS), but these two features
were limited in our study.

For Kd490, the observing method leads to a significant amount of missing values in high latitude regions
during winter. Figure R6 visualizes the Kd490 data product for December 2023, derived from the GlobColour
platform (https://hermes.acri.fr/), showing that data are missing for areas north of about 47°N.
Therefore, using Kd490 as a feature within our study region (30°N-65°N) would limit the continuous
estimation of nitrate.

Figure R6: Visualization of the Kd490 data product for December 2023.
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(a) Original feature combination in the manuscript
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(b) Feature combination with SSS

Figure R7: Comparison of test set performance in profile-based cross-validation with the inclusion of SSS
feature.

For SSS, this data product carries substantial uncertainty, which could adversely affect the model’s fea-
ture set. SSS data is typically derived from biogeochemical models, numerical models, or interpola-
tion methods, rather than direct remote sensing observations. We tested the CMEMS salinity product
(https://doi.org/10.48670/moi-00021). Figure R7 presents a performance comparison be-
tween the feature set used in the manuscript and the inclusion of SSS, with the results indicating a slight
decline in performance upon adding SSS. Additionally, since both the pre-trained nitrate and salinity data
come from similar CMEMS numerical models and are highly correlated, the uncertainty within the data
may interfere with the model’s ability to learn generalized knowledge [6]. Therefore, while SSS is a highly
promising feature, its current uncertainty may have detrimental effects, limiting its application in our model.

The Referee #1’s Comment #8

Line 81-82: Need more explanation.

Response:
Thank you for your detailed comments and we are pleased to provide more explanation on this issue.The
original text of lines 81-82 is: "However, this study relied on simulated data for supervised training instead of
actual observational data, which may limit the model’s applicability in real ocean environments."

Yang et al.[5] used two deep learning models to reconstruct three-dimensional nitrate in the Indian Ocean, pro-
viding invaluable studies with great results and insightful findings. However, these models require capturing
vast spatial features and a substantial amount of supervision, which makes it challenging for in-situ measure-
ments like BGC-Argo data to meet these needs. Their nitrate training data relied on the CMEMS nitrate prod-
uct (https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_BGC_001_029),
which is the same pre-trained nitrate data used in our study. This product still differs considerably from actual
ocean conditions, especially in its inability to capture mesoscale variations effectively, as highlighted in both
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Figure 10 of the literature [5] and Figure R4e (also Figure 6e in our manuscript). Therefore, we summarized
the current state and limitations of research in lines 81-82 to acknowledge this gap.

The Referee #1’s Comment #9

Line 94: “Pan-European” or “pan-European”? should be identical.

Response:
Thank you for your meticulous review and for helping us refine the manuscript. We have standardized the
term "pan-European" throughout the manuscript as per your suggestion.

The Referee #1’s Comment #10

Line 95: Please check the definition of “shelf sea”. Apparently, the study area is beyond the shelf sea.

Response:
Thank you for your thoughtful comments and for highlighting the importance of using precise terminology
when describing the study area.

You are absolutely correct that the study area extends beyond the shelf-sea regions. Initially, we selected
this region for its rich BGC-Argo data and its proximity to land compared to other data-dense areas, which
provided a solid foundation for our work. Then, as the research progressed, we were able to expand the study
area to include more open ocean regions, leading to more comprehensive results.

We recognize that the current description of the study area may not fully reflect its diverse scope, so we
have revised the manuscript accordingly. The updated description now clearly states that the study area
encompasses key shelf-sea regions along the European coast but also extends to the open ocean beyond the
continental shelf. We have toned down the emphasis on shelf-sea regions while retaining the two key reasons
for choosing this area: the availability of BGC-Argo data and the need to focus on nitrate dynamics in marine
regions closer to land. We have revised this part of the description for greater clarity (Lines 95-98).

We appreciate your constructive feedback and believe these revisions make the manuscript clearer. If you
have any further suggestions, please let us know.

The Referee #1’s Comment #11

Section 2.2: There is no introduction to the CMEMS simulated nitrate data, which should be
introduced detailedly.

Response:
We appreciate your careful review that guided us in refining the manuscript. We have added Section 2.2.2
Simulated nitrate data for the presentation of simulated nitrate data from CMEMS (please also see Line
115-129)
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The Referee #1’s Comment #12

Figure 3: It looks familiar to me, and although the author may have redrawn it from a certain
document, the original source should be noted.

Response:
Thank you for your comments and we appreciate your attention to detail. Figure 3 is a reference to the EWC
literature for reflecting the algorithmic ideas of EWC [17]. The figure was redrawn to incorporate the nitrate
dataset relationships, and we have now added citations in both the title note and the main text.

The Referee #1’s Comment #13

Line 274: “. the” should be “. The”.

Response:
Thank you for pointing that out. We have corrected the capitalization in Line 274 (now Line 295 in the
revision), changing “. the” to “. The” to ensure proper sentence structure and consistency throughout the
manuscript.

The Referee #1’s Comment #14

“Figure” or “Fig. ” should be identical throughout the text.

Response:
We greatly appreciate your attention to the details of our manuscript, which has helped improve many aspects
of the work. We did notice that the ESSD journal has specific submission guidelines regarding figure number-
ing (https://www.earth-system-science-data.net/submission.html#figurestables):

The abbreviation "Fig." should be used when it appears in running text and should be followed by a number
unless it comes at the beginning of a sentence, e.g.: "The results are depicted in Fig. 5. Figure 9 reveals
that...".

We have thoroughly reviewed all figure numbering throughout the manuscript and will double-check this
issue again to ensure compliance. We hope this helps address your concerns.

The Referee #1’s Comment #15

Line 317-318: More introductions need to explain why and how.

Response:
Thank you for your review and comments. We would like to provide a more detailed explanation of this issue.

The original text of lines 317-318 is: "In this section, a more rigorous cross-validation is implemented, which
divides the dataset based on the BGC-Argo device, as shown in Fig. 6."
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In 3D reconstruction, the most crucial factor is the model’s robust generalization ability. This is because there
is always limited temporal and spatial coverage by measurement values, and maintaining stable estimates in
areas not covered by measurements is key to obtaining a reliable 3D nitrate dataset. Therefore, the stringency
of cross-validation, in terms of validating the model’s generalization capacity, depends on the degree of
difference between the training and testing datasets. In Section 2.3.4, we describe the approach of dividing
the dataset based on BGC-Argo profiles (implemented in Section 3.1) and stations (implemented in Section
3.2). A profile represents a single measurement cycle of BGC-Argo, with validation carried out in Section
3.1. A station, on the other hand, represents a BGC-Argo device, and there are significant temporal and
spatial differences in nitrate measurements across different stations. This division is evidently more varied
than that based on profiles, which is why the description in lines 317-318 of the original text appears in
Section 3.2. Under this more stringent validation approach, which challenges the model’s generalization
ability, the improvements introduced by our model become more pronounced. We have revised this section
to more clearly describe the validation approach and differences (please also see Line 338-342 in the revision).

Thank you for your thoughtful review and valuable comments. We have carefully considered your suggestions
and made revisions to improve the clarity and accuracy of the manuscript. Your thorough review has greatly
contributed to enhancing the quality of the manuscript, and we hope these revisions meet your expectations.
If you have any further suggestions, please let us know.
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The Referee #2’s Comments

The Referee #2’s General Comment

The manuscript titled " A continual learning-based multilayer perceptron for improved reconstruction
of three-dimensional nitrate concentration" presents a model to estimate the three-dimensional nitrate
concentration in the Pan-European Ocean. Overall, this study is interesting, and the research and
reconstruction data could contribute to a deeper understanding of regional ocean nutrient dynam-
ics. The manuscript demonstrates good levels of research significance, innovation, and expression.
However, before accept this work, there are some concerns need to be addressed.

Response:
We sincerely appreciate your comprehensive evaluation of our manuscript. Your detailed review and insightful
comments have been instrumental in improving the quality of our work. We believe that these revisions
have enhanced the scientific rigor and clarity of our manuscript, and we hope they adequately address your
concerns and gain your approval. Below, we provide detailed responses to each of your comments.

Major Comments:

The Referee #2’s Comment #1

Sections 2.1: The study area is divided into two parts: MED and NEA. The observations in NEA are
sparse. What is the rationale for selecting this region? How can the model’s performance be ensured
to remain stable in this area?

Response:
Thank you for your insightful comments. We greatly appreciate the opportunity to further clarify our
motivations in detail.

The NEA region accounts for only about 14% of BGC-Argo measurements and presents a more complex
oceanic environment in open waters, making nitrate estimation particularly challenging. This challenge
is exacerbated by the significant differences in data distribution between the Northeast Atlantic (NEA)
and the Mediterranean Sea (MED) measurement labels during cross-validation. However, NEA is a key
region of ocean productivity with high scientific significance. One of our primary motivations is to develop
a consistent model capable of reliably estimating three-dimensional nitrate concentrations across diverse
oceanic conditions. Therefore, we included NEA in our study, treating it as a hypothetical data-sparse region
to test the generalization capability of our model. To ensure robust validation, we conducted region-specific
performance evaluations (Figures 4–7 in the manuscript) and achieved promising results. We have described
the reasons for selecting the study area more clearly in our revision (please also see Line 99-102).

To maintain stable performance in data-sparse regions such as NEA, we developed a continual learning
strategy by leveraging relationships within existing datasets to enhance the model’s generalization capability.
Specifically, although BGC-Argo measurements are sparse in NEA, ocean surface features and CMEMS
nitrate data remain globally continuous and available. By pretraining on CMEMS nitrate distributions and
refining the model through a second training phase with BGC-Argo data, we effectively improved its general-
ization ability. The detailed algorithmic approach can be found in Section 2.3.3. We hope this explanation

16



addresses your concerns.

The Referee #2’s Comment #2

In Figure 6, the coupling of the continuous learning model improves overall performance. However, in
terms of spatial distribution, errors increase at the locations of a few observation points. How should
this phenomenon be understood, and is there potential for improvement? An additional discussion of
the model’s strengths and weaknesses is needed.

Response:
Thank you for your meticulous review and insightful observations. In the results of Figure 6, a slight increase
in error is observed at certain horizontal locations in a few test sets (though the magnitude of increase is
minor, as the negative blue portion of the color scale has been magnified). Beyond the natural fluctuations in
model performance across different validations, this phenomenon is primarily attributed to the balance of
knowledge between the CMEMS nitrate and BGC-Argo nitrate datasets.

Figure 3 in the manuscript illustrates this from an algorithmic perspective — continual learning enables the
model to maintain distributional knowledge from both nitrate datasets simultaneously. However, in regions
where BGC-Argo sampling is sufficiently dense, closely spaced BGC-Argo stations may be allocated to both
the training and test sets. In such cases, the observed measurements are already sufficient to support highly
accurate model estimates, while distribution and uncertainty in numerical models (as shown in Figure 6e of
the manuscript) may introduce some interference. Nevertheless, fully sampled BGC-Argo regions account for
only a small proportion of the dataset, while in most test sets, error reductions are predominantly observed,
demonstrating significant improvements in regions previously not covered by BGC-Argo.

This phenomenon presents an opportunity for further improvement. The parameter λ in Equation (11) is
designed to balance the knowledge contribution of CMEMS and BGC-Argo nitrate datasets. By lowering λ,
the model can place greater emphasis on BGC-Argo nitrate knowledge, leading to more accurate estimates in
well-sampled regions. Currently, λ is set to 107, based on achieving the optimal overall performance across
test sets. In future research, we plan to introduce a dynamic λ setting or an additional module to adapt varying
sampling densities across regions and mitigate this limitation.

In summary, the strengths and limitations of the model are intuitively demonstrated in Figure 3 of the
manuscript. The primary advantage is that the model, through continual learning, integrates CMEMS nitrate
knowledge, significantly enhancing computational performance and generalization in data-sparse regions,
leading to an overall substantial reduction in estimation errors. The limitation lies in the potential uncertainty
introduced by continual learning in fully sampled regions, but this presents an avenue for improvement in
future studies. In the revision, we discuss the strengths of the model in the analysis of the results of multiple
experiment results and provide additional discussion of the limitations of the model (please also see Line
610-617 in the revision).

The Referee #2’s Comment #3

The simulated nitrate distribution pattern in Figure 6e appears somewhat unusual. How was the
performance comparison of this widely used three-dimensional nitrate data product implemented
here?
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Response:
Thank you for your detailed comments. Figure 6e in the manuscript compares the simulated nitrate con-
centrations from CMEMS with in-situ nitrate measurements from BGC-Argo to assess the accuracy of the
former. Specifically, CMEMS provides a gridded dataset of nitrate concentrations with a spatial resolution
of 0.25° in longitude and latitude, 75 vertical depth levels (54 within 0–2000 m), and a temporal resolution
of monthly averages. In contrast, BGC-Argo measurements do not adhere to a standardized resolution but
instead record the precise longitude, latitude, depth, and timestamp of each observation. To approximate the
simulated values, CMEMS grid data were interpolated along four dimensions (longitude, latitude, depth, and
time) to match the spatiotemporal coordinates of BGC-Argo observations, and the comparison results are
presented in Figure 6e.

Regarding the distribution pattern observed in Figure 6e, particularly the stepwise clustering of scatter points,
we provided an alternative comparison in Figure 8e of the manuscript, which presents a seasonal-depth profile.
One key limitation of CMEMS nitrate data is its lack of variability in capturing localized vertical dynamics in
the mid-ocean layers. As a result, multiple depth levels within a certain range are assigned similar concentra-
tion values. This phenomenon manifests in Figure 6e as the formation of horizontal stepwise clusters, where
segments exhibiting gradients in nitrate concentration along the x-axis correspond to near-identical values
along the y-axis. The revisions were made in the manuscript, please also see Line 343-347.

The Referee #2’s Comment #4

Regarding the interannual variation trend in Figure 11 and the abnormal increase after 2022, are
there any studies or data that support similar conclusions? Caution is required when evaluating and
interpreting these phenomena.

Response:
We sincerely appreciate your valuable comments. Investigating global three-dimensional nitrate trends from a
quantitative perspective remains a significant challenge, and addressing this issue is a key contribution of our
study. Currently, there is no clear and unified conclusion regarding oceanic three-dimensional nitrate trends,
but our analysis has received support from both data and literature perspectives, as outlined below.

From the data perspective, the most comprehensive and promising datasets for describing three-dimensional
nitrate distributions are the BGC-Argo and CMEMS nitrate datasets, which we employed in our study,
representing observational and modeled approaches, respectively. Figure R8 illustrates the interannual trends
of these datasets in the MED and NEA regions. However, both datasets have significant limitations when
depicting interannual trends. Due to the varying geographical locations of BGC-Argo observations over time,
regional differences in nutrient levels introduce considerable interference and fluctuations in interannual trend
calculations. As a result, BGC-Argo trends tend to be more pronounced, and in some cases, shifting sampling
locations across different nutrient regimes may even lead to trend reversals. Conversely, CMEMS nitrate
data exhibit a delayed response in capturing mesoscale nitrate variability, as noted in your third comment.
Therefore, the overly uniform trend patterns observed in Figure R8bd are likely more conservative than actual
conditions, yet they still provide a useful reference for decadal-scale trends.

From the literature perspective, our analysis aligns with certain previous studies. While some theories suggest
that enhanced ocean stratification due to climate warming weakens upper-layer nutrient availability, recent
research indicates that this effect is more pronounced for phosphate, whereas nitrate continues to exhibit
frequent regional variability [18]. Our reconstruction results reveal pronounced interannual variability in
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(a) Argo for MED (b) Argo for NEA

(c) CMEMS for MED (d) CMEMS for NEA

Figure R8: (Figure S2 in the Supplement) Interannual trends in nitrate from multi-source datasets

the NEA, with the 2010–2014 upper-ocean positive anomalies [19] and the overall increasing trend in the
Iberian Upwelling System [20] being supported by previous studies. In contrast, interannual anomalies in
the MED appear more regular and are supported by a greater number of case studies. In the Sicily Channel,
nitrates showed a slightly negative trend from 2011 to 2016, which then turned positive until 2020 [21]. In
the northwestern MED, nutrient concentrations exhibited an overall increasing trend from 2013 to 2020,
with deep-ocean nitrate accumulation being more pronounced than in the upper layers [22]. The general
trends observed in the MED are consistent with ocean environmental projections simulated using physical-
biogeochemical models under Representative Concentration Pathways (RCPs) 4.5 and 8.5 [23]. Notably,
the anomalous increase observed after 2022 may be linked to the intense winter storm Carmel in 2021. A
four-year time-series study at a Levantine Basin site indicates that the declining oceanic nitrate levels since
2018 were significantly replenished during the 2021 winter storm [24].

In summary, given the ongoing uncertainties surrounding 3D ocean nitrate trends, our analysis is supported
by both data and literature. Moreover, our study provides one of the most detailed quantitative analyses
available, offering a unique perspective and deeper understanding of this issue. We have carefully evaluated
this critical scientific question and remain cautiously optimistic about our findings, aiming to contribute a
distinct viewpoint and help bridge existing observational gaps. We have incorporated Figure R8 into the
Supplementary Material (Figure S2) and have enhanced the discussion of reference citations and trends across
the board in our revisions (please also see Line 462-488). Thank you for your thorough review, and we hope
these clarifications address your concerns.
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The Reviewer #2’s Comment #5

The feature importance calculated through SHAP includes both positive and negative values. The
manuscript evaluates these values based on absolute values, which may overlook the sign of the
contributions. Consider whether a deeper assessment of feature contributions using the positive and
negative relationships of SHAP is possible.

Response:
We sincerely appreciate your invaluable insights, which have inspired and guided us in refining our work. As
you suggested, the positive and negative relationships in SHAP values can be leveraged for a more in-depth
assessment of feature contributions. The sign of the SHAP contribution value indicates the direction of its
impact on the estimation results, while the absolute value represents the magnitude of this impact. Considering
the initial SHAP values allows for a more comprehensive evaluation of feature contributions. However, since
the presence of both positive and negative initial SHAP values can interfere with the ranking of average
feature contributions, we have adopted a combined approach that simultaneously considers both the initial
SHAP values and their absolute values.

To address this, we increased the sampling ratio of SHAP contributions during the manuscript revision process,
enabling a more thorough computation. We have updated the SHAP contribution distribution diagram to
Figure R9 (please also see Figure 13 in the revision) and revised the discussion in Section 3.6 accordingly,
please see manuscript for details (Line 513-583). Compared to our original approach, your suggestion allows
for a richer perspective in analyzing feature contributions from multiple angles, particularly for variables like
depth, where distinct patterns emerge between the upper and deeper ocean layers.

Minor Comments:

The Reviewer #2’s Comment #6

The data processing steps and validation methods need more detailed explanation, such as interpolation
for missing values and the division of the test set.

Response:
We sincerely appreciate your valuable suggestions. We recognize the need for clearer articulation of data
processing and validation methods and have provided more detailed clarifications and revisions accordingly.

1. Interpolation for Missing Values: Due to the high latitude of the study region, the observation of certain
remote sensing parameters is limited. We addressed this issue by selecting well-available feature parameters,
avoiding those with excessive missing values, such as Kd490 in Figure R6. The purpose of data preprocessing
was to standardize the feature dataset and resample it to the specific spatiotemporal coordinates of BGC-Argo.
For the minor missing values, we first applied linear interpolation to the gridded feature dataset in a sequential
manner—longitude, latitude, and time. This approach helped fill in localized gaps while excluding large-
scale missing data, thereby striking a balance between preserving useful information and reducing potential
bias. Afterward, the interpolated gridded feature set was linearly interpolated and resampled to match the
spatiotemporal coordinates of BGC-Argo and CMEMS nitrate data. During this process, we excluded samples
where BGC-Argo coordinates were near grid features with missing values to prevent low-quality data from
negatively impacting model training. We have provided a detailed explanation in the manuscript, please also
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Figure R9: (Figure 13 in the Revision) Probability distribution of SHAP values representing the impact of
each feature on the model output. The y-axis shows the input features, sorted by the total magnitude of Ij ,
while shaded area in the x-axis direction represents the distribution of SHAP values, scaled due to the large
range. The numbers labeled on the left show the mean of the raw SHAP values, while those on the right show
the mean of the ASV. The black vertical dashed lines represent the median and quartiles of the SHAP values.

see Line 154-161 in the revision.

2. Division of the Test Set. In this study, we implemented a five-fold cross-validation approach to assess the
performance of our model on BGC-Argo data. Specifically, the BGC-Argo dataset was divided based on
vertical observation cycle profiles (as described in Section 3.1) or individual sites (as described in Section
3.2). These units were then evenly split into five subsets. During each training and validation iteration,

21



one subset was designated as the test set, while the remaining four subsets were used for training. This
process was repeated five times, ensuring that each subset served as the test set once. By doing so, the entire
BGC-Argo dataset was systematically validated, and statistical metrics were evaluated comprehensively.
The key advantage of this approach is that it guarantees each data point is independently utilized for both
training and validation, thereby minimizing the impact of data partition bias on performance evaluation.
This maximizes data utilization and enables a more robust assessment of the model’s generalization capa-
bility. We have provided a detailed explanation in the manuscript, please also see Line 261-265 in the revision.

The Referee #2’s Comment #7

The manuscript’s descriptions should be consistent, such as "Figure" or "Fig," and "pan-Europe" or
"Pan-Europe."

Response:
Thank you for your thorough review, which has been invaluable in enhancing the quality of our manuscript.
Based on your comments, we tandardized the region to “pan-European”, checked and revised the figure
titles according to the ESSD submission guidelines (https://www.earth-system-science-data.
net/Submission.html#figurestables), and standardized the figure titles at the beginning of a
sentence to “Figure” and in the middle of a sentence to “Fig.”. Furthermore, we have conducted a comprehen-
sive consistency check throughout the manuscript. We greatly appreciate your help.

The Referee #2’s Comment #8

The titles of Figures 6 and 7 are not sufficiently clear and would benefit from refinement and
reorganization.

Response:
Thank you for your helpful suggestion regarding the figure titles. We have improved them to make the
descriptions more accurate and easier to understand, please also see Line 387, 419 in the revision. The revised
titles now better reflect the content and focus of each chart.

We once again thank you for your thoughtful review and valuable comments, which have significantly helped
us improve the manuscript. We have carefully followed your suggestions and strengthened our discussion to
enhance the manuscript’s accuracy and scientific rigor. We hope these responses and revisions meet your
expectations and address your concerns. If you have any further suggestions, please feel free to let us know.
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