- 1 The revisions made for this finalization are outlined below. The corrections include the addition of the section on
- 2 Contribution that was pointed out, a change to the contact information, and the revision of several citations (due to
- 3 discrepancies between the in-text notation and the Reference list entry).

5 I affirm that no content changes were made in this revision.

6

7 Global spatially-distributed sectoral GDP map for disaster risk

8 analysis

- 9 Takeshi Shoji^{1,2}, Kiyoharu Kajiyama², Dai Yamazaki^{1,2}, Yuki Kita^{2,3}, Megumi Watanabe^{2,4}
- 10 ¹Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
- 11 ²Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan
- 12 ³Gaia Vision Inc., Tokyo, Japan
- 13 ⁴LERMA, Observatoire de Paris, Paris, 75014, France
- 14 Correspondence to: Takeshi Shoji (oi.oh.take@gmail.comtshoji@rainbow.iis.u-tokyo.ac.jp)
- 15 Abstract. Global risk assessments of economic losses by natural disasters while considering various land uses is essential.
- 16 However, sector-specific, high-resolution pixel-level economic data are not yet available globally to assess exposure to local
- 17 disasters such as floods. In this study, we employed new land-use data to construct global, spatially distributed map of
- 18 sector-specific gross domestic product (GDP). We developed three global GDP maps, SectGDP30, in 2010, 2015, and 2020
- 19 for service, industry, and agriculture sector with 30 arcsec resolution. •The map (SectGDP30) demonstrates strong
- 20 consistency ($R^2 > 0.9$) with actual sub-national statistical data, exhibiting superior alignment compared to conventional
- 21 GDP maps (PB-method) reliant solely on gridded population information. The methodology refined GDP distribution for
- 22 specific sectors. Industry GDP was more accurately mapped using non-residential land areas as a proxy, effectively capturing
- 23 its localized concentrations. Agriculture GDP's accuracy improved by incorporating cropland data and a distance-based
- 24 distribution assumption from population agglomeration. Application of this dataset in estimating flood-induced business
- 25 interruption (BI) losses confirmed the map's capacity to represent inter-sectoral differences in estimated losses, reflecting
- 26 varied hazard spatial distributions. This underscores the importance of considering sector-specific spatial patterns for
- 27 accurate disaster damage assessment. These maps serve as a foundational tool for estimating detailed, sector-classified

28 economic losses, enabling precise calculation of sector-specific impacts from diverse natural disasters worldwide. These 29 global sectoral GDP maps (SectGDP30) are available at https://doi.org/10.5281/zenodo.15774017 (Shoij et al., 2025).

30 1 Introduction

31 In recent years, as natural disasters have become more frequent and found throughout the world (IPCC, 2012), global spatial 32 data including land use and socioeconomic information have become essential for estimating the extent of disaster damage 33 and losses. With the increasing frequency and impact of localized natural disasters such as floods, high-resolution data 34 capturing the spatial distribution of socioeconomic factors are essential. However, socioeconomic data published by 35 international organizations such as the World Bank are often available only at the national or large municipal level. At the 36 research level, economic data at the municipal level have been studied (Wenz et al., 2023); however, obtaining grid-level 37 data at a resolution of several kilometers has been still challenging.

38

For example, as for the impact-assessment of flood disasters, researchers have undertaken a series of studies by spatially calculating the amount of asset quantity and production activity overlapped with inundated areas, leveraging global maps. Achieving this necessitates the downscaling of national-level data of economic activity, mainly gross domestic product (GDP), to finer subnational or grid-based levels. This type of product by downscaling GDP is called a "spatially distributed GDP map". This downscaling practice typically relies on gridded population data (Tanoue et al., 2021; Willner et al., 2018). Alternatively, it has involved the assembly and interpolation of available subnational statistics (Duan et al., 2022; Kummu et al., 2018) or the assumption that average building heights correlate with economic activity intensity (Taguchi et al., 2022). GDP maps developed using these methods are generally created for specific purposes, such as disaster damage estimation, and are therefore not typically released as standalone datasets or products. Among those that are publicly available, "Downscaled gridded global dataset for gross domestic product (GDP) per capita PPP over 1990–2022" by Kummu et al. (2025), is notable. This dataset generates gridded GDP map products with resolutions ranging from 30 arcmin to 30 arcsec for each year since 1990, based on sub-national statistics released by various countries and utilizing population count maps.

51

52 While these studies estimated the total amount of economic losses without considering the difference between sectors, the 53 sector-classified economic losses also need to be estimated because indirect economic losses, such as global supply chain 54 impact caused by the stoppage of production activity (Willner et al., 2018), can vary significantly depending upon the sector 55 directly affected by the flood (Sieg et al., 2019). However, spatial data of sectors by downscaling national-level data have 56 been lacking. Consequently, in the context of global studies, the estimation of sector-specific losses was achieved by 57 extrapolating the values of sectoral occupation fractions within urban area grids, as reported in the European Union, to other 58 regions (Alfieri et al., 20176; Dottori et al., 2018). Alternatively, it is assumed that specific groups of sectors experience

59 uniform damage ratios (Willner et al., 2018; Tanoue et al., 2020). These methods did not consider the different spatial 60 accumulation between each sector and each region, which could lead to the misestimation of sector-classified losses 61 (Jongman et al., 2012; Willner et al., 2018).

62

The dearth of global spatial data of the economic sector arises from the absence of worldwide maps with comprehensive land use categorizations (Wenz and Willner, 2022). While regional maps provide sectoral land use classifications, including commercial and industrial areas within urban regions (e.g., The European Environmental Agency, 2017; Theobald, 2014; De Moel H et al., 2014; Ministry of Land, Infrastructure, Transport and Tourism Herr, 2021), these classifications are conspicuously absent from global maps (e.g., Bontemps et al., 2011; Esch et al., 2017). Here we focused on the recent emergence of a global land use map featuring detailed urban area classifications (Pesaresi and Politis, 2022). This development is made possible by the application of machine learning techniques that extrapolate relationships between satellite observations and actual land uses, a methodology initially established by the data in the European Union and the United States (The European Environmental Agency, 2017; Theobald, 2014) and subsequently extended to a global scale. Although this dataset facilitates a comprehensive consideration of detailed land-use patterns within urban areas worldwide, no study has yet integrated this dataset with socioeconomic data. Such integration holds the potential to pioneer a novel approach to estimating natural disaster damage accurately with sectoral classifications.

75

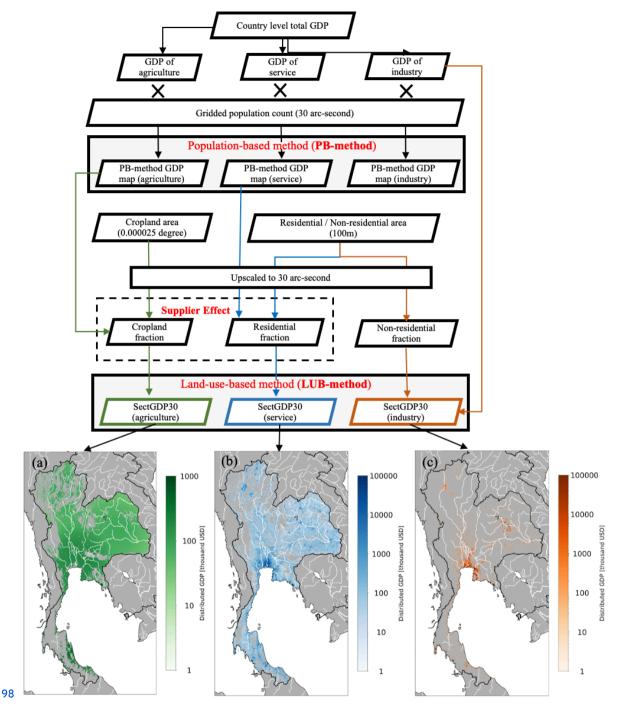
76 The objective of this study is to leverage a recently available global detailed land use map dataset to construct a spatially 77 distributed sectoral GDP map (SectGDP30). The accuracy of the GDP mapping of SectGDP30 is evaluated using global 78 sub-national scale statistics from DOSE dataset (Wenz et al., 2023). Furthermore, to discuss the applicability of SectGDP30 79 for practical economic loss estimation, this study examines the estimation of business interruption losses incurred due to a 80 flood event in Thailand and compares these estimations with reported values.

81 2 Methods

82 2.1 Spatially distributed sectoral GDP map

83 The spatially distributed sectoral GDP map was created in two steps (Figure 1). First, we classified country level GDP data 84 into three sectors: the agriculture, service, and industry sector, and they are downscaled to a spatial resolution of 30 arcsec 85 based on population data, referred as population-based map (PB-method). Second, downscaled estimates are reallocated to 86 the corresponding land use fraction maps derived from satellite products, referred to as land-use-based map (LUB-method). 87 For both the agriculture and service sectors, we generated PB-method and subsequently reallocated them using land-use data. 88 This two-step allocation is necessary because GDP is generally correlated with population distribution (Chen et al., 2022; 89 Kummu et al., 2025), and service-sector GDP, in particular, is strongly influenced by urban agglomeration effects

90 (Morikawa, 2011). However, previous studies have shown that at high spatial resolutions, population data alone may not 91 adequately preserve these correlations (Murakami and Yamagata, 2019; Ru et al., 2022). Therefore, integrating land-use 92 information is essential to ensure spatial consistency. Unlike the agriculture and service sectors, industry sector GDP doesn't 93 necessarily follow population distribution. It often expands into suburban or rural areas with low population density (Zhuang 94 and Ye, 2023). Accordingly, we bypass the PB-method step and directly allocate country-level industrial GDP to land use 95 data. The List of the datasets used in this method is shown in Table 1.



99 Figure 1: Flowchart of (top) data processing and (bottom) creation of spatial distributed gross domestic product (GDP) maps of 100 Thailand for the (a) service, (b) industrial, and (c) agricultural sectors.

Data	Format	Datatype	Values range	Spatial resolution	Temporal resolution	Data source, Reference
Built up surface area	Raster	UInt16	0-1000	100m	Five years interval (1975-2020)	Global Human Settlement Layer (Pesaresi and Politis, 2022)
Non-residentia 1 surface area	Raster	UInt16	0-1000	100m	Five years interval (1975-2020)	Global Human Settlement Layer (Pesaresi and Politis, 2022)
Crop land area	Raster	Boolean	0,1 (0 - no cropland, 1- cropland)	0.9 arcsec	Four years interval (2003-2019)	Potapov et al., 2022
Population count	Raster	Float64	0-Inf	30 arcsec	Five years interval (1975-2020)	Global Human Settlement Layer (Pesaresi and Politis, 2022)
Administrative units	Vector (Polygo n)	-	-	-	-	GADM 4.1 (2023) Level 1 Layer
Data	Format	Datatype	Values range	Spatial resolution	Temporal resolution	Data source, Reference
Built up surface area Non-residential surface area	Raster	UInt16	0-1000	100m	five years interval (1975-2020)	Global Human Settlement Layer (Pesaresi and Politis, 2022)
Crop land area	Raster	Boolean	0,1 (0 - no cropland ^e 1 - croplan ^e	0.9 arcsec	five years interval (2003-2019)	Potapov et al., 2022
Population count	Raster	Float64	0-Inf	50arcsec	five years interval (1975-2020)	Global Human Settlement Layer (Pesaresi and Politis, 2022)
Administrative units	Vector (Polygon)	-	-	-	-	GADM 4.1 (2023) Level 1 Layer

104

105 Table 1: List of the datasets used in this study.

106 2.1.1 Population-based sectoral GDP

107 In the first step, country-level GDP was partitioned into three sectors and then spatially distributed in proportion to population 108 data at a spatial resolution of 30 arcsec. We used GDP data published by the World Bank (2023), which includes both annual GDP 109 values and their sectoral ratios for the service, industrial, and agricultural sectors, and the Global Human Settlement Layer

110 (GHSL) population grid (R2023; Pesaresi and Politis, 2022) as the source of the global gridded population map. The definition of

111 each sector is shown in Table 2. This downscaling method has been widely employed in previous studies (Kummu et al., 2018;

112 Murakami and Yamagata, 2019) and will be utilized in a later section for comparison with the new method proposed in this study.

113 2.1.2 Sectoral land use fraction map

114 In the second, step, we reallocated PB-method to global sectoral land use fraction map. We generated a sectoral land use fraction

115 map classified into three sectors (service, industry, and agriculture) and three land use type maps with different spatial resolutions:

116 residential (RES), non-residential (NRES), and cropland (CROP). To distinguish RES and NRES areas, we used Global Human

117 Settlement Layer (GHSL) (Pesaresi and Politis, 2022) built-up surface (R2022) data. This layer has 100 × 100 m resolution; each

118 pixel has a value of 0-10,000 m2 and residential or non-residential areas may be present within one pixel. For the CROP area, we

119 used the global map of cropland extent (Potapov et al., 2022), provided by Global Land Analysis & Discovery, which has a global

120 spatial resolution of 0.9 arcsec. Maps with the three classes were resampled and combined into a single global sectoral land use

121 (residential, non-residential, and cropland) fraction map at 30 arcsec resolution.

122

123 First, we upscaled the land use maps and simultaneously converted the value of each pixel in both maps into the sectoral fraction

124 within one pixel. In each pixel, RES and NRES had values of 0-10000 m2 and CROP had a value of 0 or 1 (not cropland or

125 cropland). We upscaled the land use maps to 30 arcsec resolution from RES and NRES at a resolution of 100 × 100 m and CROP

126 at a resolution of 0.9 arcsec using the GDAL averaging method (GDAL/OGR contributors, 2024). Using the 30 arcsec maps, we

127 calculated the area attributed to each land use type in one pixel with a size of 1 × 1 arcsec and obtained land use fractions for each

128 pixel. Because RES/NRES and CROP had different data sources, the total of the three land use type fractions was greater than one

129 in some pixels. Therefore, we assumed that the CROP fraction could fill only areas that were not designated as RES or NRES.

130 Under this assumption, we modified the CROP fraction in each pixel as follows:

131
$$MCROP_i = min(CROP_i, (1 - RES_i - NRES_i))$$
 (1)

132 where MCROP, is the modified CROP fraction in pixel i, CROP, is the original CROP fraction, RES, is the RES fraction, and

133 $NRES_i$ is the NRES fraction.

134 After this modification, RES, NRES, and MCROP were considered to represent the service, industrial, and agricultural land use

135 sectors, respectively.

136 2.1.3 Land-use-based agriculture sector GDP

137 To better reflect the spatial structure of production activities, we introduce the supplier effect, which assumes a

138 beneficiary-supplier relationship. Specifically, agricultural production occurring in peri-urban or rural areas surrounding major

139 population centers is regarded as supplying food and resources to those urban beneficiaries. These agricultural zones, while

140 themselves sparsely populated, are functionally integrated with the urban economy. Therefore, they are expected to exhibit higher

141 GDP values than similarly sparse regions that are not spatially or economically connected to urban demand. To capture this

142 spatial interdependence, the supplier effect applies a distance-decay reallocation from beneficiary pixels in PB-method to nearby

143 supply-side pixels, namely those identified as MCROP. Technically, this is implemented as a linear decay function, in which full

144 weight is given within an inner threshold of 150 km, and weight decrease linearly to zero at an outer threshold of 300km.

145
$$w_{ij} = if d_{ij} \le d_{in}: 1; if d_{in} < d_{ij} \le d_{out}: 1 - (d_{ij} - d_{in})/d_{in}; if d_{ij} > d_{out}: 0$$
 (2)

146

Sector	Definition of ISIC		
Agriculture	ISIC 01-03 (A)		
Service*	ISIC 50-99		
Industry	ISIC 05-43 (B-F)		

147 *Noted that only the Service sector is based on ISIC Rev. 3.

148 Table 2: Definition of each sector, based on the International Standard Industrial Classification (ISIC) Rev 4, in the GDP data by

149 the World Bank (2023).

150 2.1.4 Land-use-based service sector GDP

151 Similarly, PB-method of the service sector is reallocated to residential areas (RES) by applying the supplier effect. The rationale

152 here differs slightly from that for agriculture. Grid-scale population data (e.g., at 30 arcsec resolution, or approximately 1×1 km

153 per pixel) are too fine to represent realistic service usage, since people commonly travel more than 1 km by car or public

154 transportation to access services (Ciccone and Hall, 1996). Therefore, this reallocation is designed to represent commuting

155 patterns, where service activities in peri-urban zones support nearby urban demand centers. In this context, we use a supplier

156 effect with an inner threshold of 25 km (representing high-intensity interaction) and an outer threshold of 50 km, beyond which

157 service contributions are assumed negligible.

158 2.1.5 Land-use-based industry sector GDP

159 We distributed the industry sector GDP in each country by multiplying the distributed GDP per pixel by the NRES in each pixel.

160 Thus, the distribution was performed for each country, as follows:

161 Industry GDP per pixel
$$_{country} = Total Industry GDP _{country} / \sum_{i=1}^{n} NRES_{i}$$
 (3)

162 Industry GDP
$$_{country}^{i} = Industry GDP per pixel_{country}^{i} \times NRES_{i}^{i}$$
 (4)

163 where is the Industry GDP per pixel of sector s in the country, is the total sectoral GDP of industry in the country, is the

164 non-residential area in pixel i, n is the total number of pixels in the country, and is the distributed industry GDP in pixel i in the

165 country.

166 2.2 Comparison of GDP distribution methods

167 We created two types of spatial distributed GDP map: population-based (PB-method), Land-use-based (LUB-method). The PB
168 map was generated by downscaling the country GDP only in proportion to the gridded population count into a 30 arcsec map. The
169 LUB-method was generated for each sectoral area and sectoral GDP per area. To assess the effectiveness of the proposed LUB
170 mapping approach, we compared it against PB-method using the DOSE dataset (Wenz et al., 2023), which provides sectoral GDP
171 estimates at the sub-national administrative unit level (GADM level 1). Both GDP maps (i.e., PB-method and LUB-method) were
172 spatially aggregated from 30 arcsec resolution to the corresponding GADM Level 1 administrative boundaries to enable direct
173 comparison with DOSE data. Comparison involved three steps: (1) Scatter plots were generated to evaluate the agreement
174 between the aggregated values from each GDP map and corresponding sectoral GDP values from the DOSE dataset (agriculture,
175 service, and industry) used as reference data. (2) For each method and sector, we computed the absolute value of the relative error
176 between estimated and reference GDP values and derived the cumulative distribution functions to illustrate the distribution of
177 errors across all administrative units. (3) We computed the difference in absolute relative errors between the LUB-method and
178 PB-method to evaluate the improvement or deterioration in accuracy. For each administrative unit, this metric was calculated as:

179
$$\Delta E = E_{LUB} - E_{PB}$$
, where $E = \frac{\left|GDP_{estimate} - GDP_{DOSE}\right|}{GDP_{DOSE}}$ (5)

180 A negative value of (ΔE) indicates that LUB-method is closer to the reference than PB-method (i.e., an improvement), while a 181 positive value indicates a deterioration in accuracy compared to PB-method. The comparison was conducted using only 182 administrative units for which all three sectoral GDP values were available for the year 2010. In total, the comparison included 183 1,165 administrative units across 57 countries.

184 3 Results

We developed three GDP maps for service, industry, and agriculture sectors in 2010, 2015, and 2020. We excluded other years because of the low coverage of national GDP statistics in the World Bank data. Hereafter, the map generated using the LUB method within the Methods will be referred to as "SectGDP30", and the map generated using the PB method will be referred to as "PB-method". The maps of SectGDP30 are shown in Fig. 2 (a), (b), and (c). Additionally, to clarify the difference of spatial distribution among sectors, we showed (d) the map of the largest GDP sector in each grid in the world. Globally, the distribution of economic sectors generally correlates with population distribution, with concentrations observed in urban centers. However, variations exist in the detailed distributions. The service sector's distribution predominantly concentrates in urban areas across countries, consistent with population distribution patterns and the use of residential data. In contrast, industrial GDP, proxied by non-residential areas, shows a tendency toward greater concentration in coastal regions. Conversely, agricultural GDP, while exhibiting some correlation with population distribution, is characterized by a more expansive distribution in inland areas compared to the service sector.

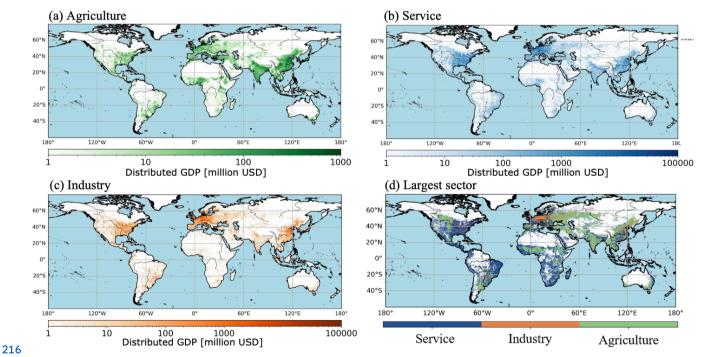
196

197 Examining individual countries allows for the identification of more specific differences in the distribution of each sector at a finer 198 scale, shown in Fig. 3. In the figure of Japan, Japan's three major metropolitan areas—Tokyo, Osaka, and Aichi—shows variations

199 in sectoral distribution, despite their common characteristic of high population concentration. In the GDP map, the service sector 200 predominates in the coastal areas of Tokyo and Osaka, which are marked by high population and service industry presence. In 201 contrast, Aichi's coastal regions exhibit a widespread predominance of industrial GDP. Industrial GDP is not uniformly 202 distributed across the entire Aichi area. Within Aichi, the more inland urban center, such as the Nagoya area, shows a prevalence 203 of the service sector, with industrial GDP concentrated in coastal areas. These findings align with Aichi's higher proportion of 204 industrial GDP compared to Tokyo and Osaka (Wenz et al., 2023DOSE, 2024), and the formation of an extensive industrial belt 205 along its coastal regions. This dataset facilitates the depiction of detailed distributional differences within these areas.

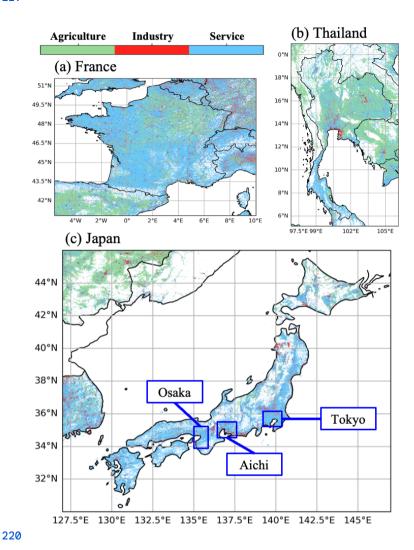
206

When comparing central Bangkok with its southeastern region, a similar pattern emerges as a case in Japan. The southeastern 208 area, specifically the Eastern Seaboard and Eastern Economic Corridor (EEC) centered around Laem Chabang Port, has 209 developed as an industrial hub. In this region, industrial GDP predominates over service sector GDP. Regarding the distribution of 210 agricultural GDP, Japan shows fewer pixels where agricultural GDP is dominant, largely because much of its agricultural land is 211 located relatively close to urban areas. However, in Thailand and France, extensive areas with dominant agricultural GDP are 212 observed around metropolitan centers like Bangkok and Paris. For instance, Figure 4 (a), which shows only agricultural GDP for 213 France, illustrates that agricultural GDP is minimally developed around densely populated Paris. Conversely, it depicts 214 widespread agricultural activity in the less populated surrounding regions.



217 Figure 2: The sectoral GDP maps of (a) service sector, (b) industry sector, (c) agricultural sector, (d) the map of the largest GDP 218 sector in each grid of 30 arcsec.

227



221 Figure 3: The map of the largest GDP sector in each grid of 30 arcsec in (a) France, (b) Thailand, and (c) Japan.

223 To validate the accuracy of this GDP map, we conducted a comparative analysis with DOSE, a dataset providing sectoral GDP 224 figures at the sub-national administrative unit level. For this validation, the 30 arcsec resolution GDP map was spatially 225 aggregated according to the GADM dataset's Level 1 administrative divisions, which are used by DOSE. The aggregated GDP 226 values for each administrative unit were then calculated and compared with DOSE's figures.

228 The results are presented in Figure 4 (a), (b), and (c). These three scatter plots indicate that SectGDP30 exhibits a similar 229 distribution to actual sub-national scale sectoral GDP ($R^2 > 0.9$ in all the sectors). When examined by sector, many

administrative units with discrepancies in service and industrial GDP show an underestimation compared to actual data. Given that the total GDP per sector at the national level aligns with real data in this study, this discrepancy likely results from over-distributing GDP in a few administrative units within certain countries, leading to an underestimation in many other smaller administrative units. While service and industrial GDP inherently concentrate in specific local areas, and this GDP map depicts that, some countries show an excessive concentration in particular regions. This trend is less apparent in agricultural GDP, which exhibits less localized distribution, and no strong pattern of overestimation or underestimation was observed.

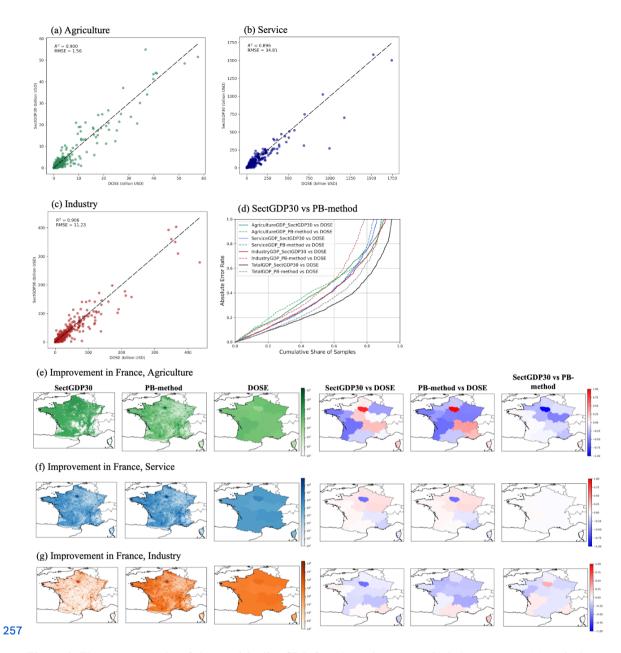
236

Next, we compared the results from SectGDP30 with PB-method. The comparison method involved using sectoral GDP figures for 238 each administrative unit, as before, and calculating the cumulative distribution of the differences from DOSE's figures. This result 239 is presented in Figure 4 (d). Sectoral analysis reveals that the industrial sector shows the most significant improvement when 240 compared to PB-method. As previously mentioned, industrial GDP distribution often exhibits localized concentrations even in 241 sparsely populated areas. This suggests that a method using only non-residential land use information and concentrating 242 distribution over relatively small areas is more appropriate than PB-method, which relies on population distribution data.

243

244 The service sector shows a slight decline in accuracy compared to PB-method. In the service sector, overall regional results showed 245 a slight decrease in accuracy for SectGDP30 compared to PB-method. However, some regions exhibited improved accuracy with 246 SectGDP30. Fundamentally, there is minimal difference between SectGDP30 and PB-method as the spatial distributions of 247 residential areas (upon which SectGDP30 relies) and population (upon which PB-method relies) largely coincide.

248 Conversely, SectGDP30 incorporates Supplier effect, reallocating each grid's GDP to residential areas within a 50km radius. This 249 results in a smoother connection of urban and rural area distribution differences compared to PB-method. This effect is evident in 250 the Alpine regions of Switzerland (CHE), specifically in administrative level districts such as Uri, Wallis, Graubunden, and Glarus. 251 While these Swiss Alpine areas have a significant population, residential areas are limited, and actual statistical service GDP is not 252 high. Therefore, in Switzerland, service GDP should be distributed not based on simple population distribution but rather in the 253 plains north of the Alps, where numerous residential areas exist. This case demonstrated an improvement in SectGDP30 accuracy. 254 Agricultural GDP also shows an improvement compared to PB-method, with an increase in the number of administrative units 255 exhibiting smaller errors.



258 Figure 4: The scatter graphs of the municipality GDP for (a) service sector (b) industry sector (c) agriculture sector and (d) the 259 cumulative distribution of the errors between DOSE and SectGDP30 and between DOSE and PB-method for each sector.

261 4 Discussion - Business interruption loss estimation for the 2011 Thailand flood

To assess how the improvement of the GDP map affects the result of flood loss estimation, an additional analysis of estimating business interruption losses resulting from the actual flood event in Thailand in 2011 by the new sectoral GDP map was conducted. Following established definitions of economic losses from prior studies (Tanoue et al., 2020; Rose, 2004), economic impacts can be categorized into three main types: damage, direct economic loss, and indirect economic loss. This additional analysis focused exclusively on estimating Business Interruption loss (BI loss) among these three economic impacts due to the lack of information necessary for the estimation of the other components.

268

To calculate BI loss, we prepared hazard, exposure, and vulnerability data. As the hazard, we used two inundation period maps of the target event in Thailand, based on simulation and satellite observations. The simulation-based inundation period map was generated using the Catchment-based Macro-scale Floodplain (CaMa-Flood) global riverine inundation model (Yamazaki et al., 2011). To obtain an inundation map based on the simulation by CaMa-Flood, CaMa-Flood used daily runoff data generated by a reduced-bias meteorological forcing dataset at 15-arcmin resolution, and S14FD-Reanalysis data (Iizumi et al., 2017) to simulate the daily inundation depth at 15-min resolution. Because S14FD is a bias-corrected dataset, we used daily inundation depth values without bias correction, such that the inundation period may be calculated directly from the daily inundation depth (Taguchi et al., 2022). Then, we downscaled the 15-arcmin daily inundation depth to 30 arcsec resolution and calculated the inundation period as Terra/Moderate Resolution Imaging Spectroradiometer (MODIS) images, which is publicly available on the Global Flood Terra/Moderate Resolution Imaging Spectroradiometer (MODIS) images, which is publicly available on the Global Flood Study. The days between August and December in 2011 were only counted as inundation days for matching the inundation period by CaMa-Flood simulation and that by MODIS observation, which started from August and ended around the end of December.

282

As exposure, we used two spatial distributed GDP maps at 30 arcsec resolution for comparison, SectGDP30 and PB-method. As a 284 vulnerability, we considered a recovery coefficient, which decided the ratio of the length of recovery period which is required until 285 business restart to the inundation period. This value reflects the system vulnerability of the city. We used 2 as a recovery 286 coefficient, which was used in previous study on a global scale (Taguchi et al., 2022). As for the recovery period as vulnerability, we 287 used the method of Tanoue et al. (2020). The recovery period RP_{i} , when the production in a pixel is assumed to have recovered 288 linearly from zero at the end of the flood period to the same level of production before the flood, was obtained by multiplying the 289 inundation period by a coefficient (= 2 in this study). Thus, the recovery period was assumed to take twice as long as the 290 inundation period. Finally, BI loss was estimated by the method described by Tanoue et al. (2020), as follows:

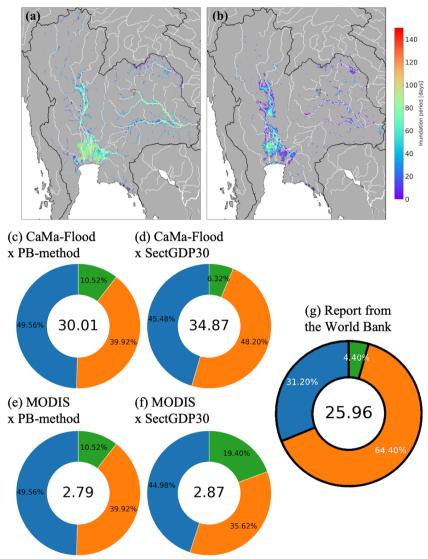
291 BI loss =
$$\sum_{i=1}^{N} \sum_{s}^{3} \left\{ (IP_i + \frac{RP_i}{2}) \times \frac{AGDP_{i,s}}{Nd} \right\}$$
 (6)

292 where i, N, and s are the pixel number, total number of pixels in the inundated area, and sector number (1 = service, 2 = industry, 293 and 3 = agriculture), respectively; IP_{ij} , RP_{ij} , $AGDP_{ij}$, and Nd are the inundation period, recovery period at pixel i, annual GDP of

294 pixel i and sector s, and the number of days in a year.

295 And we obtained the total BI losses by summing BI losses of all the grids in the target area.

297 The results of the BI loss estimation were shown in Fig. 5. We compared the calculated BI losses with the actual economic loss 298 reported in the PDNA (The World Bank, 2011). In this report, both damage and loss were estimated. Damage is due to the 299 destruction of physical assets and loss is caused by foregone production and income and higher expenditures in the definition in 300 the report. This means that the loss in the report included both business interruption loss and other additional expenditures and 301 costs. Because there was not any other reported loss which only focused on BI loss, we compared with the loss, including other 302 components, in this report.



BI loss [billion USD, current value in 2011]

305 Figure 5: Spatial distribution of the inundation period of the 2011 Thailand flood, obtained from (a) Catchment-based Macro-scale 306 Floodplain (CaMa-Flood) simulation and (b) Moderate Resolution Imaging Spectroradiometer (MODIS) observation data, and 307 the simulation Business interruption losses (USD billion, current value in 2011) due to the 2011 Thailand flood, estimated by 308 combining hazards and exposures; the total loss is written in the center of each circle. (c) CaMa-Flood and PB-method, (d) 309 CaMa-Flood and SectGDP30, (e) MODIS and PB-method, (f) MODIS and SectGDP30, and (g) the World Bank report (2011).

310

311 Firstly, comparing the losses by the different hazard data with the same exposure, SectGDP30, the service sector loss according to 312 CaMa-Flood (USD 15.86 billion) was over 12-fold larger than that according to MODIS (USD 1.29 billion). This large difference 313 was caused by the shorter average inundation period and smaller flood area in MODIS than in CaMa-Flood. MODIS is known to 314 tend to fail to capture the flood extent in urban areas with high densities of tall buildings and that leads to the underestimation in 315 inundation. In addition to different total losses, ratios of industry sector loss to the total loss differed between two results: 48.20% 316 according to CaMa-Flood and 35.62% according to MODIS. This result showed the sectoral ratio of the loss can be changed 317 depending on spatially different hazards. It is caused by the fact that SecGDP30 can show the different spatial distribution of each 318 sectoral GDP, while municipality-level statistics cannot show the spatial distribution in a fine resolution. This sectoral difference 319 was newly found by this study since the traditional population-based GDP map also could not show this difference between 320 sectors.

321

322 Comparing the results using CaMa-Flood and SectGDP30 with the World Bank Report figures (Figure 5 (d) and (g)), SectGDP30 323 more accurately represents the smaller proportions of agricultural damage compared to when PB-method is used (Figure 5 (c)). 324 This indicates that SectGDP30 can effectively constrain the allocation of agricultural GDP in areas with high population but 325 limited agricultural land. Conversely, while the Report figures show a significant proportion for the industry sector, SectGDP30 326 results estimate the industry sector to be almost on par with the service sector. It showed the industry loss was underestimated 327 although the hazard in the numerical simulation, by CaMa-Flood, captured the flood extent over the industrial sector area and the 328 long-lasting inundation period. The reported value excludes assets damage but includes economic losses other than production 329 reduction by direct contact with the flood, such as production stoppage due to shortages of raw materials induced by blocked 330 roads. Therefore, if we assume that the new sectoral GDP map captured the industrial locations and they were successfully 331 considered to be flooded, this underestimation is presumed to be caused by a lack of data reflecting the indirect production 332 stoppage.

333

Related to this limitation of the indirect production stoppage, it is important to recognize that the methodology, including that of 335 this paper and previous studies, which determines the GDP produced in each pixel using indicators such as GDP per unit area, 336 overlooks the fact that labor supplied from remote locations is necessary for GDP production. To rephrase this with the example of 337 a factory affected by a disaster: while the GDP output itself occurs at the factory's location, the workers who carry out the 338 production reside in surrounding or remote areas. Therefore, if a disaster occurs in these remote residential areas, the GDP output 339 should cease. However, pixel-based calculation methods would fail to represent this cessation of GDP output as long as the 340 factory's pixel is unaffected. This is considered a non-negligible impact in regions where economic activity and residential areas are 341 clearly separated, but quantifying this impact on a global scale is currently challenging. Alongside future research on regional 342 differences in GDP per unit area, this remains a limitation that we must consider moving forward.

343 5 Data availability

344 The global sectoral GDP maps are publicly available via Zenodo at 345 https://doi.org/10.5281/zenodo.15774017https://doi.org/10.5281/zenodo.13991673 (Shoji et al., 20252024). The maps on 346 Zenodo correspond to the SBCE maps in this paper and are stored as geotiff files. In total, there are nine maps in the dataset, 347 for each sector (service, industry, and agriculture) and year (2010, 2015, and 2020).

348 6 Summary

349 This study developed a spatially distributed sectoral GDP map (SectGDP30) by leveraging recently available global, 350 high-resolution land use datasets. This map demonstrates strong consistency ($R^2 > 0.9$) with actual sub-national statistical 351 data and exhibits greater alignment with sub-national GDP statistics compared to conventional GDP maps (PB-method) that 352 rely solely on gridded population maps.

353

354 For the industry sector, the methodology successfully distributed industrial GDP with better accuracy than population 355 distribution alone. This was achieved by adopting "Non-residential areas" as a proxy, which effectively captures the localized 356 nature of industrial GDP distribution in specific regions within each country. For agriculture, accuracy was improved over 357 PB-method by distributing GDP based on farmland maps and assuming GDP generation in areas approximately 150-300 km 358 from wide-area population centers. Regarding the service sector, incorporating population distribution within specific ranges, 359 even when using residential land use map information, resulted in GDP being distributed only to actual built-up and 360 designated residential areas. This approach achieved an accuracy comparable to PB-method.

361

362 As an application of this dataset, business interruption (BI) loss estimation due to floods was conducted using the sectoral GDP map. This confirmed that the new sectoral GDP map can represent inter-sectoral differences in estimated BI losses, 364 corresponding to varying spatial distributions of hazards. This validation underscores the importance of considering the 365 spatially distinct distributions of sectors when estimating actual disaster damage. It also highlights the need for developing 366 new estimation methods that account for the processes of GDP generation.

367

368 This new global sectoral GDP map serves as a foundational tool for estimating sector-classified economic losses. It 369 meticulously considers the complexity of global land use patterns at a detailed level, enabling accurate calculation of 370 sector-specific losses from various natural disasters on a global scale.

372 Author contributions

- 373 The SectGDP30 dataset was conceptualized by TS and DY. Data processing and validation were performed by KK and TS.
- 374 The application of the maps of the SectGDP30 in the case of the Thailand flood was performed by TS. The remaining
- 375 co-authors participated in the editing of the paper.

376

377 Competing interests

378 The contact author has declared that none of the authors has any competing interests.

379

380 Acknowledgement

- 381 This work was supported by Japan Science and Technology Agency (JST) [Moonshot R&D; JPMJMS2281] and Ministry of
- 382 the Environment of Japan / Environmental Restoration and Conservation Agency [Development Fund;
- 383 JPMEERF23S21130].

384

385 References

- 386 Alfieri L, Bisselink B, Dottori F, Naumann G, De Roo A, Salamon P, Wyser K, Feyen L.: Global projections of river flood
- 387 risk in a warmer world. Earth's Future 5: 171-182, 2017.
- 388 Bontemps S, Herold M, Kooistra L, Van Groenestijn A, Hartley A, Arino O, Moreau I, Defourny P.: Revisiting land cover
- 389 observations to address the needs of the climate modelling community. Earth System Science/Response to Global Change:
- 390 Climate Change, Preprint Report, 2011.
- 391 Chen, J., Gao, M., Cheng, S., Hou, W., Song, M., Liu, X., & Liu, Y.: Global 1 km× 1 km gridded revised real gross domestic
- 392 product and electricity consumption during 1992–2019 based on calibrated nighttime light data. Scientific Data, 9(1), 202,
- **393** 2022.
- 394 Ciccone A, Hall RE.: Productivity and the density of economic activity. The American Economic Review 86: 54–70.
- 395 http://www.jstor.org/stable/2118255, 1996.
- 396 CIESIN (Center for International Earth Science Information Network).: Global Rural-Urban Mapping Project, Version 1
- 397 (GRUMPv1): Urban Extent Polygons, v1.02, 2011.

- 398 De Moel H, Van Vliet M, Aerts JCJH.: Evaluating the effect of flood damage-reducing measures: a case study of the
- 399 unembanked area of Rotterdam, the Netherlands. Regional Environmental Change 14: 895–908, 2014.
- 400 Dottori F, Szewczyk W, Ciscar J, Zhao F, Alfieri L, Hirabayashi Y, Bianchi A, Mongelli I, Frieler K, Betts RA, Feyen L.:
- 401 Increased human and economic losses from river flooding with anthropogenic warming. Nature Climate Change 8: 781-786,
- 402 2018.
- 403 Duan Y, Xiong J, Cheng W, Li Y, Wang N, Shen G, Yang J.: Increasing Global Flood Risk in 2005–2020 from a Multi-Scale
- 404 Perspective. Remote Sensing 14: 5551, 2022.
- 405 Esch T, Heldens W, Hirner A, Keil M, Marconcini M, Roth A, Zeidler J, Dech S, Strano E.: Breaking new ground in
- 406 mapping human settlements from space The Global Urban Footprint. ISPRS Journal of Photogrammetry and Remote
- 407 Sensing 134: 30-42, 2017.
- 408 GADM 4.1. https://gadm.org/.
- 409 GDAL/OGR contributors.: GDAL/OGR Geospatial Data Abstraction software Library. Open Source Geospatial Foundation.
- 410 https://gdal.org, 2024.
- 411 Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, Kim H, Kanae S.: Global flood risk under
- 412 climate change. Nature climate change 3: 816-821, 2013.
- 413 Huizinga J, De Moel H, Szewczyk W.: Global flood depth-damage functions: methodology and the database with guidelines.
- 414 European Commission, Joint Research Centre, 2016.
- 415 Iizumi T, Takikawa H, Hirabayashi Y, Hanasaki N, Nishimori M.:Contributions of different bias-correction methods and
- 416 reference meteorological forcing data sets to uncertainty in projected temperature and precipitation extremes. Journal of
- **417** Geophysical Research-Atmospheres, 2017.
- 418 IMF.: How Should We Measure City Size Theory and Evidence Within and Across Rich and Poor Countries. IMF:
- 419 Washington, DC, USA.
- 420 https://www.imf.org/en/Publications/WP/Issues/2019/09/20/How-Should-We-Measure-City-Size-Theory-and-Evidence-With
- 421 in-and-Across-Rich-and-Poor-Countries-48671, 2019.
- 422 Inoue S.: Agriculture and its Policy in Thailand. MAFF (Ministry of Agriculture, Forestry and Fisheries).
- 423 https://www.maff.go.jp/primaff/koho/seminar/2010/attach/pdf/101026 01.pdf. (In Japanese), 2010.
- 424 IPCC.: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of
- 425 Working Groups I and II of the Intergovernmental Panel on Climate Change: 582 pp. 2012.
- 426 Jongman B, Kreibich H, Apel H, Barredo JI, Bates PD, Feyen L, Gericke A, Neal J, Aerts JCJH, Ward PJ.: Natural Hazards
- 427 and Earth System Sciences 12: 3733-3752, 2012.
- 428 Jovel RJ, Mudahar M.: Damage, loss, and needs assessment guidance notes: Volume 3. Estimation of post-disaster needs for
- 429 recovery and reconstruction. Washington, DC, Report. http://hdl.handle.net/10986/19046, 2010.

- 430 Kimura S, Ishikawa Y, Katada T, Asano K, Sato H.: The structural analysis of economic damage of offices by flood disasters
- 431 in urban areas. Japanese Journal of JSCE 63: 88-100 (in Japanese), 2007.
- 432 Koks EE, Bočkarjova M, De Moel H, Aerts JCJH.: Integrated Direct and Indirect Flood Risk Modeling: Development and
- 433 Sensitivity Analysis: Integrated Direct and Indirect Flood Risk Modeling. Risk Analysis 35: 882-900, 2015.
- 434 Kummu M, Maija T, Guillaume JHA.: Gridded global datasets for gross domestic product and human development index
- 435 over 1990–2015. Scientific Data 5: 180004, 2018.
- 436 Kummu, M., Kosonen, M., & Masoumzadeh Sayyar, S.: Downscaled gridded global dataset for gross domestic product
- 437 (GDP) per capita PPP over 1990–2022. Scientific Data, 12(1), 178, 2025.
- 438 Ministry of Economy, Trade, and Industry.: A survey on industry statistics.
- 439 https://www.meti.go.jp/statistics/tyo/kougyo/result-2/h10/kakuho/youti/youti1.html, 2007.
- 440 Ministry of Land, Infrastructure, Transport and Tourism.: Mesh Data of Subdivided Land Use in Urban Area.
- 441 https://nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-L03-b-u.html, 2021.
- 442 Morikawa M. Economies of density and productivity in service industries: An analysis of personal service industries based
- 443 on establishment-level data. Review of Economics and Statistics 93: 179–192, 2011.
- 444 Murakami, D., & Yamagata, Y.: Estimation of gridded population and GDP scenarios with spatially explicit statistical
- **445** downscaling. Sustainability, 11(7), 2106, 2019.
- 446 NESDC (Office of the National Economic and Social Development Council, Thailand).: Gross Provincial Product
- 447 1995–2009 (16 sectors). https://www.nesdc.go.th/main.php?filename=gross_regional, 2016.
- 448 Pesaresi M, Politis P.: GHS-BUILT-S R2022A: GHS built-up surface grid, derived from Sentinel2 composite and Landsat,
- 449 multitemporal (1975–2030). European Commission, Joint Research Centre (JRC), 2022.
- 450 Potapov P, Svetlana T, Matthew CH, Alexandra T, Viviana Z, Ahmad K, Xiao-Peng S, Amy P, Quan S, Jocelyn C.: Global
- 451 maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nature Food 3: 19–28,
- **452** 2022.
- 453 Rose A.: Economic Principles, Issues, and Research Priorities in Hazard Loss Estimation. Modeling Spatial and Economic
- 454 Impacts of Disasters, Springer Berlin Heidelberg, Berlin, Heidelberg; 13-36, 2004.
- 455 Ru, Y., Blankespoor, B., Wood-Sichra, U., Thomas, T. S., You, L., & Kalvelagen, E.: Estimating local agricultural GDP
- 456 across the world. Earth System Science Data Discussions, 2022, 1-36, 2022.
- 457 Shoji T, Yamazaki D, Kita Y, Megumi W.: Global Sectoral GDP map at 30" resolution (SectGDP30) v2.0-v1.0,
- 458 https://doi.org/10.5281/zenodo.15774017 https://doi.org/10.5281/zenodo.13991673, 20254.
- 459 Sieg T, Thomas S, Kristin V, Reinhard M, Bruno M, Heidi K.: Integrated assessment of short-term direct and indirect
- 460 economic flood impacts including uncertainty quantification. PLOS ONE 14: e0212932, 2019.
- 461 Taguchi R, Tanoue M, Yamazaki D, Hirabayashi Y.: Global-scale assessment of economic losses caused by flood-related
- 462 business interruption. Water 14: 967, 2022.

- 463 Tanoue M, Hirabayashi Y, Ikeuchi H.: Global-scale river flood vulnerability in the last 50 years. Scientific Reports 6: 36021,
- **464** 2016.
- 465 Tanoue M, Taguchi R, Nakata S, Watanabe S, Fujimori S, Hirabayashi Y.: Estimation of direct and indirect economic losses
- 466 caused by a flood with long-lasting inundation: Application to the 2011 Thailand flood. Water Resources Research 56, 2020.
- 467 Tanoue M, Taguchi R, Alifu H, Hirabayashi Y.: Residual flood damage under intensive adaptation. Nature Climate Change
- 468 11: 823-826, 2021.
- 469 Tellman B, Sullivan JA, Kuhn C, Kettner AJ, Doyle CS, Brakenridge GR, Erickson TA, Slayback DA.: Satellite imaging
- 470 reveals increased proportion of population exposed to floods. Nature 596: 80–86, 2021.
- 471 The European Environmental Agency.: CORINE Land Cover.
- 472 https://land.copernicus.eu/en/products/corine-land-cover?tab=main, 2017.
- 473 Theobald DM.: Development and Applications of a Comprehensive Land Use Classification and Map for the US. PLoS
- 474 ONE 9: e94628, 2014.
- 475 Wenz L, Carr RD, Kögel N, Kotz M, Kalkuhl M.: DOSE Global data set of reported sub-national economic output. Sci
- 476 Data 10: 425, 2023.
- 477 Wenz L, Willner SN.: 18. Climate impacts and global supply chains: An overview. Handbook on Trade Policy and Climate
- 478 Change, 290, 2022.
- 479 Willner SN, Otto C, Levermann A.: Global economic response to river floods. Nature Climate Change 8: 594–98, 2018.
- 480 The World Bank.: 2011 Thailand Floods: Rapid Assessment for Resilient Recovery and Reconstruction Planning.
- 481 https://recovery.preventionweb.net/publication/2011-thailand-floods-rapid-assessment-resilient-recovery-and-reconstruction-
- **482** planning, 2011.
- 483 The World Bank.: World Development Indicators. https://databank.worldbank.org/source/world-development-indicators,
- **484** 2023.
- 485 Yamazaki, D, Kanae S, Kim H, Oki T.: A physically-based description of floodplain inundation dynamics in a global river
- 486 routing model: FLOODPLAIN INUNDATION DYNAMICS. Water Resources Research 47: w04501, 2011.
- 487 Zhuang, L., & Ye, C.: More sprawl than agglomeration: The multi-scale spatial patterns and industrial characteristics of
- 488 varied development zones in China. Cities, 140, 104406, 2023