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Abstract 

The rapid growth of the aviation industry has resulted in aircraft emissions during landing and takeoff (LTO), which have 

direct and increasingly adverse impacts on air quality and human health. An accurate and high-resolution LTO emission 10 

inventory is crucial for investigating these adverse effects, with the LTO emission having unique three-dimensional spatial 

characteristics and typical hourly temporal variations. This study integrated the emission calculation and flight trajectory 

recognition methods to establish a four-dimensional aircraft emission inventory dataset of China’s LTO cycle (4D-LTO 

emission inventory dataset) from 2019 to 2023. The dataset has a high spatial-temporal resolution (hourly, 0.03° × 0.03° × 

34 height layers) and incorporates calculation emissions accurately. Moreover, the actual taxi out/in time for each flight was 15 

determined by a statistical model of taxi time and some aircraft in schedule based on 38,000,000 flights. Each flight’s 

climb/approach time was also obtained based on mixing layer height (MLH) and the height-time nonlinear relationship. 

Additionally, we calculated the LTO emission for China’s flight, establishing the hourly emission inventory based on each 

mode’s running time, emission index, and fuel flow. We obtained the flight trajectory core of each airport based on measured 

flight trajectories and the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) to depict the spatial 20 

distribution. Then, each flight’s takeoff/landing direction and trajectory were identified from the wind direction and relative 

departure/arrival airport position. The findings indicate that the impact of COVID-19 has reduced the LTO number in 2020–

2022 to 73.1%, 77.6%, and 48.7% of 2019 levels, respectively. However, by 2023, the LTO number has rapidly bounced 

back to 95.3% of 2019 levels. The recovery rate during daytime (6:00–23:00) was 41.6% higher than night-time (0:00–5:00). 

The emissions of various pollutants were measured as follows: HC, CO, NOx, PM, and SO2 are 3.2 Gg, 46.1 Gg, 62.3 Gg, 25 

1.1 Gg and 18.4 Gg. LTO emissions’ horizontal characteristic is the distance along the runway and spread. This elongated 

distribution will be hidden if a rough grid (e.g., 0.36°×0.36°) and the emissions are evenly distributed. Moreover, LTO 

emissions height characteristic ‘decreases with height,’ and the maximum height varies with MLH. Emissions above the 

standard height set by the International Civil Aviation Organization standard height (~915 m) are not estimated. For example, 

NOx emissions above 915 m during various months make up an average of 24.6% (9.9%–37.5%) in the LTO cycle, 30 

indicating the emissions are significantly underestimated when using the ICAO method. Compared with conventional spatial 
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allocation methods, our dataset provides a more accurate representation of the actual LTO situation in both horizontal and 

height at different times. Our 4D-LTO emission inventory dataset and its adaptable methodology are valuable resources for 

researching temporal and spatial variations, air quality, and health impacts of aircraft emissions in the LTO cycle. The 

dataset can be accessed from https://doi.org/10.5281/zenodo.13908440 (Lang et al., 2024). 35 

1 Introduction 

The aviation industry has experienced rapid growth in recent years. However, aircraft emit pollutants such as NOx, CO, SO2, 

HC, and PM during operation, affect air quality, and have adverse effects on human health and human life (Wang et al., 2022; 

Dissanayaka et al., 2023; Pandey et al., 2024). It has been estimated that 8000–58000 premature mortalities each year are 

attributable to aviation emissions (Barrett et al., 2010; Eastham and Barrett, 2016; Quadros et al., 2020; Eastham et al., 2024). 40 

Establishing an accurate aircraft pollutant emission inventory is crucial to investigate the impact of aircraft emissions on the 

environment and health. 

According to the standard height (~915 m) of the mixed layer height (MLH), the International Civil Aviation Organization 

(ICAO) divides the flight process of the aircraft into the Landing and Takeoff (LTO) cycle phase and Climb-Cruise-Descend 

phase (Kurniawan and Khardi, 2011; Bao et al., 2024). The LTO cycle occurs near the ground and affects the air quality near 45 

the airport and the health of the surrounding residents (Christodoulakis et al., 2022). Therefore, many studies (Kurniawan 

and Khardi, 2011; Zhou et al., 2019; Cui et al., 2022) have focused on aircraft emissions during the LTO cycle. Unlike road, 

rail, and sea transportation, the flight process in the LTO cycle has prominent four-dimensional (4D) characteristics. For 

example, aircraft emissions have typical hourly temporal variations due to the impact of human activities. Moreover, the 

aircraft’s unique three-dimensional (3D) flight trajectory (Koudis et al., 2017) makes it a distinctive 3D linear emission 50 

source. As a result, comprehensive spatial and temporal consideration is crucial for accurately calculating the pollutant 

emissions of aircraft in the LTO cycle. 

For calculating pollutant emission of aircraft in the LTO cycle, most of the current research is based on the ICAO standard 

method (Kurniawan and Khardi, 2011; Cui et al., 2022). ICAO stipulates that the LTO cycle is divided into four modes: take 

off, climb, approach, and taxi, reflecting that the standard operation time of each mode is 0.7 min, 2.2 min, 4 min, and 26 55 

min, respectively (ICAO, 2011). However, unchanged running time is inconsistent with the actual aircraft operation process 

(Xu et al., 2020) because the running time of different modes in the LTO cycle is influenced by runway congestion 

(Badrinath et al., 2020) and MLH variations (Peace et al., 2006; Nahlik et al., 2016). Therefore, relying on the ICAO method 

may lead to high uncertainties. An alternative approach is to use accurate flight data, such as ADS-B data (Klenner et al., 

2022; Zhang et al., 2022), which can significantly improve the accuracy of pollutant emission calculations. However, this 60 

method still has problems, such as difficulty obtaining actual aircraft data and limited application range. Therefore, multi-

year, hourly aircraft emission datasets that accurately reflect reality are still lacking. 
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In the air quality simulation, addressing the issue of pollutant emission inventory in the LTO cycle of aircraft in spatial is a 

significant challenge. Previous studies have primarily focused on the environmental impact of pollutant emissions from 

aircraft during the LTO cycle (Yim et al., 2015; Yang et al., 2018; Bo et al., 2019). However, most of these studies have 65 

allocated these emissions to the grid where the airport is without considering the altitude, longitude, and latitude of the 

emissions location. While this allocation method is suitable in rough grid settings, using a finer grid to reflect aircraft 

emissions’ environmental impact more accurately leads to more significant errors (Kumar et al., 1994; Arunachalam et al., 

2011; Woody et al., 2013). Therefore, considering the actual flight characteristics of aircraft is vital to obtain more realistic 

spatial characteristics of aircraft pollutant emissions and improve the accuracy of air quality simulation. The impact of 70 

aircraft emission heights and horizontal position distribution modes on air quality varies widely, as demonstrated by various 

studies (Unal et al., 2005; Wolfe et al., 2016; Woody et al., 2016; Lawal et al., 2022). Zhang et al. (2024) conducted air 

quality simulations based on actual flight trajectories in the ADS-B data for typical regions. However, this method is limited 

by the availability of flights with ADS-B data and cannot be widely applied. Consequently, there is still a lack of aircraft 4D 

emission inventory datasets in the LTO cycle that accurately reflect actual 3D flight trajectories and their dynamic nature 75 

over time. 

China is a good case study for aircraft emissions in the LTO cycle since it is the world’s second-largest aviation market 

(CAAC). The period 2019–2023 is a unique period of COVID-19 outbreak. Therefore, we have developed a 4D aircraft 

emission inventory (4D-LTO emission inventory dataset) for mainland China's takeoff and landing (LTO) cycle from 2019 

to 2023. This inventory provides detailed and accurate emissions calculations and flight trajectory recognition. It offers high 80 

spatial and temporal resolution, with a horizontal resolution of 0.03° × 0.03° and 34 layers of height resolution from 0 m to 

15,668 m. Our dataset and methodology are valuable resources for studying the temporal and spatial variations, air quality, 

and health impacts of aircraft emissions during the LTO cycle. 

2 Methodology and data 

Figure 1 illustrates the process of establishing the 4D-LTO emission inventory dataset, including the methods, the primary 85 

dataset, and the final output information. We developed the 4D-LTO emission inventory dataset in four steps: 

(1) Accurately estimate the pollutant emissions of aircraft in the LTO cycle; 

(2) Identifying the 3D flight trajectory of aircraft in the LTO cycle; 

(3) Spatial and temporal allocation method of the 4D-LTO emission inventory dataset; 

(4) Compared with the conventional spatial allocation method. 90 
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Figure 1 Schematic of the method used to develop a high spatial and temporal resolution aircraft 4D emission inventory in the 
LTO cycle. It includes a detailed pollutant emission calculation method, flight trajectory recognition method (The horizontal 

recognition method takes the departure process as an example.), and LTO cycle emission inventory allocation method. 95 

The 4D-LTO emission inventory dataset is a grid emission inventory dataset established by combining the aircraft emission 

calculation method and the flight trajectory identification method for the LTO cycle (described in Sections 2.1 and 2.2.). The 

spatial-temporal allocation method is introduced in Section 2.3, and the comparison method is described in Section 2.4. 

2.1 Aircraft LTO cycle emission calculation 

The emission index, fuel flow, and running time of different flight modes are used to estimate the civil aircraft emissions in 100 

China based on the ICAO method (Kurniawan and Khardi, 2011; Bao et al., 2024). The calculation method is as in (1): 

𝐸 ൌ  ∑ ∑ 𝐸𝐼,, ൈ 𝐹𝐹, ൈ 𝑇, ,          (1) 

where 𝐸 is the emission (g) of pollutant j (including NOx, HC, SO2, CO, and PM); 𝐸𝐼, is the emission index (g/kg) under 

m mode (take off, climb, approach, and taxi) of LTO 𝑙. 𝐹𝐹,, is the fuel flow (kg/s) of pollutant j under m mode of LTO 𝑙, 

and 𝑇, is the running time under the m mode of LTO 𝑙. 105 

The actual parameters of each flight should be used to calculate the emissions. However, complete data cannot be obtained 

due to problems such as incomplete data recording and recording errors. As a result, we have used different methods to 

approach the emission index, fuel flow (Section 2.1.1), and running time (Section 2.1.2 and 2.1.3) in (1) for the actual 

situation and estimate more accurate emissions. 
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2.1.1 Aircraft-engine matching 110 

The aircraft’s emission factor and fuel flow depend on its engine type, and the same aircraft type can be equipped with 

different types of engines. Thus, we collected as much detailed engine configuration information as possible for various 

aircraft types to improve the accuracy of the calculations. The matching method is divided into three steps: 

1) We counted all aircraft types departing from or arriving in China from 2019 to 2023 using the flight information dataset 

from the VariFlight, querying the aircraft type corresponding to each aircraft code. 115 

2) We carefully counted the China airlines, civil aviation fleet in service information, points type statistical engine number, 

type, and proportion through a comprehensive search in flights associate dynamic query (VariFlight) and Civil Aviation 

Leisure Station (CALS). 

3) We weighed the EI and FF of each aircraft type to obtain the value (Yang et al., 2018) using the information of all 

aircraft types and the proportion information of different engine types for each aircraft type, combined with the 120 

emission index (EI) and fuel flow (FF) data of each engine type given in the ICAO Aircraft Engine Emissions Databank 

(EEDB). 

In addition, the first-order approximation 3.0 (FOA3.0) (Wayson et al., 2009) method was used to recalculate the EI of PM, 

which is not included in EEDB. The emission factor of SO2 is related to the sulphur content of jet fuel, so we used 3.868 

g/kg as the emission factor of SO2 (GB6537). 125 

2.1.2 Climb and approach time calculation 

2.1.3 Taxi in and taxi out time calculation 

ICAO specifies the taxi mode's running time (taxi out 19 min; taxi in 7 min). However, the actual taxi time varies based on 

airport flight schedules during actual operation, and using a fixed time can lead to emissions calculation uncertainty. 

Therefore, the actual taxi time data (Supplied by VariFlight) was used to calculate the aircraft’s taxi emissions accurately. 130 

Since not all aircraft record the actual taxi time and the actual taxi time is not publicly available, this study supplemented the 

missing taxi time based on the hourly-airport difference relationship model between taxi time and aircraft number of 

schedules (Lang et al., 2024, in review). The functional relationship between the number of aircraft on schedule and the taxi 

time is as follows: 

𝑇௧௫ ൌ 𝛥𝑇 ൈ 𝑁𝑠  𝑇,            (2) 135 

∆𝑇 ൌ 𝑢 ∙ 𝑒௩ே,             (3) 

𝑇 ൌ 𝑜 ∙ 𝑒ௗே,             (4) 

where, 𝑇௧௫ is the taxi out (in) time of each flight (s); 𝛥𝑇 is an increase in taxi time per 𝑁𝑠 (s/aircraft). 𝑇 is the initial taxi 

time (s), and 𝑁𝑠 is the number of aircraft on schedule in an hour. 𝑁 is the annual average aircraft departures/arrivals number 

for each hour; 𝑢, 𝑣, 𝑜, and 𝑑 are the airport-specific constant. 140 
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Lang et al. (2024, in review) reported the hourly airport difference relationship model between 𝑇௧௫ and 𝑁𝑠 at different 

airports in 2019. The taxi time relationship construction method was used to update the database from 2020 to 2023. To 

verify the model performance, Fig. 2(a) and Fig. 2(b) represent the comparative verification of function relationships for taxi 

in and taxi out in different years, taking the hourly-airport difference relationship model of the Beijing Capital International 

Airport (PEK) as an example. 145 

We established that the functional relationship method of taxi out/in time established has universal applicability in different 

years. Taking 12:00 noon from 2019 to 2023 as an example, we observed a strong correlation between taxi time and the 

number of scheduled aircraft, regardless of whether it is taxi in or taxi out. The significance level (p < 0.001) indicates a 

strong relationship. The R2 for taxi out ranges from 0.87 to 0.98, and for the taxi-in mode, it ranges from 0.96 to 0.99. The 

model has a good effect on taxi in or out mode at different years, indicating that the model reflects the real taxi time variation. 150 

Due to the impact of COVID-19, the taxi time functions between 2019 and 2023 exhibit varying characteristics 

simultaneously. Upon further analysis, ∆T and T0 in five years show an exponential correlation with the annual average 

hourly departure/arrival number of aircraft at each moment. This exponential relationship shows consistency in five years, 

with a good correlation between the fitting results of five years. Specifically, the fitting effect of T0 (taxi out: R2 = 0.48, p < 

0.001, taxi in: R2 = 0.83, p < 0.001) and ΔT (taxi out: R2 = 0.40, p < 0.001, taxi in: R2 = 0.10, p < 0.01), indicating that our 155 

model can well reflect the variation of the initial time of taxiing and the unit taxi time increase. 

 

Figure 2: The linear function relationship between taxi time (T) and the number of aircraft in schedule at each hour (Ns), the 
exponential function relationship between ΔT and T0, and the annual average departure aircraft number for each hour (N). (a) 

Taxi out. (b) Taxi in. 160 

2.2 Aircraft emissions 3D trajectory identification 

This study was divided into two steps to identify the 3D spatial location of aircraft emissions in China during 2019–2023: (1) 

The flight altitude identification (Section 2.1.1), (2) Each flight’s horizontal trajectory identification (Section 2.1.2). 
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2.2.1 Flight altitude identification 

The monthly airport difference relationship model database (Zhou et al., 2019) was used to identify the altitude information 165 

at different times of each LTO cycle in China during 2019–2023. The different airport daily PBLH database was used to 

identify the maximum height of each LTO cycle. When the taxi in and out is 0 m, the takeoff is from 0 m to 152 m (ICAO). 

The climb is from 152 m to PBLH, and the approach is from PBLH to 0 m. 

2.2.2 Flight horizontal trajectory identification 

We established the flight trajectory database of each airport in China based on the Density-Based Spatial Clustering of 170 

Applications with Noise (DBSCAN). Moreover, each flight’s trajectory was identified based on the relative position of the 

departure airport, the arrival airport, and the wind direction. The clustering method is used to screen out flight trajectories 

with similar characteristics from many actual flight data. This approach helps determine the grid location of aircraft 

emissions (Gariel et al., 2011; Bombelli et al., 2017). DBSCAN is a density-based clustering algorithm widely used in 

machine learning and data mining (Chen et al., 2021). The DBSCAN algorithm belongs to unsupervised learning, and the 175 

initial value setting does not significantly affect the clustering results (Ventorim et al., 2021). As a result, the DBSCAN 

algorithm is well suited for flight trajectory clustering processing with unclear information, such as the number of clusters 

and distribution characteristics (Murça et al., 2018; Giovanni et al., 2024). 

Before clustering, flight trajectory data belonging to the LTO cycle should be extracted from a vast amount of information in 

AMDAR. First, the climb and approach modes in the LTO cycle are screened according to the ascending and descending 180 

symbols in AMDAR information. Second, each flight trajectory was divided into airport ownership according to the airport’s 

location. Finally, different airports’ climb and approach trajectories are analysed by clustering. 

However, DBSCAN is almost useless for high-dimensional data because of the “curse of dimensionality” (Chen et al., 2021). 

Therefore, we use the Euclidean norm for dimensionality reduction to compute the distance between the two sets of flight 

trajectories. The time interval of each flight trajectory sequence is not the same because of each flight's trajectory difference 185 

and recording delay. As a result, we conducted unified processing of each departure and arrival trajectory through the 

resampling method. Too low or too high a dimension will make the location feature information unclear and increase the 

computational complexity of clustering processing. Therefore, we set the dimension of each trajectory to 25. Based on all 

actual flight data from 2019–2023, during the LTO cycle, departure was within 480 s and arrival was within 1200 s. 

Therefore, the time ranges of the departure and arrival trajectories are 0–480 s and 0–1200 s, respectively. Finally, the 190 

uniform latitude and longitude position information in time is obtained: 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ൌ ሺ𝐿𝑎𝑡ଵ,, 𝐿𝑜𝑛ଵ,, … , 𝐿𝑎𝑡ଶହ,, 𝐿𝑜𝑛ଶହ,ሻ. 

The DBSCAN algorithm relies on two input parameters, the minimum number of samples (MinPts) and distance threshold 

(ε), to cluster the data space based on three basic concepts: directly density-reachable, density-reachable, and density-

connected (Sander et al., 1998). It is noted that the distance between flight trajectories used for DBSCAN is calculated based 

on Euclidean norms. 195 
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MinPts selection: Since the average number of sample trajectories varies in different airports, the MinPts must be taken 

separately for various airports. For each airport, the MinPts are respectively taken in the range of 6 to 10, and the clustering 

effect is observed, from which the appropriate MinPts are selected. ε selection: The method of k-distance (Garg et al., 2020) 

graph was used to select the appropriate ε. The k-distance curve first calculates the distance between each trajectory in the 

data and the trajectory with the nearest k, then arranges the k-distances of all trajectories in descending order and draws the 200 

curve. Moreover, k values for different airports are the same as MinPts, and the ε values are based on the apparent inflection 

point in the k-distance curve. 

Figure 3 depicts the performance of clustering results using Shanghai Pudong International Airport (PVG). This study 

evaluated the core flight trajectory of departure and arrival since the flight trajectory is a series of latitude and longitude 

information with time series characteristics. This approach uses the DBSCAN clustering method by splitting the flight 205 

trajectory of departure and arrival into two directions, latitude, and longitude, considering the three indexes of R and MAE. 

In longitude, the correlation between identified core trajectories and actual trajectories is more significant than 0.80 

(departure: 0.865–0.992; arrival: 0.811–0.997). In latitude, the correlation between identified core trajectories and actual 

trajectories is more significant than 0.94 (departure: 0.947–0.995; arrival: 0.941–0.992). The identified core trajectory is 

consistent with the actual flight trajectory, indicating that the core trajectory can reflect the actual flight situation. In 210 

longitude, the MAE between identified core trajectories and actual trajectories is less than 0.05° (departure: 0.01°–0.02°; 

arrival: 0.02°–0.05°). In latitude, the MAE between identified core trajectories and actual trajectories is less than 0.05° 

(departure: 0.01°–0.02°; arrival: 0.02°–0.05°). Although the clustering results are uncertain, they can still provide vital 

information for the 3D grid location of aircraft emissions. 

 215 

Figure 3: (a) Departure flight trajectories of different clusters. (b) Consistency in longitude of departure between the core and 
actual flight trajectories. (c) Consistency in latitude of departure between the core and actual flight trajectories. (d) Arrival flight 

trajectories of different clusters. (e) Consistency in longitude of arrival between the core and actual flight trajectories. (f) 
Consistency in latitude of arrival between the core and actual flight trajectories. 

https://doi.org/10.5194/essd-2024-494
Preprint. Discussion started: 22 November 2024
c© Author(s) 2024. CC BY 4.0 License.



9 
 

The airports with multiple runways will assign a suitable runway for each flight based on the relative location of the 220 

departure and arrival airport (Yin et al., 2022; Sekine et al., 2023). This decision is made considering the need for aircraft to 

operate against the wind as per the Chinese Meteorological Administration; CAACNEWS. Therefore, these flight 

characteristics were combined to identify the horizontal trajectory of each flight in the LTO cycle (Horizontal position 

recognition in Fig. 1). First, all the flight trajectory clusters corresponding to the departure/ arrival airport are selected from 

the flight trajectory database obtained by DBSCAN method. Second, trajectories from the runway are chosen close to the 225 

target airport. Third, the aircraft takes off against the wind principle, selecting trajectories on which side of the runway based 

on the wind direction information at the moment of the departure/arrival airport. Finally, the final trajectory is selected by 

the target direction being opposite or the same as the takeoff direction. 

2.3 Temporal and spatial identification of 4D emission inventory 

Gridded emission information is often required for air quality and climate simulation models or refined prevention and 230 

control of pollutants. Therefore, the obtained aircraft pollutant emission inventory of the LTO cycle in China during 2019–

2023 was processed into hourly, 3D grid pollutant emission data with a horizontal resolution of 0.03° × 0.03° and a height 

resolution of 34 layers from 0 m to 15668 m. 

2.3.1 Aircraft emission temporal allocation 

The 4D-LTO emission inventory dataset has an hourly temporal resolution. According to (1), the emissions of each pollutant 235 

in different modes of each LTO cycle are calculated separately, and the emission for each hour of the LTO cycle at different 

airports is the sum of the pollutant emissions generated by all departure and arrival at that airport during that hour. In 

addition, the daily, monthly, and yearly total emissions are the sum of all LTO cycles on that day, month, and year to further 

analyse the temporal variation of pollutant emission. 

2.3.2 Aircraft emission spatial allocation 240 

The horizontal resolution of the 4D-LTO emission inventory is 0.03° × 0.03° with the latitude and longitude range of 

3.40°N–53.56°N and 73.44°E–135.09°E, respectively. The altitude resolution was divided into 34 layers from 0 m to 15668 

m (0.0 m–38.3 m, 38.3 m–76.7 m, 76.7 m–115.3 m, 115.3 m–154 m, 154 m–231.8 m, 231.8 m–310.3 m, 310.3 m–389.3 m, 

389.3 m–469 m, 469 m–549.3 m, 549.3 m–630.3 m, 630.3 m–711.9 m, 711.9 m–794.2 m, 794.2 m–960.7 m, 960.7 m–

1130.1 m, 1130.1 m–1302.3 m, 1302.3 m–1477.6 m, 1477.6 m–1656.0 m, 1656.0 m–1929.7 m, 1929.7 m–2211.1 m, 2211.1 245 

m–2599.3 m, 2599.3 m–3107.2 m, 3107.2 m–3643.1 m, 3643.1 m–4210.5 m, 4210.5 m–4813.9 m, 4813.9 m–5458.5 m, 

5458.5 m–6151.2 m, 6151.2 m–6900.4 m, 6900.4 m–7717.4 m, 7717.4 m–8617.3 m, 8617.3 m–9621.2 m, 9621.2 m–

10759.7 m, 10759.7 m–12080.6 m, 12080.6 m–13664.8 m, 13664.8 m–15668 m.). 
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The 4D-LTO emission inventory dataset was processed by first identifying the emissions information of each flight into a 3D 

grid through latitude, longitude, and altitude information. Then, the emissions of all flights were summarized within the 250 

same hour. 

2.4 Comparison of our dataset with the previous dataset 

Our dataset was compared with the spatial allocation methods commonly used in previous studies. (1) Other studies typically 

assign aircraft emissions in the LTO cycle according to the standard altitude for each mode as defined by ICAO (Mokalled et 

al., 2018; Wang et al., 2023). (2) The conventional horizontal distribution method for aircraft emissions in the LTO cycle 255 

assumes that aircraft emissions are radially distributed (Lawal et al., 2022). The Federal Aviation Administration (FAA)-

recommended the standard climb rate of 200 ft per nautical mile. Therefore, the standard climb rate and ICAO standard 

altitude determine the horizontal distribution of aircraft emissions around the airport. The running time, altitude, and 

horizontal range of each mode defined by ICAO are shown in Table 1. 

Table 1: The running time and altitude range of each mode defined by ICAO 260 

Mode Running time (s) Altitude range (m) Distance to Airport (km) 

Take off 42 0–152 0–5 

Climb 132 152–915 5–28 

Approach 240 0–915 0–28 

Taxi in 420 0 – 

Taxi out 1140 0 – 

 

3 Results and discussion 

3.1 Total aircraft emissions in the LTO cycle 

In 2023, the total emissions of five types of pollutants in the LTO cycle of aircraft in China are as follows: HC is 3.2 Gg; CO 

is 46.1 Gg; NOx is 62.3 Gg; PM is 1.1 Gg; SO2 is 18.4 Gg as shown in Fig. 4(a). The annual emission of various pollutants 265 

in 2023 was 82.9%–94.1% in 2019. However, before 2022 (the last year impacted by COVID-19 and the most affected year), 

emissions of various pollutants averaged 34.7%–42.8% of 2019. At the end of COVID-19, the 2023 recovery in aircraft 

emissions shows that the pandemic has not had an irreversible impact on aircraft activities and that emissions from aircraft 

activity will continue to grow (Teoh et al., 2024). 

Figure 4(a), the main emission contribution of HC and CO came from taxi mode (HC: 94.6%; CO: 91.5%) because HC and 270 

CO are mainly produced by incomplete fuel combustion, taking 2023 as an example. A large amount of HC and CO are 

created because the engine’s thrust in taxi mode is minimal and the operation time is long (EPA, 1981). The climb is the 

main NOx emission stage (42.1%). The takeoff with the shortest running time contributes to the second largest NOx 
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emission (25.7%). The taxi with the longest running time contributes the NOx most minor emission of (12.4%), indicating 

that the emission factor of NOx is highly correlated with the aircraft engine’s thrust (Stettler et al., 2011). Although the 275 

engine runs for a long time, the NOx emission during taxi mode with a slight thrust is still lower than during the takeoff 

stage, with the engine running for a short time but at nearly full thrust. For PM and SO2, the emission contribution ratio is 

similar to the running time of each mode, and the taxi mode with the longest running time contributes 33.1% of PM and 35.1% 

of SO2. The climb mode contributes 28.4% of PM and 26.6% of SO2, the approach mode contributes 25.7% of PM and 26.4% 

of SO2, while the takeoff mode with the shortest running time contributes 12.7% of PM and 11.9% of SO2. From 2019 to 280 

2023, among various aircraft types, B738, A320, and A321 have been the top three pollutant emissions (Fig. 4(b). The top 

three aircraft types contributed 64.1% of NOx emissions in 2019, taking NOx emissions as an example. However, during the 

COVID-19 period (2020–2022), the contribution of the top three aircraft types reached 70.3%–70.9%. At the end of the 

pandemic impact in 2023, the contribution of the top three aircraft types reversed to the 2019 level (55.0%). During the 

COVID-19 pandemic, many aircraft types ceased operation, including F50, E145, and other regional aircraft, A306, A340, 285 

and other wide-body aircraft types, increasing the proportion of the first three types. As the impact of COVID-19 gradually 

diminished, the discontinued models resumed operation, and the emission proportion of the first three models returned to 

normal. 

 

Figure 4: (a) Total aircraft pollutant emissions of the LTO cycle from 2019 to 2023. (b) Proportion of NOx emissions in different 290 
aircraft types from 2019 to 2023. 

3.2 Temporal variation of aircraft emissions in the LTO cycle 

Figure 5(a) shows the changes in aircraft emissions during the LTO cycle from 2019 to 2023, encompassing the period 

before, during, and after the COVID-19 pandemic. The baseline year for analysis was 2019, unaffected by COVID-19, and 

represented regular aircraft activity. 295 

From January 20 to February 13, 2020, aircraft activity rapidly dropped to the lowest point owing to the impact of COVID-

19, showing that the number of LTO on February 13, 2020, was 84.8% lower than the same period in 2019. In the following 

months, aircraft activity slowly recovered, 
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returning to the 19-year level in October. As the COVID-19 situation in China entered a recurrent period, from 2021 to the 

beginning of 2023, the activity of aircraft fluctuated, reflecting five low points (February 12, 2021, August 12, 2021, 300 

November 9, 2021, April 4, 2022, November 29, 2022). As the effects of COVID-19 faded from early 2023, aircraft activity 

gradually returned to 2019 levels. When the impact of COVID-19 is over, abnormal growth is noted in aircraft activity. In 

May 2021, the number of aircraft LTO increased rapidly compared to the same period in 2019. However, during the same 

period in 2019, aircraft activity showed a downward trend. From July to October 2023, the number of LTOs exceeded the 

same period in 2019. This phenomenon occurs because people with unfulfilled travel needs are inclined to engage in revenge 305 

tourism following prolonged COVID-19 lockdowns, resulting in increased aircraft activity and a sudden increase in 

emissions in the short term. 

 

Figure 5: (a) Daily variation of pollutant emissions and the number of LTO cycles from 2019 to 2023. (b) Annual hourly variation 
of pollutant emissions and the number of LTO cycles from 2019 to 2023. 310 

Based on Fig. 5(b), the emission of various pollutants in 2019–2023 varies slightly in hours, with higher daytime (6:00–

23:00) and low night-time (0:00–5:00), with the minimum at 4:00 and the maximum at 13:00. The most significant 

difference of the number of LTO and the emission of pollutants between each hour over the five years occurred at 4:00 and 

13:00 in 2022 (251% of LTO, 230% of HC, 244% of CO, 229% of NOx, 249% of PM, 234% of SO2). The difference in 

pollutant emissions between 2019 and 2023 at each hour shows recovery in 2023. The proportion of LTO numbers that 315 

recovered to 2019 levels at night-time was 34.1% lower than during the daytime. Additionally, the recovery rate of the five 

pollutants emissions at night-time was 39.1%–44.4% lower than at daytime, indicating that aircraft activity resumed 

significantly better during the day than at night. 
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3.3 4D characteristics of aircraft emissions in the LTO cycle 

This study calculates hourly aircraft emissions in LTO cycles at various airports in China during 2019–2023 based on the 320 

combining emission calculation method and flight trajectory recognition method, establishing a 4D aircraft NOx emission 

inventory (hourly, 0.03°×0.03°×34) of LTO cycle for in China (Fig. 6 and Fig. 7). 

Figure 6(a) signifies the horizontal distribution of yearly NOx emissions in prefecture-level cities and airports during 2019–

2023. Compared with 2019, emissions in most regions affected by COVID-19 decreased significantly in 2020–2022. 

Notably, aircraft emissions of prefecture-level cities experienced an average reduction of 43.1% in 2022. As the COVID-19 325 

impact ended in 2023, aircraft emissions of prefecture-level cities recovered with an average increase of 5.07%. Although 

the aircraft emissions of LTO cycle in prefecture-level cities fluctuated from 2019 to 2023, airport emissions in Beijing, 

Shanghai, Guangzhou, and Chengdu were the top four, accounting for 24.4% (2022)–32.2% (2023) of national emissions. 

Between 2019 and 2023, the number of airports in China increased from 237 to 257 at an average annual growth of 5. 

However, the newly operated airport significantly increased aircraft emissions in a prefecture-level city. For example, due to 330 

the operation of TFU airport, aircraft NOx emissions in Chengdu (4.2 Gg) will be 32.3% in 2023, higher than in 2019. In 

addition, Chengdu’s aircraft NOx emissions were 8.4%–14.3% higher than Guangzhou’s during 2021–2023, while in 2019, 

Chengdu’s NOx emissions were 21.5% lower than Guangzhou’s when TFU airport did not start operations. The newly 

operated airport can also affect the original airport in a prefecture-level city. Taking airports in Beijing as an example, 

PEK airport’s annual aircraft NOx emissions (8.1 Gg) were 101%, ranked second in 2019, higher than CAN airport’s (4.0 335 

Gg). However, with PKX airport’s operation, PEK airport emissions significantly decreased. In 2023, PEK airport’s 

emissions recovered to 54.7% of the original, while the total emissions of Beijing recovered to 81.4%. In addition, emissions 

from PEK airport in 2023 were only 15.7% higher than those from CAN, indicating that the newly-operated PKX airport has 

reduced the emission pressure on PEK Airport. 

Taking airports in Beijing and surrounding areas in January 2023 as an example, Fig. 6(b) demonstrates the grid horizontal 340 

distribution of aircraft NOx emissions in the LTO cycle. The horizontal distribution characteristics of aircraft emissions in 

the LTO cycle are influenced by the distance along the runway and how they spread, indicating that emissions will be 

concentrated in the direction of the runway near the airport. With the increase in flight distance, the emissions caused by 

aircraft will be dispersed. Aircraft emissions during the LTO cycle are widely distributed around the airport, not even 

represented by a rough grid (e.g., 0.36° × 0.36°). The elongated distribution characteristics of aircraft emissions indicate that 345 

evenly allocating emissions around the airport will cause significant uncertainty. Figure 6(c) shows the differences in aircraft 

emissions at various airports and times between 0:00 and 20:00 on January 3, 2023, at a four-hour interval. This 

phenomenon indicates that the horizontal distribution characteristics of aircraft emissions vary significantly at different hours 

and airports. As a result, the refined aircraft emission inventory in the LTO cycle conforms to the time-by-hour spatial 

distribution characteristics of aircraft, better reflecting the actual situation of aircraft emissions, which is of great significance 350 

for accurately assessing aircraft environmental impact in the LTO cycle. 
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Figure 6: (a) Horizontal distribution of yearly NOx emissions in prefecture-level cities and airports during 2019–2023. (b) 
Horizontal distribution of NOx emissions at airports in Beijing and surrounding areas in January 2023. (c) Horizontal distribution 

of NOx emissions at airports in Beijing and surrounding areas for different hours in January 2023. 355 
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Figure 7: (a) Height distribution characteristics of NOx emissions in LTO cycle. (b) The maximum altitude layer for different 
months and the corresponding altitude range. (c) The emissions above and below the height of 915 m in different months and the 

proportion above 915 m. (d) Height distribution characteristics of NOx emissions from the LTO cycle at different months. 

Figure 7(a) uses the annual NOx emissions in 2023 to demonstrate the height distribution of aircraft emissions in the LTO 360 

cycle. In general, the NOx emission of aircraft in the LTO cycle decreases with the increase in altitude. Moreover, the 

emission per unit altitude significantly decreases between layers 1 and 2 and between layers 4 and 5 due to the different 

flight altitude ranges in various modes in the LTO cycle. Emissions from layer 1 (0–38 m) include the entire taxi mode as the 

takeoff mode and approach mode, with the maximum unit height NOx emissions (0.32 Gg/m). Emissions from layers 2 to 4 

(38–154 m) include the part of takeoff mode and approach mode, with the unit height NOx emissions of 0.11–0.12 Gg. From 365 

layer 5, each layer's NOx emissions (≤ 0.04 Gg/m) include the part of the climb and approach modes. As the emission height 

increases, the emissions of NOx gradually decrease. The reduction rate gradually increases before layer 14 and decreases 

after layer 14, indicating that the unit height emissions of each layer above the 14th layer have little difference. In addition, 

there are significant differences in the height distribution characteristics of emissions in the LTO cycle at different months. 

Figure 7(b) shows that the maximum emission height in the LTO cycle can reach the 23rd layer (3107–3643 m, November 370 

and December)–and the 26th layer (5459–6151 m, June) of 34 layers (0–15668 m). The maximum aircraft emission height in 

the LTO cycle can reach 4544 m above the ICAO-defined maximum altitude of 915 m due to MLH variation across 12 
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altitude levels. Figure 7(c) illustrates that the NOx emissions above the ICAO standard height (~915 m) in different months 

account for an average of 24.6% (9.9%–37.5%) in the LTO cycle. This result indicates that the ICAO method does not 

account for a significant portion of emissions during the entire LTO cycle. Using the ICAO fixed flight height will introduce 375 

considerable uncertainty when calculating the aircraft emission during the LTO cycle and assessing its environmental impact. 

3.4 Comparison with the previous allocation method 

Figure 8 uses the NOx emissions in January 2023 to show the differences between the 4D emission inventory and the 

emission inventory calculated in a previous study (Mokalled et al., 2018; Lawal et al., 2022; Wang et al., 2023) in terms of 

height distribution (Fig. 8(a)–(b)) and horizontal distribution (Fig. 8(c)–(e)). Figure 8(a) and Figure 8(b) represent noticeable 380 

differences in emissions at different layer heights. Two components to the allocation error of the ICAO method are (1) in the 

range of 154 m–961 m; the ICAO method overestimates the emissions by 63.4%, and the emission difference of different 

layers is 65.7 Mg–219.3 Mg. The difference increases with a rise in height. (2) With the range of 961 m–4211 m, the ICAO 

method missed 283.0 Mg of emissions, and the difference decreases with an increase in height (0.0 Mg–125.7 Mg). Figure 

8(b) uses PEK, PVG, and CAN to demonstrate the emission height changes of different airports. Different airports’ 385 

overestimation and missing zones are similar to the height distribution of total NOx emissions. However, the ICAO method 

misses emissions above 961 m differently for different airports (CAN: 1.9 M g, PEK: 28.0 Mg, PVG: 5.4 Mg), and the 

ICAO method overestimates emissions in 154 m–961 m differently in various airports (CAN: 3.4 Mg–11.8 Mg, PEK: 3.4 

Mg–10.2 Mg, PVG: 1.5 Mg–10.1 Mg). Compared with the dataset based on the ICAO method, our 4D-LTO emissions 

inventory dataset can more accurately represent the height distribution of actual aircraft emissions. 390 

In the example of airports in Beijing and surrounding areas, Figs. 8(c) and 8(d) demonstrate that our 4D-LTO emission 

inventory dataset outperforms the dataset based on the previous radial allocation method, showing an apparent misallocation 

of emissions. Figure 8(e) quantifies the differences in the horizontal distribution between two emission inventory datasets. 

Based on the previous radial allocation method, the dataset misallocated 242.7 Mg of emissions in the misallocation zone. 

Among them, 17.2 Mg of emissions were missing (PEK: 3.0 Mg, PKX: 13.5 Mg, TSN: 0.2 Mg, TVS: 0.5 Mg), and 225.5 395 

Mg of emissions were assigned to the wrong grid (PEK: 122.8 Mg, PKX: 73.7 Mg, TSN: 25.8 Mg, TVS: 3.2 Mg). In the 

non-misallocation zone, the dataset based on the previous radial allocation method underestimates 41.9% of emissions (PEK: 

46.5%, PKX: 37.8%, TSN: 32.9%, TVS: 60.6%). Compared with the dataset based on the previous radial allocation method, 

our 4D-LTO emissions inventory dataset can better reflect the horizontal distribution of actual aircraft emissions. 
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 400 

Figure 8: Comparison of horizontal and height distributions of NOx emissions in January 2023, (a) NOx emissions differences at 
different heights between two datasets (Mg), (b) NOx emissions distribution at different layers between two datasets (Mg), (c) 

Distribution of NOx emissions based on previous radial allocation method, (d) Distribution of NOx emissions in 4D-LTO emission 
inventory dataset, (e) NOx emissions differences at different horizontal grids between two emission inventory datasets. 

3.5 Uncertainty analysis and limitation 405 

The uncertainty of the 4D-LTO emission inventory dataset is mainly divided into emission calculation uncertainty and 

spatial location identification uncertainty. Therefore, we used the frequently used Monte Carlo method to quantitatively 

assess the emission uncertainty and spatial location identification for each hour. The uncertainty in all input parameters 

follows a normal distribution, and the uncertainty ranges were obtained from 20,000 Monte Carlo simulations with a 95% 

prediction interval. Moreover, the uncertainty of LTO cycle emissions calculation is mainly from the emission index, fuel 410 

flow, and running time at different modes. In our previous study (Zhou et al.,2019; Lang et al., 2024, in review), we 

quantitatively assessed the calculation uncertainties of running time, emission index, and fuel flow. Then, we calculated the 

emission uncertainties of different pollutants in each hour. Taking PEK in 2019 as an example, we estimated the 

uncertainties for NOx, CO, HC, PM, and SO2 emissions in each hour during the whole year, found to be within an average of 

[−10%, 10%], [−10%, 10%], [−10%, 10%], [−6%, 6%] and [−6%, 6%], respectively. Additionally, the uncertainty of the 415 

spatial distribution of LTO cycle emissions comes from the location fluctuations of horizontal and height at different flight 

trajectories. As a result, we used the PVG airport in 2023 to assess spatial uncertainty at the hourly scale. Throughout 2023, 

we estimated the hourly 95% prediction intervals of latitude and longitude for departure and arrival within an average of 

[−0.01°, 0.01°], [−0.01°, 0.01°], [−0.04°, 0.04°], [−0.03°, 0.03°], respectively. We also estimated the hourly 95% prediction 

intervals of climb and approach within an average of [−197 m, 197 m], [−171 m, 171 m]. 420 
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Our 4D-LTO emission inventory dataset reflects the actual spatial and temporal and can be used to accurately assess the air 

quality impact of aircraft in the LTO cycle, but has several limitations due to data and technical restrictions. (1) The certified 

engine emission indices derived from the engine manufacturers and reported in the ICAO failed to consider the life 

expectancy of an aircraft and meteorological conditions. This may result in errors between the fuel consumption and 

emissions estimated using these recommend parameters and real-world conditions. Therefore, future research should be 425 

conducted on the dynamic emission factors based on the machine age and flight conditions. (2) Our dataset was obtained 

from a subset of available flight data and near-real flight data based on a model built using real data. This may result in 

errors between our dataset and real-world conditions. However, this issue will addressed as real-world data becomes more 

widely available. 

4 Data availability 430 

The 4D-LTO emission inventory dataset in China from 2019 to 2023 (Lang et al., 2024) presented in this study are freely 

available at https://doi.org/10.5281/zenodo.13908440. 

5 Conclusions and implication 

This study establishes China's 4D-LTO aircraft emission inventory dataset during 2019–2023 by combining accurate and 

generalizable emission methods and flight trajectory identification methods. The actual taxi time is used, and the 435 

supplementary value is obtained through the five-year validation (PEK: R2 = 0.87–0.99) airport-hourly difference 

relationship between the taxi in/out time and the number of aircraft schedules. Moreover, the climb and approach time and 

the attitude of each flight are updated using the MLH and the airport-monthly difference relationship between the flight 

altitude and time of the climb/approach mode. Finally, the DBSCAN clustering method (PVG: R = 0.865–0.995 and the 

MAE = 0.01°–0.02° in departure, R = 0.811–0.997 and the MAE = 0.02°–0.05° in arrival) is used to obtain the flight 440 

trajectory database of each airport based on the massive number of actual flight trajectory data. Then, the flight trajectory of 

each flight is identified by the wind direction and the relative position of the departure and arrival airport. The data shows 

that the impact of COVID-19 reduced the LTO number to 73.1% in 2020, 77.6% in 2021, and 48.7% in 2022, compared to 

2019. However, in 2023, the LTO number quickly bounced back to 95.3% of the 2019 levels, resulting in HC, CO, NOx, PM, 

and SO2 emissions of 3.2 Gg, 46.1 Gg, 62.3 Gg, 1.1 Gg, and 18.4 Gg, respectively. 445 

Taxi is the most crucial emission stage of HC and CO (94.6% and 91.5% of the emission of the entire LTO cycle), and climb 

is the primary emission stage of NOx (42.1%). We also find that takeoff with the smallest opera time contributes the second 

largest emission of NOx (25.7%). Moreover, B738, A320, and A321 are the top three aircraft types that emit pollutants. 

During the COVID-19 period (2020–2022), the contribution of the top three aircraft types reached more than 70%. 
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Due to the impact of COVID-19, aircraft emissions in the LTO cycle fluctuate from 2019–2023. After COVID-19 is over, 450 

aircraft activity has been abnormal in May 2021 and from July to October 2023. We also find that the number of LTO and 

pollutant emissions of aircraft slightly differ in hours, exhibiting high rate in the daytime (6:00–23:00) and low rate at night-

time (0:00–5:00), with the minimum at 4:00 and the maximum at 13:00. In 2023, the aircraft activity was significantly better 

during the daytime (95.6% of 2019 in LTO cycle) than at night-time (61.5% of 2019 in LTO cycle). 

In the LTO cycle, the horizontal distribution characteristics of aircraft emissions are ‘dispersed along the runway,’ and the 455 

vertical distribution characteristics ’decrease as altitude increases.’ We find that aircraft emissions during the LTO cycle are 

so widely distributed around the airport that even a rough grid (e.g., 0.36°×0.36°) cannot fully represent them. The elongated 

distribution characteristics of aircraft emissions indicate that evenly allocating emissions around the airport will cause 

significant uncertainty. Due to variations in the MLH, the height at which aircraft emit pollutants during LTO can reach up 

to 4544 m above the maximum altitude of 915 m set by the ICAO. The NOx emissions above the 915 m vary by month, 460 

accounting for an average of 24.6% (9.9%–37.5%) in the LTO cycle. Our 4D-LTO emission inventory dataset reflects the 

actual spatial and temporal and can be used to accurately assess the air quality impact of aircraft in the LTO cycle. This 

dataset and our methodology play a vital role in an in-depth study of temporal and spatial variations of aircraft emissions and 

their health and environmental impact. 
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