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Short summary  11 

We present a new set of multi-temporal LiDAR metrics of ecosystem structure derived from four 12 

national ALS surveys of the Netherlands (AHN1–AHN4), capturing vegetation height, cover, and 13 

structural variability over the past two decades (1998–2022). Around 70 TB point clouds have been 14 

processed to read-to-use raster layers at 10 m resolution (~ 59 GB), enabling a wide use and uptake of 15 

ecosystem structure information in biodiversity and habitat monitoring, ecosystem and carbon dynamic 16 

modelling.  17 
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Abstract  18 

Recent years have seen a rapid surge in the use of Light Detection and Ranging (LiDAR) technology for 19 

characterizing the structure of ecosystems. Even though repeated airborne laser scanning (ALS) surveys 20 

are increasingly available across several European countries, only few studies have so far derived data 21 

products of ecosystem structure at a national scale, possibly due to a lack of free and open-source tools 22 

and the computational challenges involved in handling the large volumes of data. Nevertheless, high-23 

resolution data products of ecosystem structure generated from multi-temporal country-wide ALS 24 

datasets are urgently needed if we are to integrate such information into biodiversity and ecosystem 25 

science. By employing a recently developed, open source, high-throughput workflow (named 26 

“Laserfarm”), we processed around 70 TB of raw point clouds collected from four national ALS surveys 27 

of the Netherlands (AHN1–AHN4, 1996–2022). This resulted in ~ 59 GB raster layers in GeoTIFF format 28 

as ready-to-use multi-temporal data products of ecosystem structure at a national extent. For each AHN 29 

dataset, we generated 25 LiDAR-derived vegetation metrics at 10 m spatial resolution, representing 30 

vegetation height, vegetation cover, and vegetation structural variability. The data enable an in-depth 31 

understanding of ecosystem structure at fine resolution across the Netherlands and provide opportunities 32 

for exploring ecosystem structural dynamics over time. To illustrate the utility of these data products, we 33 

present ecological use cases that monitor forest structural change and analyse vegetation structure 34 

differences across various Natura 2000 habitat types, including dunes, marshes, grasslands, shrublands, 35 

and woodlands. The provided data products and the employed workflow can facilitate a wide use and 36 

uptake of ecosystem structure information in biodiversity and carbon modelling, conservation science, 37 

and ecosystem management. The full data products are publicly available on Zenodo 38 

(https://doi.org/10.5281/zenodo.13940846) (Shi and Kissling 2024). 39 

1 Introduction 40 

Monitoring ecosystem structure is essential for sustainable forest management (Lindenmayer et al., 2000), 41 

species distribution research (Jetz et al., 2019; Kissling et al., 2018), dynamic ecosystem modelling 42 

(Kucharik et al., 2000), biodiversity monitoring (Noss, 1990), and the conservation and restoration of 43 

terrestrial ecosystems (Ruiz-Jaén and Aide, 2005). As one of the Essential Biodiversity Variables (EBVs) 44 

classes (Pereira et al., 2013), ecosystem structure provides detailed insights into both the vertical and 45 

horizontal profiles of ecosystems, facilitating a deeper understanding of the relationship between 46 

vegetation structure and animal ecology (Davies and Asner, 2014) as well as carbon and biomass 47 

dynamics (Zhao et al., 2018; Dalponte et al., 2019). However, until a decade ago, the collection of 48 

vegetation structure data was difficult and labour intensive, especially over large spatial scales (Davies 49 

and Asner, 2014). Although previous studies have explored the use of passive remote sensing 50 

technologies, such as high-resolution satellite imagery and aerial photographs, alongside field 51 
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measurements to obtain structural information (e.g. Wolter et al., 2009; Lamonaca et al., 2008), these 52 

applications have largely been confined to plot or local scales with limited scalability and uncertain 53 

transferability between different regions.  54 

Over the past few decades, the advent of airborne laser scanning has enabled the direct 55 

measurement of ecosystem structural properties such as high-resolution topographic variation and 56 

accurate estimation of vegetation height, cover, and canopy structure (Lefsky et al., 2002). The LiDAR 57 

technology used in ALS surveys generates discrete returns (point clouds) and/or full-waveform signals 58 

by emitting laser pulses from the sensor towards the target objects (e.g. ground, trees, and buildings, etc), 59 

recording the distance between the sensor and the objects (“X”, “Y”, “Z” coordinates), the amount of 60 

energy returned to the sensor (“Intensity”), the type of the object (“Classification”), the sequence of 61 

returns generated from one pulse (“Return number” and “Number of returns”), the time of the pulse 62 

emitted (“GPS time”), and so on. Advances in sensor systems and techniques also allow many countries 63 

to carry out ALS campaigns over national or regional extents, producing fine-scale ecosystem 64 

measurements across broad spatial extents (Kissling et al., 2022; Assmann et al., 2022). ALS surveys 65 

often generate massive amounts of data (e.g. point clouds with a multi-terabyte data volume) which 66 

contain ecosystem structural information that is essential for ecological and biodiversity research 67 

(Kissling et al., 2022; Koma et al., 2021b; Bakx et al., 2019). Although tools and software for processing 68 

large amounts of LiDAR data are increasingly available (Roussel et al., 2020; Isenburg, 2017; Meijer et 69 

al., 2020; Kissling et al., 2022), significant challenges remain, including the need for specialist expertise, 70 

extensive data storage, and substantial computational power (Assmann et al., 2022). Ultimately, 71 

ecologists, foresters, biodiversity researchers and land managers require raster layers with structural 72 

information that can be readily integrated into analytical workflows using software that they are familiar 73 

with (e.g. GIS, R, Python). Such raster layers, e.g. LiDAR-derived vegetation metrics, are often generated 74 

by statistically aggregating the 3D point cloud information within spatial units such as voxels or 2D raster 75 

cells (Meijer et al., 2020; Kissling et al., 2022). These LiDAR-derived vegetation metrics typically capture 76 

three key dimensions of ecosystem structure: vegetation height (e.g. maximum vegetation height, 77 

vegetation height at a certain percentile), vegetation cover (e.g. the density of vegetation at a given height 78 

layer), and vegetation structural variability (e.g. the vertical or horizontal distribution and variability of 79 

vegetation within a spatial unit) (Kissling et al., 2023; Bakx et al., 2019). Providing high-resolution (~ 10 80 

m) ready-to-use LiDAR metrics and making them accessible for the public is, therefore, critical for 81 

monitoring Essential Biodiversity Variables (EBVs) (Valbuena et al., 2020), modelling species 82 

distributions (De Vries et al., 2021; Koma et al., 2021b; Zellweger et al., 2013), and estimating species 83 

diversity (Moeslund et al., 2019; Zellweger et al., 2017; Aguirre-Gutiérrez et al., 2017) at a regional or 84 

national scale.  85 
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Ecosystem structure is a three-dimensional phenomenon with horizontal and vertical components 86 

that change over time (Zenner and Hibbs, 2000). The increasing frequency of ALS data acquisition offers 87 

a unique opportunity to monitor ecological changes and ecosystem dynamics at fine spatial and temporal 88 

scales. Several countries have been conducting repeated (sub-)national ALS surveys to obtain fine-scale 89 

information on topography and forest ecosystems (Nilsson et al., 2017). For example, the Dutch national 90 

ALS programme (AHN, Actueel Hoogtebestand Nederland, https://www.ahn.nl/) has been collecting 91 

country-wide LiDAR data since 1996, providing four complete ALS datasets (AHN1–AHN4) with an 92 

ongoing fifth survey (AHN5), conducted at intervals of 3 to 5 years. In Spain, under the PNOA-LiDAR 93 

project, two national ALS campaigns have taken place during 2008–2015 (LiDAR 1st coverage) and 94 

during 2015–2021 (LiDAR 2nd coverage), while the third acquisition (LiDAR 3rd coverage) has started in 95 

2023 and is planned to finish in 2025 96 

(http://centrodedescargas.cnig.es/CentroDescargas/catalogo.do?Serie=LIDAR, last access: 19 October 97 

2024). While the primary goal of many ALS campaigns is to produce terrain models, such as Digital 98 

Terrain Models (DTMs) or Digital Surface Models (DSMs), the multi-temporal LiDAR datasets also 99 

capture detailed 3D characteristics on vegetation structure over time, providing valuable information for 100 

evaluating changes in biomass (Cao et al., 2016; Feng et al., 2024), forest structure (Mccarley et al., 2017; 101 

Riofrío et al., 2022; Vepakomma et al., 2011), and forest carbon stocks (Dalponte et al., 2019; Zhao et 102 

al., 2018). Furthermore, these datasets are increasingly being integrated with other remote sensing data, 103 

such as satellite imageries from Landsat, Sentinel-2, and synthetic aperture radar (SAR), to assess forest 104 

changes caused by disturbances like wildfires (Li et al., 2023; Feng et al., 2024) and to model 105 

aboveground biomass (Musthafa and Singh, 2022). However, despite the growing availability of multi-106 

temporal ALS datasets, there is a noticeable lack of publicly available data products, i.e. LiDAR-derived 107 

vegetation metrics, from national ALS surveys. 108 

Several challenges are posed in generating accurate and standardized data products from multi-109 

temporal ALS data (Valbuena et al., 2020). Over the past three decades, advances in LiDAR sensors and 110 

associated technologies have led to improvements in point density, classification accuracy, and additional 111 

attributes provided in each point (Riofrío et al., 2022). However, these advancements also introduce 112 

complexities in data harmonization. In addition to the challenges associated with processing large datasets 113 

and high computational costs (Meijer et al., 2020), discrepancies in sensor technology and flight 114 

configurations across different ALS surveys can hinder the generation of consistent data products (Lin et 115 

al., 2022). For instance, the first Dutch national ALS campaign (AHN1, 1996–2003) had an average point 116 

density ranging from 1 point per 16 square meters to 1 point per square meter, with no detailed point 117 

classification available. By contrast, in the fourth campaign (AHN4, 2020–2022), the point density has 118 

improved to 20–30 points per square meter, with detailed classification code provided for each point 119 

following the ASPRS standard (Asprs, 2019). These technological variations inevitably result in data 120 

products with varying quality and accuracy, introducing uncertainties in their usability (Tompalski et al., 121 
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2021; Hopkinson et al., 2008). To understand ecosystem dynamics accurately, changes detected from 122 

multi-temporal ALS datasets should reflect actual ecological changes in the target of interest rather than 123 

differences in data acquisition or quality (Riofrío et al., 2022). Identifying the limitations and providing 124 

usage notes of derived data products are important for users to interpret the data products correctly and 125 

apply them optimally in their analyses.  126 

Here, we present a new set of multi-temporal data products of ecosystem structure derived from 127 

four national ALS surveys of the Netherlands (AHN1–AHN4). The data products, with a spatial 128 

resolution of 10 m, include four sets of 25 LiDAR-derived vegetation metrics representing ecosystem 129 

height, vegetation cover, and structural variability, aimed at supporting a wide range of ecological 130 

applications. In this paper, we (1) describe the ALS data collection from AHN1–AHN4 and the employed 131 

“Laserfarm” workflow to generate the data products, (2) present the detailed characteristics of the 132 

generated multi-temporal data products (i.e. LiDAR-derived vegetation metrics as GeoTIFF raster layers) 133 

and their known limitations and corresponding usage notes, (3) demonstrate two use cases for using the 134 

generated data products in ecological applications, and (4) discuss the potential use and recommendations 135 

for utilizing these data products in future research. To facilitate open science, we make the data products, 136 

employed workflow, Python script, and related documentation publicly available. We anticipate that this 137 

will not only allow the upscaling of ecological and biodiversity research but also benefit a broad range of 138 

scientists and decision-makers who are interested in using ecosystem structure information for 139 

environmental monitoring and management.  140 

2 Raw data and processing workflow 141 

2.1 Geography and ecology of the Netherlands   142 

The Netherlands is situated in Northwest Europe (52°22′N, 4°53′E), covering a total land area of 33893 143 

km2. It has mostly flat coastal lowlands and reclaimed land (polders) with an average elevation of 144 

approximately 30 meters above sea level. The primary ecosystems in the Netherlands include agricultural 145 

land, dunes and beaches, forests, wetlands, grasslands, and other (semi)natural environments (Hein et al., 146 

2020). The Netherlands has a temperate maritime climate with continental influence, resulting in an 147 

average annual precipitation of 854.7 mm and a mean temperature of 10.5 ℃.  148 

2.2 Four Dutch national ALS campaigns  149 

The initial purpose of the AHN programme was to monitor and manage water systems in the Netherlands. 150 

It is a collaboration between 26 regional water boards, provinces and Rijkswaterstaat (the executive 151 

directorate general for public works and water management of the Dutch government) with the aim of 152 

producing accurate digital elevation models of the Netherlands. To minimize the impact of foliage on 153 

ground detection during the laser scanning, the AHN data acquisition is performed in the winter period, 154 
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from December to April. The first generation of AHN (AHN1) was conducted during 1996–2003, with a 155 

point density of 1 point per 1–16 square meters, which largely depended on the viability of the technology 156 

and the date of acquisition (Swart, 2010). Due to errors in the AHN1 data (e.g. inaccuracies in the inertial 157 

navigation system, misalignment of overlapping scanning strips, and the presence of artifacts), the data 158 

quality of AHN1 is rather poor, especially for areas covered by vegetation (Brand et al., 2003). To support 159 

both water and dike management, the second generation of AHN (AHN2) was started in 2007, with 160 

improved specifications such as a higher point density (on average 6–10 pts m-2) and a higher 161 

planimetric/vertical accuracy (5–15 cm). It also required some raster data (i.e. DTMs and DSMs) to be 162 

delivered with grid cell sizes of 0.5 m and 5 m. With the main aim of obtaining terrain surface information, 163 

both AHN1 and AHN2 datasets were delivered in two separate parts: point clouds representing the terrain 164 

(“gefilterde puntenwolk”) and point clouds representing non-ground points, i.e. trees, buildings, bridges 165 

and other objects (“uitgefilterde puntenwolk”).  166 

Benefitting from the advances in LiDAR sensors and related technologies, the third generation of 167 

AHN (AHN3) provided not only a higher density of point clouds, but also more information stored for 168 

each point, such as point classification code, intensity values, number of returns, and so on (Table 1). 169 

Even though both AHN2 and AHN3 were collected within a 6-year cycle (2007–2012 for AHN2, and 170 

2014–2019 for AHN3), the actual time difference between AHN2 and AHN3 varies between 4–10 years 171 

depending on the area of interest (Fig. 1). For the latest completed AHN (AHN4), the survey was 172 

conducted between 2020 and 2022 (3-year cycle), making the country-wide dataset more quickly 173 

available for the whole Netherlands. All four AHN datasets were provided in LAZ format (i.e. version 174 

1.2 for AHN1–AHN3, and version 1.4 for AHN4), under the local Dutch coordinate system “RD_new” 175 

(EPSG: 28992, NAP:5709). The datasets from AHN1 to AHN4 show an increase in data volume and 176 

improved classification as well as additional attributes stored for each point (Table 1). An ongoing fifth 177 

ALS survey (AHN5) has started in 2023 (the first part of the data is available, see 178 

https://www.ahn.nl/heel-westelijk-nederland-gereed) and the data acquisition will be completed in 2025.   179 
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 180 
Fig.1 Data acquisition times for AHN1–AHN4. Different colours indicate the different years of data 181 
collection for each dataset.  182 
 183 

Table 1. Summary of raw point cloud characteristics collected by different AHN surveys (AHN1–184 
AHN4). Some flight configurations are not available, for instance, the type of sensor, the flight height, 185 
flight speed, and the scan angle, especially for the AHN1 dataset. NAP: Normal Amsterdam Level. 186 
Data characteristic AHN1 AHN2 AHN3 AHN4 

Acquisition year 1996–2003 2007–2012 2014–2019 2020–2022 
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Acquisition season Leaf-off Leaf-off  Leaf-off Leaf-off 

Horizontal projection RD_new RD_new RD_new RD_new 

Vertical projection NAP NAP NAP NAP 

Point density (pts m-2) 0.05–1 6–15  10–20  20–30  

Scan angle (°) - ± 30 ± 35 ± 35 

Overlapping rate - 20–35% 20–35% 20–35% 

Point cloud format Laz (1.2) Laz (1.2) Laz (1.2) Laz (1.4) 

Vertical accuracy (cm) 5–35  5–15 5–15 5–10 

Number of files 2720 60185 1367 1381 

Data volume (compressed) 33.1 GB 986.7 GB 2564.8 GB 6408.6GB 

Attributes in each point X, Y, Z X, Y, Z X, Y, Z, 
intensity, 
return number, 
number of 
returns, 
classification, 
scan angle, 
point ID, GPS 
time 

X, Y, Z, 
intensity, return 
number, number 
of returns, 
classification, 
scan angle, 
point ID, GPS 
time, amplitude, 
reflectance, 
deviation 

Classification uitgefilterd (0) 
gefilterd (0) 

uitgefilterd (0) 
gefilterd (0) 

unclassified 
(1) 
ground (2) 
building (6) 
water (9) 
reserved (26) 

unclassified (1) 
ground (2) 
building (6) 
water (9) 
powerline (14) 
reserved (26) 

Available additional layers - DSM, DTM DSM, DTM DSM, DTM 
 187 

2.3 Processing workflow  188 

We employed the high-throughput workflow “Laserfarm” (https://laserfarm.readthedocs.io/en/latest/) to 189 

process the multi-temporal AHN datasets. Laserfarm is an open-source workflow designed for processing 190 

large amount of LiDAR point cloud data into geospatial data products of ecosystem structure (Kissling et 191 

al., 2022). It consists of four main modules: (1) re-tiling, where the original LAZ files (covering 5 km × 192 

6.5 km per tile) are re-tiled into 1 km × 1 km LAZ files for an efficient, scalable and distributed processing; 193 

(2) normalization, where the height (z value) of the lowest point within a 1 m × 1 m grid cell is subtracted 194 

from each point in the cell, so that the influence of terrain on the height of above-ground points is removed 195 

from subsequent processing; (3) feature extraction, where user-defined features (e.g. LiDAR metrics such 196 

as the 95th percentile of vegetation height and the skewness of vegetation height) are calculated at 10 197 
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meter resolution using points within an infinite square cell (Meijer et al., 2020); and (4) rasterization, 198 

where the extracted feature files (.PLY files) are merged and exported as single-band GeoTIFF raster 199 

files. Note that in all four AHN datasets, vegetation points are not classified separately based on the 200 

ASPRS standard. Instead, they are assigned a classification value 0 (“uitgefilterd”) in AHN1 and AHN2, 201 

and a value 1 (“unclassified”) in AHN3 and AHN4. These classification values were used as vegetation 202 

class during the feature extraction. We chose the Laserfarm workflow to process the four country-wide 203 

AHN datasets because (1) it enables the efficient, scalable and distributed processing of multi-terabyte 204 

LiDAR point clouds at a national scale, (2) it is a free and open-source tool implemented in Python and 205 

available as Jupyter Notebooks, and (3) it allows the automated generation of consistent and reproducible 206 

geospatial data products of ecosystems structure from different ALS data. 207 

Due to the different characteristics of each AHN dataset (Table 1), several pre-processing steps 208 

were implemented before executing the main modules of the Laserfarm workflow (Fig. 2). In particular, 209 

for the AHN1 and AHN2 datasets, the step “Reclassification” was carried out before re-tiling, as both 210 

datasets only have “gefilterd” (ground) and “uitgefilterd” (non-ground) files provided and the raw 211 

classification value was set to 0 (never classified) for all points. We therefore reassigned a classification 212 

value “2” to the ground points (“gefilterd”) and a classification value “0” to the non-ground points 213 

(“uitgefilterd”). These classification values were later used for the normalization and feature extraction. 214 

For the AHN4 dataset, the volume of a single original LAZ file varies from 0.3 MB to 16.5 GB, with an 215 

average size of 4.6 GB per file (Table 2). Since handling such volumes is challenging for many computing 216 

infrastructures (due to their CPUs and random-access memory, RAM), we applied a “Splitting” step 217 

before the re-tiling (Fig. 2), with a maximum data volume of ~ 500 MB being used for splitting the original 218 

tiles into smaller ones.  219 

 220 
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 221 
Fig. 2 Overview of the processing workflow employed for four country-wide AHN datasets of the 222 
Netherlands (AHN1–AHN4). The pre-processing step “reclassification” was only conducted for the 223 
AHN1 and AHN2 datasets, where ground points were reassigned a classification value “2”. The 224 
“splitting” step was added to split the large LAZ files from AHN4 into smaller ones before re-tiling. Re-225 
tiling, normalization, feature extraction and rasterization are four main modules of the Laserfarm 226 
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workflow, which have been applied for all four AHN datasets to generate country-wide LiDAR-derived 227 
vegetation metrics. The input data were raw LAZ files with different point density, and the output data 228 
were 25 single-band GeoTIFF raster layers at 10 meter resolution for each AHN dataset. 229 

2.4 IT infrastructure and computational cost 230 

All four AHN datasets were processed on the IT infrastructure services provide by SURF, the Dutch 231 

national facility for information and communication technology (https://www.surf.nl/). Specifically, we 232 

used the dCache platform for data storage (https://www.surf.nl/en/services/dcache) and the HPC Cloud 233 

(https://www.surf.nl/en/services/hpc-cloud) or Spider platform (https://www.surf.nl/en/services/high-234 

performance-data-processing) for high-performance data processing. The data processing platforms have 235 

fast access to the data storage while enabling scalable and flexible processing of multi-terabytes datasets 236 

on distributed resources. We first downloaded the raw AHN1–AHN4 LiDAR point clouds from the 237 

PDOK webservices (https://www.pdok.nl/introductie/-/article/actueel-hoogtebestand-nederland-ahn) to 238 

the dCache data storage using a customized python script 239 

(https://github.com/ShiYifang/AHN/tree/main/AHN_downloading). We then ran the Laserfarm 240 

workflow for processing the AHN1–AHN3 datasets on the HPC Cloud, where we set up a cluster of 11 241 

VMs, each VM with 2 cores, 32 GB or 64 GB RAM, and 256 GB local HDD. Due to migration of the 242 

computing resources by SURF (from HPC Cloud to Spider), we processed the AHN4 dataset with the 243 

Laserfarm workflow on Spider, where a number of flexible and customisable workers with assigned CPU 244 

cores were defined based on the computing requirement for each workflow step. We used 2–10 workers, 245 

each with 2–4 cores and 16–32 GB RAM for splitting, re-tiling, normalization, and feature extraction, 246 

and 2 workers, each with 12 cores and 94 GB RAM for the rasterization step. All input data (i.e. raw LAZ 247 

files), intermediate results (e.g. re-tiled LAZ files, normalized LAZ files, featured PLY tiles), and final 248 

output (i.e. GeoTIFF raster layers) were automatically stored (and/or retrieved for the next step) on the 249 

dCache data storage.  250 

The computing time for each AHN dataset varies based on the input data volume, the required 251 

processing steps (Table 2), and the settings of the employed infrastructure. The increase in data volumes 252 

from AHN1 to AHN4 resulted in a strong increase of the processing time (Table 2). In total, it required 253 

57.6 days (wall-time) to process the multi-temporal AHN datasets (AHN1–AHN4). The AHN1 (data 254 

volume of 33.1 GB) only took a wall-time of 4.8 days to complete whereas the AHN4 (data volume of 255 

6408.6 GB) took a total wall-time of 26.8 days. It is worth noting that the actual computing time of the 256 

process might be longer than the wall-time estimates, e.g. due to processing errors, worker failures, and 257 

system maintenance.  258 

 259 

 260 

 261 
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Table 2. Overview of the number of input files, the total volume and the average volume per file for each 262 
processing step, and the total processing wall-time for each AHN dataset. Note that the total wall-time 263 
was estimated based on different infrastructure settings for processing the AHN1–AHN3 (HPC Cloud) 264 
and AHN4 (Spider) datasets. 265 

Data characteristic AHN1 AHN2 AHN3 AHN4 

Input for re-tiling (Reclassified) (Reclassified)  (Splitted) 

Number of input files 2720 60185 1367 18797 

Total volume  33.1 GB 986.7 GB 2564.8 GB 6408.6 GB 

Average volume per 
file (mean ± SD) 

12.20 ± 10.68 MB 16.40 ± 14.73 MB 1.75 ± 0.93 GB 4.60 ± 2.41 GB 

Re-tiling 

Number of re-tiled 
files  

37715 37627 37457 37990 

Total volume  33.1 GB 986.7 GB 2564.8 GB 6408.6 GB 

Average volume per 
file (mean ± SD) 

0.83 ± 1.64 MB 26.90 ± 35.98 MB 0.07 ± 0.18 GB 0.17 ± 0.09 GB 

Normalization 

Number of 
normalized files  

37715 37627 37457 37990 

Total volume  64.0 GB 3682.4 GB 6067.5 GB 9593.3 GB 

Average volume per 
file (mean ± SD) 

1.70 ± 2.13 MB 97.87 ± 59.23 MB 0.16 ± 0.09 GB 0.25 ± 0.13 GB 

Feature extraction 

Number of featured 
files  

37715 × 25 37627 × 25 37457 × 25 37990 × 25 

Total volume  257.1 GB 282.5 GB 285.9 GB 212.5 GB 

Average volume per 
file (mean ± SD) 

0.29 ± 0.02 MB 0.30 ± 0.03 MB 0.33 ± 0.05 MB 0.23 ± 0.04 MB 

Rasterization 

Number of rasterized 
files 

25 25 25 25 

Total volume  4.8 GB 19.4 GB 18.8 GB 15.6 GB 

Average volume per 
file (mean ± SD) 

202.1 ± 101.6 MB 774.5 ± 303.5 MB 759.8 ± 226.2 MB 625.5 ± 160.7 MB 

Processing time 

Total processing wall-
time (days) 

4.8 11.7 14.3 26.8 

 266 
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3 Data products description  267 

3.1 Overview of data products 268 

The generated data products from each AHN campaign cover the whole Netherlands, ranging from 50.77 269 

°N to 53.36 °N and from 3.57 °E to 7.11 °E. The data products are provided as 10 meter resolution 270 

GeoTIFF raster files (25 single-band raster layers for each AHN dataset) in the local Dutch coordinate 271 

system “RD_new” (EPSG: 28992, NAP:5709). The total volume of the four data products is 272 

approximately 58.6 GB. The pixel value is stored in 32 bit floating point precision. The data products are 273 

freely accessible via a permanent Zenodo repository (see Sect. 7). 274 

3.2 LiDAR-derived vegetation metrics 275 

In total, 25 LiDAR-derived vegetation metrics were generated from each AHN dataset, representing 276 

vegetation height, vegetation cover, and vegetation structure variability (Table 3). For vegetation height, 277 

we generated 7 LiDAR metrics (i.e. maximum, mean, median, 25th, 50th, 75th, 95th percentile of vegetation 278 

height) representing the height of vegetation at the canopy surface and for low, middle, and upper 279 

vegetation strata (Fig. 3a). We filtered out the points with a z value higher than 10000 m (outliers) during 280 

“Normalization” step of the Laserfarm workflow and used a square infinite cell (10 × 10 m) as the target 281 

volume to calculate the height metrics (see detailed description of target volumes in Meijer et al. (2020)). 282 

To ensure positive height values after normalization, we generally normalized the vegetation points based 283 

on the height of the lowest point within a 1 m × 1 m grid cell. For vegetation cover, we derived 11 LiDAR 284 

metrics consisting of one metric describing the openness of vegetation (i.e. pulse penetration ratio), one 285 

metric describing the density of upper vegetation layer (i.e. canopy cover), and 9 metrics quantifying 286 

vegetation density at different height layers (i.e. below 1 m, between 1–2 m, 2–3 m, 3–4 m, 4–5 m, 5–20 287 

m, above 3 m, below 5 m, and above 20 m) (Fig. 3b). The height layers reflect the most relevant height 288 

strata to capture the vegetation distribution of major growth forms (e.g. grass, reed, shrubs and trees) 289 

(Morsdorf et al., 2010; Miura and Jones, 2010). Special attention was given to represent low vegetation 290 

strata (1–5 m) as they are essential for low‐stature terrestrial ecosystems such as grasslands, shrublands 291 

or agricultural areas when monitoring animal habitats and species distributions (Koma et al., 2021a; Bakx 292 

et al., 2019). Note that the pulse penetration ratio is the only LiDAR metric (among the 25 metrics) that 293 

used ground points for the calculation. All other 24 metrics are only calculated with vegetation points (i.e. 294 

“unclassified” in AHN). For vegetation structural variability, we derived 7 LiDAR metrics representing 295 

the vertical variability of vegetation distribution within a cell (Fig. 3c), including the coefficient of 296 

variation, Shannon index, kurtosis, skewness, standard deviation, variance, and roughness (sigma) of 297 

vegetation height. The detailed description of how those metrics are calculated and their ecological 298 

relevance can be found in Table 3.    299 

 300 
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Table 3. Twenty-five LiDAR-derived vegetation metrics capturing ecosystem structure in three key 301 
dimensions (vegetation height, vegetation cover and vegetation structural variability), together with their 302 
file names in the data products, the formulas for calculation, their descriptions and example of their 303 
ecological relevance. Each LiDAR metric is provided as a single-band GeoTIFF raster layer at 10 meter 304 
resolution, with the file name “ahn#_10m_xx”, where # is the number of AHN campaign (“1–4”) and xx 305 
is the name of the LiDAR metrics. For instance, “ahn4_10m_ perc_95_normalized_height” represents the 306 
95th percentile of vegetation height derived from the AHN4 dataset. For the calculation formulas, 𝑁𝑁 is the 307 
total number of normalized vegetation points within a cell, 𝑧𝑧𝑖𝑖 represents all normalized z values in a cell, 308 
and 𝑧𝑧̅ is the mean normalized z value in a cell. 309 
 310 
LiDAR metric 
(abbreviation) 

File name 
(ahn#_10m_xx) 

Calculation formula Description Ecological 
relevance 

Vegetation height  

Maximum 
vegetation 
height (Hmax) 

max_normalized
_height 

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 Maximum of 
normalized z 
within a cell 

Height of canopy 
surface, tree tops 

Mean of 
vegetation 
height (Hmean) 

mean_ 
normalized_heig
ht 

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 Mean of 
normalized z 
within a cell 

Average height of 
vegetation, mean 
tree height  

Median of 
vegetation 
height 
(Hmedian) 

median_ 
normalized_heig
ht 

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚  Median of 
normalized z 
within a cell 

Vegetation height, 
vertical distribution 
of vegetation 

25th percentiles 
of vegetation 
height (Hp25) 

perc_25_normali
zed_height 

𝑧𝑧25 𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝𝑖𝑖𝑝𝑝𝑚𝑚  25th percentile of 
normalized z 
within a cell 

Density of 
vegetation in the 
low stratum 

50th percentiles 
of vegetation 
height (Hp50) 

perc_50_normali
zed_height 

𝑧𝑧50 𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝𝑖𝑖𝑝𝑝𝑚𝑚  50th percentile of 
normalized z 
within a cell. It 
corresponds to the 
Hmedian. 

Average height and 
vertical 
distribution of 
vegetation 

75th percentiles 
of vegetation 
height (Hp75) 

perc_75_normali
zed_height 

𝑧𝑧75 𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝𝑖𝑖𝑝𝑝𝑚𝑚  75th percentile of 
normalized z 
within a cell 

Density of 
vegetation in the 
upper stratum 

95th percentiles 
of vegetation 
height (Hp95) 

perc_95_normali
zed_height 

𝑧𝑧95 𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝𝑖𝑖𝑝𝑝𝑚𝑚  95th percentile of 
normalized z 
within a cell 

Height of the 
vegetation canopy 
surface, avoiding 
the effect of outliers 
(compared to 
Hmax) 

Vegetation cover  
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Pulse 
penetration ratio 
(PPR) 

pulse_penetration
_ratio 

𝑁𝑁𝑔𝑔𝑝𝑝𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚
𝑁𝑁𝑝𝑝𝑔𝑔𝑝𝑝𝑚𝑚𝑝𝑝

 Ratio of number of 
ground points to 
total number of 
points within a cell 

Openness of 
vegetation, canopy 
fractional cover, 
laser penetration 
index 

Canopy cover 
(Density_above
_mean_z) 

density_absolute
_mean_ 
normalized_heig
ht 

100 × �[𝑧𝑧𝑖𝑖 > 𝑧𝑧̅]/𝑁𝑁 

 

Number of returns 
above mean height 
within a cell 

Density of upper 
vegetation layer 

Density of 
vegetation 
points below 1 
m 
(BR_below_1) 

band_ratio_norm
alized_ 
height_1 

𝑁𝑁𝑧𝑧<1/𝑁𝑁𝑝𝑝𝑔𝑔𝑝𝑝𝑚𝑚𝑝𝑝  Ratio of number of 
vegetation points 
below 1 m to the 
total number of 
vegetation points 
within a cell 

Density of 
vegetation below 1 
m 

Density of 
vegetation 
points between 
1–2 m 
(BR_1_2) 

band_ratio_1_nor
malized_ 
height_2 

𝑁𝑁1<𝑧𝑧<2/𝑁𝑁𝑝𝑝𝑔𝑔𝑝𝑝𝑚𝑚𝑝𝑝 
 

Ratio of number of 
vegetation points 
between 1–2 m to 
the total number of 
vegetation points 
within a cell 

Density of 
vegetation in 
1–2 m layer 

Density of 
vegetation 
points between 
2–3 m 
(BR_2_3) 

band_ratio_2_nor
malized_ 
height_3 

𝑁𝑁2<𝑧𝑧<3/𝑁𝑁𝑝𝑝𝑔𝑔𝑝𝑝𝑚𝑚𝑝𝑝 Ratio of number of 
vegetation points 
between 2–3 m to 
the total number of 
vegetation points 
within a cell 

Density of 
vegetation in 
2–3 m layer 

Density of 
vegetation 
points above 3 
m 
(BR_above_3) 

band_ratio_3_nor
malized_ 
height 

𝑁𝑁𝑧𝑧>3/𝑁𝑁𝑝𝑝𝑔𝑔𝑝𝑝𝑚𝑚𝑝𝑝  Ratio of number of 
vegetation points 
above 3 m to the 
total number of 
vegetation points 
within a cell 

Density of 
vegetation in 
above 3 m layer 

Density of 
vegetation 
points between 
3–4 m 
(BR_3_4) 

band_ratio_3_nor
malized_ 
height_4 

𝑁𝑁3<𝑧𝑧<4/𝑁𝑁𝑝𝑝𝑔𝑔𝑝𝑝𝑚𝑚𝑝𝑝 Ratio of number of 
vegetation points 
between 3–4 m to 
the total number of 
vegetation points 
within a cell 

Density of 
vegetation in 
3–4 m layer 

Density of 
vegetation 
points between 

band_ratio_4_nor
malized_ 
height_5 

𝑁𝑁4<𝑧𝑧<5/𝑁𝑁𝑝𝑝𝑔𝑔𝑝𝑝𝑚𝑚𝑝𝑝 Ratio of number of 
vegetation points 
between 4–5 m to 
the total number of 

Density of 
vegetation in 
4–5 m layer 
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4–5 m 
(BR_4_5) 

vegetation points 
within a cell 

Density of 
vegetation 
points below 5 
m 
(BR_below_5) 

band_ratio_norm
alized 
_height_5 

𝑁𝑁𝑧𝑧<5/𝑁𝑁𝑝𝑝𝑔𝑔𝑝𝑝𝑚𝑚𝑝𝑝  Ratio of number of 
vegetation points 
below 5 m to the 
total number of 
vegetation points 
within a cell 

Density of 
vegetation below 5 
m 

Density of 
vegetation 
points between 
5–20 m 
(BR_5_20) 

band_ratio_5_nor
malized_ 
height_20 

𝑁𝑁5<𝑧𝑧<20/𝑁𝑁𝑝𝑝𝑔𝑔𝑝𝑝𝑚𝑚𝑝𝑝 Ratio of number of 
vegetation points 
between 5–20 m to 
the total number of 
vegetation points 
within a cell 

Density of 
vegetation in 
5–20 m layer 

Density of 
vegetation 
points above 20 
m 
(BR_above_20) 

band_ratio_20_n
ormalized_height 

𝑁𝑁𝑧𝑧>20/𝑁𝑁𝑝𝑝𝑔𝑔𝑝𝑝𝑚𝑚𝑝𝑝 Ratio of number of 
vegetation points 
above 20 m to the 
total number of 
vegetation points 
within a cell 

Density of 
vegetation in 
above 20 m layer 

Vegetation structural variability 

Coefficient of 
variation of 
vegetation 
height 
(Coeff_var) 

coeff_var_ 
normalized_heig
ht 

1
𝑧𝑧̅ ×

��
(𝑧𝑧𝑖𝑖 − 𝑧𝑧̅)2

𝑁𝑁 − 1  
Coefficient of 
variation of 
normalized z 
within a cell 

Vertical variability 
of vegetation 
distribution 

Shannon index 
(Entropy_z) 

entropy_ 
normalized_heig
ht 

−�𝑝𝑝𝑖𝑖 × 𝑙𝑙𝑙𝑙𝑙𝑙2𝑝𝑝𝑖𝑖
𝑖𝑖

 

where 𝑝𝑝𝑖𝑖 = 𝑁𝑁𝑖𝑖/∑ 𝑁𝑁𝑗𝑗𝑗𝑗 , 
and 𝑁𝑁𝑖𝑖  is the points in 
bin 𝑖𝑖. 
 

The negative sum 
of the proportion 
of points within 
0.5 m height layers 
multiplied with the 
logarithm of the 
proportion of 
points within 0.5 m 
height layers 
within a cell 

Vertical complexity 
of vegetation, 
foliage height 
diversity 

Kurtosis of 
vegetation 
height (Hkurt) 

kurto_ 
normalized_heig
ht 

1
𝜎𝜎4 ×�(𝑧𝑧𝑖𝑖 − 𝑧𝑧̅)4/𝑁𝑁  

where 𝜎𝜎 is the standard 
deviation of the z value 
in a cell. 

Kurtosis of 
normalized z 
within a cell 

Vertical distribution 
of vegetation 
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Roughness of 
vegetation 
(Sigma_z) 

sigma_z �∑(𝑅𝑅𝑖𝑖 − 𝑅𝑅�)2/(𝑁𝑁 − 1)  
where 𝑅𝑅𝑖𝑖  are the 
residual after plane 
fitting, and 𝑅𝑅�  the mean 
of residuals. 
 

Standard deviation 
of the residuals of 
a locally fitted 
plane within a 
cylinder 

Small-scale 
roughness and 
variability of 
vegetation 

Skewness of 
vegetation 
height (Hskew) 

skew_ 
normalized_heig
ht 

1
𝜎𝜎3 ×�(𝑧𝑧𝑖𝑖 − 𝑧𝑧̅)3/𝑁𝑁  

 

Skewness of 
normalized z 
within a cell 

Vertical distribution 
of vegetation 

Standard 
deviation of 
vegetation 
height (Hstd) 

std_ 
normalized_heig
ht 

��
(𝑧𝑧𝑖𝑖 − 𝑧𝑧̅)2

𝑁𝑁 − 1  
Standard deviation 
of normalized z 
within a cell 

Vertical variability 
of vegetation 
distribution 

Variance of 
vegetation 
height (Hvar) 

var_ 
normalized_heig
ht 

�
(𝑧𝑧𝑖𝑖 − 𝑧𝑧̅)2

𝑁𝑁 − 1  

 

Variance of 
normalized z 
within a cell 

Vertical variability 
of vegetation 
distribution 

 311 
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Fig 3. Examples of LiDAR metric generation in a 10 m × 10 m grid cell (the number of all points: N = 314 
8348). (a) Metrics of vegetation height (mean, max, and percentiles of normalized height). (b) Vegetation 315 
cover metrics representing vegetation density within specific height layers. (c) Metrics of vegetation 316 
structural variability (e.g. standard deviation and variance of vegetation height are calculated based on 317 
mean height 𝑧𝑧̅; kurtosis and skewness of vegetation height are calculated based on the standard deviation 318 
and mean height within a cell) (see detailed calculation formula in Table 3). The blue line in (c) represents 319 
a kernel density estimate (KDE) showing the shape of the points distribution. See abbreviation and 320 
calculation formula of all metrics in Table 3.  321 

3.3 Auxiliary data 322 

Since the point density of AHN datasets changes across space and time, we also provide a raster layer of 323 

point density (using all point classes) for each AHN dataset (four in total) (Fig. 4). The AHN1 has a much 324 

lower point density (average less than 0.5 pts m-2) throughout the whole country than other AHN datasets 325 

due to sensor limitations back in 1996. AHN2 and AHN3 have a similar point density (on average 10–20 326 

pts m-2), while AHN4 has the highest point density (25–30 pts m-2). Especially for the AHN2–AHN4 327 

datasets, distinct patterns (patches, lines, edges) can be observed in different parts of the Netherlands. 328 

They are partially due to the influence of the water surface (yellow areas in AHN2, AHN3, and AHN4, 329 

Fig. 4), but also related to flight lines and operational configurations (e.g. flying altitude and flight speed) 330 

during the campaign.  331 
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 332 
Fig. 4 Point density of AHN1–AHN4 ALS campaigns across the Netherlands. The total number of points 333 
was used for calculating the density of points at 10 meter spatial resolution. The four point density layers 334 
are made available in the data repository as auxiliary data together with the derived LiDAR metrics (see 335 
Sect. 7).  336 
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3.4 Limitations and usage notes 337 

3.4.1 Classification related errors and masks 338 

In the pre-classification of the raw AHN point clouds, there is no “vegetation” class provided based on 339 

the ASPRS standard (i.e. class 3: low vegetation, class 4: medium vegetation, or class 5: high vegetation). 340 

Instead, the vegetation points in the raw AHN1 and AHN2 datasets are included in the non-ground class 341 

(“uitgefilterd”, classification value of 0), whereas they belong to the class “unclassified” (classification 342 

value 1) in the AHN3 and AHN4 datasets (Table 1). This can introduce errors and biases when using the 343 

“uitgefilterd” or “unclassified” class for calculating ecosystem structure properties because points 344 

belonging to human infrastructures can still be included in these classes. Particularly, buildings and 345 

bridges are included (together with other objects other than ground) in the class “uitgefilterd” in the AHN1 346 

and AHN2 datasets, while they are classified separately (buildings in class 6: “buildings”, and bridges in 347 

class 26: “reserved”) in the AHN3 and AHN4 dataset — eliminating the errors caused by buildings and 348 

bridges in the final data products of the AHN3 and AHN4. Powerlines are not separated from the 349 

“uitgefilterd” class in the AHN1 and AHN2 datasets, and included in the class “unclassified” in the AHN3 350 

dataset, but they are classified separately in the AHN4 dataset as class 14: “powerline”. Yet, other human 351 

objects and infrastructures (e.g. cars, fences, and transmission towers) are not separated in any of the four 352 

AHN datasets and thus included in the non-ground class (“uitgefilterd”) of the AHN1 and AHN2 datasets 353 

and in the class “unclassified” in the AHN3 and AHN4 datasets, introducing some errors and biases in 354 

the final data products. There are also points appearing on water surfaces (e.g. reflected by boats and 355 

birds) which are included in the class “uitgefilterd” or “unclassified”, causing inaccuracies in the final 356 

products. In a previous study (Kissling et al., 2023), the accuracy of the 25 LiDAR metrics generated 357 

from the AHN3 dataset was assessed, particularly in relation to the error caused by using the class 358 

“unclassified” for calculating ecosystem structure properties. The results showed that the overall accuracy 359 

of the generated LiDAR metrics was high (0.90 ± 0.04, n = 25 LiDAR metrics, tested in 100 randomly 360 

selected plots throughout the Netherlands, with 10 m × 10 m size per plot), ranging from 0.87–1. It is 361 

worth noting that the impact of those errors on the 25 LiDAR metrics varies, for instance, a stronger bias 362 

(i.e. the difference between the generated LiDAR metrics and the ground truth) can be observed in height 363 

metrics describing the top canopy layer (i.e. Hmax and Hp95) than in other height metrics or in metrics 364 

of vegetation cover in the low strata (i.e. BR_below_1 and BR_below_5) (Kissling et al., 2023). 365 

To minimize the inaccuracies of the data products caused by human infrastructures and water 366 

surfaces, we provide mask layers of water areas, roads, and buildings for both the AHN3 and AHN4 data 367 

products based on the Dutch cadaster data (TOP10NL) from 2018 (corresponding to AHN3) and 2021 368 

(corresponding to AHN4) (https://www.kadaster.nl/zakelijk/producten/geo-informatie/topnl, last access 369 

19 October 2024). TOP10NL is part of the Basic Topography Registry (BRT) which provides the standard 370 

topographic base files for the whole Netherlands. Like the LiDAR metrics, the masks are calculated at 10 371 
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m resolution with the RD_new / EPSG 28992 projection coordinate system and provided as raster layers 372 

in GeoTIFF format. In the masks, water surfaces, buildings and roads were merged into one class with a 373 

pixel value assigned to 1 and the rest with a pixel value of 0 (Fig. 5). Since the historical versions of 374 

TOP10NL data are not available for AHN1 (1996–2003) and AHN2 (2007–2012), we can only provide 375 

the masks for the AHN3 and AHN4 datasets (see Sect. 7 for data availability). However, despite the 376 

potential changes in buildings and roads over time, it is still possible to apply the generated masks to all 377 

four AHN data products, for instance, to minimize errors and to have comparable areas of interest. 378 

Since powerlines are not classified separately for AHN1–AHN3 datasets and thus included in the 379 

calculation, it may cause abnormal values of vegetation structure, especially for vegetation height and 380 

vegetation cover above 20 m (Shi and Kissling, 2023). However, points belonging to powerlines are 381 

classified separately in AHN4 (Table 1), which provides a way to minimize errors caused by powerlines 382 

in the data products generated from AHN1–AHN3. We therefore extracted all powerline points from the 383 

AHN4 raw point cloud and generated a mask (at 10 m resolution) where pixels containing powerlines are 384 

assigned a value 1 and the rest as NoData (Fig. 5). Since the transmission towers are not classified 385 

separately in all four AHN datasets, the mask only covers the powerlines but not the transmission towers. 386 

Users can apply the powerline mask generated from AHN4 to the data products from AHN1–AHN3 and 387 

consequently improve the comparability of the LiDAR metrics across time. Note that the powerline 388 

infrastructure may also change over time, and the classification of powerlines from the AHN4 may not 389 

be fully representative for powerline distributions in earlier time periods.  390 

https://doi.org/10.5194/essd-2024-488
Preprint. Discussion started: 25 November 2024
c© Author(s) 2024. CC BY 4.0 License.



23 
 

 391 
Fig. 5 Examples of masking roads, water surfaces, and buildings from the 2018 Dutch cadaster data (areas 392 
A, B, and C) and powerlines generated from the AHN4 (area D). Illustrated is the rasterized mask (first 393 
column), the generated vegetation height metric (i.e. Hp95) from AHN3 (second column), and the 394 
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corrected LiDAR metric using the masks (third column). Four subareas show the inaccuracies in the 395 
originally generated LiDAR metric and the removal effect of using the mask for roads (area A), water 396 
(area B), buildings (area C), and powerlines (area D). A mask value of 1 represents the pixels with roads, 397 
water surfaces, buildings, and powerlines, while value 0 or NoData represents the rest. The masks and the 398 
LiDAR metrics are at 10 × 10 m resolution. Hp95 = 95th percentile of vegetation height.  399 

3.4.2 Strip issues 400 

Several strip patterns occur in the data products from AHN2 (Fig. 6). This strip issue specifically affects 401 

the pulse penetration ratio layer (representing vegetation openness), where both ground points (“ground” 402 

class) and vegetation points (“unclassified” class) were used for the metric calculation. A possible reason 403 

could be that the scan angle of the laser scanner used for point cloud acquisition was rather wide, and that 404 

the scanner thus has received more laser pulses from the areas located at the edges of the flight lines. 405 

Those overlapping areas (edges of the flight lines) often have a doubled point density, which also 406 

contributes to the strip patterns in the calculation of the LiDAR metrics using ground points (e.g. pulse 407 

penetration ratio). This issue only occurs in an area in the centre of the Netherlands (Fig. 6). Other LiDAR-408 

derived vegetation metrics representing vegetation height, cover, and structural variability do not seem to 409 

be influenced by this strip issue. This strip issue was not observed in other AHN data products. 410 

 411 
Fig. 6 Strip issues in the AHN2 dataset. The point density (black and white, including all points) and the 412 

pulse penetration ratio (colour, representing vegetation openness) show similar strip patterns.   413 
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3.4.3 Abnormal values 414 

A few pixels with abnormal values still exist in the final products. For instance, several pixels in the Hp95 415 

layer have a value higher than 100 m, which cannot represent the upper canopy of vegetation since the 416 

tallest tree in the Netherlands (a Douglas Fir, Pseudotsuga menziesii, i.e. a tall and fast-growing conifer 417 

native to western North America which was planted between 1860 and 1870 in Apeldoorn, the 418 

Netherlands) has been measured to be ~50 meter tall. More generally, most measurements of the tall trees 419 

in the Netherlands range between 20–45 m. Hence, abnormal values of vegetation height (e.g. > 50 m) 420 

most likely reflect the occurrence of human infrastructures that are not included in the AHN1 and AHN2 421 

class “uitgefilterd” or not sufficiently captured in the AHN3 and AHN4 classes “building” and “reserved”, 422 

e.g. aerial and radio masts (up to 350 m tall), tall industrial and meteorological towers and chimneys (50–423 

200 m), cranes (50–130 m), elements of bridges (e.g. pylons and steel cables up to 140 m tall), wind 424 

turbines (up to 260 m) and powerlines (up to 80 m). Flying objects, such as birds and planes, can also be 425 

captured in the datasets, resulting in abnormal height values in the data products. We recommend filtering 426 

out those abnormal values before using the data products for further analysis, e.g. by removing grid cells 427 

with Hp95 > 50 m.  428 

Although the Netherlands has rather flat terrain, it is worth noting that the normalization method 429 

implemented in the Laserfarm workflow may introduce inaccuracies in normalized vegetation height 430 

values, especially if steep terrain occurs within a grid cell (Kissling et al., 2022). When applying the same 431 

workflow for other country or regions, abnormal values may occur in the areas with drastic topographic 432 

changes (e.g. cliffs, mountainous area). Users may consider using a different normalization method, for 433 

instance, normalizing non-ground points by subtracting the derived DTM from all points, or by 434 

interpolating the elevation of non-ground points using the exact position of ground points beneath 435 

(Roussel et al., 2020). Some studies also have suggested to use raw point clouds (e.g. the un-normalized 436 

DSM) to preserve the geometry of tree tops or plant area index profile in high slope areas (Khosravipour 437 

et al., 2015; Liu et al., 2017).  438 

4 Demonstration of ecological use cases  439 

4.1 Monitoring forest structural change across time using multi-temporal ALS data 440 

As a use case, we demonstrate here how the multi-temporal data products generated from the Dutch ALS 441 

surveys can capture forest structural change over the past two decades (2000–2023). We included the 442 

ongoing ALS campaign (AHN5) since the data were made available for the sample area (central location 443 

coordinates: 52.3250517°N, 5.7409230°E) at the time when the analysis was conducted. This provided a 444 

longer time series for detecting forest change. The sample area (in a forest area north of the national park 445 

De Hoge Veluwe) has experienced a clear forest cut in 2011 (between AHN2 and AHN3 surveys), with 446 

further forest loss and some regenerations captured by AHN4, while the latest AHN5 showed a forest 447 

https://doi.org/10.5194/essd-2024-488
Preprint. Discussion started: 25 November 2024
c© Author(s) 2024. CC BY 4.0 License.



26 
 

regrowth in the middle-low vegetation strata (< 10 m) compared to AHN4 (Fig. 7). The histograms 448 

derived from point clouds from AHN1–AHN5 show the distribution of points shifting from tall vegetation 449 

(above 20 m, AHN1–AHN3) to low vegetation (below 10 m, AHN4 and AHN5). Due to the very low 450 

point density of the AHN1 data, detailed information on vegetation structure in the year 2000 is lacking. 451 

However, the histogram from AHN1 implies a similar pattern of canopy height as that from AHN2 (Fig. 452 

7). Google Earth imageries obtained on the closest dates available from each AHN survey also provide a 453 

good reference for the forest change events, except for the time of AHN1.  454 

Six selected LiDAR-derived vegetation metrics derived from AHN1–AHN5 at 10 m resolution 455 

effectively capture the changes in vegetation structure over time (Fig. 8). The 95th percentile of vegetation 456 

height (Hp95) and mean vegetation height (Hmean) highlight reductions in forest canopy height due to 457 

cutting in 2011 (between AHN2 and AHN3) and in 2019 (between AHN3 and AHN4). The pulse 458 

penetration ratio (PPR) reveals shifts in vegetation openness, with openness peaking in AHN4, while the 459 

density of vegetation points at 2–3 m (BR_2_3) indicates regrowth in the understory, particularly in 460 

AHN4 and AHN5 (after 2021). The Shannon index (entropy_z) reflects the vertical distribution of 461 

vegetation points (i.e. evenness), with AHN2 showing the highest value due to a more even point 462 

distribution of the canopy foliage before the canopy was cut. AHN3 shows the widest Shannon index 463 

range, capturing both high canopy trees and new re-growth. The standard deviation (i.e. vertical 464 

variability) of vegetation height (Hstd) shows a similar pattern as seen in Hp95. 465 
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 466 
Fig. 7  Forest structural change in a sample plot (100 m × 100 m) between 1998–2023 captured by the 467 
multi-temporal AHN datasets (AHN1–AHN5). The histograms were generated from each AHN point 468 
cloud, showing the distribution of the normalized vegetation height within the plot. The point clouds were 469 
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coloured by height (blue indicates lower vegetation height and red indicates higher vegetation height). 470 
AHN1 has a rather poor point density, but shows a histogram of vegetation height that is similar to AHN2. 471 
The forest cut can be observed from the point clouds of AHN3 and AHN4 compared to AHN2, with forest 472 
regrowth occurring in AHN5. Google Earth imageries from the example area show the changes of the 473 
forest. Note that the dates of the Google Earth imageries do not correspond exactly to the dates of the 474 
airborne laser scanning surveys, but to the closest dates available. Map data: © Google Earth. 475 

 476 
Fig. 8 Boxplots of LiDAR metrics derived from multi-temporal AHN datasets capturing the changes of 477 

the vegetation structure in a 100 m × 100 m sample area (compare Fig. 7). (a) The 95th percentile of 478 

vegetation height (Hp95) and the mean vegetation height (Hmean) representing vegetation height. (b) The 479 

pulse penetration ratio (PPR) and the density of vegetation points between 2–3 m (BR_2_3) representing 480 

vegetation cover. (c) The Shannon index (Entropy_z) and the standard deviation of vegetation height 481 

(Hstd) representing vegetation structural variability. Boxes show the median and interquartile range, with 482 
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whiskers extending to 1.5 times the interquartile range and outliers are plotted as dots. Each grey line 483 

represents a single pixel (10 m × 10 m) value changing from AHN1–AHN5, showing the influence of the 484 

events on vegetation within each pixel (e.g. forest cut and regrowth).  485 

4.2 Comparison of vegetation structural difference within Natura 2000 sites 486 

In a second use case, we analyse how vegetation structure varies spatially across different Natura 2000 487 

habitat types in the Netherlands. Terrestrial habitats were categorized into five main classes: dunes, 488 

marshes, grasslands, shrublands, and woodlands, based on the dominant habitat type within each site (see 489 

details in Appendix A). For each habitat class, 100 random sample plots (10 m × 10 m, 500 plots in total) 490 

were selected where Hp95 is not NA (assuming vegetation occurring in the plots) (Figure A1). We used 491 

the data products from AHN4 for the analysis as they are the latest complete products for the whole 492 

Netherlands. Four LiDAR metrics were compared: the 95th percentile of vegetation height (Hp95), 493 

vegetation point density at 1–2 m (BR_1_2) and 4–5 m (BR_4_5), and the coefficient of variation in 494 

vegetation height (Coeff_var). Structural differences among the five habitat types were assessed using the 495 

non-parametric Kruskal-Wallis test by ranks (Kruskal and Wallis, 1952), which compares two or more 496 

independent groups of equal or different sample sizes without assuming a normal distribution of the 497 

residuals. Pairwise comparisons of the statistical significance were conducted among groups (i.e. habitat 498 

types) using the Wilcoxon rank-sum test (Wilcoxon et al., 1970).   499 

The strongest structural differences among the five habitat types were observed in canopy height 500 

(Hp95) and vegetation density in the lower strata (BR_1_2), followed by vegetation vertical variability 501 

(Coeff_var) and vegetation density in the middle strata (BR_4_5) (Fig. 9). Canopy height (i.e. Hp95) of 502 

both woodlands and shrublands showed a statistically significant difference to all other habitat types, 503 

whereas grasslands, marshes and dunes did not differ in canopy height (Fig. 9a). The latter three habitat 504 

types showed a median canopy height of ~ 2.3 m, whereas it is around 9.9 m and 17.6 m for shrublands 505 

and woodlands, respectively. Vegetation density in the low vegetation stratum (between 1–2 m) also did 506 

not statistically differ between grasslands, marshes, and dunes (Fig. 9b). However, woodlands and 507 

shrublands with their more shaded understory and stronger light competition had much lower vegetation 508 

densities between 1–2 m than the three open habitat types (Fig. 9b). In the mid-layer (4–5 m), only the 509 

vegetation density of woodlands and marshes showed a statistically significant difference (Fig. 9c). The 510 

very low mid-layer density in woodlands may be due to the high canopy from trees limiting growth in the 511 

understory (e.g. shrubs), whereas shrubs and trees in marshes may generally have a lower canopy height 512 

than woodland trees, thus showing high vegetation density at 4–5 m. In terms of structural variability, 513 

grasslands and marshes have the highest median values of the coefficient of variation of vegetation height, 514 

showing significant differences to woodlands, shrublands and dunes (Fig. 9d). This probably reflects a 515 

high heterogeneity in vegetation structure in both grasslands and marshes, where a large variability from 516 
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low to high vegetation is captured within the 10 m × 10 m plots. It is also the only metric among the four 517 

selected metrics where dunes showed statistically significant differences to grasslands and marshes. 518 

 519 
Fig. 9 Comparison of ecosystem structure between five Natura 2000 habitat types using four different 520 
LiDAR metrics of vegetation structure. (a) Canopy height (the 95th percentile of vegetation height, Hp95), 521 
(b) vegetation density at 1–2 m (BR_1_2), (c) vegetation density at 4–5 m (BR_4_5), and (d) structural 522 
variability of vegetation height (coefficient of variation in vegetation height, Coeff_var). The bars above 523 
the violin plot indicate whether there is a statistical significance between two compared habitat types. The 524 
pairwise comparisons of the statistical significance were conducted using the Wilcoxon rank-sum test 525 
after the non-parametric Kruskal-Wallis test by ranks. The significant level is marked as follows: *** (p 526 
< 0.001), ** (p < 0.01), and * (p < 0.05). Red dots indicate the median value (�̂�𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚) of the LiDAR 527 
metrics measured for each habitat type. Note that not all sampled plots have vegetation points (from class 528 
“unclassified”) between 1–2 m and between 4–5 m, therefore the total number of sample plots for the 529 
“BR_1_2” and “BR_4_5” analysis was < 100 for each habitat type (after removing NA value). The NA 530 
value also occurs for “Coeff_var” when there is only one point (from class “unclassified”) in the sampled 531 
plot (see metric calculation in Table 3).  532 

5 Discussion 533 

We present a set of multi-temporal high-resolution data products of ecosystem structure derived from 534 

country-wide ALS surveys of the Netherlands (AHN1–AHN4), capturing vegetation structure dynamics 535 

over the past two decades (1998–2022). For each AHN dataset, we provide 25 LiDAR-derived vegetation 536 
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metrics as GeoTIFF raster layers representing vegetation height, vegetation cover, and vegetation 537 

structural variability at 10 m resolution. In total, we processed ~ 70 TB (uncompressed) raw point clouds 538 

from four national ALS surveys into ~ 59 GB GeoTIFF raster layers as final data products. These data 539 

products hold great value for ecological and geospatial applications, including species distribution 540 

modelling, habitat characterization, and forest and biodiversity dynamics monitoring. The availability of 541 

these ready-to-use LiDAR metrics enables ecologists and researchers to integrate detailed ecosystem 542 

structural information from complex 3D point clouds into their studies without the burden of handling 543 

large ALS datasets and computational challenges. Additionally, the dataset serves as a valuable resource 544 

for detecting vegetation structural changes and analysing ecosystem dynamics using multi-temporal 545 

remote sensing techniques. 546 

Several key aspects should be considered when utilizing the presented data products. First, many 547 

commonly used LiDAR-derived metrics, especially those related to vegetation height (e.g. maximum 548 

vegetation height, 95th percentile height, mean height), are often highly correlated (Kissling and Shi, 2023; 549 

Shi et al., 2018a). To gain a more comprehensive understanding of ecosystem structure, it is advisable to 550 

use a complementary set of LiDAR metrics that captures different dimensions of ecosystem structure, or 551 

to use dimensionality reduction methods (such as a principal component analysis) to avoid multi-552 

collinearity (Kissling and Shi, 2023). For instance, using the coefficient of variation of vegetation height 553 

(Coeff_var) instead of the standard deviation (Hstd) as a metric of structural variability can avoid 554 

correlations with mean or canopy vegetation height (Hmean and Hp95) (Kissling and Shi, 2023). Second, 555 

vegetation cover in different height layers is a crucial component of forests and other ecosystems, 556 

influencing energy fluxes between the ecosystem and the atmosphere (Shugart et al., 2010; Toivonen et 557 

al., 2023). Unlike the cover metrics proposed by Moudrý et al. (2022), where herbaceous, shrub and tree 558 

layers were used to represent different vegetation strata, our metrics use fixed height intervals (e.g. 1–2 559 

m, 2–3 m, 3–4 m, 4–5 m, 5–20 m, above 20 m) to ensure applicability across diverse ecosystems. Not all 560 

ecosystems share the same vegetation growth forms, making these height bin-defined metrics more 561 

ecosystem-agnostic. The cover metrics from different height layers can be used as predictors of animal 562 

species richness (Goetz et al., 2007), species distributions (Davies and Asner, 2014), and habitat 563 

characteristics (Vierling et al., 2008; Bakx et al., 2019). Third, LiDAR metrics related to vegetation 564 

structural variability (e.g. Hstd, Hskew, and Hkurt) are often influenced by various ecological and sensing 565 

methodology-related factors, making them potentially challenging to interpret (Assmann et al., 2022). 566 

However, metrics representing structural variability are valuable input for models assessing forest 567 

functional diversity and structural types, especially when combined with optical remote sensing 568 

(Kamoske et al., 2022; Zheng et al., 2021). Thus, careful selection of LiDAR metrics for specific 569 

applications is highly recommended. Terrain and surface descriptors such as DTMs and DSMs (or canopy 570 

height model as derivative) can be additionally considered because they are important for forest and 571 

habitat classifications (Shoot et al., 2021), quantifying soil moisture or wetness (Assmann et al., 2022), 572 
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and analysing species composition (Toivonen et al., 2023; Hill and Thomson, 2005). However, since the 573 

AHN programme has already provided DTM and DSM layers for the AHN2, AHN3, and AHN4 datasets 574 

at 0.5 m and 5 m resolutions in their repository, we did not reproduce these data products.  575 

While multi-temporal ALS data offer valuable insights into fine-scale vegetation structural 576 

changes and ecosystem dynamics, there are also notable challenges, especially when performing change 577 

detection across point clouds with different characteristics, such as point density, scanning angle, and 578 

varying vertical and horizontal accuracy (White et al., 2016). Instead of performing change detection 579 

directly on point clouds (Xu et al., 2015; Kharroubi et al., 2022), many studies use rasterized LiDAR 580 

metrics for monitoring changes on vegetation structure. This is less computational intensive and better 581 

suited for areas with complex vegetation structure as it regularizes complex 3D point cloud information 582 

onto a 2D grid (Vastaranta et al., 2013; Choi et al., 2023). Several commonly used change detection 583 

methods can be applied to the multi-temporal data with rasterized LiDAR metrics. These include image 584 

differencing (i.e. subtracting the pixel values of one raster layer, such as Hp95 from AHN3, from the 585 

other, such as Hp95 from AHN4), threshold-based change detection (i.e. classifying the pixels as 586 

“changed” or “unchanged” based on a set threshold after image differencing), and post-classification 587 

comparison (i.e. comparing classified raster layers, such as maps of vegetation types based on derived 588 

LiDAR metrics, from different time periods) (Noordermeer et al., 2019; Dalponte et al., 2019). Those 589 

methods can be applied to the provided AHN data products, especially after masking water areas, roads, 590 

buildings, and powerlines. Change metrics derived from multi-temporal LiDAR data can also be 591 

combined with clustering methods to characterize areas of structural changes, such as modifications of 592 

forests by the eastern spruce budworm (Trotto et al., 2024). Together with the development of deep 593 

learning on change detection (Bai et al., 2023), more in-depth insights from the presented AHN datasets 594 

can be revealed, enabling accurate and comprehensive analysis of ecosystem dynamics. Given the 595 

consistent coordinate system used in the four AHN datasets (EPSG: 28992, NAP: 5709; see Table 1), 596 

additional georeferencing steps are unnecessary before conducting further analysis with the data products 597 

that we provide. The scan angle, overlapping rate, and vertical accuracy of AHN2–AHN4 are rather 598 

comparable (Table 1), potentially reducing errors related to systematic differences across time. However, 599 

the data products are generated from point clouds with different point density, which may introduce 600 

inconsistencies in capturing vegetation structure. Nevertheless, analyses of tree growth using multi-601 

temporal LiDAR data with different point density in forests of Scotland implied that the accuracy does 602 

not decrease as long as the point density is exceeding 7 pts m-2 (Zhao et al., 2018). Several studies also 603 

indicated that the spatial distribution of the point cloud remains similar even if the point density varies 604 

and increasing point density does not increase area-based estimation accuracy (Hudak et al., 2012; Fekety 605 

et al., 2015; Cao et al., 2016). We therefore anticipate that the data products from AHN2, AHN3, and 606 

AHN4 are sufficiently comparable for reliable change detection. However, due to the low point density 607 
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and reduced accuracy, we do not recommend including the data products from AHN1 in multi-temporal 608 

analyses.  609 

All software and tools employed in the pipeline for producing the data products are free and open-610 

source, ensuring a standardized yet flexible processing framework for country-wide ALS data and 611 

enabling reproducibility for future surveys. While existing ALS processing software such as OPALS 612 

(Pfeifer et al., 2014) and LAStools (http://lastools.org/) are not (fully) open-source, and others like 613 

FUSION (https://forsys.sefs.uw.edu/fusion/fusionlatest.html), CloudCompare 614 

(https://www.danielgm.net/cc/), and lidR (Roussel et al., 2020) lack horizontal scalability and do not 615 

provide reproducible end-to-end workflows for large ALS datasets, the employed “Laserfarm” workflow 616 

fills a niche by addressing these challenges. Laserfarm is a high-throughput, modular, and reproducible 617 

end-to-end workflow designed for efficiently extracting LiDAR metrics of ecosystem structure using 618 

distributed computing infrastructures (Kissling et al., 2022). With the workflow materials that we provide, 619 

users can implement additional pre-processing steps (e.g. splitting, reclassification) and customize 620 

required parameters based on the input ALS data and available computing resources. The demonstrated 621 

configurations of IT infrastructure, computational cost, and time efficiency for processing multi-temporal 622 

AHN datasets serve as a reference for users to estimate the processing requirements for future national or 623 

regional ALS datasets. It is worth noting that the normalization method implemented in the Laserfarm 624 

workflow subtracts the elevation of the lowest point within a given neighbourhood to remove the 625 

influence of the terrain. This approach was specifically chosen for its effectiveness in handling small 626 

ditches and canals that are common in the Dutch landscape, providing a straightforward way to generate 627 

positive height values after normalization. However, it may be less suited for capturing continuous 628 

normalized height values and fine-scale terrain variability in smaller grid cells (< 1 m) (Kissling et al., 629 

2022).   630 

The data products presented here also make a great contribution to multi-source data fusion in 631 

remote sensing and ecological research (Ghamisi et al., 2019). Through the two use cases in Sect. 4, we 632 

demonstrate the utility of these multi-temporal datasets for monitoring long-term forest dynamics and 633 

characterizing habitat types. These applications can be further extended to other studies, such as 634 

improving land cover classification accuracy, particularly for objects composed of similar materials (e.g. 635 

grasslands, shrubs, and trees). Moreover, the fusion of vegetation structural information from LiDAR, 636 

spectral data from optical remote sensing (e.g. high-resolution digital aerial photogrammetry, Landsat and 637 

Sentinel-2 imagery), climate data, and field measurements underscores the value of integrating 638 

complementary remote sensing data across diverse applications. These include wildlife habitat 639 

characterization (Boelman et al., 2016), tree species identification (Shi et al., 2018b), forest structure and 640 

carbon stock mapping (Li et al., 2024), as well as assessing disturbances and recovery of ecosystem 641 

process (Li et al., 2023). Additionally, combining ecosystem structure data from multiple LiDAR 642 
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platforms, such as terrestrial, drone-based, airborne, and spaceborne LiDAR, could provide a more 643 

comprehensive understanding of ecosystem structure, spanning from understory to canopy level and 644 

across local plots to national or continental level. 645 

6 Code availability 646 

Jupyter Notebooks for processing AHN datasets: https://github.com/ShiYifang/AHN 647 

Laserfarm workflow repository: https://github.com/eEcoLiDAR/Laserfarm 648 

Laserchicken software repository: https://github.com/eEcoLiDAR/laserchicken 649 

Code for downloading AHN dataset: https://github.com/ShiYifang/AHN/tree/main/AHN_downloading 650 

Code for generating masks for AHN datasets: https://github.com/ShiYifang/AHN/tree/main/AHN_masks 651 

Code for demonstration of ecological use cases: https://github.com/ShiYifang/AHN/tree/main/Use_case 652 

7 Data availability 653 

All data products from AHN1–AHN4 (25 GeoTIFF layers for each AHN dataset), three masks (two for 654 

roads, water surfaces, and buildings from both AHN3 and AHN4, and one for powerlines generated from 655 

AHN4), and four point density layers (for AHN1–AHN4) are available from a Zenodo repository 656 

(https://doi.org/10.5281/zenodo.13940846) (Shi and Kissling 2024). The data used for the demonstrated 657 

use cases are also provided in the same repository. A detailed description of the provided data can be 658 

found in the README file in the data repository.  659 
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8 Conclusions 660 

Ecosystem structure information derived from country-wide ALS data becomes increasingly needed for 661 

biodiversity science and ecosystem monitoring. The multi-temporal data products of ecosystem structure 662 

and the employed workflow presented here not only provide ready-to-use information for ecosystem 663 

monitoring and modelling within the Netherlands, but also enable reproducing desired data products from 664 

existing and upcoming large-scale ALS data beyond the Netherlands. We highlight the capability of multi-665 

temporal ALS data products in capturing ecosystem structural dynamics across time and their usability in 666 

combination with other data sources. We also carefully evaluated the limitations and usability of 667 

generated data products and provided solutions or recommendations for future processing and usage. We 668 

envisage that the provided data products and the employed workflow will empower a wider use and 669 

uptake of ecosystem structure information in biodiversity and ecosystem science, land management, 670 

natural resource conservation, and policy support and decision making. 671 

  672 
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Appendix A 673 

The source information about Natura 2000 sites was retrieved from the Europe Environment Agency 674 

(Natura 2000 (vector) - version 2021). The shapefile of the Natura 2000 sites and the attributes of each 675 

site that we used for the analysis were downloaded via 676 

https://sdi.eea.europa.eu/datashare/s/JWt9KJCFMrPQDc7/download. The information on the habitat 677 

class (from the table named “Natura2000_end2021_HABITATCLASS.csv”) was used to group them into 678 

five habitat types (i.e. dunes, marshes, shrublands, grasslands, and woodlands). The table contains the 679 

following information: description of the habitat class, habitat code, site code, and percentage of habitat 680 

composition within the site.  681 

We first selected all the Natura 2000 sites within the Netherlands (i.e. SITECODE starting with 682 

NL), then summarized the highest percentage of habitat class within each site and grouped them into six 683 

main habitat types: water, dunes, marshes, shrubland, grassland, and woodland. For water, we included 684 

marine areas, sea inlets (habitat code: N01), tidal rivers, estuaries, mud flats, sand flats, and lagoons 685 

(habitat code: N02), and inland water bodies (habitat code: N06). For dunes, we included costal sand 686 

dunes, sand beaches, and machair (habitat code: N04). For marsh, we included bogs, marshes, water 687 

fringed vegetation, and fens (habitat code: N07) and salt marshes, salt pastures, and salt steppes (habitat 688 

code: N03). For shrubland, we included heath, scrub, maquis and garrigue, and phygrana (habitat code: 689 

N08). For grassland, we included dry grassland, steppes (habitat code: N09), humid grassland, mesophile 690 

grassland (habitat code: N10), and improved grassland (habitat code: N14). For woodland, we included 691 

broadleaved deciduous woodland (habitat code: N16), coniferous woodland (habitat code: N17), 692 

evergreen woodland (habitat code: N18) and mixed woodland (habitat code: N19). For each Natura 2000 693 

site, the habitat type with the highest composition percentage was chosen as the dominate habitat. In total, 694 

there were 197 Natura 2000 sites within the Netherlands, including 36 water sites, 25 dune sites, 23 marsh 695 

sites, 17 shrubland sites, 54 grassland sites, and 42 woodland sites. For our study, we excluded water sites 696 

for the vegetation structure analysis (remaining 161 sites in total). For each habitat type, we randomly 697 

selected 100 sample plots (10 m × 10 m for each plot, i.e. in total 500 plots) where Hp95 is not NA 698 

(assuming vegetation occurring in the plots) using the sampleRandom() function in R (Figure A1). The 699 

shapefile of the 500 sample plots across the Natura 2000 sites was then used to extract the pixel values of 700 

the LiDAR metrics for comparison.  701 

The shapefile of the Natura 2000 sites within the Netherlands (with habitat class information in attributes), 702 

100 sample plots for each habitat class, original and grouped habitat class information (.csv files), and the 703 

R processing script are provided in the data repository (see Sect.7).  704 

 705 
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 706 
Figure A1. Natura 2000 sites and their habitat types in the Netherlands. The non-water habitat types were 707 
grouped into 5 classes (i.e. dunes, marshes, grasslands, shrublands, and woodlands) to conduct vegetation 708 
structure comparisons. For each class, we randomly sampled 100 plots (10 m × 10 m each) where Hp95 709 
was not NA (assuming that vegetation occurs in the plots) for the analysis (n = 500 in total).  710 
  711 
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