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 Abstract.  Global  risk  assessments  of  economic  losses  by  natural  disasters  while  considering  various  land  uses  is  essential. 

 However,  sector-specific,  high-resolution  pixel-level  economic  data  are  not  yet  available  globally  to  assess  exposure  to  local 

 disasters  such  as  floods.  In  this  study,  we  employed  new  land-use  data  to  construct  global,  spatially  distributed  map  of 

 sector-specific  gross  domestic  product  (GDP).  We  developed  three  global  GDP  maps  in  2010,  2015,  and  2020  for  service, 

 industry,  and  agriculture  sector,  with  30  arcsec  resolution.  Firstly,  we  found  that  the  spatial  relationship  between  the 

 distribution  of  industrial  GDP  and  urban  areas,  where  the  service  GDP  is  highly  concentrated,  varies  across  countries.  For 

 example,  in  the  United  States,  industrial  GDP  is  widely  dispersed  regardless  of  urban  areas,  whereas  in  India,  industrial  GDP 

 is  concentrated  in  proximity  to  urban  areas.  Secondly,  we  evaluated  the  GDP  map  by  subnational  regional  statistics  of 

 Thailand,  where  validation  data  are  accessible.  Traditional  GDP  maps  relying  solely  on  population  distribution  exhibited 

 63.0%  relative  error  of  the  sectoral  GDP  in  each  subnational  region  to  regional  statistical  data,  which  the  new  sector-specific 

 GDP  map  reduced  to  26.2%.  Subsequently,  we  assessed  the  map  in  conjunction  with  sector-level  business  interruption  (BI) 

 losses  resulting  from  river  flooding.  Our  estimation  of  sector-level  losses  revealed  that  the  sectoral  ratio  to  the  total  loss 

 varied  significantly  depending  on  the  spatial  distribution  of  flood  hazards.  The  estimated  total  loss  became  closer  to  the 

 reported  value  when  the  new  GDP  map  was  used,  while  sectoral  ratios  of  losses  still  had  some  differences  from  the  reported 

 ratios  suggesting  the  need  for  further  improving  the  procedures  of  loss-estimation  models.  These  global  sectoral  GDP  maps 

 (SectGDP30) are available at https://doi.org/10.5281/zenodo.13991673 (Shoji et al., 2024). 

 1 Introduction 

 In  recent  years,  as  natural  disasters  have  become  more  frequent  and  found  throughout  the  world  (IPCC,  2012),  global  spatial 

 data  including  land  use  and  socioeconomic  information  have  become  essential  for  estimating  the  extent  of  disaster  damage 

 and  losses.  With  the  increasing  frequency  and  impact  of  localized  natural  disasters  such  as  floods,  high-resolution  data 
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 capturing  the  spatial  distribution  of  socioeconomic  factors  are  essential.  However,  socioeconomic  data  published  by 

 international  organizations  such  as  the  World  Bank  are  often  available  only  at  the  national  or  large  municipal  level.  At  the 

 research  level,  economic  data  at  the  municipal  level  have  been  studied  (Wenz  et  al.,  2023);  however,  obtaining  grid-level 

 data at a resolution of several kilometers has been still challenging. 

 For  example,  as  for  the  impact-assessment  of  flood  disasters,  researchers  have  undertaken  a  series  of  studies  by  spatially 

 calculating  the  amount  of  asset  quantity  and  production  activity  overlapped  with  inundated  areas,  leveraging  global  maps. 

 Achieving  this  necessitates  the  downscaling  of  national-level  data  of  economic  activity,  mainly  gross  domestic  product 

 (GDP),  to  finer  subnational  or  grid-based  levels.  This  type  of  product  by  downscaling  GDP  is  called  a  “spatially  distributed 

 GDP  map”.  This  downscaling  practice  typically  relies  on  gridded  population  data  (Tanoue  et  al.,  2021;  Willner  et  al.,  2018). 

 Alternatively,  it  has  involved  the  assembly  and  interpolation  of  available  subnational  statistics  (Duan  et  al.,  2022;  Kummu  et 

 al., 2018) or the assumption that average building heights correlate with economic activity intensity (Taguchi et al., 2022). 

 While  these  studies  estimated  the  total  amount  of  economic  losses  without  considering  the  difference  between  sectors,  the 

 sector-classified  economic  losses  also  need  to  be  estimated  because  indirect  economic  losses,  such  as  global  supply  chain 

 impact  caused  by  the  stoppage  of  production  activity  (Willner  et  al.,  2018),  can  vary  significantly  depending  upon  the  sector 

 directly  affected  by  the  flood  (Sieg  et  al.,  2019).  However,  spatial  data  of  sectors  by  downscaling  national-level  data  have 

 been  lacking.  Consequently,  in  the  context  of  global  studies,  the  estimation  of  sector-specific  losses  was  achieved  by 

 extrapolating  the  values  of  sectoral  occupation  fractions  within  urban  area  grids,  as  reported  in  the  European  Union,  to  other 

 regions  (Alfieri  et  al.,  2016;  Dottori  et  al.,  2018).  Alternatively,  it  is  assumed  that  specific  groups  of  sectors  experience 

 uniform  damage  ratios  (Willner  et  al.,  2018;  Tanoue  et  al.,  2020).  These  methods  did  not  consider  the  different  spatial 

 accumulation  between  each  sector  and  each  region,  which  could  lead  to  the  misestimation  of  sector-classified  losses 

 (Jongman et al., 2012; Willner et al., 2018). 

 The  dearth  of  global  spatial  data  of  the  economic  sector  arises  from  the  absence  of  worldwide  maps  with  comprehensive  land 

 use  categorizations  (Wenz  and  Willner,  2022).  While  regional  maps  provide  sectoral  land  use  classifications,  including 

 commercial  and  industrial  areas  within  urban  regions  (e.g.,  European  Environmental  Agency,  2017;  Theobald,  2014;  De 

 Moel  H  et  al.,  2014;  MLIT  2021),  these  classifications  are  conspicuously  absent  from  global  maps  (e.g.,  Bontemps  et  al., 

 2011;  Esch  et  al.,  2017).  Here  we  focused  on  the  recent  emergence  of  a  global  land  use  map  featuring  detailed  urban  area 

 classifications  (Pesaresi  and  Politis,  2022).  This  development  is  made  possible  by  the  application  of  machine  learning 

 techniques  that  extrapolate  relationships  between  satellite  observations  and  actual  land  uses,  a  methodology  initially 

 established  by  the  data  in  the  European  Union  and  the  United  States  (European  Environmental  Agency,  2017;  Theobald, 

 2014)  and  subsequently  extended  to  a  global  scale.  Although  this  dataset  facilitates  a  comprehensive  consideration  of 
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 detailed  land-use  patterns  within  urban  areas  worldwide,  no  study  has  yet  integrated  this  dataset  with  socioeconomic  data. 

 Such  integration  holds  the  potential  to  pioneer  a  novel  approach  to  estimating  natural  disaster  damage  accurately  with 

 sectoral classifications. 

 The  objective  of  this  study  is  to  leverage  a  recently  available  global  detailed  land  use  map  dataset  to  construct  a  spatially 

 distributed  sectoral  GDP  map.  The  accuracy  of  the  distribution  of  economic  sectors  within  this  newly  developed  spatially 

 distributed  GDP  map  is  evaluated  using  data  from  Thailand.  Validation  is  achieved  by  scrutinizing  the  consistency  of 

 subnational  statistics  within  Thailand.  Furthermore,  to  discuss  the  applicability  of  the  new  GDP  map  for  practical  economic 

 loss  estimation,  this  study  examines  the  estimation  of  business  interruption  losses  incurred  due  to  a  flood  event  in  Thailand 

 and  compares  these  estimations  with  reported  values.  The  reason  for  choosing  Thailand  as  a  target  of  validation  was  that  this 

 country  has  both  sectoral  subnational  GDP  statistics  and  the  reported  values  of  sectoral  economic  losses  caused  by  the 

 historical event while most countries do not have nor publish those types of data. 

 2 Methods 

 2.1 Spatially distributed sectoral GDP map 

 The  spatially  distributed  sectoral  GDP  map  was  created  in  two  steps  (Figure  1).  First,  we  created  a  global  sectoral  land  use 

 fraction  map  at  a  spatial  resolution  of  30  arcsec,  and  combined  satellite  products  to  classify  three  sectors:  the  service, 

 industry,  and  agricultural  sectors.  Then,  country  GDP  data  classified  according  to  these  sectors  were  distributed  spatially  on 

 the  corresponding  sectoral  area  fractions  in  the  global  sectoral  land  use  fraction  map.  The  List  of  the  datasets  used  in  this 

 method is shown in Table 1. 
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 Figure  1:  Flowchart  of  (top)  data  processing  and  (bottom)  creation  of  spatial  distributed  gross  domestic  product  (GDP)  maps  of 
 Thailand for the (a) service, (b) industrial, and (c) agricultural sectors. 
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 Table 1:List of the datasets used in this study. 

 In  the  first  step,  we  used  land  use  classification  maps  from  satellite  products  to  produce  a  global  sectoral  land  use  fraction 

 map.  We  generated  a  sectoral  land  use  fraction  map  classified  into  three  sectors  (service,  industry,  and  agriculture)  and  three 

 land  use  type  maps  with  different  spatial  resolutions:  residential  (RES),  non-residential  (NRES),  and  cropland  (CROP).  To 

 distinguish  RES  and  NRES  areas,  we  used  Global  Human  Settlement  Layer  (GHSL)  (Pesaresi  and  Politis,  2022)  built-up 

 surface  (R2022)  data.  This  layer  has  100  ×  100  m  resolution;  each  pixel  has  a  value  of  0-10,000  m2  and  residential  or 

 non-residential  areas  may  be  present  within  one  pixel.  For  CROP  area,  we  used  the  global  map  of  cropland  extent  (Potapov 

 et  al.,  2022),  provided  by  Global  Land  Analysis  &  Discovery,  which  has  a  global  spatial  resolution  of  0.9  arcsec.  Maps  with 

 the  three  classes  were  resampled  and  combined  into  a  single  global  sectoral  land  use  (residential,  non-residential,  and 

 cropland) fraction map at 30-arcsec resolution. 

 First,  we  upscaled  the  land  use  maps  and  simultaneously  converted  the  value  of  each  pixel  in  both  maps  into  the  sectoral 

 fraction  within  one  pixel.  In  each  pixel,  RES  and  NRES  had  values  of  0–10000  m2  and  CROP  had  a  value  of  0  or  1  (not 

 cropland  or  cropland).  We  upscaled  the  land  use  maps  to  30-arcsec  resolution  from  RES  and  NRES  at  a  resolution  of  100  × 

 100  m  and  CROP  at  a  resolution  of  0.9  arcsec  using  the  GDAL  averaging  method  (GDAL/OGR  contributors.  2024).  Using 

 the  30-arcsec  maps,  we  calculated  the  area  attributed  to  each  land  use  type  in  one  pixel  with  a  size  of  1  ×  1  arcsec  and 

 obtained  land  use  fractions  for  each  pixel.  Because  RES/NRES  and  CROP  had  different  data  sources,  the  total  of  the  three 

 land  use  type  fractions  was  greater  than  one  in  some  pixels.  Therefore,  we  assumed  that  the  CROP  fraction  could  fill  only 

 areas  that  were  not  designated  as  RES  or  NRES.  Under  this  assumption,  we  modified  the  CROP  fraction  in  each  pixel  as 

 follows: 

 (1)  𝑀𝐶𝑅𝑂𝑃 
 𝑖 

=  𝑚𝑖𝑛  𝐶𝑅𝑂𝑃 
 𝑖 
   ,     1 −  𝑅𝐸𝑆 

 𝑖 
−  𝑁𝑅𝐸𝑆 

 𝑖 ( )( )
 where  is  the  modified  CROP  fraction  in  pixel  i,  is  the  original  CROP  fraction,  is  the  RES  fraction,  𝑀𝐶𝑅𝑂𝑃 

 𝑖 
 𝐶𝑅𝑂𝑃 

 𝑖 
    𝑅𝐸𝑆 

 𝑖 

 and  is the NRES fraction.  𝑁𝑅𝐸𝑆 
 𝑖 
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 After  this  modification,  RES,  NRES,  and  MCROP  were  considered  to  represent  the  service,  industrial,  and  agricultural  land 

 use sectors, respectively. 

 In  the  second  step,  we  spatially  distributed  the  country-level  GDP  onto  the  global  sectoral  land  use  fraction  map  generated  in 

 the  first  step.  We  used  GDP  data  published  by  the  World  Bank  (2023),  which  includes  both  yearly  GDP  values  and  their 

 sectoral  ratios  for  the  service,  industrial,  and  agricultural  sectors.  For  industrial  and  agricultural  GDP,  we  assumed  that  the 

 sectoral  GDP  per  area  was  the  same  in  all  the  areas  of  that  sector  within  each  country;  thus,  the  industrial  and  agricultural 

 GDP were distributed only in proportion to the sectoral area fractions of each pixel, with a size of 30 × 30 arcsec. 

 To  create  a  spatially  distributed  sectoral  GDP  map,  we  distributed  the  sectoral  GDP  into  each  sectoral  land  use  area,  in  each 

 country  by  multiplying  the  distributed  sectoral  GDP  per  pixel  by  the  sectoral  area  fraction  in  each  pixel.  At  this  step,  we 

 assumed  that  the  distributed  sectoral  GDP  per  pixel  was  the  same  only  within  the  same  country  and  the  same  sector.  Thus, 

 the distribution was performed for each country and each sector, as follows: 

 (2)  𝑆𝐺𝐷𝑃     𝑝𝑒𝑟     𝑝𝑖𝑥𝑒𝑙 
 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 , 𝑠 

=
 𝑇𝑡𝑙𝑆𝐺𝐷𝑃 

 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 , 𝑠 

 𝑖 = 1 

 𝑛 

∑  𝑆𝐴     𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 
 𝑖 , 𝑠 

 (3)  𝑆𝐺𝐷𝑃 
 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 , 𝑖 , 𝑠 

=  𝑆𝐺𝐷𝑃     𝑝𝑒𝑟     𝑝𝑖𝑥𝑒𝑙 
 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 , 𝑠 

×  𝑆𝐴     𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 
 𝑖 , 𝑠 

 where  is  the  sectoral  GDP  per  pixel  of  sector  s  in  the  country,  is  the  total  sectoral  𝑆𝐺𝐷𝑃     𝑝𝑒𝑟     𝑝𝑖𝑥𝑒𝑙 
 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 , 𝑠 

 𝑇𝑡𝑙𝑆𝐺𝐷𝑃 
 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 , 𝑠 

 GDP  of  sector  s  in  the  country,  is  the  sectoral  area  fraction  of  sector  s  in  pixel  i,  n  is  the  total  number  of  pixels  𝑆𝐴     𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 
 𝑖 , 𝑠 

 in the country, and  is the distributed  sectoral GDP of sector s in pixel i in the country.  𝑆𝐺𝐷𝑃 
 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 , 𝑖 , 𝑠 

 For  the  service  GDP  distribution,  the  activity  level  in  each  service  sector  area  depends  strongly  on  the  number  of  people 

 living  near  that  area  and  using  services  (Morikawa,  2011).  Therefore,  we  considered  the  city  effect  only  for  the  service 

 sector.  As  an  appropriate  scale  for  counting  the  number  of  neighbors  using  the  services  of  a  specific  area,  the  grid-scale 

 population  (e.g.,  30-arcsec  resolution,  approximately  1  ×  1  km  per  pixel)  is  too  fine  to  describe  a  realistic  number  of  users 

 because  many  people  often  travel  further  than  1  km  by  car  or  public  transportation.  Country  and  district  scales  are  too  broad 

 to  reflect  the  intensity  of  demand  of  each  area  accurately  (Ciccone  and  Hall,  1996).  Additionally,  population  density 

 corresponds  more  strongly  to  economic  activity  than  to  population  counts  (Ciccone  and  Hall,  1996;  IMF,  2019).  Therefore, 

 we used city-scale population density information for the service sector GDP distribution (City Effect, Fig. 1). 

 The  service  GDP  was  distributed  only  in  pixels  within  cities  and  the  amount  of  distributed  GDP  was  proportional  to  the 

 population  density  of  the  city  where  the  pixel  is  located.  To  detect  pixels  included  in  cities,  we  used  the  global  city  polygon 

 dataset  provided  by  Global  Rural-Urban  Mapping  Project  (GRUMP)  v1  (CIESIN,  2011).  To  calculate  the  population  density 
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 of  each  city,  we  used  the  global  gridded  population  map  provided  by  GHSL  population  grid  (R2023;  Pesaresi  and  Politis, 

 2022).  For  the  distribution  of  service  sector  GDP,  we  first  masked  out  the  fractions  of  the  service  sector  in  pixels  that  did  not 

 belong  to  any  city  detected  using  the  global  city  polygon  dataset.  We  distributed  GDP  into  only  pixels  that  belonged  to  cities, 

 and  we  assumed  that  the  GDP  per  area  was  the  same  in  one  city  and  that  the  amount  of  gridded  GDP  was  in  proportion  to  the 

 service sector fraction of each pixel. This calculation was performed as follows: 

 (4)  𝑆𝑒𝑟𝑣𝐺𝐷𝑃     𝑝𝑒𝑟     𝑐𝑖𝑡𝑦 
 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 , 𝑐𝑖𝑡𝑦 

=
 𝑃𝐷 

 𝑐𝑖𝑡𝑦 

∑ 𝑃𝐷 
 𝑐𝑖𝑡𝑦 

×  𝑇𝑡𝑙𝑆𝑒𝑟𝑣𝐺𝐷𝑃 
 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 

 (5)  𝑆𝑒𝑟𝑣𝐺𝐷𝑃     𝑝𝑒𝑟     𝑝𝑖𝑥𝑒𝑙 
 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 , 𝑐𝑖𝑡𝑦 

=
 𝑆𝑒𝑐𝑡𝐺𝐷𝑃     𝑝𝑒𝑟     𝑐𝑖𝑡𝑦 

 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 , 𝑐𝑖𝑡𝑦 

 𝑖 = 1 

 𝑘 

∑  𝑆𝑒𝑟𝑣𝐴𝑟𝑒𝑎     𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 
 𝑖 

 (6)  𝑆𝑒𝑟𝑣𝐺𝐷𝑃 
 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 , 𝑐𝑖𝑡𝑦 , 𝑖 

=  𝑆𝑒𝑟𝑣𝐺𝐷𝑃     𝑝𝑒𝑟     𝑝𝑖𝑥𝑒𝑙 
 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 , 𝑐𝑖𝑡𝑦 

×  𝑆𝑒𝑟𝑣𝐴𝑟𝑒𝑎     𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 
 𝑖 

 where  is the service sector GDP,  is the population density of the city,  is the total  𝑆𝑒𝑟𝑣𝐺𝐷𝑃  𝑃𝐷 
 𝑐𝑖𝑡𝑦 

 𝑇𝑡𝑙𝑆𝑒𝑟𝑣𝐺𝐷𝑃 
 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 

 amount of service sector GDP of the country, and  is the fraction of service sector area in pixel i.  𝑆𝑒𝑟𝑣𝐴𝑟𝑒𝑎     𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 
 𝑖 

 2.2 Comparison of GDP distribution methods 

 We  created  three  types  of  spatial  distributed  GDP  map:  population-based  (PB),  sector-based  (SB),  and  sector-based  with  City 

 Effect  (SBCE).  The  PB  map  was  generated  by  downscaling  the  country  GDP  only  in  proportion  to  the  gridded  population 

 count  into  a  30-arcsec  map.  The  SB  map  was  generated  for  each  sectoral  area  and  sectoral  GDP  per  area,  assuming  that  the 

 sectoral  GDP  per  area  is  the  same  within  each  country.  The  SBCE  map  was  generated  by  considering  the  city-scale 

 population  density  effect  (City  Effect)  mentioned  above,  only  for  the  service  GDP  distribution.  The  GDP  of  the  industrial 

 and agricultural sector in the SB map and the SBCE map were distributed using the same method. 

 3 Results 

 We  developed  three  GDP  maps  for  service,  industry,  and  agriculture  sectors  in  2010,  2015,  and  2020.  We  excluded  other 

 years  because  of  the  low  coverage  of  national  GDP  statistics  in  the  World  Bank  data.  The  developed  sectoral  GDP  maps  are 

 shown  in  Fig.  2  (a),  (b),  and  (c).  Additionally,  to  clarify  the  difference  of  spatial  distribution  among  sectors,  we  showed  (d) 

 the  map  of  the  largest  GDP  sector  in  each  grid  in  the  world  and  (e)  around  Thailand  as  an  example.  Although  the  GDP  maps 

 were  produced  with  a  spatial  resolution  of  30  arcsec,  these  maps  in  Fig.  2  show  the  aggregated  maps  into  0.5  degree.  These 

 GDP  maps  are  those  called  SBCE  in  the  Methods.  Both  maps  of  the  service  and  industry  sector  showed  the  same  shape  of 

 extents  which  have  each  sector  GDP.  Meanwhile,  the  GDP  accumulation  into  the  center  of  the  economic  activity  was 

 different  between  them.  Looking  at  the  east  part  of  the  United  States,  while  industry  GDP  was  scattered  evenly  in  a  wide 
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 area,  service  GDP  accumulated  intensely  in  some  centers  of  cities  and  other  areas  have  much  smaller  GDP  in  those  places. 

 This  tendency  was  not  the  case  with  other  countries.  In  countries  such  as  India  and  Iran,  the  industry  GDP  was  more 

 concentrated  in  some  specific  areas  than  the  service  GDP.  As  for  the  agriculture  GDP,  compared  to  maps  of  those  two 

 sectors,  the  GDP  was  spread  to  a  much  wider  area  with  less  concentration  in  specific  areas.  Even  with  this  different 

 characteristic,  the  agriculture  GDP  was  basically  distributed  aligning  with  the  other  two  sectors’  GDP.  When  we  look  at  the 

 map  around  Thailand  (Fig.  2  (e)),  we  can  see  the  different  distribution  between  each  sector.  While  the  service  GDP  (blue) 

 dominated  in  the  Bangkok  area,  the  industry  GDP  mainly  dominated  in  the  eastern  area,  next  to  the  Bangkok  area.  The 

 sectoral GDP map of this study showed such heterogeneity of each sector on a local scale within one country. 

 Figure  2:  The  sectoral  GDP  maps  of  (a)  service  sector,  (b)  industry  sector,  (c)  agricultural  sector,  (d)  the  map  of  the  largest  GDP 
 sector in each grid of 0.5 x 0.5 degree, and (e) the same map around Thailand. 

 We  validated  this  different  distribution  of  each  sector's  GDP  using  subnational  sectoral  GDP  statistics  of  Thailand  in  2009 

 provided  by  the  Thailand  government  (NESDC,  2016)  as  reference  data.  We  spatially  aggregated  the  GDP  map  into  seven 

 districts  corresponding  to  the  statistics  classification:  Northeastern,  Northern,  Southern,  Eastern,  Western,  Central,  and 

 Bangkok  &  Vicinity  (Fig.  3).  This  aggregation  was  performed  using  the  administrative  area  polygon  dataset  obtained  by 

 GADM  4.1  (2023)  and  its  correspondence  with  the  district  definition  in  the  statistics.  The  spatially  aggregated  GDP  of  each 

 sector  in  each  district  of  the  three  maps  (PB,  SB,  SBCE)  and  the  Thailand  government  statistical  values  (Reference)  are 

 shown  in  Fig.  3.  The  population-based  map  had  no  information  on  sectoral  differences  among  districts;  therefore,  the 

 sectoral  ratio  of  the  gridded  GDP  value  was  assumed  to  match  that  of  the  entire  country  in  all  pixels  and  districts,  following 

 the  practice  of  previous  studies  (Willner  et  al.,  2018;  Tanoue  et  al.,  2020).  As  an  index  of  consistency  of  the  three  maps  with 
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 Reference,  we  calculated  average  relative  errors  (ARE)  of  the  aggregated  district  GDP  in  each  map  to  Reference,  on  an 

 average of all seven districts, as follows: 

 (7)  𝐴𝑅𝐸 [ % ]   =     1 
 7 

 𝑘 = 1 

 7 

∑
 𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝑙     𝐺𝐷𝑃 

 𝑘 
   −    𝑅𝑒𝑓 

 𝑘 

 𝑅𝑒𝑓 
 𝑘 

|||
||| ×  100 

 where k is the number of each district shown in Fig. 3. 

 The  AREs  for  the  total  GDP  values  of  the  PB,  SB,  and  SBCE  maps  were  63.0%,  50.0%,  and  26.2%,  respectively.  These 

 AREs  consisted  of  errors  of  each  sector  in  each  district.  For  the  service  sector,  the  AREs  were  50.3%,  69.2%,  and  38.6%, 

 respectively,  in  the  PB,  SB,  and  SBCE  map.  The  largest  service  GDP  was  seen  in  Bangkok  &  Vicinity  in  Reference.  While  it 

 was  seen  in  the  same  district  in  the  SBCE  map,  the  different  district  (Southeastern)  had  the  largest  in  the  other  two  maps  (PB 

 and  SB).  This  result  meant  the  SBCE  showed  better  consistency  with  Reference  than  PB  and  even  SB.  This  indicated  that 

 solely  using  the  residential  fraction  map  was  not  enough  to  express  the  spatial  distribution  of  service  GDP  and  the  city-scale 

 population density could help to reproduce the actual GDP distribution. 

 Figure  3:  (a)  The  seven  districts  of  Thailand  (1,  Northeastern;  2,  Northern;  3,  Southern;  4,  Eastern;  5,  Western;  6,  Central;  7, 
 Bangkok  and  Vicinities).  (b)  Distributed  sectoral  GDP  of  subnational  even  districts  in  Thailand  in  2009,  obtained  from  the 
 population-based  (PB),  sectoral-based  with  city  effect  (SBCE)  maps  and  statistical  values  from  the  government  of  Thailand 
 (Reference). 

 For  the  industrial  sector,  the  AREs  were  159%  and  42.7%  in  the  PB  and  SB/SBCE  map,  showing  the  PB  map  had  a  marked 

 inconsistency  to  Reference.  On  the  other  hand,  SB/SBCE  maps  could  express  the  large  industry  GDP  in  districts  such  as 
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 Eastern  and  Central.  This  indicated  that  the  accumulation  of  non-residential  fraction,  which  was  hypothetically  assumed  to 

 correspond to industry GDP in this study, corresponded well with the distribution of industry sector activities. 

 Conversely,  for  the  agriculture  sector,  which  was  spatially  distributed  using  the  same  method  as  for  the  industrial  sector, 

 none  of  the  three  maps  could  show  the  largest  agriculture  GDP  in  the  Southern  district.  The  SB/SBCE  map  showed  an 

 overestimation  in  Northeastern  and  underestimation  in  Southern  and  Bangkok  &  Vicinity.  This  indicated  that  the  cropland 

 fraction  map  used  in  the  Method  could  not  express  the  intense  accumulation  of  agriculture  GDP.  The  cropland  map  used  in 

 this  study  has  no  information  on  crop  types;  thus,  the  productivity  of  individual  crop  types  was  ignored  for  each  district  in 

 Thailand.  For  example,  the  Northeastern  district  produces  mainly  rice  with  low  land  productivity,  whereas  the  Southern 

 district  produces  natural  rubber  and  palm  oil  (Inoue,  2010).  This  heterogeneity  of  “production  in  monetary  unit  per  area”  was 

 not considered in this study, which probably led to the low improvement of GDP distribution accuracy in the SB/SBCE map. 

 4 Discussion 

 4.1 Business interruption loss estimation for the 2011 Thailand flood 

 To  assess  how  the  improvement  of  the  GDP  map  affects  the  result  of  flood  loss  estimation,  an  additional  analysis  of 

 estimating  business  interruption  losses  resulting  from  the  actual  flood  event  in  Thailand  in  2011  by  the  new  sectoral  GDP 

 map  was  conducted  to  assess  how  the  improvement  of  the  GDP  map  affects  the  result  of  flood  loss  estimation.  Following 

 established  definitions  of  economic  losses  from  prior  studies  (Tanoue  et  al.,  2020;  Rose,  2004),  economic  impacts  can  be 

 categorized  into  three  main  types:  damage,  direct  economic  loss,  and  indirect  economic  loss.  This  additional  analysis  focused 

 exclusively  on  estimating  BI  loss  among  these  three  economic  impacts  due  to  the  lack  of  information  necessary  for  the 

 estimation of the other components. 

 To  calculate  BI  loss,  we  prepared  hazard,  exposure,  and  vulnerability  data.  As  the  hazard,  we  used  two  inundation  period 

 maps  of  the  target  event  in  Thailand,  based  on  simulation  and  satellite  observations.  The  simulation-based  inundation  period 

 map  was  generated  using  the  Catchment-based  Macro-scale  Floodplain  (CaMa-Flood)  global  riverine  inundation  model 

 (Yamazaki  et  al.,  2011).  To  obtain  an  inundation  map  based  on  the  simulation  by  CaMa-Flood,  CaMa-Flood  used  daily 

 runoff  data  generated  by  a  reduced-bias  meteorological  forcing  dataset  at  15-arcmin  resolution,  and  S14FD-Reanalysis  data 

 (Iizumi  et  al.,  2017)  to  simulate  the  daily  inundation  depth  at  15-min  resolution.  Because  S14FD  is  a  bias-corrected  dataset, 

 we  used  daily  inundation  depth  values  without  bias  correction,  such  that  the  inundation  period  may  be  calculated  directly 

 from  the  daily  inundation  depth  (Taguchi  et  al.,  2022).  Then,  we  downscaled  the  15-arcmin  daily  inundation  depth  to 

 30-arcsec  resolution  and  calculated  the  inundation  period  as  the  number  of  days  in  which  the  inundation  depth  exceeded  0.5 

 m  in  each  pixel.  We  also  used  an  inundation  period  map  based  on  Terra/Moderate  Resolution  Imaging  Spectroradiometer 
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 (MODIS)  images,  which  is  publicly  available  on  the  Global  Flood  Database  (Tellman  et  al.,  2021).  We  referred  to  the  former 

 hazard  map  as  “CaMa-Flood”  and  the  latter  map  as  “MODIS”  in  this  study.  The  days  between  August  and  December  in  2011 

 were  only  counted  as  inundation  days  for  matching  the  inundation  period  by  CaMa-Flood  simulation  and  that  by  MODIS 

 observation,  which  started  from  August  and  ended  around  the  end  of  December.  The  inundation  period  maps  of  CaMa-Flood 

 and MODIS are shown in Fig. 4. 

 Figure  4:  Spatial  distribution  of  the  inundation  period  of  the  2011  Thailand  flood,  obtained  from  (a)  Catchment-based  Macro-scale 
 Floodplain (CaMa-Flood) simulation and (b) Moderate Resolution Imaging Spectroradiometer (MODIS) observation data. 

 As  exposure,  we  used  two  spatial  distributed  GDP  maps  at  30-arcsec  resolution  for  comparison,  the  population-based  map 

 (PB)  and  the  sector-based  map  with  CE  (SBCE).  As  a  vulnerability,  we  considered  a  recovery  coefficient,  which  decided  the 

 ratio  of  the  length  of  recovery  period  which  is  required  until  business  restart  to  the  inundation  period.  This  value  reflects  the 

 system  vulnerability  of  the  city.  We  used  2  as  a  recovery  coefficient,  which  was  used  in  previous  study  on  a  global  scale 

 (Taguchi  et  al.,  2022).  As  for  the  recovery  period  as  vulnerability,  we  used  the  method  of  Tanoue  et  al.  (2020).  The  recovery 

 period  ,  when  the  production  in  a  pixel  is  assumed  to  have  recovered  linearly  from  zero  at  the  end  of  the  flood  period  to  𝑅𝑃 
 𝑖 

 the  same  level  of  production  before  the  flood,  was  obtained  by  multiplying  the  inundation  period  by  a  coefficient  (=  2  in  this 

 study).  Thus,  the  recovery  period  was  assumed  to  take  twice  as  long  as  the  inundation  period.  Finally,  BI  loss  was  estimated 

 by the method described by Tanoue et al. (2020), as follows: 

 (8)  𝐵𝐼     𝑙𝑜𝑠𝑠 =    
 𝑖 = 1 

 𝑁 

∑
 𝑠 

 3 

∑ ( 𝐼𝑃 
 𝑖 

+    
 𝑅𝑃 

 𝑖 

 2 ) × 
 𝐴𝐺𝐷𝑃 

 𝑖 , 𝑠 

 𝑁𝑑 { }
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 where  i  ,  N  ,  and  s  are  the  pixel  number,  total  number  of  pixels  in  the  inundated  area,  and  sector  number  (1  =  service,  2  = 
 industry,  and  3  =  agriculture),  respectively;  ,  ,  ,  and  are  the  inundation  period,  recovery  period  at  pixel  i  ,  𝐼𝑃 

 𝑖 
 𝑅𝑃 

 𝑖 
 𝐴𝐺𝐷𝑃 

 𝑖 ,       𝑠 
 𝑁𝑑 

 annual GDP of pixel  i  and sector  s  , and the number  of days in a year. 
 And we obtained the total BI losses by summing BI losses of all the grids in the target area. 

 The  results  of  the  BI  loss  estimation  were  shown  in  Fig.  5.  We  compared  the  calculated  BI  losses  with  the  actual  economic 

 loss  reported  in  the  PDNA  (The  World  Bank,  2011).  In  this  report,  both  damage  and  loss  were  estimated.  Damage  is  due  to 

 the  destruction  of  physical  assets  and  loss  is  caused  by  foregone  production  and  income  and  higher  expenditures  in  the 

 definition  in  the  report.  This  means  that  the  loss  in  the  report  included  both  business  interruption  loss  and  other  additional 

 expenditures  and  costs.  Because  there  was  not  any  other  reported  loss  which  only  focused  on  BI  loss,  we  compared  with  the 

 loss, including other components, in this report. 

 Figure  5:  Business  interruption  losses  (USD  billion,  current  value  in  2011)  due  to  the  2011  Thailand  flood,  estimated  by  combining 
 hazards  and  exposures;  the  total  loss  is  written  in  the  center  of  each  circle.  (a)  CaMa-Flood  and  population-based  map  (PB),  (b) 
 CaMa-Flood  and  sectoral-based  map  with  city  effect  (SBCE),  (c)  MODIS  and  population-based  map  (PB),  (d)  MODIS  and 
 sector-based map with city effect (SBCE), and (e) the World Bank report (2011). 

 Firstly,  comparing  the  losses  by  the  different  hazard  data  with  the  same  exposure,  the  SBCE  map,  the  service  sector  loss 

 according  to  CaMa-Flood  (USD  15.67  billion)  was  over  15-fold  larger  than  that  according  to  MODIS  (USD  0.92  billion). 

 This  large  difference  was  caused  by  the  shorter  average  inundation  period  and  smaller  flood  area  in  MODIS  than  in 

 CaMa-Flood.  MODIS  is  known  to  tend  to  fail  to  capture  the  flood  extent  in  urban  areas  with  high  densities  of  tall  buildings 
 12 
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 and  that  leads  to  the  underestimation  in  inundation.  In  addition  to  different  total  losses,  ratios  of  service  sector  loss  to  the 

 total  loss  differed  between  two  results  :  60.79%  according  to  CaMa-Flood  and  40.11%  according  to  MODIS.  This  result 

 showed  the  sectoral  ratio  of  the  loss  can  be  changed  depending  on  spatially  different  hazards.  This  sectoral  difference  was 

 newly found by this study since the traditional population-based GDP map could not show this difference. 

 The  result  by  the  set  of  hazard  of  CaMa-Flood  and  exposure  of  the  SBCE  map  (b  in  Fig.  5)  was  consistent  with  the  reported 

 total  loss,  although  the  sectoral  losses  differed  from  the  report.  The  total  loss  differed  from  the  report  by  only  –0.72%  (USD 

 25.78  billion  estimated  loss  vs.  USD  25.96  billion  reported  loss),  the  service  sector  loss  was  overestimated  (USD  +7.57 

 billion  loss,  +29.59  point  sectoral  loss  ratio),  and  the  industrial  sector  loss  was  underestimated  (USD  –7.83  billion  loss, 

 –29.92  point  sectoral  loss  ratio).  In  the  service  sector,  the  results  were  overestimated  for  the  larger  inundation  extent  and 

 longer  inundation  period  due  to  the  lack  of  flood  protective  effect  data  in  urban  areas,  where  many  services  are  located.  In 

 the  industrial  sector,  although  the  hazard  in  the  numerical  simulation  captured  the  flood  extent  over  the  industrial  sector  area 

 and  the  long-lasting  inundation  period,  the  loss  was  underestimated.  The  reported  value  excludes  assets  damage  but  includes 

 economic  losses  other  than  production  reduction  by  direct  contact  with  the  flood,  such  as  production  stoppage  due  to 

 shortages  of  raw  materials  induced  by  blocked  roads.  Therefore,  if  we  assume  that  the  new  sectoral  GDP  map  captured  the 

 industrial  locations  and  they  were  successfully  considered  to  be  flooded,  this  underestimation  is  presumed  to  be  caused  by  a 

 lack of data reflecting the indirect production stoppage. 

 In  addition  to  the  notable  omissions  of  urban  flood  protection  and  indirect  production  stoppage  from  the  analysis,  addressing 

 the  inherent  uncertainty  associated  with  the  recovery  coefficient  is  of  utmost  importance.  This  coefficient  plays  a  pivotal  role 

 in  calculating  the  recovery  period  following  an  inundation  event  and  consequently  has  a  substantial  impact  on  the  estimation 

 of  business  interruption  losses,  as  demonstrated  in  the  equation.  However,  determining  the  most  appropriate  coefficient 

 proves  to  be  a  formidable  challenge,  given  its  variability  across  different  locations  and  sectors,  a  fact  substantiated  by  both 

 Taguchi  et  al.  (2022)  and  Kimura  et  al.  (2007).  Presently,  attempting  to  ascertain  the  ideal  coefficient  for  each  sector  is 

 difficult due to the absence of comprehensive observed data. It is crucial that future research investigates this matter. 

 4.2 Limitation 

 Firstly,  there  are  uncertainties  in  the  assumption  of  distributing  sectoral  GDP  in  proportion  to  the  fraction  of  each  land  use.  In 

 the  Methods,  we  decided  to  consider  the  other  components  affecting  the  spatial  accumulation  such  as  population  density  only 

 in  service  GDP  and  assumed  GDP  per  area  is  uniform  in  industry  and  agriculture.  However,  GDP  per  area  could  be  different 

 depending  on  areas.  For  agriculture,  it  was  indicated  that  GDP  per  area  depends  on  the  type  of  crops  in  the  Result.  Also,  for 

 industry,  produce  per  area  was  reported  as  different  depending  on  sub  sectors  among  industry.  For  example,  in  Japan, 

 production  per  area  of  the  chemical  products  sector  is  almost  five  times  larger  than  that  of  transport  equipment  (METI, 
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 2007).  These  indications  are  difficult  to  utilize  for  the  method  of  generating  the  global  map  because  the  data  related  to  spatial 

 distribution  of  crop  type  and  subsectors  are  not  available,  which  is  the  different  case  from  the  service  GDP  map  using 

 globally  available  population  map.  In  this  study,  we  indicated  the  importance  of  considering  other  components  affecting 

 GDP  per  area  by  showing  the  improvement  of  service  GDP  map  by  City  Effect  and  the  low  accuracy  of  agriculture  GDP 

 map.  Therefore,  we  expected  further  research  on  finding  relationships  between  sectoral  GDP  per  area  and  indices  which 

 could be obtained by public and globally available data such as those provided by satellite observation or public statistics. 

 This  study  was  limited  in  that  the  validation  and  comparison  of  the  GDP  map  was  performed  only  for  Thailand  and  for  the 

 map  in  2010.  The  study  methodology  should  be  validated  for  other  countries  prior  to  global  applications.  However,  this  is  the 

 first  study  to  quantify  the  differences  between  traditionally  used  GDP  maps  and  actual  economic  activity,  and  to  evaluate 

 how  such  GDP  maps  may  be  improved  using  satellite  products,  for  countries  with  large  differences  in  sectoral  GDP  among 

 subnational  districts,  such  as  Thailand.  In  this  point,  this  study  could  contribute  to  the  improvement  of  global  natural  hazard 

 risk  assessment,  as  the  methodology  and  dataset  used  in  this  study  can  be  easily  applied  to  global.  For  that  this  study 

 investigated  only  the  map  in  2010,  although  we  did  not  carry  out  the  analysis  on  the  temporal  change  of  sectoral  GDP  map, 

 the  data  of  land  use  map  and  national  sectoral  GDP  we  used  in  this  study  are  available  in  other  multiple  years.  Thus,  the 

 method  in  this  study  is  applicable  also  to  the  analysis  on  different  time  series  and  we  expected  further  analysis  on  it  in  the 

 future. 

 5 Data availability 

 The  global  sectoral  GDP  maps  are  publicly  available  via  Zenodo  at  https://doi.org/10.5281/zenodo.13991673  (Shoji  et  al., 

 2024).  The  maps  on  Zenodo  correspond  to  the  SBCE  maps  in  this  paper  and  are  stored  as  geotiff  files.  In  total,  there  are  nine 

 maps in the dataset, for each sector (service, industry, and agriculture) and year (2010, 2015, and 2020). 

 6 Summary 

 In  this  study,  we  generated  a  spatially  distributed  sectoral  GDP  map  by  leveraging  a  recently  available  global  detailed  land 

 use  dataset;  the  map  showed  better  consistency  with  subnational  GDP  statistics  than  the  traditional  GDP  map  did,  relying 

 only  on  the  gridded  population  map.  We  found  that  the  land  use  classification  of  residential  and  non-residential  areas  could 

 be  used  to  spatially  distinguish  the  service  and  industrial  sector  areas.  The  accumulation  of  non-residential  areas  worked  well 

 as  a  proxy  of  industrial  sector  production  intensity.  Conversely,  that  of  residential  areas  was  insufficient  to  express  the  high 

 accumulation  of  economic  activity  by  the  service  sector  in  large  cities.  To  overcome  this  problem,  we  considered  the 

 city-scale  effect  of  the  intensity  of  service  sector  production.  This  city-scale  effect  expressed  a  realistic  economic  activity 
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 accumulation  in  the  service  GDP  distribution  and  is  a  globally  available  satellite  product.  For  the  agricultural  sector,  we 

 determined that it is necessary to incorporate crop type information. 

 The  flood  BI  loss  estimation  using  the  sector-based  GDP  map  confirmed  that  the  new  sectoral  GDP  map  was  able  to  express 

 sectoral  differences  in  the  estimated  BI  loss,  depending  on  the  different  spatial  distributions  of  hazard.  The  underestimation 

 of  the  industrial  sector  loss  was  probably  resulting  from  a  lack  of  data  reflecting  the  effect  of  transportation  network 

 disruption.  To  consider  the  loss  due  to  such  transportation  disruption  and  estimate  more  realistic  economic  losses,  it  is 

 necessary  to  include  information  on  both  the  road  network  and  transportation  of  goods  for  the  industrial  sector  by  combining 

 road network data and transportation statistics between each area within each country. 

 This  new  sectoral  GDP  map  in  global  can  serve  as  a  foundation  for  estimating  economic  losses  classified  by  sector  while 

 meticulously  accounting  globally  for  the  intricacies  of  land  use  patterns.  This  enables  precise  calculations  of  sector-specific 

 losses by various natural hazards on a global scale. 
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