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Abstract. Evapotranspiration (ET) serves as a key indicator of the water change between the Earth’s 

surface and atmosphere, significantly influencing the hydrology cycle, surface energy cycle, and carbon 

cycle. Existing remote sensing models for estimating ET usually necessitate the parameterization of 

resistance parameters. In this study, we proposed the Remote Sensed Non-Parametric (RSNP) model, 20 

which leverages the nonparametric (NP) and Surface Flux Equilibrium-nonparametric (SFE-NP) 

approaches, and adapted remote sensing and reanalysis datasets of meteorological and surface parameters 

as model inputs. We estimate global monthly ET from 2001 to 2019 in the spatial resolution of 0.1° with 

RSNP model. Validation against FLUXNET sites globally yield RMSE of 23 mm/month (278 mm/yr), 

while regional-scale validation against water-balance ET results in a Root Mean Square Error (RMSE) 25 

of 113 mm/yr. In addition, the produced ET dataset have great accuracy in forest underlying and obtains 

spatial details of land surface ET. Furthermore, compared with ETMonitor, PEW and PML_V2, our 

dataset offers a continuous and seamless ET dataset suitable for global research. This study contributes 

to the advancement of global ET estimation and informs future water balance studies. The dataset 
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presented in this article has been published in National Tibetan Plateau Data Center at  30 

https://doi.org/10.11888/Terre.tpdc.301343(Pan, 2024).  

1 Introduction 

Terrestrial evapotranspiration (ET), consisting of soil evaporation and vegetation transpiration, is 

one of the key components in the land-atmosphere water, energy, and carbon cycles, and plays a critical 

role in hydrological, metrological, and ecological research(Fisher et al., 2017; Gentine et al., 2019). ET 35 

at the point scale is often observed by some ground observations (e.g. eddy covariance (EC), large-

aperture scintillometer). However, the distribution of these flux sites across the global land surface is 

sparse and the coverage period of available data varies at each flux sits, making it difficult to continuously 

monitor ET over large areas and conduct simultaneous continuous observations over long time series 

through point-scale observations. The ability of conduct periodic and repetitive observations of regions 40 

and cost-effectiveness makes remote sensing capable of conducting global ET observations(Liu et al., 

2022; Zhang et al., 2016). Based on hydrometeorological approaches (e. g. Penman-Monteith (PM) 

approach, Priestly-Taylor (PT) approach), various remote sensing models have been proposed 

sequentially, such as the Surface Energy Balance System (SEBS), Surface Energy Balance Algorithms 

for Land (SEBAL), triangle approach (Bastiaanssen et al., 1998b; Bastiaanssen et al., 1998a; Su, 2002; 45 

Moran et al., 1994) and so on. They have been widely applied to retrieve ET in many regions (Ma et al., 

2013; Singh et al., 2008; Stisen et al., 2008). In addition, in the context of global greening and global 

climate change, the study of the regulatory role and response mechanism of the global ET in the global 

water and energy cycles has gradually become a key focus in climate research(Yang et al., 2023). 

Recently, global-scale estimates of ET derived from remote sensing data have been proposed, 50 

including MODIS-MOD16 dataset, Penman–Monteith–Leuning Version 2 (PML_V2) dataset, 

Calibration-free (CR) dataset, ETMonitor dataset,  a simplified surface energy-water balance model 

based on proportionality hypothesis (PEW) dataset, three temperature (3T) dataset and so on(Mu et al., 

2011). Among them, the spatial and temporal resolutions of global ET datasets varied from 500 m to 1° 

and from daily to annual, and they have been globally validated with a relative mean square error (RMSE) 55 

value ranges from 26.03 mm/month to 35.36 mm/month(Elnashar et al., 2021), and have been used in 
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global studies(Cheng et al., 2020; Ma and Zhang, 2022; Zheng et al., 2019). Although there are several 

global ET remote sensing datasets available. They often have limitations in practical application due to 

gaps caused by cloudy conditions and the desert regions(Chen et al., 2021). In addition, limited by the 

complex parametrization of resistances and the empirical determination of coefficients in those remote 60 

sensing ET models, the applicability and accuracy of them have not been incrementally improved, 

especially in the studies of hydrology, metrology, and ecology. It is necessary to provide a reliable remote 

sensing dataset of global terrestrial seamless ET based on a non-empirical/physical approach or model. 

The Nonparametric (NP) method and Surface Flux Equilibrium- Nonparametric  method (SFE-NP) 

based on Hamilton’s principle and relative humidity budget, and avoids the complex parametrization of 65 

resistances and the empirical determination of coefficients(Liu et al., 2012; Pan et al., 2024). The 

validation of NP and SFE-NP method at various EC sites represented the RMSE at daily resolution was 

11-34 W/m2, and both showed a relatively satisfactory performance of ET estimation at the point scale 

around the world(Pan et al., 2024). Related models of remote sensing based on NP and SFE-NP 

approaches have been built and successfully applied to the retrieval of regional ET in Heihe River basin, 70 

Poyang Lake basin, and Mekong River Basin(Liu et al., 2022; Pan et al., 2023; Pan et al., 2022) 

respectively. To expand the applicability of those models, a globally improved model based on NP 

method (namely RSNP model), is proposed in this paper, from which a global, seamless ET dataset has 

been produced. Evaluation using data from EC sites and at a basin scale, and we also discussed 

comparative analysis between our dataset and other datasets.  75 

2 Data 

2.1 Model Forcing Data 

Remote sensing data and reanalysis datasets are used as the input data of the RSNP model to 

estimate ET at a global scale during 2001-2019. The monthly surface albedo and Broadband Emissivity 

(BBE) are from Global Land Surface Satellite (GLASS) in a spatial resolution of 0.05° (Zhao et al., 80 

2013). The monthly air temperature, land surface temperature, surface thermal radiation downwards, 

surface solar radiation downwards, and air pressure are from the fifth generation of European Reanalysis 

–Land (ERA5-Land) in a spatial resolution of 0.1°(Muñoz-Sabater et al., 2021). The Moderate-
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resolution Imaging Spectroradiometer (MODIS) Land Cover Type (MCD12Q1) Version 6.1 data, 

supplied by the National Aeronautics and Space Administration (NASA), provided IGBP land cover 85 

types in a resolution of 1 km  and was used to support the estimation of soil heat flux(Sulla-Menashe et 

al., 2019). All remote sensing product and reanalysis datasets were resampled to the spatial resolution of 

0.1°×0.1° before being adapted to the RSNP model. 

Table 1 Remote sensing and reanalysis datasets used in the RSNP model 

Dataset Variables 
Spatial 

resolution 

Temporal 

resolution 
Data Usage 

GLASS 

Black sky Albedo 

White sky Albedo 

Broadband Emissivity (BBE) 

0.05°×0.05° 8-day ET Retrieval 

ERA5-Land 

Skin temperature 

Surface pressure 

Surface solar radiation downwards 

Surface thermal radiation 

downwards 

2m Temperature 

2m Dew point temperature 

0.1°×0.1° Monthly  ET Retrieval   

The water-

balance-based 

ET on dataset of 

large river basins 

of the world 

Water-balance-based 

evapotranspiration data 
 Annual ET Validation  

MCD12Q1 Land cover type 1 km×1 km Annual ET Retrieval 

Version 3 of the 

Global Aridity 

Index and 

Potential 

Evapotranspiratio

n Database 

Arid Index 1 km×1 km  ET Validation 

2.2 Flux Tower Data  90 

At the point scale, ground observations of ET from the FLUXNET2015 Dataset 

(https://fluxnet.org/data/fluxnet2015-dataset/) were used to validate and access the accuracy of monthly 
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ET retrieved by remote sensing method. Under the standard of energy closure rates between 0.8 and 1.0 

and at least five consecutive months of valid data, 88 globally distributed sites were selected with ten 

different types of underlying surfaces, including MF (Mixed Forest), GRA (Grassland), SAV (Savanna), 95 

WSA (Woody Savanna), EBF (Evergreen Broadleaf Forest), CRO (Cropland), DBF (Deciduous 

Broadleaf Forest), ENF (Evergreen Needleleaf Forest), WET (Wetland), OSH (Open Shrublands).  

 

Figure 1: The distribution of FLUXNET sites used in this study 

2.3 Water Balance Validation Data 100 

The annual water-balance-based ET (ETwb) dataset in the worldwide large river basins during 

1983-2016 (Ma et al., 2024) was used as water balance validation data in this study. This dataset was 

derived from National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/en/data). We excluded basins 

that cover less than 2×105 km2 and ultimately selected 38 basins, and the distribution is shown in Fig. 2.  
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 105 

Figure 2: The geographical distribution and the Arid Index of 38 basins used in this study. (Basin 

area cover more than 2×105 km2) 

2.4 Other Global ET Datasets Used for Cross Validation 

In this study, three existing global ET datasets, ETMonitor, PML_V2, and PEW were selected to 

cross-validate the global ET results of the RSNP model. ETMonitor is based on the Shuttleworth-Wallace 110 

dual-source model, the improved Gash model, and Penman's equation for different underlying surfaces 

to estimate ET(Zheng et al., 2022) PML_V2 is based on the Penman-Monteith-Leuning (PML) model 

(Zhang et al., 2019); PEW is constructed based on the PT-JPL algorithm to estimate ET based on a 

surface energy-water balance framework(Fu et al., 2022). To unify the spatial scales of these datasets, 

ETMonitor and PML_V2 were resampled to a spatial resolution consistent with that of RSNP ET by 115 

using the nearest-image resampling method, and then the differences in the simulation of global land 

surface ET by different remote sensing models were explored in terms of the time series and spatial 

distribution, respectively. Among them, the ET in arid desert steppes and desert areas often amount to 

nearly zero or is missing(Xiao et al., 2024). 

3 Methodology 120 

3.1 Global Nonparametric Evapotranspiration Models 

Based on the Hamilton of a microstate system, LE is expressed in the NP approach as Equation (1-

1)(Liu et al., 2012). However, NP approach has shown good accuracy in remote sensing applications in  
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Table 2 Other global terrestrial ET datasets used for cross-validation 

ET Datasets Method 
Spatial 

resolution 

Temporal 

resolution 
Time span Reference 

ETMonitor 

Estimating ET 

components with a 

multi-process 

parameterization model 

1 km×1 km Monthly 2003-2018 
(Zheng et 

al., 2022) 

PML_V2 

PML model coupled 

with gross primary 

products via canopy 

conductance theory 

0.5 km×0.5 km Daily 2002-2019 
(Zhang et 

al., 2019) 

PEW 

PT-JPL algorithm 

considering available 

water capacity 

0.1°×0.1° Monthly 1982-2018 
(Fu et al., 

2022) 

wet regions, but its accuracy at the site scale is limited in arid regions(Hsieh et al., 2022; Yang et al., 125 

2016). To expand the applicability of the original NP approach, the SFE-NP approach is proposed to 

estimate ET in a water-limited situation(Pan et al., 2024). In the SFE-NP approach, LE can be expressed 

as Equation (1-2). 

𝐿𝐸𝑁𝑃 =
∆

∆+𝛾
(𝑅𝑛 − 𝐺𝑠) − 𝜀𝑠𝜎(𝑇𝑠

4 − 𝑇𝑎
4) + 𝐺𝑠𝑙 𝑛 (

𝑇𝑠

𝑇𝑎
) ，        (1-1) 

𝐿𝐸𝑆𝐹𝐸−𝑁𝑃 =
𝑅𝐻∆

𝑅𝐻∆+𝛾
(𝑅𝑛 − 𝐺𝑠) − 𝜀𝑠𝜎(𝑇𝑠

4 − 𝑇𝑎
4) + 𝐺𝑠𝑙 𝑛 (

𝑇𝑠

𝑇𝑎
)，       (1-2) 130 

where 𝑅𝑛 is the total surface net radiation, 𝐺𝑠 is the soil heat flux, 𝜀𝑠 is the surface emissivity (derived 

from GLASS), 𝜎 is the Stephan-Boltzmann constant, 𝑇𝑠 is the land surface temperature (LST) (derived 

from ERA5-Land), 𝑇𝑎 is the air temperature (derived from GLASS), ∆ is the slope of the saturated vapor 

pressure at temperature 𝑇𝑎, 𝛾 is the psychometric constant, and 𝜎 is the Stefan-Boltzmann constant (𝜎 =

5.67 × 10−8𝑊/(𝑚2𝑘4)),  RH is the relative humidity. In this study, for the global terrestrial ET, the NP 135 

method was adapted to humid areas, and the SFE-NP method was adapted to arid areas.  

         Furthermore, 𝑅𝑛 can be expressed as(Bisht et al., 2005): 

𝑅𝑛 = (1 − 𝛼)𝑅𝑠𝑑 + 𝑅𝑙𝑑 − 𝜀𝑠𝜎𝑇𝑠，             (2) 
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where 𝑅𝑠𝑑 is the surface shortwave downward radiation (derived from ERA5-Land), 𝑅𝑙𝑑 is the surface 

longwave downward radiation (derived from ERA5-Land), and α is the surface albedo (derived from 140 

GLASS). 

𝐺𝑠  can be estimated by the Global Land Evaporation Amsterdam Model (GLEAM) method 

as(Miralles et al., 2011): 

𝐺𝑠 = {

0.05𝑅𝑛 𝑏𝑎𝑟𝑒 𝑠𝑜𝑖𝑙
0.20𝑅𝑛 𝑠ℎ𝑜𝑟𝑡 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛
0.25𝑅𝑛 𝑡𝑎𝑙𝑙 𝑐𝑎𝑛𝑜𝑝𝑦

，             (3) 

The 𝑅𝐻 can be estimated as: 145 

𝑅𝐻 =
𝑒𝑠(𝑇𝑑)

𝑒𝑠(T𝑎)
，                  (4) 

where Td is the dew point temperature (derived from ERA5-Land), and es
 means the saturated water vapor 

pressure and can be expressed as: 

𝑒𝑠(𝑇𝑑) =
𝑒𝑥𝑝[17.62(𝑇𝑑)−273.15]

243.12+𝑇𝑑−273.15
 ，                 (5-1) 

𝑒𝑠(𝑇𝑎) =
𝑒𝑥𝑝[17.62(𝑇𝑎)−273.15]

243.12+𝑇𝑎−273.15
 ，                 (5-2) 150 

3.2 Framework of Global Seamless ET Estimation 

The consistency of spatial and temporal resolution of inputs ensures the computability of multi-

source remote sensing data. In this study, GLASS provided albedo and BBE with 0.05°×0.05° and 8-day 

resolution. They were aggregated into monthly images, and then resampled to 0.05°×0.05° by using the 

nearest neighbor resampling. 155 

All images used as model inputs have a consistent spatial and temporal resolution and were 

seamless across the global land surface (water bodies, and permanent ice and snow were excluded). For 

the estimation of surface net radiation, ERA5-Land provided monthly LST, surface thermal radiation 

downward, and surface solar radiation downward, GLASS provided the albedo and BBE. For the 

estimation of soil heat flux, this study adopted the landcover type provided by MCD12Q1 to classify 160 

different ratios of soil heat flux of short vegetation, high canopy, and bare soil. For the RSNP model, 

according to the arid index provided by the Version 3 of the Global Aridity Index and Potential 
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Evapotranspiration Database, ET in the arid region (where the arid index is less than 0.65) was estimated 

with the SFE-NP method, while ET in the wet region (where the arid index is more than 0.65) was 

estimated with the NP method. 165 

 

Figure 3: The data preprocessing of the RSNP remote sensing model and its global retrieval model. 

However, persistent discrepancies in default pixel values for monthly BBE, such as in 2014 with 

regional gaps observe in South Africa, Asia, and Australia, posed challenges in achieving a consistent 

estimation of ET under these circumstances. to address the absence of pixel values in the monthly BBE 170 

images, a multi-step approach was employed. Initially, a baseline BBE map was generated by averaging 

a comprehensive dataset comprising a total of 218 number BBE images. Subsequently, monthly BBE 

data for the period 2001-2019 were acquired for each month. Some individual months and regions still 
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exhibited unavailable pixels in the monthly BBE map. To rectify this issue, the next step was to fill each 

month’s BBE map with the average monthly BBE of total months. Finally, the gap-filled monthly BBE 175 

maps were used to fill the 218 original monthly BBE images with the corresponding pixels. 

3.3 Validation Method and Accuracy Metrics 

To evaluate the retrieved ET comprehensively, direct validation is taken for the accuracy 

evaluation, and cross-validation is analyzed to reveal the discrepancies among different ET datasets in 

this study.  In detail, direct validation is composed of validation at the point scale (validated by the LE 180 

observed by EC sites at the monthly scale) and validation at the basin scale (validated by 𝐸𝑇𝑤𝑏 at the 

annual scale). For cross-validation, the spatio-temporal discrepancies among different ET remote sensing 

datasets were revealed. 

In addition, the mean bias error (bias), relative error (RE), and Relative Mean Squared Error 

(RMSE) and Correlation Coefficient (R2) were used to reveal the performance of ET estimations  (Jia et 185 

al., 2012).  

4 Evaluation of ET estimates  

4.1 Validation and Comparison of Monthly ET with In-Situ Data 

Figure 4-1 shows the scatter plot of RSNP retrieval monthly ET and flux tower observed ET over 

88 flux tower sites. RSNP exhibited correlation with observed ET from the flux tower data with an R2 190 

value of 0.66, which is consistent with ETMonitor and PML_V2. Over these sites, RSNP displayed great 

accuracy with RMSE value of 23.2 mm/month and a bias value of -3.86 mm/month. As a result, the 

accuracy of RSNP is comparable to the current level of accuracy of published applications for global ET 

datasets. Overall, RSNP has a more concentrated scatter density distribution than the other ET products, 

especially when the observed ET from flux tower were higher than 100 mm/month. 195 
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Figure 4: Comparison of the retrieval ET of each product and observations over 88 FLUXNET 

sites. The relative mean square error (RMSE) and the bias are both in mm/month. 

Over 88 FLUXNET sites, the performance of RSNP exhibited variations across different land 

cover and geographical locations, with notable differences observed between continents. The RSNP ET 200 

and flux tower observed ET showed great correlation at WET sites, with R2 value is 0.86, followed by 

that were MF sites, with R2 value is 0.79, except OSH sites with R2 value of 0.32, R2 values of RSNP at 

each land cover was higher than 0.58, showing the RSNP correlated well at vegetation areas. In terms of 

precision indicators, the RMSE value was between 13.19 mm/month (MF) and 28.37 mm/month (DBF) 

over those land covers, and were often comparable or lower than those of other products, indicating its 205 

effectiveness in minimizing prediction errors. In terms of the performance of bias, the absolute valud of 

bias for RSNP model did not exceed 13.34 mm/month. It was slightly overestimated in DBF sites, and 

conversely underestimated in other sites.Combining the information from Fig. 5, it can be observed that 

there is significant variability in the retreival accuracy of each product for SAV, EBF and WET, and 

RSNP model still demonstrate relatively lower retreival errors and higher consistency with the observed 210 

ET from flux towers. 
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Figure 5: Comparison of the R2 and RMSE between RSNP retrieval ET and observations of ET 

over 88 FLUXNET sites at 10 types of land cover including MF (Mixed Forest), GRA (Grassland), 

SAV (Savanna), WSA (Woody Savanna), EBF (Evergreen Broadleaf Forest), CRO (Cropland), 215 

DBF (Deciduous Broadleaf Forest), ENF (Evergreen Needleleaf Forest), WET (Wetland), OSH 

(Open Shrublands). The relative mean square error (RMSE) is in mm/month. 

4.2 Validation and Comparison of Monthly ET with Water Balanced ET 

As shown in Fig. 6, RSNP demonstrates a high degree of consistency with the three common ET 

products in terms of distribution and accuracy at the basin scale and almost remained the same 220 

consistency and accuracy of WBET compared with other ET products (the R2 value was 0.89, RMSE 

value was 113.04 mm/yr, and RE value was 22%), the RMSE value of RSNP was lower than that of 

ETMonitor and PEW, and the R2 value of RSNP was also slightly higher than that of ETMonitor and 

PEW  This study also calculated the average arid index for each basin based on the Version 3 of the 

Global Aridity Index and Potential Evapotranspiration Database (Zomer et al., 2022), and compared the 225 

accuracy performance of ET datasets at the basin scale. As shown in Fig. 7, the basin RMSE of RSNP 

and each ET dataset was almost below 200 mm/yr, except for PEW. When arid index is over 1.0, the 

basin RMSE of RSNP was about 100 mm/yr, while other ET datasets was over 150 mm/yr. RSNP well 

have certain advantages in monitoring basin or regional ET on a global scale. 
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 230 

Figure 6: Comparison of R2, RMSE, RE between the retrieval ET of each dataset and WBET over 

38 basins. 

 

Figure 7: Distribution of RMSE and Arid Index of basins at regional scale. The black dots display 

each basin’s RMSE and Arid Index; the Arid Index range from low to high represents from arid 235 

to humid. 
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4.3 Cross-comparison of Global ET 

4.3.1 Temporal Pattern of Monthly ET Datasets 

Fig. 8 shows the temporal trends of monthly ET for 4 global ET datasets from 2003-2018. Monthly 

ET gradually increased from February to July, with all datasets reaching their peak value in July. The 240 

monthly ET monitored by RSNP fall at an intermediate level among these datasets. During December, 

January, and February, the monthly ET were slightly lower than PML_V2 but higher than ETMonitor 

and PEW. From March to November, RSNP exhibited relatively stable variations in monthly ET, closely 

aligning with ETMonitor. The most pronounced differences in monthly ET among various datasets were 

observed especially in July: PML_V2 (64.91 mm/month) > RSNP (59.69 mm/month) > ETMonitor 245 

(59.08 mm/month) > PEW (54.88 mm/month).  

 

Figure 8: Global monthly average ET (mm/month) of RSNP, ETMonitor, PML_V2 and PEW 

during 2003-2018. 

4.3.2 Spatial Pattern of Annual ET Datasets 250 

Fig. 9 displays the spatial distribution of annual average ET from 2003 to 2018. Overall, RSNP 

shows good agreement with the global spatial distribution of terrestrial ET with other published global 

datasets. Fig. 9(a)-(d) shows the global spatial distribution of ET from 2003-2018 of RSNP, ETMonitor, 

PML_V2, and PEW. RSNP correlated well and exhibited a high degree of consistency with other datasets. 

Specifically, regions with higher ET values globally are observed in the tropical rainforest areas of South 255 

America, Africa, and Indonesia. The RSNP estimated ET in tropical rainforest area to be in the range of 

1300-1500 mm/yr, closely resembling the ET value of PML_V2, and slightly lower than that of 

ETMonitor, and higher than PEW. However, the magnitudes of ET in these three regions vary across 

different datasets. For instance, RSNP indicated the highest ET in central Africa, whereas, on ETMonitor, 
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the highest ET is observed in northern South America. These discrepancies highlight the inconsistent 260 

performance of ET across various datasets. Apart from Greenland and South America, ET was the lowest 

in northern Africa, the Qinghai-Tibet Plateau, and the desert regions of South America. However, many 

models set ET to zero during the parameterization process for desert regions, resulting in monthly values 

of 0 mm/month, and only RSNP captures the spatial differences in annual ET in the regions of northern 

Africa. While RSNP detected annual average ET in African deserts ranging from 0 to 200 mm/yr, other 265 

datasets showed the annual average ET not exceed 50mm/yr. Therefore, from 2003 to 2018, RSNP 

slightly overestimated ET in the Africa, with an annual average ET of 590.68 mm/yr, while other datasets 

ranged from 448.28 mm/yr to 554.41 mm/yr. In Fig. 9(e), the annual ET exhibits a decreasing trend with 

increasing latitude. In both the Northern and Southern Hemispheres, the peak value of RSNP was 

observed near 0°latitude, and then annual ET decreases with increasing latitude until near 30°latitude. 270 

ET in the Southern Hemispheres was slightly higher than that in the Northern Hemisphere. According to 

the pattern of increasing latitude, RSNP closely matches the average level of latitude-based ET in the 

Southern Hemisphere. In terms of the Northern Hemisphere, from 15°N to 30°N latitude, RSNP’s annual 

ET significantly surpasses that of other datasets, but all ET datasets exhibit a consistent trend with latitude. 

As latitude continues to increase, between 35°N-75°N, the differences in latitude-based annual ET 275 

between RSNP and other datasets decreased, nearly aligning with the average level. ETMonitor displayed 

the widest range of annual ET changes with latitude, with the lowest estimated ET values in high-latitude 

regions (75.70 mm/yr) and the highest values near the equator (1335.40 mm/yr). PEW’s latitude-based 

annual ET was generally below the average level of the four global ET datasets.  
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 280 

Figure 9: (a)-(d) The spatial distribution of annual ET during 2003-2018 and (e) the variation of 

latitude annual ET during 2003-2018.  

5 Discussion 

5.1 The Potential Reasons and Influence of the Data Seam for Other ET Datasets 

Although the accuracy of remotely sensed ET datasets is generally acceptable at regional scales, 285 

continuous access to daily or monthly ET is not often available for individual pixels that would impact 

the spatio-temporal continuity required at global scale. In this study, we counted the available pixels ratio 

of global terrestrial ET images at the monthly scale for RSNP, PEW, ETMonitor, and PML_V2 (pixels 

in water and permanent snow and ice regions were excluded). As shown in Fig. 10, ETMonitor, PML_V2 

and PEW exhibit missing pixels for months at the global scale. ETMonitor and PML_V2 exhibit the 290 

lowest monthly pixel availability in January. From May to December, PML_V2 maintained a ratio higher 

than 85%, and ETMonitor sustains a ratio exceeding 85% from April to December. In addition, it seems 
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that the pixel availability of ETMonitor and PML_V2 datasets increases as surface radiation levels in the 

Northern Hemisphere rise (mainly located at the region with a latitude of large than 30°N) (Fig. 11).  

Furthermore, the relatively high ratios of missing pixels in ETMonitor and PML_V2 in some desert 295 

regions (e. g. Sahara desert, Taklimakan desert) The missing pixels in those regions is possibly related 

to the insufficient good-quality points available for interpolation (Zhang et al., 2019).  

Barren/deserts and middle-high latitude regions account for about 24% in the North hemisphere 

and  81% of the total terrestrial area on the Earth’s surface, respectively(Mu et al., 2011).  Chen et al. 

had verified that the loss of pixels would like to underestimate ET across a global scale. Consequently, 300 

in these regions, the relatively high proportion of missing pixels could compromise the reliability of 

global water resources assessments(Tang et al., 2024). Furthermore, the water-energy-carbon nexus in 

these regions is highly susceptible to climate variability(Park et al., 2020) incomplete data may make it 

crucial to have comprehensive data to ensure a precise understanding of ecological, environmental, 

meteorological, and hydrological shifts.  .  305 

 

Figure 10: The available pixel ratio of ET datasets at the monthly scale 
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Figure 11: Monthly available ratio of pixels and the spatial distribution for ET datasets (water, 

and permanent ice and snow were excluded). 310 

5.2 The Advantages of Our ET Estimations 

Many ET remote sensing datasets have been published in recent years (e. g. ETMonitor, PEW, and 

PML_V2), yet there are numerous locations of missing data, both reflected in the temporal discontinuity 

(Fig. 10) and spatial discontinuity (Fig.11) of available pixels on a global scale. Considered about the 

urgent requirement of the tempo-spatial continuous ET in the ecological, hydrological and 315 

meteorological studies at the regional and global scale(Ma et al., 2022; Ma and Zhang, 2022), our ET 

estimation can provide the seamless ET remote sensing dataset at the global scale.   

In addition, as the core of the proposed RSNP model, NP approach and its improvement (SFE-NP) 

can eliminate the uncertainty caused by some empirical parameters (such as surface resistance, vegetation 

resistance and air resistance) in some traditional approaches (e. g. the PM approach) existed in many ET 320 

remote sensing datasets (e. g. ETMonitor, PML_V2 and PEW)(Liu et al., 2012; Pan et al., 2024). Even 

though the calibration based on the worldwide EC observations can help the determination of those 

parameters for the global ET retrieval, the accuracy of models and datasets are possibly limited in the 

region with sparse/no EC sites(Ma et al., 2021). Therefore, the RSNP model and its related datasets of 
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global ET may be globally reliable without dependence of empirical parameters on calibration or 325 

parameterization, especially in some wild regions. For example, in some wild regions of the western 

China, western North American and western South American (Fig. 12), our datasets can also provide 

abundant details of ET compared with ETMonitor (spatial resolution: 1km), PML_V2 (spatial resolution: 

0.5 km) and PEW (spatial resolution: 0.1°) even though the spatial resolution of our dataset is only 0.1°. 

It implies that the spatial resolution is not the only dominant factor for the unsatisfactory performance by 330 

these ET datasets. Similar phenomena were also discovered in some studies(Stisen et al., 2008; Zheng et 

al., 2022). 

In addition, the  RS-NP model estimates global seamless ET distinct from present global ET 

datasets. In the recent years, researches of globally terrestrial water-energy budget commonly use the 

composition of many globally ET datasets to eliminate the possible error in single dataset (Pan et al., 335 

2020; Yang et al., 2023). However, most parts of those datasets are based on similar principle or method 

of ET estimation (e. g. PM equation, PT equation), and might have a similar systematic uncertainty. That 

means the reliability of those researches of globally terrestrial water-energy budget might be affected. 

Therefore, our model and dataset is helpful for the elimination of the uncertainty in the researches of 

globally terrestrial water-energy budget. 340 

 

Figure 12: 4 ET datasets variations in typical regions in 2014. Columns from left to right: (a) 

Northwest China; (b) Western North America; (c) Western South America. The bottom panels 

showed the land cover in these regions (land cover data from MCD12Q1). 
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6 Conclusion 345 

In response to the challenges and complexities associated with the parameterization of land surface 

characteristics in existing global models, this study introduces a nonparametric global ET model that 

eliminates the need for the pre-correlation of input data and model parameters. Utilizing skin temperature, 

surface pressure, surface solar radiation downwards, surface thermal radiation downwards, 2m 

temperature, 2m dew point temperature provided by ERA5-Land, and albedo and BBE data provided by 350 

GLASS, the RSNP model estimated global land surface net radiation. Subsequently, we employed the 

methodology from the GLEAM model to estimate the soil heat flux. Using these remote sensing data, 

net radiation and soil heat flux as inputs, the model applied SFE-NP and NP method in arid and humid 

regions, respectively, facilitating the estimation of global terrestrial actual monthly ET (during 2001-

2019) at the spatial resolution of 0.1°. 355 

The validation results showed great accuracy both at point and regional scale. In terms of the 

validation with FLUXNET sites at the point scale, RSNP showed a RMSE value of 23.2 mm/month, a 

bias value of -3.86 mm/month and the R2 value of 0.66. Regarding the performance of different 

underlying surface, RSNP was slightly overestimated in DBF sites, and conversely underestimated in 

other sites. While According to the comparison between WBET and estimated annual ET, RSNP model 360 

displayed a great correlation with the RMSE value of 113.04 mm/yr, RE value of 22%, and R2 value of 

0.89. 

Comparing the annual ET estimates of RSNP with other ET datasets spanning from 2003 to 2018, 

there is a high consistency in spatial and temporal resolution characteristics. RSNP closely approximates 

ETMonitor in capturing the temporal trends of monthly ET. In the spatial distribution cross-validation of 365 

annual ET, RSNP reproduces similar spatial ET patterns and latitude-dependent ET trends as current ET 

datasets. However, the average level of annual ET varies among different ET datasets. In tropical 

rainforest areas, RSNP closely aligns with PML_V2, and presenting lower values compared to 

ETMonitor but higher than PEW. Conversely, in desert areas, RSNP captures ET levels slightly higher 

than existing datasets, showcasing regional variations in ET within desert regions. Furthermore, owing 370 

to the interpolation of emissivity data, RSNP’s monthly ET from 2001-2019 comprehensively convers 

the global terrestrial surface, which refers as a seamless ET dataset.  
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The globally seamless ET dataset estimated by RS-NP model is a different kind of ET datasets 

with a different principle/method of ET estimation compared with the currently global ET datasets, and 

is helpful for the elimination of the systemic uncertainty in the studies of land surface water and energy 375 

cycles at the global scale.  

7 Data Availability 

The seamless global ET data of RSNP model is freely available at National Tibetan Plateau Data Center : 

https://doi.org/10.11888/Terre.tpdc.301343(Pan, 2024). 
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