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9 Abstract. Global risk assessments of economic losses by natural disasters while considering various land uses is essential.
10 However, sector-specific, high-resolution pixel-level economic data are not yet available globally to assess exposure to local
11 disasters such as floods. In this study, we employed new land-use data to construct global, spatially distributed map of
12 sector-specific gross domestic product (GDP). We developed three global GDP maps, SectGDP30, in 2010, 2015, and 2020

13 for service, industry, and agriculture sector with 30 arcsec resolution. Firsthy=we-found-that-the-spatial-relationship-between-
14 Y . . . L . .

23 rattos—suggesting—the—neced—for—further—improving=the=procedures—of-lossestimation=models.=The map (SectGDP30)

24 demonstrates strong consistency (R"2 > 0.9) with actual sub-national statistical data, exhibiting superior alignment compared

25 to conventional GDP maps (PB-method) reliant solely on gridded population information. The methodology refined GDP
26 distribution for specific sectors. Industry GDP was more accurately mapped using non-residential land areas as a proxy,
27 effectively capturing its localized concentrations. Agriculture GDP's accuracy improved by incorporating cropland data and a
28 distance-based distribution assumption from population agglomeration. Application of this dataset in estimating

29 flood-induced business interruption (BI) losses confirmed the map's capacity to represent inter-sectoral differences in

1



30 estimated losses, reflecting varied hazard spatial distributions. This underscores the importance of considering sector-specific
31 spatial patterns for accurate disaster damage assessment. These maps serve as a foundational tool for estimating detailed,
32 sector-classified economic losses, enabling precise calculation of sector-specific impacts from diverse natural disasters
33 worldwide. These global sectoral GDP maps (SectGDP30) are available at
34 https://doi.org/10.5281/zenodo. 1577401 74+60=5284+zeneode=+399+693 (Shoji et al., 20254).

35 1 Introduction

36 In recent years, as natural disasters have become more frequent and found throughout the world (IPCC, 2012), global spatial
37 data including land use and socioeconomic information have become essential for estimating the extent of disaster damage
38 and losses. With the increasing frequency and impact of localized natural disasters such as floods, high-resolution data
39 capturing the spatial distribution of socioeconomic factors are essential. However, socioeconomic data published by
40 international organizations such as the World Bank are often available only at the national or large municipal level. At the
41 research level, economic data at the municipal level have been studied (Wenz et al., 2023); however, obtaining grid-level
42 data at a resolution of several kilometers has been still challenging.

43

44 For example, as for the impact-assessment of flood disasters, researchers have undertaken a series of studies by spatially
45 calculating the amount of asset quantity and production activity overlapped with inundated areas, leveraging global maps.
46 Achieving this necessitates the downscaling of national-level data of economic activity, mainly gross domestic product
47 (GDP), to finer subnational or grid-based levels. This type of product by downscaling GDP is called a “spatially distributed
48 GDP map”. This downscaling practice typically relies on gridded population data (Tanoue et al., 2021; Willner et al., 2018).
49 Alternatively, it has involved the assembly and interpolation of available subnational statistics (Duan et al., 2022; Kummu et
50 al., 2018) or the assumption that average building heights correlate with economic activity intensity (Taguchi et al., 2022).
51 GDP maps developed using these methods are generally created for specific purposes, such as disaster damage estimation,
52 and are therefore not typically released as standalone datasets or products. Among those that are publicly available,
53 "Downscaled gridded global dataset for gross domestic product (GDP) per capita PPP over 1990-2022" by Kummu et al.
54 (2025), is notable. This dataset generates gridded GDP map products with resolutions ranging from 30 arcmin to 30 arcsec
55 for each year since 1990, based on sub-national statistics released by various countries and utilizing population count maps.
56

57 While these studies estimated the total amount of economic losses without considering the difference between sectors, the
58 sector-classified economic losses also need to be estimated because indirect economic losses, such as global supply chain
59 impact caused by the stoppage of production activity (Willner et al., 2018), can vary significantly depending upon the sector
60 directly affected by the flood (Sieg et al., 2019). However, spatial data of sectors by downscaling national-level data have
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61 been lacking. Consequently, in the context of global studies, the estimation of sector-specific losses was achieved by
62 extrapolating the values of sectoral occupation fractions within urban area grids, as reported in the European Union, to other
63 regions (Alfieri et al., 2016; Dottori et al., 2018). Alternatively, it is assumed that specific groups of sectors experience
64 uniform damage ratios (Willner et al., 2018; Tanoue et al., 2020). These methods did not consider the different spatial
65 accumulation between each sector and each region, which could lead to the misestimation of sector-classified losses
66 (Jongman et al., 2012; Willner et al., 2018).

67

68 The dearth of global spatial data of the economic sector arises from the absence of worldwide maps with comprehensive land
69 use categorizations (Wenz and Willner, 2022). While regional maps provide sectoral land use classifications, including
70 commercial and industrial areas within urban regions (e.g., European Environmental Agency, 2017; Theobald, 2014; De
71 Moel H et al., 2014; MLIT 2021), these classifications are conspicuously absent from global maps (e.g., Bontemps et al.,
72 2011; Esch et al., 2017). Here we focused on the recent emergence of a global land use map featuring detailed urban area
73 classifications (Pesaresi and Politis, 2022). This development is made possible by the application of machine learning
74 techniques that extrapolate relationships between satellite observations and actual land uses, a methodology initially
75 established by the data in the European Union and the United States (European Environmental Agency, 2017; Theobald,
76 2014) and subsequently extended to a global scale. Although this dataset facilitates a comprehensive consideration of
77 detailed land-use patterns within urban areas worldwide, no study has yet integrated this dataset with socioeconomic data.
78 Such integration holds the potential to pioneer a novel approach to estimating natural disaster damage accurately with
79 sectoral classifications.

80

81 The objective of this study is to leverage a recently available global detailed land use map dataset to construct a spatially
82 distributed sectoral GDP map (SectGDP30). The accuracy of the GDP mapping distributien-of SectGDP30 eeenemte-seetors-
83 WMWIS evaluated using global sub-national scale statistics from
84 DOSE dataset (Wenz et al., 2023 )data~from=Fhattand. Validation=is : : e consistency of subnationa
85 statisties=within=Fhatand=Furthermore, to discuss the applicability of SectGDP30 the-new-&BP-map-for practical economic

86 loss estimation, this study examines the estimation of business interruption losses incurred due to a flood event in Thailand

87 and compares these estimations with reported values.




90 2 Methods

91 2.1 Spatially distributed sectoral GDP map

97 The spatially distributed sectoral GDP map was created in two steps (Figure 1). First, we classified country level GDP data

98 into three sectors: the agriculture, service, and industry sector, and they are downscaled to a spatial resolution of 30 arcsec

99 based on population data, referred as population-based map (PB-method). Second, downscaled estimates are reallocated to
100 the corresponding land use fraction maps derived from satellite products, referred to as land-use-based map (LUB-method).
101 For both the agriculture and service sectors, we generated PB-method and subsequently reallocated them using land-use data.
102 This two-step allocation is necessary because GDP is generally correlated with population distribution (Chen et al., 2022;
103 Kummu et al., 2025), and service-sector GDP, in particular, is strongly influenced by urban agglomeration effects
104 (Morikawa, 2011). However, previous studies have shown that at high spatial resolutions, population data alone may not
105 adequately preserve these correlations (Murakami and Yamagata, 2019; Ru et al., 2023). Therefore, integrating land-use
106 information is essential to ensure spatial consistency. Unlike the agriculture and service sectors, industry sector GDP doesn’t
107 necessarily follow population distribution. It often expands into suburban or rural areas with low population density (Zhuang
108 and Ye, 2023). Accordingly, we bypass the PB-method step and directly allocate country-level industrial GDP to land use
109 data. The List of the datasets used in this method is shown in Table 1.
110
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113 Figure 1: Flowchart of (top) data processing and (bottom) creation of spatial distributed gross domestic product (GDP) maps of
114 Thailand for the (a) service, (b) industrial, and (c) agricultural sectors.



Data Format Datatype Values range Spatial resolution Temporal resolution Data source, Reference

Built up surface arca

five years interval Global Human Settlement Layer
Rast JIntl -1 1 . .
Non-residential surface aster Ulntl6 0-10000 00m (1975-2020) (Pesaresi and Politis, 2022)
area
0.1 five years interval
Crop land area Raster Boolean (0 - no croplands, 0.9 arcsec ey v Potapov et al., 2022

1 - croplands) (2003-2019)

. - fi ars interval Global Huma ttlement Layel
Population count Raster Float64 0-Inf 30arcsec wfﬁ;c;; 2];231)“1 ! ((’Pc]sar;?:;l dslgolihlli]:g 022‘)y er
. . GADM 4.1 (2023
Administrative units Vector (Polygon) - - - - ! (2023)
115 Level 1 Layer
Data Format Datatype Values range Spatial resolution lemporal resolution Data source, Reference
Built up surface area
five years interval Global Human Settlement Layer
Rastel Int16 0-10000 1001 I N . N
Non-residential surface Laster Ulnile m (1975-2020) (Pesaresi and Politis, 2022)
0.1 five years interval
Crop land area Raster Boolean (0 - no cropland: 0.9 arcsec ‘;‘,]:;1 ‘an ‘ Potapov etal., 2022
2 3=-2Z! E -
1 - croplands) {
Population o Rast Float6d rs interval Global Human Settlement Layer
opulation co astel »atb: )
P4 o e o 2020) (Pesaresi and Politis, 2022)
Global Rural-Urban Mz g Project vl
City area poygons Vector Polygon) lobal Rural-Urban Mapping Project
GADM 4.1 (2
Administrative units Vector (Polygon) - - - - N '
116 o Level 1 Layer

117 Table 1: List of the datasets used in this study.
118 2.1.1 Population-based sectoral GDP

119 In the first step, country-level GDP was partitioned into three sectors and then spatially distributed in proportion to population data at a
120 spatial resolution of 30 arcsec. We used GDP data published by the World Bank (2023), which includes both annual GDP values and their
121 sectoral ratios for the service, industrial, and agricultural sectors, and the Global Human Settlement Layer (GHSL) population grid
122 (R2023; Pesaresi and Politis, 2022) as the source of the global gridded population map. The definition of each sector is shown in Table 2.
123 This downscaling method has been widely employed in previous studies (Kummu et al., 2018; Murakami and Yamagata, 2019) and will be

124 utilized in a later section for comparison with the new method proposed in this study.

125 2.1.2 Sectoral land use fraction map$

126 In the second, step, we reallocated PB-method to global sectoral land use fraction map.ia=the=frrst=step=vre-nsed=tand=-nse=
127 etfasstfreattonr-maps-from-satethte-products-to-produee-a-globat-seetorat-tand-use~fraetrormap—We generated a sectoral land

128 use fraction map classified into three sectors (service, industry, and agriculture) and three land use type maps with different
129 spatial resolutions: residential (RES), non-residential (NRES), and cropland (CROP). To distinguish RES and NRES areas,
130 we used Global Human Settlement Layer (GHSL) (Pesaresi and Politis, 2022) built-up surface (R2022) data. This layer has

131 100 x 100 m resolution; each pixel has a value of 0-10,000 m2 and residential or non-residential areas may be present within
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132 one pixel. For the CROP area, we used the global map of cropland extent (Potapov et al., 2022), provided by Global Land
133 Analysis & Discovery, which has a global spatial resolution of 0.9 arcsec. Maps with the three classes were resampled and
134 combined into a single global sectoral land use (residential, non-residential, and cropland) fraction map at 30 arcsec

135 resolution.

136

137 First, we upscaled the land use maps and simultaneously converted the value of each pixel in both maps into the sectoral
138 fraction within one pixel. In each pixel, RES and NRES had values of 0-10000 m2 and CROP had a value of 0 or 1 (not
139 cropland or cropland). We upscaled the land use maps to 30 arcsec resolution from RES and NRES at a resolution of 100 x
140 100 m and CROP at a resolution of 0.9 arcsec using the GDAL averaging method (GDAL/OGR contributors. 2024). Using
141 the 30 arcsec maps, we calculated the area attributed to each land use type in one pixel with a size of 1 x 1 arcsec and
142 obtained land use fractions for each pixel. Because RES/NRES and CROP had different data sources, the total of the three
143 land use type fractions was greater than one in some pixels. Therefore, we assumed that the CROP fraction could fill only
144 areas that were not designated as RES or NRES. Under this assumption, we modified the CROP fraction in each pixel as
145 follows:

146 MCROP = min(CROPi, (1 — RES - NRESL,)) (1)

147 where MC ROPi is the modified CROP fraction in pixel i, CROPi is the original CROP fraction, RESi is the RES fraction,
148 and NRES . is the NRES fraction.

149 After this modification, RES, NRES, and MCROP were considered to represent the service, industrial, and agricultural land

150 use sectors, respectively.

151 2.1.3 Land-use-based agriculture sector GDP

152 To better reflect the spatial structure of production activities, we introduce the supplier effect, which assumes a
153 beneficiary-supplier relationship. Specifically, agricultural production occurring in peri-urban or rural areas surrounding
154 major population centers is regarded as supplying food and resources to those urban beneficiaries. These agricultural zones,
155 while themselves sparsely populated, are functionally integrated with the urban economy. Therefore, they are expected to
156 exhibit higher GDP values than similarly sparse regions that are not spatially or economically connected to urban demand.
157 To capture this spatial interdependence, the supplier effect applies a distance-decay reallocation from beneficiary pixels in
158 PB-method to nearby supply-side pixels, namely those identified as MCROP. Technically, this is implemented as a linear
159 decay function, in which full weight is given within an inner threshold of 150 km, and weight decrease linearly to zero at an
160 outer threshold of 300km.

161 w, = if dij < din: 1; if din < dij < daut: 1 - (di]_ - din)/ din; if dij > dou :0 (2)

t
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Sector Definition of ISIC
Agriculture ISIC 01-03 (A)
Service* ISIC 50-99
Industry ISIC 05-43 (B-F)

169 *Noted that only the Service sector is based on ISIC Rev. 3.

170 Table 2: Definition of each sector, based on the International Standard Industrial Classification (ISIC) Rev 4, in the GDP data
171 by the World Bank (2023).

172 §

173 2.1.4 Land-use-based service sector GDP

174 Similarly, PB-method of the service sector is reallocated to residential areas (RES) by applying the supplier effect. The
175 rationale here differs slightly from that for agriculture. Grid-scale population data (e.g., at 30 arcsec resolution, or
176 approximately 1 x 1 km per pixel) are too fine to represent realistic service usage, since people commonly travel more than
177 1km by car or public transportation to access services (Ciccone and Hall, 1996). Therefore, this reallocation is designed to
178 represent commuting patterns, where service activities in peri-urban zones support nearby urban demand centers. In this
179 context, we use a supplier effect with an inner threshold of 25 km (representing high-intensity interaction) and an outer

180 threshold of 50 km, beyond which service contributions are assumed negligible.

181 2.1.5 Land-use-based industry sector GDP

182 We distributed the industry sector GDP in each country by multiplying the distributed GDP per pixel by the NRES in each

183 pixel. Thus, the distribution was performed for each country, as follows:

n

184 Industry GDP per pixelw = Total Industry GDPC /> NRESi 3)

untry ountry -1
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185 Industry GDP = Industry GDP per pixelw X NRESi @

country, i untry

186

187 where is the Industry GDP per pixel of sector s in the country, is the total sectoral GDP of industry in the country, is
188 the non-residential area in pixel i, n is the total number of pixels in the country, and is the distributed industry GDP in

189 pixel i in the country.

190 §

193 ass
194
195 country,s /ga q

country,s n S

X

196 — : il

country LS country S LS
197 where———————=s-the-sectoral-GDP-per-pixel-of-sector-s-inthe-country;——is-the-total-sectora-GPDP-of sector-s-imrthe

count‘ry S country S

LS country,i,s
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230 2.2 Comparison of GDP distribution methods

231 We created two types of spatial distributed GDP map: population-based (PB-method), Land-use-based (LUB-method). The
232 PB map was generated by downscaling the country GDP only in proportion to the gridded population count into a 30 arcsec
233 map. The LUB-method was generated for each sectoral area and sectoral GDP per area. To assess the effectiveness of the
234 proposed LUB mapping approach, we compared it against PB-method using the DOSE dataset (Wenz et al., 2023), which
235 provides sectoral GDP estimates at the sub-national administrative unit level (GADM level 1). Both GDP maps (i.e.,
236 PB-method and LUB-method) were spatially aggregated from 30 arcsec resolution to the corresponding GADM Level 1
237 administrative boundaries to enable direct comparison with DOSE data. Comparison involved three steps: (1) Scatter plots
238 were generated to evaluate the agreement between the aggregated values from each GDP map and corresponding sectoral
239 GDP values from the DOSE dataset (agriculture, service, and industry) used as reference data. (2) For each method and
240 sector, we computed the absolute value of the relative error between estimated and reference GDP values and derived the
241 cumulative distribution functions to illustrate the distribution of errors across all administrative units. (3) We computed the
242 difference in absolute relative errors between the LUB-method and PB-method to evaluate the improvement or deterioration

243 in accuracy. For each administrative unit, this metric was calculated as:
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|GDP —GDP

j— _ — estimate DOSE|
24AE = E —E,, whereE = GDP, (5

245 A negative value of (AE) indicates that LUB-method is closer to the reference than PB-method (i.e., an improvement), while
246 a positive value indicates a deterioration in accuracy compared to PB-method. The comparison was conducted using only
247 administrative units for which all three sectoral GDP values were available for the year 2010. In total, the comparison
248 included 1,165 administrative units across 57 countries.

249

250 3 Results

251 We developed three GDP maps for service, industry, and agriculture sectors in 2010, 2015, and 2020. We excluded other
252 years because of the low coverage of national GDP statistics in the World Bank data. Hereafter, the map generated using the
253 LUB method within the Methods will be referred to as “SectGDP30”, and the map generated using the PB method will be
254 referred to as “PB-method”.= The maps of SectGDP30 develeped=seetoral-GBP-maps-are shown in Fig. 2 (a), (b), and (c).
255 Additionally, to clarify the difference of spatial distribution among sectors, we showed (d) the map of the largest GDP sector
256 in each grid in the world=and=(e)-arouwnd=Fhattand-as-an—exampte. Globally, the distribution of economic sectors generally
257 correlates with population distribution, with concentrations observed in urban centers. However, variations exist in the
258 detailed distributions. The service sector's distribution predominantly concentrates in urban areas across countries, consistent
259 with population distribution patterns and the use of residential data. In contrast, industrial GDP, proxied by non-residential
260 areas, shows a tendency toward greater concentration in coastal regions. Conversely, agricultural GDP, while exhibiting
261 some correlation with population distribution, is characterized by a more expansive distribution in inland areas compared to
262 the service sector.

263

264 Examining individual countries allows for the identification of more specific differences in the distribution of each sector at
265 a finer scale, shown in Fig. 3. In the figure of Japan, Japan's three major metropolitan areas—Tokyo, Osaka, and
266 Aichi—shows variations in sectoral distribution, despite their common characteristic of high population concentration. In the
267 GDP map, the service sector predominates in the coastal areas of Tokyo and Osaka, which are marked by high population
268 and service industry presence. In contrast, Aichi's coastal regions exhibit a widespread predominance of industrial GDP.
269 Industrial GDP is not uniformly distributed across the entire Aichi area. Within Aichi, the more inland urban center, such as
270 the Nagoya area, shows a prevalence of the service sector, with industrial GDP concentrated in coastal areas. These findings
271 align with Aichi's higher proportion of industrial GDP compared to Tokyo and Osaka (DOSE, 2024), and the formation of an
272 extensive industrial belt along its coastal regions. This dataset facilitates the depiction of detailed distributional differences

273 within these areas.
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274
275 When comparing central Bangkok with its southeastern region, a similar pattern emerges as a case in Japan. The southeastern
276 area, specifically the Eastern Seaboard and Eastern Economic Corridor (EEC) centered around Laem Chabang Port, has
277 developed as an industrial hub. In this region, industrial GDP predominates over service sector GDP. Regarding the
278 distribution of agricultural GDP, Japan shows fewer pixels where agricultural GDP is dominant, largely because much of its
279 agricultural land is located relatively close to urban areas. However, in Thailand and France, extensive areas with dominant
280 agricultural GDP are observed around metropolitan centers like Bangkok and Paris. For instance, Figure 4 (a), which shows
281 only agricultural GDP for France, illustrates that agricultural GDP is minimally developed around densely populated Paris.
282 Conversely, it depicts widespread agricultural activity in the less populated surrounding regions.
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298 Figure 2: The sectoral GDP maps of (a) service sector, (b) industry sector, (c) agricultural sector, (d) the map of the largest GDP
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326 (Referemee): The map of the largest GDP sector in each grid of 30 arcsec in (a) France, (b) Thailand, and (c) Japan.

327

328 To validate the accuracy of this GDP map, we conducted a comparative analysis with DOSE, a dataset providing sectoral GDP figures at
329 the sub-national administrative unit level. For this validation, the 30 arcsec resolution GDP map was spatially aggregated according to the
330 GADM dataset's Level 1 administrative divisions, which are used by DOSE. The aggregated GDP values for each administrative unit were
331 then calculated and compared with DOSE's figures.

332
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333 The results are presented in Figure 4 (a), (b), and (c). These three scatter plots indicate that SectGDP30 exhibits a similar distribution to
334 actual sub-national scale sectoral GDP (R*2 > 0.9 in all the sectors). When examined by sector, many administrative units with
335 discrepancies in service and industrial GDP show an underestimation compared to actual data. Given that the total GDP per sector at the
336 national level aligns with real data in this study, this discrepancy likely results from over-distributing GDP in a few administrative units
337 within certain countries, leading to an underestimation in many other smaller administrative units. While service and industrial GDP
338 inherently concentrate in specific local areas, and this GDP map depicts that, some countries show an excessive concentration in particular
339 regions. This trend is less apparent in agricultural GDP, which exhibits less localized distribution, and no strong pattern of
340 overestimation or underestimation was observed.

341

342 Next, we compared the results from SectGDP30 with PB-method. The comparison method involved using sectoral GDP figures for each
343 administrative unit, as before, and calculating the cumulative distribution of the differences from DOSE's figures. This result is presented
344 in Figure 4 (d). Sectoral analysis reveals that the industrial sector shows the most significant improvement when compared to PB-method.
345 As previously mentioned, industrial GDP distribution often exhibits localized concentrations even in sparsely populated areas. This
346 suggests that a method using only non-residential land use information and concentrating distribution over relatively small areas is more
347 appropriate than PB-method, which relies on population distribution data.

348 The service sector shows a slight decline in accuracy compared to PB-method. In the service sector, overall regional results showed a
349 slight decrease in accuracy for SectGDP30 compared to PB-method. However, some regions exhibited improved accuracy with
350 SectGDP30. Fundamentally, there is minimal difference between SectGDP30 and PB-method as the spatial distributions of residential
351 areas (upon which SectGDP30 relies) and population (upon which PB-method relies) largely coincide.

352 Conversely, SectGDP30 incorporates Supplier effect, reallocating each grid's GDP to residential areas within a 50km radius. This results in
353 a smoother connection of urban and rural area distribution differences compared to PB-method. This effect is evident in the Alpine regions
354 of Switzerland (CHE), specifically in administrative level districts such as Uri, Wallis, Graubunden, and Glarus. While these Swiss Alpine
355 areas have a significant population, residential areas are limited, and actual statistical service GDP is not high. Therefore, in Switzerland,
356 service GDP should be distributed not based on simple population distribution but rather in the plains north of the Alps, where numerous
357 residential areas exist. This case demonstrated an improvement in SectGDP30 accuracy. Agricultural GDP also shows an improvement
358 compared to PB-method, with an increase in the number of administrative units exhibiting smaller errors.

359

360
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361

362 Figure 4: The scatter graphs of the municipality GDP for (a) service sector (b) industry sector (c) agriculture sector and (d) the
363 cumulative distribution of the errors between DOSE and SectGDP30 and between DOSE and PB-method for each sector.
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378 4 Discussion - Business interruption loss estimation for the 2011 Thailand flood4-l=Business—interruption—toss-
379 estimation-for-the-2641-Fhailand-flood

380 To assess how the improvement of the GDP map affects the result of flood loss estimation, an additional analysis of
381 estimating business interruption losses resulting from the actual flood event in Thailand in 2011 by the new sectoral GDP
382 map was conducted. Following established definitions of economic losses from prior studies (Tanoue et al., 2020; Rose,
383 2004), economic impacts can be categorized into three main types: damage, direct economic loss, and indirect economic
384 loss. This additional analysis focused exclusively on estimating Business Interruption loss (BI loss) among these three
385 economic impacts due to the lack of information necessary for the estimation of the other components.

386

387 To calculate BI loss, we prepared hazard, exposure, and vulnerability data. As the hazard, we used two inundation period
388 maps of the target event in Thailand, based on simulation and satellite observations. The simulation-based inundation period
389 map was generated using the Catchment-based Macro-scale Floodplain (CaMa-Flood) global riverine inundation model
390 (Yamazaki et al., 2011). To obtain an inundation map based on the simulation by CaMa-Flood, CaMa-Flood used daily
391 runoff data generated by a reduced-bias meteorological forcing dataset at 15-arcmin resolution, and S14FD-Reanalysis data
392 (lizumi et al., 2017) to simulate the daily inundation depth at 15-min resolution. Because S14FD is a bias-corrected dataset,
393 we used daily inundation depth values without bias correction, such that the inundation period may be calculated directly
394 from the daily inundation depth (Taguchi et al., 2022). Then, we downscaled the 15-arcmin daily inundation depth to 30
395 arcsec resolution and calculated the inundation period as the number of days in which the inundation depth exceeded 0.5 m
396 in each pixel. We also used an inundation period map based on Terra/Moderate Resolution Imaging Spectroradiometer

397 (MODIS) images, which is publicly available on the Global Flood Database (Tellman et al., 2021). We referred to the former
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398 hazard map as “CaMa-Flood” and the latter map as “MODIS” in this study. The days between August and December in 2011
399 were only counted as inundation days for matching the inundation period by CaMa-Flood simulation and that by MODIS

400 observation, which started from August and ended around the end of December.~Fhe-inundation-peried-maps-of-CaMa-Flood=
401 and MODIS are shown in Fig. 4.

402
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407 As exposure, we used two spatial distributed GDP maps at 30 arcsec resolution for comparison, SectGDP30 and
408 PB-methodthe=pepulation=based-map=-(PB)-and=-the-seetor-based-map-with-€E~(SBEE). As a vulnerability, we considered a
409 recovery coefficient, which decided the ratio of the length of recovery period which is required until business restart to the
410 inundation period. This value reflects the system vulnerability of the city. We used 2 as a recovery coefficient, which was
411 used in previous study on a global scale (Taguchi et al., 2022). As for the recovery period as vulnerability, we used the

412 method of Tanoue et al. (2020). The recovery period RPi, when the production in a pixel is assumed to have recovered

413 linearly from zero at the end of the flood period to the same level of production before the flood, was obtained by
414 multiplying the inundation period by a coefficient (= 2 in this study). Thus, the recovery period was assumed to take twice as

415 long as the inundation period. Finally, BI loss was estimated by the method described by Tanoue et al. (2020), as follows:

AGDP. ]
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417 where i, N, and s are the pixel number, total number of pixels in the inundated area, and sector number (1 = service, 2 =
418 industry, and 3 = agriculture), respectively; IPi, RPL,, AGDPi o and Nd are the inundation period, recovery period at pixel i,

419 annual GDP of pixel i and sector s, and the number of days in a year.
420 And we obtained the total BI losses by summing BI losses of all the grids in the target area.

421

422 The results of the BI loss estimation were shown in Fig. 5. We compared the calculated BI losses with the actual economic
423 loss reported in the PDNA (The World Bank, 2011). In this report, both damage and loss were estimated. Damage is due to
424 the destruction of physical assets and loss is caused by foregone production and income and higher expenditures in the
425 definition in the report. This means that the loss in the report included both business interruption loss and other additional
426 expenditures and costs. Because there was not any other reported loss which only focused on BI loss, we compared with the

427 loss, including other components, in this report.

428
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431

432 Figure 5: Spatial distribution of the inundation period of the 2011 Thailand flood, obtained from (a)
433 Catchment-based Macro-scale Floodplain (CaMa-Flood) simulation and (b) Moderate Resolution Imaging
434 Spectroradiometer (MODIS) observation data, and the simulation Business interruption losses (USD billion, current
435 value in 2011) due to the 2011 Thailand flood, estimated by combining hazards and exposures; the total loss is written
436 in the center of each circle. (¢) CaMa-Flood and PB-method, (d) CaMa-Flood and SectGDP30, (¢) MODIS and
437 PB-method, (f) MODIS and SectGDP30, and (g) the World Bank report (2011).
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439 Firstly, comparing the losses by the different hazard data with the same exposure, SectGDP30=the=SBE&E-map, the service
440 sector loss according to CaMa-Flood (USD 15.8645=6% billion) was over 125-fold larger than that according to MODIS
441 (USD 1.296:92 billion). This large difference was caused by the shorter average inundation period and smaller flood area in
442 MODIS than in CaMa-Flood. MODIS is known to tend to fail to capture the flood extent in urban areas with high densities
443 of tall buildings and that leads to the underestimation in inundation. In addition to different total losses, ratios of
444 industryserviee= sector loss to the total loss differed between two results : 48.2060=79% according to CaMa-Flood and
445 35.6240=+% according to MODIS. This result showed the sectoral ratio of the loss can be changed depending on spatially
446 different hazards. It is caused by the fact that SecGDP30 can show the different spatial distribution of each sectoral GDP,
447 while municipality-level statistics cannot show the spatial distribution in a fine resolution. This sectoral difference was newly
448 found by this study since the traditional population-based GDP map also could not show this difference between sectors.

449
450
451
452
453
454

455 e
456 teeated=Comparing the results using CaMa-Flood and SectGDP30 with the World Bank Report figures (Figure 5 (d) and
457 (g)), SectGDP30 more accurately represents the smaller proportions of agricultural damage compared to when PB-method is
458 used (Figure 5 (c)). This indicates that SectGDP30 can effectively constrain the allocation of agricultural GDP in areas with
459 high population but limited agricultural land. Conversely, while the Report figures show a significant proportion for the
460 industry sector, SectGDP30 results estimate the industry sector to be almost on par with the service sector. It showed the
461 industry loss was underestimated In-the-industrial-seeter=although the hazard in the numerical simulation, by CaMa-Flood,
462 captured the flood extent over the industrial sector area and the long-lasting inundation periodsthe-loss-was-underestimated.
463 The reported value excludes assets damage but includes economic losses other than production reduction by direct contact
464 with the flood, such as production stoppage due to shortages of raw materials induced by blocked roads. Therefore, if we
465 assume that the new sectoral GDP map captured the industrial locations and they were successfully considered to be flooded,
466 this underestimation is presumed to be caused by a lack of data reflecting the indirect production stoppage.

467

468 Related to this limitation of the indirect production stoppage, it is important to recognize that the methodology, including that
469 of this paper and previous studies, which determines the GDP produced in each pixel using indicators such as GDP per unit
470 area, overlooks the fact that labor supplied from remote locations is necessary for GDP production. To rephrase this with the
471 example of a factory affected by a disaster: while the GDP output itself occurs at the factory's location, the workers who

23



472 carry out the production reside in surrounding or remote areas. Therefore, if a disaster occurs in these remote residential
473 areas, the GDP output should cease. However, pixel-based calculation methods would fail to represent this cessation of GDP
474 output as long as the factory's pixel is unaffected. This is considered a non-negligible impact in regions where economic
475 activity and residential areas are clearly separated, but quantifying this impact on a global scale is currently challenging.

476 Alongside future research on regional differences in GDP per unit area, this remains a limitation that we must consider

477 moving forward.
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520 5 Data availability

521 The global sectoral GDP maps are publicly available via Zenodo at https://doi.org/10.5281/zenodo.13991673 (Shoji et al.,
522 2024). The maps on Zenodo correspond to the SBCE maps in this paper and are stored as geotiff files. In total, there are nine
523 maps in the dataset, for each sector (service, industry, and agriculture) and year (2010, 2015, and 2020).

524 6 Summary

525 This study developed a spatially distributed sectoral GDP map (SectGDP30) by leveraging recently available global,
526 high-resolution land use datasets. This map demonstrates strong consistency (R*2 > 0.9) with actual sub-national statistical
527 data and exhibits greater alignment with sub-national GDP statistics compared to conventional GDP maps (PB-method) that
528 rely solely on gridded population maps.

529

530 For the industry sector, the methodology successfully distributed industrial GDP with better accuracy than population
531 distribution alone. This was achieved by adopting "Non-residential areas" as a proxy, which effectively captures the localized

532 nature of industrial GDP distribution in specific regions within each country. For agriculture, accuracy was improved over

25



533 PB-method by distributing GDP based on farmland maps and assuming GDP generation in areas approximately 150-300 km
534 from wide-area population centers. Regarding the service sector, incorporating population distribution within specific ranges,
535 even when using residential land use map information, resulted in GDP being distributed only to actual built-up and
536 designated residential areas. This approach achieved an accuracy comparable to PB-method.

537

538 As an application of this dataset, business interruption (BI) loss estimation due to floods was conducted using the sectoral
539 GDP map. This confirmed that the new sectoral GDP map can represent inter-sectoral differences in estimated BI losses,
540 corresponding to varying spatial distributions of hazards. This validation underscores the importance of considering the
541 spatially distinct distributions of sectors when estimating actual disaster damage. It also highlights the need for developing
542 new estimation methods that account for the processes of GDP generation.

543

544 This new global sectoral GDP map serves as a foundational tool for estimating sector-classified economic losses. It
545 meticulously considers the complexity of global land use patterns at a detailed level, enabling accurate calculation of
546 sector-specific losses from various natural disasters on a global scale.

547
548 use datase
549 ¢
550
551 as=e
552 aee
553 et
554 aee
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