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15 Abstract. Global risk assessments of economic losses by natural disasters while considering various land uses is essential.
16 However, sector-specific, high-resolution pixel-level economic data are not yet available globally to assess exposure to local
17 disasters such as floods. In this study, we employed new land-use data to construct global, spatially distributed map of
18 sector-specific gross domestic product (GDP). We developed three global GDP maps, SectGDP30, in 2010, 2015, and 2020
19 for service, industry, and agriculture sector with 30 arcsec resolution. *The map (SectGDP30) demonstrates strong
20 consistency (R™2 > 0.9) with actual sub-national statistical data, exhibiting superior alignment compared to conventional
21 GDP maps (PB-method) reliant solely on gridded population information. The methodology refined GDP distribution for
22 specific sectors. Industry GDP was more accurately mapped using non-residential land areas as a proxy, effectively capturing
23 its localized concentrations. Agriculture GDP's accuracy improved by incorporating cropland data and a distance-based
24 distribution assumption from population agglomeration. Application of this dataset in estimating flood-induced business
25 interruption (BI) losses confirmed the map's capacity to represent inter-sectoral differences in estimated losses, reflecting
26 varied hazard spatial distributions. This underscores the importance of considering sector-specific spatial patterns for

27 accurate disaster damage assessment. These maps serve as a foundational tool for estimating detailed, sector-classified
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economic losses, enabling precise calculation of sector-specific impacts from diverse natural disasters worldwide. These

global sectoral GDP maps (SectGDP30) are available at https://doi.org/10.5281/zenodo.15774017 (Shoji et al., 2025).

1 Introduction

In recent years, as natural disasters have become more frequent and found throughout the world (IPCC, 2012), global spatial
data including land use and socioeconomic information have become essential for estimating the extent of disaster damage
and losses. With the increasing frequency and impact of localized natural disasters such as floods, high-resolution data
capturing the spatial distribution of socioeconomic factors are essential. However, socioeconomic data published by
international organizations such as the World Bank are often available only at the national or large municipal level. At the
research level, economic data at the municipal level have been studied (Wenz et al., 2023); however, obtaining grid-level

data at a resolution of several kilometers has been still challenging.

For example, as for the impact-assessment of flood disasters, researchers have undertaken a series of studies by spatially
calculating the amount of asset quantity and production activity overlapped with inundated areas, leveraging global maps.
Achieving this necessitates the downscaling of national-level data of economic activity, mainly gross domestic product
(GDP), to finer subnational or grid-based levels. This type of product by downscaling GDP is called a “spatially distributed
GDP map”. This downscaling practice typically relies on gridded population data (Tanoue et al., 2021; Willner et al., 2018).
Alternatively, it has involved the assembly and interpolation of available subnational statistics (Duan et al., 2022; Kummu et
al., 2018) or the assumption that average building heights correlate with economic activity intensity (Taguchi et al., 2022).
GDP maps developed using these methods are generally created for specific purposes, such as disaster damage estimation,
and are therefore not typically released as standalone datasets or products. Among those that are publicly available,
"Downscaled gridded global dataset for gross domestic product (GDP) per capita PPP over 1990-2022" by Kummu et al.
(2025), is notable. This dataset generates gridded GDP map products with resolutions ranging from 30 arcmin to 30 arcsec

for each year since 1990, based on sub-national statistics released by various countries and utilizing population count maps.

While these studies estimated the total amount of economic losses without considering the difference between sectors, the
sector-classified economic losses also need to be estimated because indirect economic losses, such as global supply chain
impact caused by the stoppage of production activity (Willner et al., 2018), can vary significantly depending upon the sector
directly affected by the flood (Sieg et al., 2019). However, spatial data of sectors by downscaling national-level data have
been lacking. Consequently, in the context of global studies, the estimation of sector-specific losses was achieved by
extrapolating the values of sectoral occupation fractions within urban area grids, as reported in the European Union, to other

regions (Alfieri et al., 20176; Dottori et al., 2018). Alternatively, it is assumed that specific groups of sectors experience
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59 uniform damage ratios (Willner et al., 2018; Tanoue et al., 2020). These methods did not consider the different spatial
60 accumulation between each sector and each region, which could lead to the misestimation of sector-classified losses
61 (Jongman et al., 2012; Willner et al., 2018).

62

63 The dearth of global spatial data of the economic sector arises from the absence of worldwide maps with comprehensive land
64 use categorizations (Wenz and Willner, 2022). While regional maps provide sectoral land use classifications, including
65 commercial and industrial areas within urban regions (e.g., The European Environmental Agency, 2017; Theobald, 2014; De
66 Moel H et al., 2014; Ministry of Land, Infrastructure, Transport and TourismMH=E, 2021), these classifications are
67 conspicuously absent from global maps (e.g., Bontemps et al., 2011; Esch et al., 2017). Here we focused on the recent
68 emergence of a global land use map featuring detailed urban area classifications (Pesaresi and Politis, 2022). This
69 development is made possible by the application of machine learning techniques that extrapolate relationships between
70 satellite observations and actual land uses, a methodology initially established by the data in the European Union and the
71 United States (The European Environmental Agency, 2017; Theobald, 2014) and subsequently extended to a global scale.
72 Although this dataset facilitates a comprehensive consideration of detailed land-use patterns within urban areas worldwide,
73 no study has yet integrated this dataset with socioeconomic data. Such integration holds the potential to pioneer a novel
74 approach to estimating natural disaster damage accurately with sectoral classifications.

75

76 The objective of this study is to leverage a recently available global detailed land use map dataset to construct a spatially
77 distributed sectoral GDP map (SectGDP30). The accuracy of the GDP mapping of SectGDP30 is evaluated using global
78 sub-national scale statistics from DOSE dataset (Wenz et al., 2023). Furthermore, to discuss the applicability of SectGDP30
79 for practical economic loss estimation, this study examines the estimation of business interruption losses incurred due to a

80 flood event in Thailand and compares these estimations with reported values.

81 2 Methods
82 2.1 Spatially distributed sectoral GDP map

83 The spatially distributed sectoral GDP map was created in two steps (Figure 1). First, we classified country level GDP data
84 into three sectors: the agriculture, service, and industry sector, and they are downscaled to a spatial resolution of 30 arcsec
85 based on population data, referred as population-based map (PB-method). Second, downscaled estimates are reallocated to
86 the corresponding land use fraction maps derived from satellite products, referred to as land-use-based map (LUB-method).
87 For both the agriculture and service sectors, we generated PB-method and subsequently reallocated them using land-use data.
88 This two-step allocation is necessary because GDP is generally correlated with population distribution (Chen et al., 2022;

89 Kummu et al., 2025), and service-sector GDP, in particular, is strongly influenced by urban agglomeration effects
3



90 (Morikawa, 2011). However, previous studies have shown that at high spatial resolutions, population data alone may not
91 adequately preserve these correlations (Murakami and Yamagata, 2019; Ru et al., 20223). Therefore, integrating land-use
92 information is essential to ensure spatial consistency. Unlike the agriculture and service sectors, industry sector GDP doesn’t
93 necessarily follow population distribution. It often expands into suburban or rural areas with low population density (Zhuang
94 and Ye, 2023). Accordingly, we bypass the PB-method step and directly allocate country-level industrial GDP to land use
95 data. The List of the datasets used in this method is shown in Table 1.

96
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99 Figure 1: Flowchart of (top) data processing and (bottom) creation of spatial distributed gross domestic product (GDP) maps of
100 Thailand for the (a) service, (b) industrial, and (c) agricultural sectors.
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102
103
104

105 Table 1: List of the datasets used in this study.

Data Format  Datatype Values range Spatial Temporal resolution Data source,
resolution Reference
Built up Raster Ulntl6 0-1000 100m Five years interval Global Human
surface area (1975-2020) Settlement Layer
(Pesaresi and Politis,
2022)
Non-residentia  Raster Ulnt16 0-1000 100m Five years interval Global Human
| surface area (1975-2020) Settlement Layer
(Pesaresi and Politis,
2022)
Crop land area  Raster Boolean 0,1 0.9 arcsec Four years interval Potapov et al., 2022
(0-no (2003-2019)
cropland,
1- cropland)
Population Raster Float64 0-Inf 30 arcsec Five years interval Global Human
count (1975-2020) Settlement Layer
(Pesaresi and Politis,
2022)
Administrative ~ Vector - - - - GADM 4.1 (2023)
units (Polygo Level 1 Layer
n)
Data Format Datatype Values range Spatial resolution Temporal resolution Data source, Reference
Built up surface area
Raster Ulnt16 0-100° 100m five '\‘:‘j‘:.”il\“”] Global Human \_'u'l\um‘v‘n Layer
Non-residential surface (1975-2020) (Pesaresi and Politis, 2022)
0,1 - )
Crop land area Raster Boolean (0 - no cropland: 0.9 arcsec “‘f‘_‘”‘[;[rl],‘)‘;f;‘)“” Potapov et al., 2022
1 - croplans At
Population count Raster Float6a five years interval Global Human Settlement Layer

Administrative units

Vector (Palygon)

106 2.1.1 Population-based sectoral GDP

(1975-2020)

(Pesaresi and Politis, 2022)

GADM 4.1 (2023)
Level 1 Layer

107 In the first step, country-level GDP was partitioned into three sectors and then spatially distributed in proportion to population

108 data at a spatial resolution of 30 arcsec. We used GDP data published by the World Bank (2023), which includes both annual GDP

109 values and their sectoral ratios for the service, industrial, and agricultural sectors, and the Global Human Settlement Layer
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110 (GHSL) population grid (R2023; Pesaresi and Politis, 2022) as the source of the global gridded population map. The definition of
111 each sector is shown in Table 2. This downscaling method has been widely employed in previous studies (Kummu et al., 2018;

112 Murakami and Yamagata, 2019) and will be utilized in a later section for comparison with the new method proposed in this study.
113 2.1.2 Sectoral land use fraction map

114 In the second, step, we reallocated PB-method to global sectoral land use fraction map.We generated a sectoral land use fraction
115 map classified into three sectors (service, industry, and agriculture) and three land use type maps with different spatial resolutions:
116 residential (RES), non-residential (NRES), and cropland (CROP). To distinguish RES and NRES areas, we used Global Human
117 Settlement Layer (GHSL) (Pesaresi and Politis, 2022) built-up surface (R2022) data. This layer has 100 x 100 m resolution; each
118 pixel has a value of 0-10,000 m2 and residential or non-residential areas may be present within one pixel. For the CROP area, we
119 used the global map of cropland extent (Potapov et al., 2022), provided by Global Land Analysis & Discovery, which has a global
120 spatial resolution of 0.9 arcsec. Maps with the three classes were resampled and combined into a single global sectoral land use

121 (residential, non-residential, and cropland) fraction map at 30 arcsec resolution.

122

123 First, we upscaled the land use maps and simultaneously converted the value of each pixel in both maps into the sectoral fraction
124 within one pixel. In each pixel, RES and NRES had values of 0-10000 m2 and CROP had a value of 0 or 1 (not cropland or
125 cropland). We upscaled the land use maps to 30 arcsec resolution from RES and NRES at a resolution of 100 x 100 m and CROP
126 at a resolution of 0.9 arcsec using the GDAL averaging method (GDAL/OGR contributors. 2024). Using the 30 arcsec maps, we
127 calculated the area attributed to each land use type in one pixel with a size of 1 X 1 arcsec and obtained land use fractions for each
128 pixel. Because RES/NRES and CROP had different data sources, the total of the three land use type fractions was greater than one
129 in some pixels. Therefore, we assumed that the CROP fraction could fill only areas that were not designated as RES or NRES.
130 Under this assumption, we modified the CROP fraction in each pixel as follows:

131 MCROP, = min(CROPi, (1 — RES, — NRESL,)) 1

132 where MCROPi is the modified CROP fraction in pixel i, CROPl_ is the original CROP fraction, RESL, is the RES fraction, and

133 NRESl_ is the NRES fraction.

134 After this modification, RES, NRES, and MCROP were considered to represent the service, industrial, and agricultural land use

135 sectors, respectively.

136 2.1.3 Land-use-based agriculture sector GDP

137 To better reflect the spatial structure of production activities, we introduce the supplier effect, which assumes a
138 beneficiary-supplier relationship. Specifically, agricultural production occurring in peri-urban or rural areas surrounding major
139 population centers is regarded as supplying food and resources to those urban beneficiaries. These agricultural zones, while
140 themselves sparsely populated, are functionally integrated with the urban economy. Therefore, they are expected to exhibit higher

141 GDP values than similarly sparse regions that are not spatially or economically connected to urban demand. To capture this
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142 spatial interdependence, the supplier effect applies a distance-decay reallocation from beneficiary pixels in PB-method to nearby
143 supply-side pixels, namely those identified as MCROP. Technically, this is implemented as a linear decay function, in which full

144 weight is given within an inner threshold of 150 km, and weight decrease linearly to zero at an outer threshold of 300km.

145 w, = if dij < din: 1; if din < dl,j < dout:l - (dij - din)/ din; if di], > duut:O ?2)
146

Sector Definition of ISIC

Agriculture ISIC 01-03 (A)

Service* ISIC 50-99

Industry ISIC 05-43 (B-F)

147 *Noted that only the Service sector is based on ISIC Rev. 3.

148 Table 2: Definition of each sector, based on the International Standard Industrial Classification (ISIC) Rev 4, in the GDP data by
149 the World Bank (2023).

150 2.1.4 Land-use-based service sector GDP

151 Similarly, PB-method of the service sector is reallocated to residential areas (RES) by applying the supplier effect. The rationale
152 here differs slightly from that for agriculture. Grid-scale population data (e.g., at 30 arcsec resolution, or approximately 1 x 1 km
153 per pixel) are too fine to represent realistic service usage, since people commonly travel more than 1km by car or public
154 transportation to access services (Ciccone and Hall, 1996). Therefore, this reallocation is designed to represent commuting
155 patterns, where service activities in peri-urban zones support nearby urban demand centers. In this context, we use a supplier
156 effect with an inner threshold of 25 km (representing high-intensity interaction) and an outer threshold of 50 km, beyond which

157 service contributions are assumed negligible.

158 2.1.5 Land-use-based industry sector GDP

159 We distributed the industry sector GDP in each country by multiplying the distributed GDP per pixel by the NRES in each pixel.

160 Thus, the distribution was performed for each country, as follows:

n
161 Industry GDP per pixelcmmtry = Total Industry GDPmumy / El NRESi A3)
162 Industry GDPcmmtry’i = Industry GDP per pixelcmmtry X NRESL, “)

163 where is the Industry GDP per pixel of sector s in the country, is the total sectoral GDP of industry in the country, is the
164 non-residential area in pixel i, n is the total number of pixels in the country, and is the distributed industry GDP in pixel i in the

165 country.



166 2.2 Comparison of GDP distribution methods

167 We created two types of spatial distributed GDP map: population-based (PB-method), Land-use-based (LUB-method). The PB
168 map was generated by downscaling the country GDP only in proportion to the gridded population count into a 30 arcsec map. The
169 LUB-method was generated for each sectoral area and sectoral GDP per area. To assess the effectiveness of the proposed LUB
170 mapping approach, we compared it against PB-method using the DOSE dataset (Wenz et al., 2023), which provides sectoral GDP
171 estimates at the sub-national administrative unit level (GADM level 1). Both GDP maps (i.e., PB-method and LUB-method) were
172 spatially aggregated from 30 arcsec resolution to the corresponding GADM Level 1 administrative boundaries to enable direct
173 comparison with DOSE data. Comparison involved three steps: (1) Scatter plots were generated to evaluate the agreement
174 between the aggregated values from each GDP map and corresponding sectoral GDP values from the DOSE dataset (agriculture,
175 service, and industry) used as reference data. (2) For each method and sector, we computed the absolute value of the relative error
176 between estimated and reference GDP values and derived the cumulative distribution functions to illustrate the distribution of
177 errors across all administrative units. (3) We computed the difference in absolute relative errors between the LUB-method and

178 PB-method to evaluate the improvement or deterioration in accuracy. For each administrative unit, this metric was calculated as:

|GDP — GDP

179 AE = E —E,, whereE = cotimate pose )

LUB GDPDDSE

180 A negative value of (AE) indicates that LUB-method is closer to the reference than PB-method (i.e., an improvement), while a
181 positive value indicates a deterioration in accuracy compared to PB-method. The comparison was conducted using only
182 administrative units for which all three sectoral GDP values were available for the year 2010. In total, the comparison included

183 1,165 administrative units across 57 countries.

184 3 Results

185 We developed three GDP maps for service, industry, and agriculture sectors in 2010, 2015, and 2020. We excluded other years
186 because of the low coverage of national GDP statistics in the World Bank data. Hereafter, the map generated using the LUB
187 method within the Methods will be referred to as “SectGDP30”, and the map generated using the PB method will be referred to as
188 “PB-method”. The maps of SectGDP30 are shown in Fig. 2 (a), (b), and (c). Additionally, to clarify the difference of spatial
189 distribution among sectors, we showed (d) the map of the largest GDP sector in each grid in the world. Globally, the distribution of
190 economic sectors generally correlates with population distribution, with concentrations observed in urban centers. However,
191 variations exist in the detailed distributions. The service sector's distribution predominantly concentrates in urban areas across
192 countries, consistent with population distribution patterns and the use of residential data. In contrast, industrial GDP, proxied by
193 non-residential areas, shows a tendency toward greater concentration in coastal regions. Conversely, agricultural GDP, while
194 exhibiting some correlation with population distribution, is characterized by a more expansive distribution in inland areas
195 compared to the service sector.

196

197 Examining individual countries allows for the identification of more specific differences in the distribution of each sector at a finer

198 scale, shown in Fig. 3. In the figure of Japan, Japan's three major metropolitan areas—Tokyo, Osaka, and Aichi—shows variations
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199 in sectoral distribution, despite their common characteristic of high population concentration. In the GDP map, the service sector
200 predominates in the coastal areas of Tokyo and Osaka, which are marked by high population and service industry presence. In
201 contrast, Aichi's coastal regions exhibit a widespread predominance of industrial GDP. Industrial GDP is not uniformly
202 distributed across the entire Aichi area. Within Aichi, the more inland urban center, such as the Nagoya area, shows a prevalence
203 of the service sector, with industrial GDP concentrated in coastal areas. These findings align with Aichi's higher proportion of
204 industrial GDP compared to Tokyo and Osaka (Wenz et al., 2023DOSE=2024), and the formation of an extensive industrial belt
205 along its coastal regions. This dataset facilitates the depiction of detailed distributional differences within these areas.

206

207 When comparing central Bangkok with its southeastern region, a similar pattern emerges as a case in Japan. The southeastern
208 area, specifically the Eastern Seaboard and Eastern Economic Corridor (EEC) centered around Laem Chabang Port, has
209 developed as an industrial hub. In this region, industrial GDP predominates over service sector GDP. Regarding the distribution of
210 agricultural GDP, Japan shows fewer pixels where agricultural GDP is dominant, largely because much of its agricultural land is
211 located relatively close to urban areas. However, in Thailand and France, extensive areas with dominant agricultural GDP are
212 observed around metropolitan centers like Bangkok and Paris. For instance, Figure 4 (a), which shows only agricultural GDP for
213 France, illustrates that agricultural GDP is minimally developed around densely populated Paris. Conversely, it depicts

214 widespread agricultural activity in the less populated surrounding regions.

215
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217 Figure 2: The sectoral GDP maps of (a) service sector, (b) industry sector, (c) agricultural sector, (d) the map of the largest GDP
218 sector in each grid of 30 arcsec.
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221 Figure 3: The map of the largest GDP sector in each grid of 30 arcsec in (a) France, (b) Thailand, and (c) Japan.

222

223 To validate the accuracy of this GDP map, we conducted a comparative analysis with DOSE, a dataset providing sectoral GDP
224 figures at the sub-national administrative unit level. For this validation, the 30 arcsec resolution GDP map was spatially
225 aggregated according to the GADM dataset's Level 1 administrative divisions, which are used by DOSE. The aggregated GDP
226 values for each administrative unit were then calculated and compared with DOSE's figures.

227

228 The results are presented in Figure 4 (a), (b), and (c). These three scatter plots indicate that SectGDP30 exhibits a similar

229 distribution to actual sub-national scale sectoral GDP (R”2 > 0.9 in all the sectors). When examined by sector, many
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230 administrative units with discrepancies in service and industrial GDP show an underestimation compared to actual data. Given
231 that the total GDP per sector at the national level aligns with real data in this study, this discrepancy likely results from
232 over-distributing GDP in a few administrative units within certain countries, leading to an underestimation in many other smaller
233 administrative units. While service and industrial GDP inherently concentrate in specific local areas, and this GDP map depicts
234 that, some countries show an excessive concentration in particular regions. This trend is less apparent in agricultural GDP, which
235 exhibits less localized distribution, and no strong pattern of overestimation or underestimation was observed.

236

237 Next, we compared the results from SectGDP30 with PB-method. The comparison method involved using sectoral GDP figures for
238 each administrative unit, as before, and calculating the cumulative distribution of the differences from DOSE's figures. This result
239 is presented in Figure 4 (d). Sectoral analysis reveals that the industrial sector shows the most significant improvement when
240 compared to PB-method. As previously mentioned, industrial GDP distribution often exhibits localized concentrations even in
241 sparsely populated areas. This suggests that a method using only non-residential land use information and concentrating
242 distribution over relatively small areas is more appropriate than PB-method, which relies on population distribution data.

243

244 The service sector shows a slight decline in accuracy compared to PB-method. In the service sector, overall regional results showed
245 a slight decrease in accuracy for SectGDP30 compared to PB-method. However, some regions exhibited improved accuracy with
246 SectGDP30. Fundamentally, there is minimal difference between SectGDP30 and PB-method as the spatial distributions of
247 residential areas (upon which SectGDP30 relies) and population (upon which PB-method relies) largely coincide.

248 Conversely, SectGDP30 incorporates Supplier effect, reallocating each grid's GDP to residential areas within a 50km radius. This
249 results in a smoother connection of urban and rural area distribution differences compared to PB-method. This effect is evident in
250 the Alpine regions of Switzerland (CHE), specifically in administrative level districts such as Uri, Wallis, Graubunden, and Glarus.
251 While these Swiss Alpine areas have a significant population, residential areas are limited, and actual statistical service GDP is not
252 high. Therefore, in Switzerland, service GDP should be distributed not based on simple population distribution but rather in the
253 plains north of the Alps, where numerous residential areas exist. This case demonstrated an improvement in SectGDP30 accuracy.
254 Agricultural GDP also shows an improvement compared to PB-method, with an increase in the number of administrative units
255 exhibiting smaller errors.

256
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257

258 Figure 4: The scatter graphs of the municipality GDP for (a) service sector (b) industry sector (c) agriculture sector and (d) the
259 cumulative distribution of the errors between DOSE and SectGDP30 and between DOSE and PB-method for each sector.
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261 4 Discussion - Business interruption loss estimation for the 2011 Thailand flood

262 To assess how the improvement of the GDP map affects the result of flood loss estimation, an additional analysis of estimating
263 business interruption losses resulting from the actual flood event in Thailand in 2011 by the new sectoral GDP map was conducted.
264 Following established definitions of economic losses from prior studies (Tanoue et al., 2020; Rose, 2004), economic impacts can be
265 categorized into three main types: damage, direct economic loss, and indirect economic loss. This additional analysis focused
266 exclusively on estimating Business Interruption loss (BI loss) among these three economic impacts due to the lack of information
267 necessary for the estimation of the other components.

268

269 To calculate BI loss, we prepared hazard, exposure, and vulnerability data. As the hazard, we used two inundation period maps of
270 the target event in Thailand, based on simulation and satellite observations. The simulation-based inundation period map was
271 generated using the Catchment-based Macro-scale Floodplain (CaMa-Flood) global riverine inundation model (Yamazaki et al.,
272 2011). To obtain an inundation map based on the simulation by CaMa-Flood, CaMa-Flood used daily runoff data generated by a
273 reduced-bias meteorological forcing dataset at 15-arcmin resolution, and S14FD-Reanalysis data (Ilizumi et al., 2017) to simulate
274 the daily inundation depth at 15-min resolution. Because S14FD is a bias-corrected dataset, we used daily inundation depth values
275 without bias correction, such that the inundation period may be calculated directly from the daily inundation depth (Taguchi et al.,
276 2022). Then, we downscaled the 15-arcmin daily inundation depth to 30 arcsec resolution and calculated the inundation period as
277 the number of days in which the inundation depth exceeded 0.5 m in each pixel. We also used an inundation period map based on
278 Terra/Moderate Resolution Imaging Spectroradiometer (MODIS) images, which is publicly available on the Global Flood
279 Database (Tellman et al., 2021). We referred to the former hazard map as “CaMa-Flood” and the latter map as “MODIS” in this
280 study. The days between August and December in 2011 were only counted as inundation days for matching the inundation period
281 by CaMa-Flood simulation and that by MODIS observation, which started from August and ended around the end of December.
282

283 As exposure, we used two spatial distributed GDP maps at 30 arcsec resolution for comparison, SectGDP30 and PB-method. As a
284 vulnerability, we considered a recovery coefficient, which decided the ratio of the length of recovery period which is required until
285 business restart to the inundation period. This value reflects the system vulnerability of the city. We used 2 as a recovery
286 coefficient, which was used in previous study on a global scale (Taguchi et al., 2022). As for the recovery period as vulnerability, we

287 used the method of Tanoue et al. (2020). The recovery period RPi, when the production in a pixel is assumed to have recovered

288 linearly from zero at the end of the flood period to the same level of production before the flood, was obtained by multiplying the
289 inundation period by a coefficient (= 2 in this study). Thus, the recovery period was assumed to take twice as long as the

290 inundation period. Finally, BI loss was estimated by the method described by Tanoue et al. (2020), as follows:

N3 RP
291 Bl loss = ¥ Z{UPL, + —Hx 6)

AGDP ]
LS
i=1s

Nd

292 where i, N, and s are the pixel number, total number of pixels in the inundated area, and sector number (1 = service, 2 = industry,
293 and 3 = agriculture), respectively; IPi, RPi, AGDPi B and Nd are the inundation period, recovery period at pixel i, annual GDP of

294 pixel i and sector s, and the number of days in a year.
295 And we obtained the total BI losses by summing BI losses of all the grids in the target area.
296
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297 The results of the BI loss estimation were shown in Fig. 5. We compared the calculated BI losses with the actual economic loss
298 reported in the PDNA (The World Bank, 2011). In this report, both damage and loss were estimated. Damage is due to the
299 destruction of physical assets and loss is caused by foregone production and income and higher expenditures in the definition in
300 the report. This means that the loss in the report included both business interruption loss and other additional expenditures and
301 costs. Because there was not any other reported loss which only focused on BI loss, we compared with the loss, including other

302 components, in this report.

303
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305 Figure 5: Spatial distribution of the inundation period of the 2011 Thailand flood, obtained from (a) Catchment-based Macro-scale
306 Floodplain (CaMa-Flood) simulation and (b) Moderate Resolution Imaging Spectroradiometer (MODIS) observation data, and
307 the simulation Business interruption losses (USD billion, current value in 2011) due to the 2011 Thailand flood, estimated by
308 combining hazards and exposures; the total loss is written in the center of each circle. (¢) CaMa-Flood and PB-method, (d)
309 CaMa-Flood and SectGDP30, (¢) MODIS and PB-method, (f) MODIS and SectGDP30, and (g) the World Bank report (2011).

310

311 Firstly, comparing the losses by the different hazard data with the same exposure, SectGDP30, the service sector loss according to
312 CaMa-Flood (USD 15.86 billion) was over 12-fold larger than that according to MODIS (USD 1.29 billion). This large difference
313 was caused by the shorter average inundation period and smaller flood area in MODIS than in CaMa-Flood. MODIS is known to
314 tend to fail to capture the flood extent in urban areas with high densities of tall buildings and that leads to the underestimation in
315 inundation. In addition to different total losses, ratios of industry sector loss to the total loss differed between two results : 48.20%
316 according to CaMa-Flood and 35.62% according to MODIS. This result showed the sectoral ratio of the loss can be changed
317 depending on spatially different hazards. It is caused by the fact that SecGDP30 can show the different spatial distribution of each
318 sectoral GDP, while municipality-level statistics cannot show the spatial distribution in a fine resolution. This sectoral difference
319 was newly found by this study since the traditional population-based GDP map also could not show this difference between
320 sectors.

321

322 Comparing the results using CaMa-Flood and SectGDP30 with the World Bank Report figures (Figure 5 (d) and (g)), SectGDP30
323 more accurately represents the smaller proportions of agricultural damage compared to when PB-method is used (Figure 5 (c)).
324 This indicates that SectGDP30 can effectively constrain the allocation of agricultural GDP in areas with high population but
325 limited agricultural land. Conversely, while the Report figures show a significant proportion for the industry sector, SectGDP30
326 results estimate the industry sector to be almost on par with the service sector. It showed the industry loss was underestimated
327 although the hazard in the numerical simulation, by CaMa-Flood, captured the flood extent over the industrial sector area and the
328 long-lasting inundation period. The reported value excludes assets damage but includes economic losses other than production
329 reduction by direct contact with the flood, such as production stoppage due to shortages of raw materials induced by blocked
330 roads. Therefore, if we assume that the new sectoral GDP map captured the industrial locations and they were successfully
331 considered to be flooded, this underestimation is presumed to be caused by a lack of data reflecting the indirect production
332 stoppage.

333

334 Related to this limitation of the indirect production stoppage, it is important to recognize that the methodology, including that of
335 this paper and previous studies, which determines the GDP produced in each pixel using indicators such as GDP per unit area,
336 overlooks the fact that labor supplied from remote locations is necessary for GDP production. To rephrase this with the example of
337 a factory affected by a disaster: while the GDP output itself occurs at the factory's location, the workers who carry out the
338 production reside in surrounding or remote areas. Therefore, if a disaster occurs in these remote residential areas, the GDP output
339 should cease. However, pixel-based calculation methods would fail to represent this cessation of GDP output as long as the
340 factory's pixel is unaffected. This is considered a non-negligible impact in regions where economic activity and residential areas are
341 clearly separated, but quantifying this impact on a global scale is currently challenging. Alongside future research on regional

342 differences in GDP per unit area, this remains a limitation that we must consider moving forward.
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343 5 Data availability

344 The global sectoral GDP maps are publicly available via Zenodo at
345 https://doi.org/10.5281/zenodo. 1577401 7Thttpsdororg/t0-528+/zenodo+399+673=(Shoji et al., 20252624). The maps on
346 Zenodo correspond to the SBCE maps in this paper and are stored as geotiff files. In total, there are nine maps in the dataset,

347 for each sector (service, industry, and agriculture) and year (2010, 2015, and 2020).

348 6 Summary

349 This study developed a spatially distributed sectoral GDP map (SectGDP30) by leveraging recently available global,
350 high-resolution land use datasets. This map demonstrates strong consistency (R*2 > 0.9) with actual sub-national statistical
351 data and exhibits greater alignment with sub-national GDP statistics compared to conventional GDP maps (PB-method) that
352 rely solely on gridded population maps.

353

354 For the industry sector, the methodology successfully distributed industrial GDP with better accuracy than population
355 distribution alone. This was achieved by adopting "Non-residential areas" as a proxy, which effectively captures the localized
356 nature of industrial GDP distribution in specific regions within each country. For agriculture, accuracy was improved over
357 PB-method by distributing GDP based on farmland maps and assuming GDP generation in areas approximately 150-300 km
358 from wide-area population centers. Regarding the service sector, incorporating population distribution within specific ranges,
359 even when using residential land use map information, resulted in GDP being distributed only to actual built-up and
360 designated residential areas. This approach achieved an accuracy comparable to PB-method.

361

362 As an application of this dataset, business interruption (BI) loss estimation due to floods was conducted using the sectoral
363 GDP map. This confirmed that the new sectoral GDP map can represent inter-sectoral differences in estimated BI losses,
364 corresponding to varying spatial distributions of hazards. This validation underscores the importance of considering the
365 spatially distinct distributions of sectors when estimating actual disaster damage. It also highlights the need for developing
366 new estimation methods that account for the processes of GDP generation.

367

368 This new global sectoral GDP map serves as a foundational tool for estimating sector-classified economic losses. It
369 meticulously considers the complexity of global land use patterns at a detailed level, enabling accurate calculation of
370 sector-specific losses from various natural disasters on a global scale.

371
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