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Short summary  11 

We present a new set of multi-temporal LiDAR metrics of ecosystem structure derived from four 12 

national ALS surveys of the Netherlands (AHN1–AHN4), capturing vegetation height, cover, and 13 

structural variability over the past two decades (1998–2022). Around 70 TB point clouds have been 14 

processed to ready-to-use raster layers at 10 m resolution (~ 59 GB), enabling a wide use and uptake of 15 

ecosystem structure information in biodiversity and habitat monitoring, ecosystem and carbon dynamic 16 

modelling.  17 
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Abstract  18 

Recent years have seen a rapid surge in the use of Light Detection and Ranging (LiDAR) technology for 19 

characterizing the structure of ecosystems. Even though repeated airborne laser scanning (ALS) surveys 20 

are increasingly available across several European countries, only few studies have so far derived data 21 

products of ecosystem structure at a national scale, possibly due to a lack of free and open-source tools 22 

and the computational challenges involved in handling the large volumes of data. Nevertheless, high-23 

resolution data products of ecosystem structure generated from multi-temporal country-wide ALS 24 

datasets are urgently needed if we are to integrate such information into biodiversity and ecosystem 25 

science. By employing a recently developed, open source, high-throughput workflow (named 26 

“Laserfarm”), we processed around 70 TB of raw point clouds collected from four national ALS surveys 27 

of the Netherlands (AHN1–AHN4, 1996–2022). This resulted in ~ 59 GB raster layers in GeoTIFF format 28 

as ready-to-use multi-temporal data products of ecosystem structure at a national extent. For each AHN 29 

dataset, we generated 25 LiDAR-derived vegetation metrics at 10 m spatial resolution, representing 30 

vegetation height, vegetation cover, and vegetation structural variability., together with auxiliary data (~ 31 

12 GB) such as raster layers of point density, pulse density, flightline timestamp information, terrain and 32 

surface elevation, and masks of water areas, roads, buildings, powerlines and NA values. The data enable 33 

an in-depth understanding of ecosystem structure at fine resolution across the Netherlands and provide 34 

opportunities for exploring ecosystem structural dynamics over time. To illustrate the utility of these data 35 

products, we present ecological use cases that monitor forest structural change and analyse vegetation 36 

structure differences across various Natura 2000 habitat types, including dunes, marshes, grasslands, 37 

shrublands, and woodlands. The provided data products and the employed workflow can facilitate a wide 38 

use and uptake of ecosystem structure information in biodiversity and carbon modelling, conservation 39 

science, and ecosystem management. The full data products are publicly available on Zenodo 40 

(https://doi.org/10.5281/zenodo.13940846) (Shi and Kissling 2024). 41 

1 Introduction 42 

Monitoring ecosystem structure is essential for sustainable forest management (Lindenmayer et al., 2000), 43 

species distribution research (Jetz et al., 2019; Kissling et al., 2018), dynamic ecosystem modelling 44 

(Kucharik et al., 2000), biodiversity monitoring (Noss, 1990), and the conservation and restoration of 45 

terrestrial ecosystems (Ruiz-Jaén and Aide, 2005). As one of the Essential Biodiversity Variables (EBVs) 46 

classes (Pereira et al., 2013), ecosystem structure provides detailed insights into both the vertical and 47 

horizontal profiles of ecosystems, facilitating a deeper understanding of the relationship between 48 

vegetation structure and animal ecology (Davies and Asner, 2014) as well as carbon and biomass 49 

dynamics (Zhao et al., 2018; Dalponte et al., 2019). However, until a decade ago, the collection of 50 

vegetation structure data was difficult and labour intensive, especially over large spatial scales (Davies 51 
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and Asner, 2014). Although previous studies have explored the use of passive remote sensing 52 

technologies, such as high-resolution satellite imagery and aerial photographs, alongside field 53 

measurements to obtain structural information , dynamic ecosystem modelling (Kucharik et al., 2000), 54 

biodiversity monitoring (Noss, 1990), and the conservation and restoration of terrestrial ecosystems 55 

(Ruiz-Jaén and Aide, 2005). As one of the Essential Biodiversity Variables (EBVs) classes (Pereira et al., 56 

2013), ecosystem structure provides detailed insights into both the vertical and horizontal profiles of 57 

ecosystems, facilitating a deeper understanding of the relationship between vegetation structure and 58 

animal ecology (Davies and Asner, 2014), forest attributes modelling (Coops et al., 2021) as well as 59 

carbon and biomass dynamics (Zhao et al., 2018; Dalponte et al., 2019). However, until a decade ago, the 60 

collection of vegetation structure data was difficult and labour intensive, especially over large spatial 61 

extents. Although previous studies have explored the use of passive remote sensing technologies, such as 62 

high-resolution satellite imagery and aerial photographs, alongside field measurements to obtain 63 

structural information (e.g. Wolter et al., 2009; Lamonaca et al., 2008), these applications have largely 64 

been confined to plot or local scales with limited scalability and uncertain transferability between different 65 

regions.  66 

Over the past few decades, the advent of airborne laser scanning has enabled the direct 67 

measurementprecise and spatially contiguous measurements of ecosystem structural properties such as 68 

high-resolution topographic variation and accurate estimation of vegetation height, cover, and canopy 69 

structure (Lefsky et al., 2002). The LiDAR technology used in ALS surveys generates discrete returns 70 

(point clouds) and/or full-waveform signals by emitting laser pulses from the sensor towards the target 71 

objects (e.g. ground, trees, and buildings, etc), recording the distance between the sensor and the objects 72 

(“X”, “Y”, “Z” coordinates), the amount of energy returned to the sensor (“Intensity”), the type of the 73 

object (“Classification”), the sequence of returns generated from one pulse (“Return number” and 74 

“Number of returns”), the time ofat which the pulse emittedobjects were observed (“GPS time”), and so 75 

on. Advances in sensor systems and techniques also allow many countries to carry out ALS campaigns 76 

over national or regional extents, producing fine-scale ecosystem measurements across broad spatial 77 

extents (Kissling et al., 2022; Assmann et al., 2022). ALS surveys often generate massive amounts of data 78 

(e.g. point clouds with a multi-terabyte data volume) which contain ecosystem structural information that 79 

is essential for ecological and biodiversity research (Kissling et al., 2022; Koma et al., 2021b; Bakx et al., 80 

2019). Although tools and software for processing large amounts of LiDAR data are increasingly 81 

available (Roussel et al., 2020; Isenburg, 2017; Meijer et al., 2020; Kissling et al., 2022; Fischer et al., 82 

2024), significant challenges remain, including the need for specialist expertise, extensive data storage, 83 

and substantial computational power (Assmann et al., 2022)(Assmann et al., 2022). Ultimately, 84 

ecologists, foresters, biodiversity researchers and land managers require raster layers with structural 85 

information that can be readily integrated into analytical workflows using software that they are familiar 86 

with (e.g. GIS, R, Python). Such raster layers, e.g. LiDAR-derived vegetation metrics, are often generated 87 
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by statistically aggregating the 3D point cloud information within spatial units such as voxels or 2D raster 88 

cells (Meijer et al., 2020; Kissling et al., 2022; Fischer et al., 2024). These LiDAR-derived vegetation 89 

metrics typically capture three key dimensions of ecosystem structure: vegetation height (e.g. maximum 90 

vegetation height, vegetation height at a certain percentile), vegetation cover (e.g. the density of 91 

vegetation at a given height layer), and vegetation structural variability (e.g. the vertical or horizontal 92 

distribution and variability of vegetation within a spatial unit) (Kissling et al., 2023; Bakx et al., 2019). 93 

Providing high-resolution (~ 10 m) ready-to-use LiDAR metrics and making them accessible for the 94 

public is, therefore, thus critical for monitoring Essential Biodiversity Variables (EBVs) (Valbuena et al., 95 

2020), modelling species distributions (De Vries et al., 2021; Koma et al., 2021b; Zellweger et al., 2013), 96 

and estimating species diversity (Moeslund et al., 2019; Zellweger et al., 2017; Aguirre-Gutiérrez et al., 97 

2017) at a regional or national scale.  98 

Ecosystem structure is a three-dimensional phenomenon with horizontal and vertical components 99 

that change over time (Zenner and Hibbs, 2000)(Zenner and Hibbs, 2000). The increasing frequency of 100 

ALS data acquisition offers a unique opportunity to monitor ecological changes and ecosystem dynamics 101 

at fine spatial and temporal scales. Several countries have been conducting repeated (sub-)national ALS 102 

surveys to obtain fine-scale information on topography and forest ecosystems (Nilsson et al., 103 

2017)(Nilsson et al., 2017). For example, the Dutch national ALS programme (AHN, Actueel 104 

Hoogtebestand Nederland, https://www.ahn.nl/) has been collecting country-wide LiDAR data since 105 

1996, providing four complete ALS datasets (AHN1–AHN4) with an ongoing fifth survey (AHN5), 106 

conducted at intervals of 3 to 5 years. In Spain, under the PNOA-LiDAR project, two national ALS 107 

campaigns have taken place during 2008–2015 (LiDAR 1st coverage) and during 2015–2021 (LiDAR 2nd 108 

coverage), while the third acquisition (LiDAR 3rd coverage) has started in 2023 and is planned to finish 109 

in 2025 (http://centrodedescargas.cnig.es/CentroDescargas/catalogo.do?Serie=LIDAR, last access: 19 110 

October 2024). While the primary goal of many ALS campaigns is to produce terrain and surface 111 

elevation models, such as Digital Terrain Models (DTMs) orand Digital Surface Models (DSMs), the 112 

multi-temporal LiDAR datasets also capture detailed 3D characteristics on vegetation structure over time, 113 

providing valuable information for evaluating changes in biomass (Cao et al., 2016; Feng et al., 2024), 114 

forest structure (Mccarley et al., 2017; Riofrío et al., 2022; Vepakomma et al., 2011), and forest carbon 115 

stocks (Dalponte et al., 2019; Zhao et al., 2018). Furthermore, these datasets are increasingly being 116 

integrated with other remote sensing data, such as satellite imageries from Landsat, Sentinel-2, and 117 

synthetic aperture radar (SAR), to assess forest changes caused by disturbances like wildfires (Li et al., 118 

2023; Feng et al., 2024) and to model aboveground biomass (Musthafa and Singh, 2022)(Musthafa and 119 

Singh, 2022). However, despite the growing availability of multi-temporal ALS datasets, there is a 120 

noticeable lack of publicly available data products, i.e. LiDAR-derived vegetation metrics, from national 121 

ALS surveys. 122 
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Several challenges are posed inemerge when generating accurate and standardized data products 123 

from multi-temporal ALS data (Valbuena et al., 2020). Over the past three decades, advances in LiDAR 124 

sensors and associated technologies have led to improvements in point density, classification accuracy, 125 

and additional attributes provided in each point (Riofrío et al., 2022)(Riofrío et al., 2022). However, these 126 

advancements also introduce complexities in data harmonization. In addition to the challenges associated 127 

with processing large datasets and high computational costs (Meijer et al., 2020)(Meijer et al., 2020), 128 

discrepancies in sensor technology and flight configurations across different ALS surveys can hinder the 129 

generation of consistent data products (Lin et al., 2022)(Lin et al., 2022). For instance, the first Dutch 130 

national ALS campaign (AHN1, 1996–2003) had an average point density ranging from 1 point per 16 131 

square meters to 1 point per square meter, with no detailed point classification available. By contrast, in 132 

the fourth campaign (AHN4, 2020–2022), the point density has improved to 20–30 points per square 133 

meter, with detailed classification code provided for each point following the ASPRS standard (Asprs, 134 

2019).(Asprs, 2019). These technological variations inevitably result in data products with varying quality 135 

and accuracy, introducing uncertainties in their usability (Tompalski et al., 2021; Hopkinson et al., 2008). 136 

To understand ecosystem dynamics accurately, changes detected from multi-temporal ALS datasets 137 

should reflect actual ecological changes in the target of interest rather than differences in data acquisition 138 

or quality (Riofrío et al., 2022)(Riofrío et al., 2022). Identifying the limitations and providing usage notes 139 

of derived data products are important for users to interpret the data products correctly and apply them 140 

optimally in their analyses.  141 

Here, we present a new set of multi-temporal data products of ecosystem structure derived from 142 

four national ALS surveys of the Netherlands (AHN1–AHN4). The data products, with a spatial 143 

resolution of 10 m, include four sets of 25 LiDAR-derived vegetation metrics representing ecosystem 144 

height, vegetation cover, and structural variability, aimed at supporting a wide range of ecological 145 

applications. In this paper, we (1) describe the ALS data collection from AHN1–AHN4 and the employed 146 

“Laserfarm” workflow to generate the data products, (2) present the detailed characteristics of the 147 

generated multi-temporal data products (i.e. LiDAR-derived vegetation metrics as GeoTIFF raster layers) 148 

and their known limitations and corresponding usage notes, (3) provide auxiliary data such as raster layers 149 

of point density, pulse density, flightline timestamp information, DTMs, DSMs, and mask layers of water 150 

areas, roads, buildings, powerlines and NA values to facilitate multi-temporal comparisons, (4) 151 

demonstrate two use cases for using the generated data products in ecological applications, and (45) 152 

discuss the potential use and recommendations for utilizing these data products in future research. Note 153 

that the AHN1 dataset has a rather poor quality, which limits its use for ecological applications. To 154 

facilitate open science, we make the data products, employed workflow, Python script, and related 155 

documentation publicly available. We anticipate that this will not only allow the upscaling of ecological 156 

and biodiversity research but also benefit a broad range of scientists and decision-makers who are 157 

interested in using ecosystem structure information for environmental monitoring and management.  158 
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2 Raw data and processing workflow 159 

2.1 Geography and ecology of the Netherlands   160 

The Netherlands is situated in Northwest Europe (52°22′N, 4°53′E), covering a total land area of 161 

3389333,893 km2. It has mostly flat coastal lowlands and reclaimed land (polders) with an average 162 

elevation of approximately 30 meters above sea level. The primary ecosystems in the Netherlands include 163 

agricultural land, dunes and beaches, forests, wetlands, grasslands, and other (semi)natural environments 164 

(Hein et al., 2020)(Hein et al., 2020). The Netherlands has a temperate maritime climate with continental 165 

influence, resulting in an average annual precipitation of 854.7 mm and a mean temperature of 10.5 ℃.  166 

2.2 Four Dutch national ALS campaigns  167 

The initial purpose of the AHN programme was to monitor and manage water systems in the Netherlands. 168 

It is a collaboration between 26 regional water boards, provinces and Rijkswaterstaat (the executive 169 

directorate general for public works and water management of the Dutch government) with the aim of 170 

producing accurate digital elevation models of the Netherlands. To minimize the impact of foliage on 171 

ground detection during the laser scanning, the AHN data acquisition is performed in the winter period, 172 

from December to April. The first generation of AHN (AHN1) was conducted during 1996–2003, with a 173 

point density of 1 point per 1–16 square meters, which largely depended on the viability of the technology 174 

and the date of acquisition (Swart, 2010).(Swart, 2010). Due to errors in the AHN1 data (e.g. inaccuracies 175 

in the inertial navigation system, misalignment of overlapping scanning strips, and the presence of 176 

artifacts), the data quality of AHN1 is rather poor, especially for areas covered by vegetation (Brand et 177 

al., 2003).(Brand et al., 2003). It is therefore limited in its use for quantifying vegetation structure with 178 

high accuracy and at fine (e.g. 10 m) resolution. To support both water and dike management, the second 179 

generation of AHN (AHN2) was started in 2007, with improved specifications such as a higher point 180 

density (on average 6–10 pts m-2) and a higher planimetric/vertical accuracy (5–15 cm). It also required 181 

some raster data (i.e. DTMs and DSMs) to be delivered with grid cell sizes of 0.5 m and 5 m. With the 182 

main aim of obtaining terrain surface information, both AHN1 and AHN2 datasets were delivered in two 183 

separate parts: point clouds representing the terrain (“gefilterde puntenwolk”) and point clouds 184 

representing non-ground points, i.e. trees, buildings, bridges and other objects (“uitgefilterde 185 

puntenwolk”).  186 

Benefitting from the advances in LiDAR sensors and related technologies, the third generation of 187 

AHN (AHN3) provided not only a higher density of point clouds, but also more information stored for 188 

each point, such as point classification code, intensity values, number of returns, and so on (Table 1). 189 

Even though both AHN2 and AHN3 were collected within a 6-year cycle (2007–2012 for AHN2, and 190 

2014–2019 for AHN3), the actual time difference between AHN2 and AHN3 varies between 4–10 years 191 

depending on the area of interest (Fig. 1). For the latest completed AHN (survey (i.e. AHN4), the 192 
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surveysampling was conducted between 2020 and 2022 (3-year cycle), making the country-wide dataset 193 

more quickly available for the whole Netherlands. All four AHN datasets were provided in LAZ format 194 

(i.e. version 1.2 for AHN1–AHN3, and version 1.4 for AHN4), under the local Dutch coordinate system 195 

“RD_new” (EPSG: 28992, NAP: 5709). The datasets from AHN1 to AHN4 show an increase in data 196 

volume and improved classification as well as additional attributes stored for each point (Table 1). An 197 

ongoing fifth ALS survey (AHN5) has started in 2023 (the first part of the data is available, see 198 

https://www.ahn.nl/heel-westelijk-nederland-gereed) and the data acquisition will be completed in 2025.   199 

 200 
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Fig.1 Data acquisition times for AHN1–AHN4. Different colours indicate the different years of data 201 

collection for each dataset.  202 

 203 

Table 1. Summary of raw point cloud characteristics collected by different AHN surveys (AHN1–204 

AHN4). Some flight configurations are not available, for instance, the type of sensor, the flight height, 205 

flight speed, and the scan angle, especially for the AHN1 dataset. NAP: Normal Amsterdam Level. 206 

Data characteristic AHN1 AHN2 AHN3 AHN4 

Acquisition year 1996–2003 2007–2012 2014–2019 2020–2022 

Acquisition season Leaf-off Leaf-off  Leaf-off Leaf-off 

Horizontal projection RD_new RD_new RD_new RD_new 

Vertical projection NAP NAP NAP NAP 

Point density (pts m-2) 0.05–1 6–15  10–20  20–30  

Scan angle (°) - ± 30 ± 35 ± 35 

Overlapping rate - 20–35% 20–35% 20–35% 

Point cloud format Laz (1.2) Laz (1.2) Laz (1.2) Laz (1.4) 

Horizontal accuracy 

(cm) 

- 8–18 8–18 8–13 

Vertical accuracy (cm) 5–35  5–15 5–15 5–10 

Number of files 2720 60185 1367 1381 

Data volume 

(compressed) 

33.1 GB 986.7 GB 2564.8 GB 6408.6GB 

Attributes in each point X, Y, Z X, Y, Z X, Y, Z, 

intensity, 

return number, 

number of 

returns, 

classification, 

scan angle, 

point ID, GPS 

time 

X, Y, Z, intensity, 

return number, 

number of returns, 

classification, scan 

angle, point ID, GPS 

time, amplitude, 

reflectance, deviation 

Classification uitgefilterd (0) 

gefilterd (0) 

uitgefilterd (0) 

gefilterd (0) 

unclassified 

(1) 

ground (2) 

building (6) 

water (9) 

reserved (26) 

unclassified (1) 

ground (2) 

building (6) 

water (9) 

powerline (14) 

reserved (26) 

Available additional 

layers 

- DSM, DTM DSM, DTM DSM, DTM 

 207 
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2.3 Processing workflow  208 

We employed the high-throughput workflow “Laserfarm” (https://laserfarm.readthedocs.io/en/latest/) to 209 

process the multi-temporal AHN datasets. Laserfarm is an open-source workflow designed for processing 210 

large amount of LiDAR point cloud data into geospatial data products of ecosystem structure (Kissling et 211 

al., 2022)(Kissling et al., 2022). ItIt builds on the feature extraction module of the open-source 212 

“Laserchicken” software to compute LiDAR metrics (Meijer et al., 2020). The Laserfarm workflow 213 

consists of four main modules: (1) re-tiling, where the original LAZ files (covering 5 km × 6.5 km per 214 

tile) are re-tiled into 1 km × 1 km LAZ files for an efficient, scalable and distributed processing; (2) 215 

normalization, where the height (z value) ofa DTM is constructed using the lowest point within a 1 m × 216 

1 mgiven grid cell is subtracted from each(1 m × 1 m), and every point in the cell is then assigned a 217 

normalized height with respect to the derived DTM height, so that the influence of terrain on the height 218 

of above-ground points is is removed from subsequent processing. Outliers with z values higher than 219 

10,000 m were removed from further processing; (3) feature extraction, where user-defined features (e.g. 220 

LiDAR metrics such as the 95th percentile of vegetation height and the skewness of vegetation height) are 221 

calculated at 10 meter resolution using points within an infinite square cell (Meijer et al., 2020)(i.e. a 3D 222 

square column with a base area of 10 m × 10 m and an infinite z value) (Meijer et al., 2020); and (4) 223 

rasterization, where the extracted feature files (.PLY files) are merged and exported as single-band 224 

GeoTIFF raster files. Note that in all four AHN datasets, vegetation points are not classified separately 225 

based on the ASPRS standard. Instead, they are assigned a classification value 0 (“uitgefilterd”) in AHN1 226 

and AHN2, and a value 1 (“unclassified”) in AHN3 and AHN4. These classification values were used as 227 

vegetation class during the feature extraction. We chose the Laserfarm workflow to process the four 228 

country-wide AHN datasets because (1) it enables the efficient, scalable and distributed processing of 229 

multi-terabyte LiDAR point clouds at a national scale, (2) it is a free and open-source tool implemented 230 

in Python and available as Jupyter Notebooks, and (3) it allows the automated generation of consistent 231 

and reproducible geospatial data products of ecosystems structure from different ALS data. 232 

Due to the different characteristics of each AHN dataset (Table 1), several pre-processing steps 233 

were implemented before executing the main modules of the Laserfarm workflow (Fig. 2). In particular, 234 

for the AHN1 and AHN2 datasets, the step “Reclassification” was carried out before re-tiling, as both 235 

datasets only have “gefilterd” (ground) and “uitgefilterd” (non-ground) files provided and the raw 236 

classification value was set to 0 (never classified) for all points. We therefore reassigned a classification 237 

value “2” to the ground points (“gefilterd”) and a classification value “0” to the non-ground points 238 

(“uitgefilterd”). These classification values were later used for the normalization and feature 239 

extraction.filtering the points during feature extraction. Note that there is no publicly available 240 

information on the methods/algorithms used in the pre-classification, and it is therefore difficult to assess 241 

the accuracy of the pre-classification of the AHN datasets. However, a preliminary assessment of 242 
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the terrain filtering process in the Dutch coastal dunes did not reveal a strong impact of the ground point 243 

pre-classification of AHN datasets on vegetation change detection (Appendix C). For the AHN4 dataset, 244 

the volume of a single original LAZ file varies from 0.3 MB to 16.5 GB, with an average size of 4.6 GB 245 

per file (Table 2). Since handling such volumes is challenging for many computing infrastructures (due 246 

to their CPUs and random-access memory, RAM), we applied a “Splitting” step before the re-tiling (Fig. 247 

2), with a maximum data volume of ~ 500 MB being used for splitting the original tiles into smaller ones.  248 

 249 
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 250 
Fig. 2 Overview of the processing workflow employed for four country-wide AHN datasets of the 251 

Netherlands (AHN1–AHN4). The pre-processing step “reclassification” was only conducted for the 252 

AHN1 and AHN2 datasets, where ground points were reassigned a classification value “2”. The 253 

“splitting” step was added to split the large LAZ files from AHN4 into smaller ones before re-tiling. Re-254 

tiling, normalization, feature extraction and rasterization are four main modules of the Laserfarm 255 
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workflow, which have been applied for all four AHN datasets to generate country-wide LiDAR-derived 256 

vegetation metrics. The input data were raw LAZ files with different point density, and the output data 257 

were 25 single-band GeoTIFF raster layers at 10 meter resolution for each AHN dataset. 258 

2.4 IT infrastructure and computational cost 259 

All four AHN datasets were processed on the IT infrastructure services provide by SURF, the Dutch 260 

national facility for information and communication technology (https://www.surf.nl/). Specifically, we 261 

used the dCache platform for data storage (https://www.surf.nl/en/services/dcache) and the HPC Cloud 262 

(https://www.surf.nl/en/services/hpc-cloud) or Spider platform (https://www.surf.nl/en/services/high-263 

performance-data-processing) for high-performance data processing. The data processing platforms have 264 

fast access to the data storage while enabling scalable and flexible processing of multi-terabytes datasets 265 

on distributed resources. We first downloaded the raw AHN1–AHN4 LiDAR point clouds from the 266 

PDOK webservices (https://www.pdok.nl/introductie/-/article/actueel-hoogtebestand-nederland-ahn) to 267 

the dCache data storage using a customized python script 268 

(https://github.com/ShiYifang/AHN/tree/main/AHN_downloading). We then ran the Laserfarm 269 

workflow for processing the AHN1–AHN3 datasets on the HPC Cloud, where we set up a cluster of 11 270 

VMs, each VM with 2 cores, 32 GB or 64 GB RAM, and 256 GB local HDD. Due to migration of the 271 

computing resources by SURF (from HPC Cloud to Spider), we processed the AHN4 dataset with the 272 

Laserfarm workflow on Spider, where a number of flexible and customisable workers with assigned CPU 273 

cores were defined based on the computing requirement for each workflow step. We used 2–10 workers, 274 

each with 2–4 cores and 16–32 GB RAM for splitting, re-tiling, normalization, and feature extraction, 275 

and 2 workers, each with 12 cores and 94 GB RAM for the rasterization step. All input data (i.e. raw LAZ 276 

files), intermediate results (e.g. re-tiled LAZ files, normalized LAZ files, featured PLY tiles), and final 277 

output (i.e. GeoTIFF raster layers) were automatically stored (and/or retrieved for the next step) on the 278 

dCache data storage.  279 

The computing time for each AHN dataset varies based on the input data volume, the required 280 

processing steps (Table 2), and the settings of the employed infrastructure. The increase in data volumes 281 

from AHN1 to AHN4 resulted in a strong increase of the processing time (Table 2). In total, it required 282 

57.6 days (wall-time) to process the multi-temporal AHN datasets (AHN1–AHN4). The AHN1 (data 283 

volume of 33.1 GB) only took a wall-time of 4.8 days to complete whereas the AHN4 (data volume of 284 

6408.6 GB) took a total wall-time of 26.8 days. It is worth noting that the actual computing time of the 285 

process might be longer than the wall-time estimates, e.g. due to processing errors, worker failures, and 286 

system maintenance.  287 

 288 

 289 
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Table 2. Overview of the number of input files, the total volume and the average volume per file for each 291 

processing step, and the total processing wall-time for each AHN dataset. Note that the total wall-time 292 

was estimated based on different infrastructure settings for processing the AHN1–AHN3 (HPC Cloud) 293 

and AHN4 (Spider) datasets. 294 

Data characteristic AHN1 AHN2 AHN3 AHN4 

Input for re-tiling (Reclassified) (Reclassified)  (Splitted) 

Number of input files 2720 60185 1367 18797 

Total volume  33.1 GB 986.7 GB 2564.8 GB 6408.6 GB 

Average volume per 

file (mean ± SD) 

12.20 ± 10.68 MB 16.40 ± 14.73 MB 1.75 ± 0.93 GB 4.60 ± 2.41 GB 

Re-tiling 

Number of re-tiled 

files  

37715 37627 37457 37990 

Total volume  33.1 GB 986.7 GB 2564.8 GB 6408.6 GB 

Average volume per 

file (mean ± SD) 

0.83 ± 1.64 MB 26.90 ± 35.98 MB 0.07 ± 0.18 GB 0.17 ± 0.09 GB 

Normalization 

Number of 

normalized files  

37715 37627 37457 37990 

Total volume  64.0 GB 3682.4 GB 6067.5 GB 9593.3 GB 

Average volume per 

file (mean ± SD) 

1.70 ± 2.13 MB 97.87 ± 59.23 MB 0.16 ± 0.09 GB 0.25 ± 0.13 GB 

Feature extraction 

Number of featured 

files  

37715 × 25 37627 × 25 37457 × 25 37990 × 25 

Total volume  257.1 GB 282.5 GB 285.9 GB 212.5 GB 

Average volume per 

file (mean ± SD) 

0.29 ± 0.02 MB 0.30 ± 0.03 MB 0.33 ± 0.05 MB 0.23 ± 0.04 MB 

Rasterization 

Number of rasterized 

files 

25 25 25 25 

Total volume  4.8 GB 19.4 GB 18.8 GB 15.6 GB 

Average volume per 

file (mean ± SD) 

202.1 ± 101.6 MB 774.5 ± 303.5 MB 759.8 ± 226.2 MB 625.5 ± 160.7 MB 

Processing time 

Total processing wall-

time (days) 

4.8 11.7 14.3 26.8 

 295 

Formatted Table

Formatted Table
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3 Data products description  296 

3.1 Overview of data products 297 

The generated data products from each AHN campaign cover the whole Netherlands, ranging from 50.77 298 

°N to 53.36 °N and from 3.57 °E to 7.11 °E. The data products are provided as 10 meter resolution 299 

GeoTIFF raster files (25 single-band raster layers for each AHN dataset) in the local Dutch coordinate 300 

system “RD_new” (EPSG: 28992, NAP:5709). The total volume of the four data productssets of 25 301 

LiDAR metrics is approximately 58.659.2 GB. and the total volume of additional masks and auxiliary 302 

data is 12.3 GB. The pixel value is stored in 32 -bit floating -point precision. The data products are freely 303 

accessible via a permanent Zenodo repository (see Sect. 7). 304 

3.2 LiDAR-derived vegetation metrics 305 

In total, 25 LiDAR-derived vegetation metrics were generated from each AHN dataset, representing 306 

vegetation height, vegetation cover, and vegetation structure variability (Table 3). For vegetation height, 307 

we generated 7 LiDAR metrics (i.e. maximum, mean, median, 25th, 50th, 75th, 95th percentile of vegetation 308 

height) representing the height of vegetation at the canopy surface and for low, middle, and upper 309 

vegetation strata (Fig. 3a). We filtered out the points with a z value higher than 10000 m (outliers) during 310 

“Normalization” step of the Laserfarm workflow and used a square infinite cell (10 × 10 m) as the target 311 

volume to calculate the height metrics (see detailed description of target volumes in Meijer et al. (2020)). 312 

To ensure positive height values after normalization, we generally normalized the vegetation points based 313 

on the height of the lowest point within a 1 m × 1 m grid cell. For vegetation cover, we derived 11 LiDAR 314 

metrics consisting of one metric describing the openness of vegetation (i.e. pulse penetration ratio), one 315 

metric describing the density of upper vegetation layer (i.e. canopy cover), and 9 metrics quantifying 316 

vegetation density at different height layers (i.e. below 1 m, between 1–2 m, 2–3 m, 3–4 m, 4–5 m, 5–20 317 

m, above 3 m, below 5 m, and above 20 m) (Fig. 3b). The height layers reflect the most relevant height 318 

strata to capture the vegetation distribution of major growth forms (e.g. grass, reed, shrubs and trees) 319 

(Morsdorf et al., 2010; Miura and Jones, 2010). Special attention was given to represent low vegetation 320 

strata (1–5 m) as they are essential for low‐stature terrestrial ecosystems such as grasslands, shrublands 321 

or agricultural areas when monitoring animal habitats and species distributions (Koma et al., 2021a; Bakx 322 

et al., 2019). Note that the pulse penetration ratio is the only LiDAR metric (among the 25 metrics) that 323 

used ground points for the calculation. All other 24 metrics are only calculated with vegetation points (i.e. 324 

“unclassified” in AHN). For vegetation structural variability, we derived 7 LiDAR metrics representing 325 

the vertical variability of vegetation distribution within a cell (Fig. 3c), including the coefficient of 326 

variation, Shannon index, kurtosis, skewness, standard deviation, variance, and roughness (sigma) of 327 

vegetation height. The detailed description of how those metrics are calculated and their ecological 328 

relevance can be found in Table 3.    329 



15 

 

 330 



16 

 

Table 3. Twenty-five LiDAR-derived vegetation metrics capturing ecosystem structure in three key 331 

dimensions (vegetation height, vegetation cover and vegetation structural variability), together with their 332 

file names in the data products, the formulas for calculation, their descriptions and example of their 333 

ecological relevance. Each LiDAR metric is provided as a single-band GeoTIFF raster layer at 10 meter 334 

resolution, with the file name “ahn#_10m_xx”, where # is the number of AHN campaign (“1–4”) and xx 335 

is the name of the LiDAR metrics. For instance, “ahn4_10m_ perc_95_normalized_height” represents the 336 

95th percentile of vegetation height derived from the AHN4 dataset. For the calculation formulas, 𝑁 is the 337 

total number of normalized vegetation points within a cell, 𝑧𝑖 represents all normalized z values in a cell, 338 

and 𝑧̅ is the mean normalized z value in a cell. 339 

 340 

LiDAR metric 

(abbreviation) 

File name 

(ahn#_10m_xx) 

Calculation formula Description Ecological 

relevance 

Vegetation height  

Maximum 

vegetation 

height (Hmax) 

max_normalized

_height 

𝑧𝑚𝑎𝑥 Maximum of 

normalized z 

within a cell 

Height of canopy 

surface, tree tops 

Mean of 

vegetation 

height (Hmean) 

mean_ 

normalized_heig

ht 

𝑧𝑚𝑒𝑎𝑛 Mean of 

normalized z 

within a cell 

Average height of 

vegetation, mean 

tree height  

Median of 

vegetation 

height 

(Hmedian) 

median_ 

normalized_heig

ht 

𝑧𝑚𝑒𝑑𝑖𝑎𝑛 Median of 

normalized z 

within a cell 

Vegetation height, 

vertical distribution 

of vegetation 

25th percentiles 

of vegetation 

height (Hp25) 

perc_25_normali

zed_height 

𝑧25 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 25th percentile of 

normalized z 

within a cell 

Density of 

vegetation in the 

low stratum 

50th percentiles 

of vegetation 

height (Hp50) 

perc_50_normali

zed_height 

𝑧50 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 50th percentile of 

normalized z 

within a cell. It 

corresponds to the 

Hmedian. 

Average height and 

vertical 

distribution of 

vegetation 

75th percentiles 

of vegetation 

height (Hp75) 

perc_75_normali

zed_height 

𝑧75 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 75th percentile of 

normalized z 

within a cell 

Density of 

vegetation in the 

upper stratum 

95th percentiles 

of vegetation 

height (Hp95) 

perc_95_normali

zed_height 

𝑧95 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 95th percentile of 

normalized z 

within a cell 

Height of the 

vegetation canopy 

surface, avoiding 

the effect of outliers 

(compared to 

Hmax) 

Vegetation cover  
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Pulse 

penetration ratio 

(PPR) 

pulse_penetration

_ratio 

𝑁𝑔𝑟𝑜𝑢𝑛𝑑

𝑁𝑡𝑜𝑡𝑎𝑙
 

Ratio of number of 

ground points to 

total number of 

points within a cell 

Openness of 

vegetation, canopy 

fractional cover, 

laser penetration 

index 

Canopy cover 

(Density_above

_mean_z) 

density_absolute

_mean_ 

normalized_heig

ht 

100 × ∑[𝑧𝑖 > 𝑧̅]/𝑁 

 

Number of returns 

above mean height 

within a cell 

Density of upper 

vegetation layer 

Density of 

vegetation 

points below 1 

m 

(BR_below_1) 

band_ratio_norm

alized_ 

height_1 

𝑁𝑧<1/𝑁𝑡𝑜𝑡𝑎𝑙 Ratio of number of 

vegetation points 

below 1 m to the 

total number of 

vegetation points 

within a cell 

Density of 

vegetation below 1 

m 

Density of 

vegetation 

points between 

1–2 m 

(BR_1_2) 

band_ratio_1_nor

malized_ 

height_2 

𝑁1<𝑧<2/𝑁𝑡𝑜𝑡𝑎𝑙 

 

Ratio of number of 

vegetation points 

between 1–2 m to 

the total number of 

vegetation points 

within a cell 

Density of 

vegetation in 

1–2 m layer 

Density of 

vegetation 

points between 

2–3 m 

(BR_2_3) 

band_ratio_2_nor

malized_ 

height_3 

𝑁2<𝑧<3/𝑁𝑡𝑜𝑡𝑎𝑙 Ratio of number of 

vegetation points 

between 2–3 m to 

the total number of 

vegetation points 

within a cell 

Density of 

vegetation in 

2–3 m layer 

Density of 

vegetation 

points above 3 

m 

(BR_above_3) 

band_ratio_3_nor

malized_ 

height 

𝑁𝑧>3/𝑁𝑡𝑜𝑡𝑎𝑙 Ratio of number of 

vegetation points 

above 3 m to the 

total number of 

vegetation points 

within a cell 

Density of 

vegetation in 

above 3 m layer 

Density of 

vegetation 

points between 

3–4 m 

(BR_3_4) 

band_ratio_3_nor

malized_ 

height_4 

𝑁3<𝑧<4/𝑁𝑡𝑜𝑡𝑎𝑙 Ratio of number of 

vegetation points 

between 3–4 m to 

the total number of 

vegetation points 

within a cell 

Density of 

vegetation in 

3–4 m layer 

Density of 

vegetation 

points between 

band_ratio_4_nor

malized_ 

height_5 

𝑁4<𝑧<5/𝑁𝑡𝑜𝑡𝑎𝑙 Ratio of number of 

vegetation points 

between 4–5 m to 

the total number of 

Density of 

vegetation in 

4–5 m layer 



18 

 

4–5 m 

(BR_4_5) 

vegetation points 

within a cell 

Density of 

vegetation 

points below 5 

m 

(BR_below_5) 

band_ratio_norm

alized 

_height_5 

𝑁𝑧<5/𝑁𝑡𝑜𝑡𝑎𝑙 Ratio of number of 

vegetation points 

below 5 m to the 

total number of 

vegetation points 

within a cell 

Density of 

vegetation below 5 

m 

Density of 

vegetation 

points between 

5–20 m 

(BR_5_20) 

band_ratio_5_nor

malized_ 

height_20 

𝑁5<𝑧<20/𝑁𝑡𝑜𝑡𝑎𝑙 Ratio of number of 

vegetation points 

between 5–20 m to 

the total number of 

vegetation points 

within a cell 

Density of 

vegetation in 

5–20 m layer 

Density of 

vegetation 

points above 20 

m 

(BR_above_20) 

band_ratio_20_n

ormalized_height 

𝑁𝑧>20/𝑁𝑡𝑜𝑡𝑎𝑙 Ratio of number of 

vegetation points 

above 20 m to the 

total number of 

vegetation points 

within a cell 

Density of 

vegetation in 

above 20 m layer 

Vegetation structural variability 

Coefficient of 

variation of 

vegetation 

height 

(Coeff_var) 

coeff_var_ 

normalized_heig

ht 

1

𝑧̅
× √∑

(𝑧𝑖 − 𝑧̅)2

𝑁 − 1
 

Coefficient of 

variation of 

normalized z 

within a cell 

Vertical variability 

of vegetation 

distribution 

Shannon index 

(Entropy_z) 

entropy_ 

normalized_heig

ht 

− ∑ 𝑝𝑖 × 𝑙𝑜𝑔2𝑝𝑖

𝑖

 

where 𝑝𝑖 = 𝑁𝑖/ ∑ 𝑁𝑗𝑗 , 

and 𝑁𝑖  is the points in 

bin 𝑖. 

 

The negative sum 

of the proportion 

of points within 

0.5 m height layers 

multiplied with the 

logarithm of the 

proportion of 

points within 0.5 m 

height layers 

within a cell 

Vertical complexity 

of vegetation, 

foliage height 

diversity 

Kurtosis of 

vegetation 

height (Hkurt) 

kurto_ 

normalized_heig

ht 

1

𝜎4
× ∑(𝑧𝑖 − 𝑧̅)4/𝑁  

where 𝜎 is the standard 

deviation of the z value 

in a cell. 

Kurtosis of 

normalized z 

within a cell 

Vertical distribution 

of vegetation 
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Roughness of 

vegetation 

(Sigma_z) 

sigma_z √∑(𝑅𝑖 − �̅�)2/(𝑁 − 1)  

where 𝑅𝑖  are the 

residual after plane 

fitting, and �̅�  the mean 

of residuals. 

 

Standard deviation 

of the residuals of 

a locally fitted 

plane within a 

cylinder 

Small-scale 

roughness and 

variability of 

vegetation 

Skewness of 

vegetation 

height (Hskew) 

skew_ 

normalized_heig

ht 

1

𝜎3
× ∑(𝑧𝑖 − 𝑧̅)3/𝑁  

 

Skewness of 

normalized z 

within a cell 

Vertical distribution 

of vegetation 

Standard 

deviation of 

vegetation 

height (Hstd) 

std_ 

normalized_heig

ht 

√∑
(𝑧𝑖 − 𝑧̅)2

𝑁 − 1
 

Standard deviation 

of normalized z 

within a cell 

Vertical variability 

of vegetation 

distribution 

Variance of 

vegetation 

height (Hvar) 

var_ 

normalized_heig

ht 

∑
(𝑧𝑖 − 𝑧̅)2

𝑁 − 1
 

 

Variance of 

normalized z 

within a cell 

Vertical variability 

of vegetation 

distribution 

 341 

  342 
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Fig 3. Examples of LiDAR metric generation in a 10 m × 10 m grid cell (the number of all points: N = 344 

8348). (a) Metrics of vegetation height (mean, max, and percentiles of normalized height). (b) Vegetation 345 

cover metrics representing vegetation density within specific height layers. (e.g. “BR_4_5” indicates the 346 

vegetation density between 4–5 m, feature name: “band_ratio_4_normalized_height_5”). (c) Metrics of 347 

vegetation structural variability (e.g. standard deviation and variance of vegetation height are calculated 348 

based on mean height 𝑧̅; kurtosis and skewness of vegetation height are calculated based on the standard 349 

deviation and mean height within a cell) (see detailed calculation formula in Table 3). The blue line in (c) 350 

represents a kernel density estimate (KDE) showing the shape of the points distribution. See abbreviation 351 

and calculation formula of all metrics in Table 3.  352 

3.3 Auxiliary data 353 

Since the point density of AHN datasets changes across space and time, we also provide a raster layer of 354 

point density (using all point classes) for each AHN dataset (four in total) (Fig. 4). The AHN1 has a much 355 

lower point density (average less than 0.5 pts m-2) throughout the whole country than other AHN datasets 356 

due to sensor limitations back in 1996. AHN2 and AHN3 have a similar point density (on average 10–20 357 

pts m-2), while AHN4 has the highest point density (25–30 pts m-2). Especially for the AHN2–AHN4 358 

datasets, distinct patterns (patches, lines, edges) can be observed in different parts of the Netherlands. 359 

They are partially due to the influence of the water surface (yellow areas in AHN2, AHN3, and AHN4, 360 

Fig. 4), but also related to flight lines and operational configurations (e.g. flying altitude and flight speed) 361 

during the campaign.  362 

In addition to point density (i.e. density of all return points), we also provide raster layers of pulse 363 

density (i.e. density of first return points) for the AHN3 and AHN4 datasets. Pulse density is less 364 

instrument dependent than point density, and reflects more directly the scan quality and condition. Since 365 

there is no pulse information available from the AHN1 and AHN2 datasets, we only provide pulse density 366 

layers for AHN3 and AHN4. The two pulse density layers are made available in the data repository as 367 

auxiliary data together with the derived LiDAR metrics (see Sect. 7). 368 
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 369 

Fig. 4 Point density of AHN1–AHN4 ALS campaigns across the Netherlands. The total number of points 370 

was used for calculating the density of points at 10 meter spatial resolution. The four point density layers 371 

are made available in the data repository as auxiliary data together with the derived LiDAR metrics (see 372 

Sect. 7).  373 
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Although AHN campaigns have been conducted during the leaf-off season, the actual date/month 374 

that an area has been scanned can vary from December (late winter) to April (early spring), making it 375 

difficult to distinguish actual vegetation change (over the years) from leaf phenology. We therefore 376 

provide the flightline timestamps as raster layers with a 10 m resolution for comparing the dates of data 377 

acquisition across the datasets and generated properties. For AHN3 and AHN4, we first downloaded the 378 

flightline vector layers from https://www.ahn.nl/dataroom, and then generated a buffer zone around the 379 

flightlines using the function “Buffer” in ArcGIS Pro (version 3.3.0) with the setting of a distance (on 380 

both sides of each flightline) of 300 m for AHN3 and 700 m for AHN4. The neighbouring buffer zones 381 

were then dissolved if they had the same flight time. The specific distance value of the buffer zone was 382 

derived from the distance between two flightlines in each AHN survey. We then rasterized the generated 383 

buffer zone polygons into raster layers at 10 m resolution using the “Polygon to Raster” function in 384 

ArcGIS Pro. In areas where multiple flightlines are overlapping, we assigned the latest flight date to the 385 

raster pixel to be in line with the flight year maps provided by AHN (see Fig. 1). Users should take the 386 

surrounding pixel values into account when investigating overlapping areas. The generated timestamp 387 

layers for AHN3 and AHN4 are made available in the same data repository as the data products (See Sect. 388 

7 Data availability). 389 

Although AHN provides DTM and DSM layers at 0.5 m and 5 m resolution for AHN2–AHN4, 390 

they do not come at the same spatial resolution as the generated LiDAR-derived vegetation metrics. To 391 

facilitate users in comparing DTMs and DSMs with the generated LiDAR metrics, we generated DTM 392 

and DSM layers at 10 m resolution for each AHN datasets (except AHN1). The generated DTM and DSM 393 

layers were derived by resampling DTM and DSM tiles provided by AHN to a 10 m resolution using an 394 

unweighted average method. The Jupyter Notebook used for this step is made available in GitHub, see 395 

Sect. 6. 396 

3.4 Limitations and usage notes 397 

3.4.1 Classification related errors and masks 398 

In the pre-classification of the raw AHN point clouds, there is no “vegetation” class provided based on 399 

the ASPRS standard (i.e. class 3: low vegetation, class 4: medium vegetation, or class 5: high vegetation). 400 

Instead, the vegetation points in the raw AHN1 and AHN2 datasets are included in the non-ground class 401 

(“uitgefilterd”, classification value of 0), whereas they belong to the class “unclassified” (classification 402 

value 1) in the AHN3 and AHN4 datasets (Table 1). This can introduce errors and biases when using the 403 

“uitgefilterd” or “unclassified” class for calculating ecosystem structure properties because points 404 

belonging to human infrastructures can still be included in these classes. Particularly, buildings and 405 

bridges are included (together with other objects other than ground) in the class “uitgefilterd” in the AHN1 406 

and AHN2 datasets, while they are classified separately (buildings in class 6: “buildings”, and bridges in 407 

class 26: “reserved”) in the AHN3 and AHN4 dataset — eliminating the errors caused by buildings and 408 

https://www.ahn.nl/dataroom
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bridges in the final data products of the AHN3 and AHN4. Powerlines are not separated from the 409 

“uitgefilterd” class in the AHN1 and AHN2 datasets, and in the AHN3 dataset included in the class 410 

“unclassified” in the AHN3 dataset,”, but they are classified separately in the AHN4 dataset separately 411 

classified as class 14: “powerline”. Yet, other human objects and infrastructures (e.g. cars, fences, and 412 

transmission towers) are not separated in any of the four AHN datasets and thus included in the non-413 

ground class (“uitgefilterd”) of the AHN1 and AHN2 datasets and in the class “unclassified” in the AHN3 414 

and AHN4 datasets, introducing some errors and biases in the final data products. There are also points 415 

appearing on water surfaces (e.g. reflected by boats and birds) which are included in the class “uitgefilterd” 416 

or “unclassified”, causing inaccuracies in the final products. In a previous study (Kissling et al., 2023), 417 

the accuracy of the 25 LiDAR metrics generated from the AHN3 dataset was assessed, particularly in 418 

relation to the error caused by using the class “unclassified” for calculating ecosystem structure properties. 419 

The results showed that the overall accuracy of the generated LiDAR metrics was high (0.90 ± 0.04, n = 420 

25 LiDAR metrics, tested in 100 randomly selected plots throughout the Netherlands, with 10 m × 10 m 421 

size per plot), ranging from 0.87–1. It is worth noting that the impact of those errors on the 25 LiDAR 422 

metrics varies, for instance, a stronger bias (i.e. the difference between the generated LiDAR metrics and 423 

the ground truth) can be observed in height metrics describing the top canopy layer (i.e. Hmax and Hp95) 424 

than in other height metrics or in metrics of vegetation cover in the low strata (i.e. BR_below_1 and 425 

BR_below_5) (Kissling et al., 2023). 426 

To minimize the inaccuracies of the data products caused by human infrastructures and water 427 

surfaces, we provide mask layers of water areas, roads, and buildings for both the AHN3 and AHN4 data 428 

products based on the Dutch cadaster data (TOP10NL) from 2018 (corresponding to AHN3) and 2021 429 

(corresponding to AHN4) (https://www.kadaster.nl/zakelijk/producten/geo-informatie/topnl, last access 430 

19 October 2024). TOP10NL is part of the Basic Topography Registry (BRT) which provides the standard 431 

topographic base files for the whole Netherlands. Like the LiDAR metrics, the masks are calculated at 10 432 

m resolution with the RD_new / EPSG 28992 projection coordinate system and provided as raster layers 433 

in GeoTIFF format. In the masks, water surfaces, buildings and roads were merged into one class with a 434 

pixel value assigned to 1 and the rest with a pixel value of 0 (Fig. 5). Since the historical versions of 435 

TOP10NL data are not available for AHN1 (1996–2003) and AHN2 (2007–2012), we can only provide 436 

the masks for the AHN3 and AHN4 datasets (see Sect. 7 for data availability). However, despite the 437 

potential changes in buildings and roads over time, it is still possible to apply the generated masks to all 438 

four AHN data products, for instance, to minimize errors and to have comparable areas of interest. Note 439 

that water surfaces were already masked out from the pulse penetration ratio layers by removing 0 values 440 

that result from areas with water bodies (i.e. falsely indicating dense vegetation). This was done by 441 

masking out water areas (from TOP10NL) from the pulse penetration ratio layers using the “Extract by 442 

Mask” function in ArcGIS Pro. Areas with buildings and roads have the value of 1 in the pulse penetration 443 

ratio layers which indicates total openness (no vegetation).  444 Formatted: Font color: Blue
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Since powerlines are not classified separately for the AHN1–AHN3 datasets and thus included in 445 

the vegetation metric calculation, it may cause abnormal values of vegetation structure, especially for 446 

vegetation height and vegetation cover above 20 m (Shi and Kissling, 2023)(Shi and Kissling, 2023). 447 

However, in AHN4 the points belonging to powerlines are classified separately in AHN4 (Table 1), which 448 

provides a way to minimize errors caused by powerlines in the data products generated from AHN1–449 

AHN3. We therefore extracted all powerline points from the AHN4 raw point cloud and generated a mask 450 

(at 10 m resolution) where pixels containing powerlines are assigned a value 1 and the rest as NoData 451 

(Fig. 5). Since the transmission towers are not classified separately in all four AHN datasets, the mask 452 

only covers the powerlines but not the transmission towers. Users can apply the powerline mask generated 453 

from AHN4 to the data products from AHN1–AHN3 and consequently improve the comparability of the 454 

LiDAR metrics across time. Note that the powerline infrastructure may also change over time, and the 455 

classification of powerlines from the AHN4 may thus not be fully representative forrepresent the 456 

powerline distributions in earlier time periods.  457 



26 

 

 458 



27 

 

 459 

Fig. 5 Examples of masking roads, water surfaces, and buildings as derived from the 2018 Dutch cadaster 460 

data (areas A, B, and C) and powerlines generated from the AHN4 (area D). Illustrated is the rasterized 461 

mask (first column), the generated vegetation height metric (i.e. Hp95) from AHN3 (second column), and 462 
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the corrected LiDAR metricvegetation height using the masks (third column). Four subareas show the 463 

inaccuracies in the originally generated LiDARvegetation height metric and the removal effect of using 464 

the mask for roads (area A), water (area B), buildings (area C), and powerlines (area D). A mask value of 465 

1 represents the pixels with roads, water surfaces, buildings, and powerlines, while value 0 or NoData 466 

represents the rest. The masks and the LiDAR metrics are at 10 × 10 m resolution. The subareas A–D are 467 

located around Arnhem in the east of the Netherlands (5.9102228°E, 51.9825248°N). Hp95 = 95th 468 

percentile of vegetation height.  469 

3.4.2 Strip issues 470 

Several strip patterns occur in the data products from AHN2 (Fig. 6). This strip issue specifically affects 471 

the pulse penetration ratio layer (representing vegetation openness), where both ground points (“ground” 472 

class) and vegetation points (“unclassified” class) were used for the metric calculation. A possible reason 473 

could be that the scan angle of the laser scanner used for point cloud acquisition was rather wide, and that 474 

the scanner thus has received more laser pulses from the areas located at the edges of the flight lines. 475 

Those overlapping areas (edges of the flight lines) often have a doubled point density, which also 476 

contributes to the strip patterns in the calculation of the LiDAR metrics using ground points (e.g. pulse 477 

penetration ratio). This issue onlymost occurs in an area in the centre of the Netherlands (Fig. 6). Other 478 

LiDAR-derivedSome vegetation density metrics representing vegetation height, cover, and structural 479 

variability do not(e.g. BR_below_1, BR_below_5) also seem to be influenced by this strip issue. This 480 

strip issue was not observed in other AHN data products. 481 
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 482 

Fig. 6 Strip issues in the AHN2 dataset. The point density (black and white, including all points) and the 483 

pulse penetration ratio (colour, representing vegetation openness) show similar strip patterns.   484 

3.4.3 Abnormal values 485 

A few pixels with abnormal values still exist in the final products. For instance, several pixels in the Hp95 486 

layer have a value higher than 100 m, which cannot represent the upper canopy of vegetation since the 487 

tallest tree in the Netherlands (a Douglas Fir, Pseudotsuga menziesii, i.e. a tall and fast-growing conifer 488 

native to western North America which was planted between 1860 and 1870 in Apeldoorn, the 489 

Netherlands) has been measured to be ~50 meter tall. More generally, most measurements of the talltallest 490 

trees in the Netherlands range between 20–45 m. Hence, abnormal values of vegetation height (e.g. > 50 491 

m) most likely reflect the occurrence of human infrastructures that are not included in the AHN1 and 492 

AHN2 class “uitgefilterd” or not sufficiently captured in the AHN3 and AHN4 classes “building” and 493 

“reserved”, e.g. aerial and radio masts (up to 350 m tall), tall industrial and meteorological towers and 494 

chimneys (50–200 m), cranes (50–130 m), elements of bridges (e.g. pylons and steel cables up to 140 m 495 

tall), wind turbines (up to 260 m) and powerlines (up to 80 m). Flying objects, such as birds and planes, 496 

can also be captured in the datasets, resulting in abnormal height values in the data products. We 497 

recommend filtering out those abnormal values before using the data products for further analysis, e.g. 498 

by removing grid cells with Hp95 > 50 m. , Hp95 > 40 m or Hp95 > 30 m.  499 
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Although the Netherlands has a rather flat terrain, it is worth noting that the normalization method 500 

implemented in the Laserfarm workflow may introduce inaccuracies in normalized vegetation height 501 

values, especially if steep terrain occurs within a grid cell (Kissling et al., 2022).(Kissling et al., 2022). 502 

When applying the same workflow for other countrycountries or regions, abnormal values may occur in 503 

the areas with drastic topographic changes (e.g. cliffs, mountainous area). Users may consider using a 504 

different normalization method, for instance, normalizing non-ground points by subtracting the derived 505 

DTM from all points, or by interpolating the elevation of non-ground points using the exact position of 506 

ground points beneath (Roussel et al., 2020)(Roussel et al., 2020). Some studies also have 507 

suggestedsuggest to use raw point clouds (e.g. the unnon-normalized DSM) to preserve the geometry of 508 

tree tops or plant area index profileprofiles in high slope areas (Khosravipour et al., 2015; Liu et al., 509 

2017).  510 

Since we only used the points from the “unclassified” class of the AHN datasets for calculating 511 

vegetation metrics (except for the pulse penetration ratio where all points were used), grid cells with no 512 

vegetation points resulted in NA values. Those areas are often bare ground, buildings or water bodies, 513 

which should be excluded from vegetation structure assessments. We therefore generated a NA value 514 

mask for each AHN dataset (AHN1–AHN4), which can be used for masking areas that have potentially 515 

no vegetation (See Sect. 7). Those NA value masks can also be combined and used for vegetation change 516 

detection across multi-temporal AHN data products. Note that NA values can also result in areas where 517 

very low vegetation is misclassified as ground points, given that the vertical accuracy of the z values in 518 

AHN products is typically 5–15 cm (Table 1). Hence, ‘no-vegetation areas’ as derived from the NA value 519 

masks can differ from the real land cover. 520 

3.4.4 Sensitivity analysis  521 

We conducted a sensitivity analysis to gain a better understanding of the robustness of the LiDAR metrics 522 

in relation to the varying pulse densities of the different AHN datasets. We focused on pulse density (i.e. 523 

density of the first return points) instead of point density (i.e. density of all return points), as pulse density 524 

is less dependent on instrument-specific multiple-return detection capabilities. This makes it more directly 525 

related to the scanning parameters (e.g. pulse rate, scanning geometry) and conditions (e.g. flight speed, 526 

altitude), reflecting a clearer measure of scan quality. For the four completed AHN surveys, only the 527 

AHN3 and AHN4 provide pulse information (e.g. “return number”, “number of returns”) in the point 528 

cloud, whereas the AHN1 and AHN2 does not provide such information. For the latter two, we therefore 529 

approximated the pulse information by assuming a pulse density of 1/4 and 1/2 of the AHN3. Since 530 

varying pulse density may have different impacts on LiDAR metrics from structurally different habitat 531 

types, we performed the sensitivity analysis for five main habitat types (i.e. dunes, marshes, grasslands, 532 

shrublands, and woodlands) within Natura 2000 sites in the Netherlands. For each habitat type, 100 533 

sample plots (10 m × 10 m, 500 plots in total) were randomly selected where Hp95 is not NA (assuming 534 
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vegetation occurring in the plots) (see details of plot selection in Appendix A). For each sample plot, the 535 

pulse density of the AHN4 was systematically down-sampled to the same pulse density as AHN3, and 536 

then to 1/2 of the pulse density of the AHN3 (assuming comparable with AHN2), and lastly to 1/4 of the 537 

pulse density of the AHN3 (assuming comparable with AHN1). For systematic down-sampling, we used 538 

the same methodology as described in Appendix B of Kissling et al. (2024a), i.e. the first return points 539 

were first sorted according to their GPS acquisition time (from earliest to latest) and then down-sampled 540 

to the different densities. For instance, for woodlands, we down-sampled the pulse density from 25 541 

pulses/m2 (AHN4) to 14 pulses/m2, 7 pulses/m2, and 4 pulses/m2, respectively. We then compared the 25 542 

LiDAR metrics generated from the original AHN4 point cloud to those from the down-sampled point 543 

clouds for each habitat type. Our analysis revealed that almost all LiDAR-derived vegetation metrics in 544 

all habitats are robust to varying pulse densities at 10 m resolution, even when calculated with strongly 545 

down-sampled pulse densities of ≤ 4 pulses/m2 (see Figure B1–B5 in Appendix B). The exception were 546 

canopy cover (“Density_above_mean_z”) and Shannon index (“Entropy_z”) which markedly decreased 547 

with lower pulse densities in all habitat types, and the coefficient of variation of vegetation height 548 

(“Coeff_var”) in grasslands and shrublands (see Figure B3–B4 in Appendix B). Some metrics in 549 

grasslands also showed larger variability with down-sampled pulse densities. 550 

Given the vertical accuracy of AHN2–AHN4 (i.e. 5–15 cm), classification related errors, and the 551 

potential influence of data acquisition time, we suggest that small vegetation changes (e.g. less than 0.5–552 

1 m) should be interpreted with caution. These can be influenced by vertical height uncertainties, low 553 

vegetation points being wrongly classified as ground points, or differences in leaf phenology due to 554 

varying data acquisition times rather than representing real vegetation changes. When comparing 555 

vegetation changes between the AHN3 and AHN4 metrics, users can make use of the flight time raster 556 

layers to take vegetation phenology differences into account. Based on our sensitivity analysis, we also 557 

suggest that users should be aware that some LiDAR metrics from open and heterogeneous habitats such 558 

as grasslands and shrublands might be less robust to varying point and pulse densities than those from 559 

dunes, marshes and woodlands.   560 

4 Demonstration of ecological use cases  561 

4.1 Monitoring forest structural change across time using multi-temporal ALS data 562 

As a use case, we demonstrate here how the multi-temporal data products generated from the Dutch ALS 563 

surveys can capture forest structural change over the past two decades (2000–2023). We included the 564 

ongoing ALS campaign (AHN5) since the data were made available for the sample area (central location 565 

coordinates: 5.7409230°E, 52.3250517°N, 5.7409230°E) at the time when the analysis was conducted. 566 

This provided a longer time series for detecting forest change. The sample area (in a forest area north of 567 

the national park De Hoge Veluwe) has experienced a clear forest cut in 2011 (between AHN2 and AHN3 568 
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surveys), with further forest loss and some regenerations captured by AHN4, while the latest AHN5 569 

showed a forest regrowth in the middle-low vegetation strata (< 10 m) compared to AHN4 (Fig. 7). The 570 

histograms derived from point clouds from AHN1–AHN5Based on the AHN point clouds, the average 571 

vegetation height changed from 20.9 m (SD: ± 4.9 m) (AHN1) to 22.6 m (SD: ± 8.0 m) (AHN2), and 572 

showed a drastic decrease from 18.0 m (SD: ± 12.1 m) (AHN3) to 3.1 m (SD: ± 4.9 m) (AHN4), and then 573 

a slight regrowth to 3.4 m (SD: ± 2.6 m) (AHN5). The histograms derived directly from the AHN1–574 

AHN5 point clouds show the distribution of points shifting from tall vegetation (above 20 m, AHN1–575 

AHN3) to low vegetation (below 10 m, AHN4 and AHN5). Due to the very low point density of the 576 

AHN1 data, detailedhigh-resolution information on vegetation structure in the year 2000 is lacking. 577 

However, the histogram from AHN1 implies a similar pattern of canopy height as that from AHN2 (Fig. 578 

7). Google Earth imageries obtained on the closest dates available from each AHN survey also provide a 579 

good reference for the forest change events, except for the time of AHN1.  580 

Six selected LiDAR-derived vegetation metrics derived from AHN1–AHN5 at 10 m resolution 581 

effectively capture the changes in vegetation structure over time (Fig. 8). The 95th percentile of vegetation 582 

height (Hp95) and mean vegetation height (Hmean) highlight reductions in forest canopy height due to 583 

cutting in 2011 (between AHN2 and AHN3) and in 2019 (between AHN3 and AHN4). The pulse 584 

penetration ratio (PPR) reveals shifts in vegetation openness, with openness peaking in AHN4, while the 585 

density of vegetation points at 2–3 m (BR_2_3) indicates regrowth in the understory, particularly in 586 

AHN4 and AHN5 (after 2021). The Shannon index (entropy_z) reflects the vertical distribution of 587 

vegetation points (i.e. evennessproportion of points within 0.5 m height layers), with AHN2 showing the 588 

highest value due to a more even point distribution of the canopy foliage before the canopy was cut. 589 

AHN3 shows the widest Shannon index range, capturing both high canopy trees and new re-growth. The 590 

standard deviation (i.e. vertical variability) of vegetation height (Hstd) shows a similar pattern as seen in 591 

Hp95. 592 
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 593 

Fig. 7  Forest structural change in a sample plot (100 m × 100 m) between 1998–2023 captured by the 594 

multi-temporal AHN datasets (AHN1–AHN5). The histograms were generated from each AHN point 595 
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cloud, showing the distribution of the normalized vegetation height within the plot. The point clouds were 596 

coloured by height (blue indicates lower vegetation height and red indicates higher vegetation height). 597 

AHN1 has a rather poor point density, but shows a histogram of vegetation height that is similar to AHN2. 598 

The forest cut can be observed from the point clouds of AHN3 and AHN4 compared to AHN2, with forest 599 

regrowth occurring in AHN5. Google Earth imageries from the example area show the changes of the 600 

forest. Note that the dates of the Google Earth imageries do not correspond exactly to the dates of the 601 

airborne laser scanning surveys, but to the closest dates available. Map data: © Google Earth. 602 

 603 

Fig. 8 Boxplots of LiDAR metrics derived from multi-temporal AHN datasets capturing the changes of 604 

the vegetation structure in a 100 m × 100 m sample area (compare Fig. 7). (a) The 95th percentile of 605 

vegetation height (Hp95) and the mean vegetation height (Hmean) representing vegetation height. (b) The 606 

pulse penetration ratio (PPR) and the density of vegetation points between 2–3 m (BR_2_3) representing 607 

vegetation cover. (c) The Shannon index (Entropy_z) and the standard deviation of vegetation height 608 

(Hstd) representing vegetation structural variability. Boxes show the median and interquartile range, with 609 
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whiskers extending to 1.5 times the interquartile range and outliers are plotted as dots. Each grey line 610 

represents a single pixel (10 m × 10 m) value changing from AHN1–AHN5, showing the influence of the 611 

events on vegetation within each pixel (e.g. forest cut and regrowth).  612 

4.2 Comparison of vegetation structural difference within Natura 2000 sites 613 

In a second use case, we analyse how vegetation structure varies spatially across different Natura 2000 614 

habitat types in the Netherlands. Terrestrial habitats were categorized into five main classes: dunes, 615 

marshes, grasslands, shrublands, and woodlands, based on the dominant habitat type within each site (see 616 

details in Appendix A). For each habitat class, 100 random sample plots (10 m × 10 m, 500 plots in total) 617 

were selected where Hp95 is not NA (assuming vegetation occurring in the plots) (Figure A1). We used 618 

the data products from AHN4 for the analysis as they are the latest complete products for the whole 619 

Netherlands. Four LiDAR metrics were compared: the 95th percentile of vegetation height (Hp95), 620 

vegetation point density at 1–2 m (BR_1_2) and 4–5 m (BR_4_5), and the coefficient of variation in 621 

vegetation height (Coeff_var). Structural differences among the five habitat types were assessed using the 622 

non-parametric Kruskal-Wallis test by ranks (Kruskal and Wallis, 1952)Structural differences among the 623 

five habitat types were assessed using the non-parametric Kruskal-Wallis test by ranks (Kruskal and 624 

Wallis, 1952), which compares two or more independent groups of equal or different sample sizes without 625 

assuming a normal distribution of the residuals. Pairwise comparisons of the statistical significance were 626 

conducted among groups (i.e. habitat types) using the Wilcoxon rank-sum test (Wilcoxon et al., 627 

1970)(Wilcoxon et al., 1970).   628 

The strongest structural differences among the five habitat types were observed in canopy height 629 

(Hp95) and vegetation density in the lower strata (BR_1_2), followed by vegetation vertical variability 630 

(Coeff_var) and vegetation density in the middle strata (BR_4_5) (Fig. 9). Canopy height (i.e. Hp95) of 631 

both woodlands and shrublands was highest and showed a statistically significant difference to all other 632 

habitat types, whereas grasslands, marshes and dunes did not differ in canopy height (Fig. 9a). The latter 633 

three habitat types showed a median canopy height of ~ 2.3 m, whereas it is around 9.9 m and 17.6 m for 634 

shrublands and woodlands, respectively. Vegetation density in the low vegetation stratum (between 1–2 635 

m) also did not statistically differ between grasslands, marshes, and dunes (Fig. 9b). However, woodlands 636 

and shrublands with their more shaded understory and stronger light competition had proportionally much 637 

lowerless vegetation densities in the lower layer (between 1–2 m) than the three open habitat types (Fig. 638 

9b). In the mid-layer (4–5 m), only the vegetation density of woodlands and marshes showed a statistically 639 

significant difference (Fig. 9c). The very low mid-layer density in woodlands may be duereflects that 640 

understory shrubs are proportionally underrepresented compared to the vegetation density of high canopy 641 

from trees limiting growth in the understory (e.g. shrubs),, whereas shrubs and trees in marshes can be 642 

abundant but may generally have a lower canopy height than woodland trees, thus showing high 643 

vegetation density at 4–5 m. In terms of structural variability, grasslands and marshes have the highest 644 
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median values of the coefficient of variation of vegetation height across the 100 plots, showing significant 645 

differences to woodlands, shrublands and dunes (Fig. 9d). This probably reflects a high heterogeneity in 646 

vegetation structure in both grasslands and marshes, where a large variability fromof low tovegetation 647 

(grasses, herbs) and high vegetation is captured(shrubs, trees) can be present within the 10 m × 10 m 648 

plots. It is also the only metric among the four selected metrics where dunes showed statistically 649 

significant differences to grasslands and marshes. 650 

 651 

Fig. 9 Comparison of ecosystem structure between five Natura 2000 habitat types using four different 652 

LiDAR metrics of vegetation structure. (a) Canopy height (the 95th percentile of vegetation height, Hp95), 653 

(b) vegetation density at 1–2 m (BR_1_2), (c) vegetation density at 4–5 m (BR_4_5), and (d) structural 654 

variability of vegetation height (coefficient of variation in vegetation height, Coeff_var). The bars above 655 

the violin plot indicate whether there is a statistical significance between two compared habitat types. The 656 

pairwise comparisons of the statistical significance were conducted using the Wilcoxon rank-sum test 657 

after the non-parametric Kruskal-Wallis test by ranks. The significant level is marked as follows: *** (p 658 

< 0.001), ** (p < 0.01), and * (p < 0.05). Red dots indicate the median value (�̂�𝑚𝑒𝑑𝑖𝑎𝑛) of the LiDAR 659 

metrics measured for each habitat type. Note that not all sampled plots have vegetation points (from class 660 

“unclassified”) between 1–2 m and between 4–5 m, therefore the total number of sample plots for the 661 

“BR_1_2” and “BR_4_5” analysis was < 100 for each habitat type (after removing NA value). The NA 662 

value also occurs for “Coeff_var” when there is only one point (from class “unclassified”) in the sampled 663 

plot (see metric calculation in Table 3).  664 
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5 Discussion 665 

We present a set of multi-temporal high-resolution data products of ecosystem structure derived from 666 

country-wide ALS surveys of the Netherlands (AHN1–AHN4), capturing vegetation structure dynamics 667 

over the past two decades (1998–2022). For each AHN dataset, we provide 25 LiDAR-derived vegetation 668 

metrics as GeoTIFF raster layers representing vegetation height, vegetation cover, and vegetation 669 

structural variability at 10 m resolution. We further complement these metrics layers with auxiliary data 670 

to reduce uncertainties in metric calculations and to facilitate multi-temporal comparisons. In total, we 671 

processed ~ 70 TB (uncompressed) raw point clouds from four national ALS surveys into ~ 59 GB 672 

GeoTIFF raster layers as final data products, together with auxiliary data (~ 12 GB) including raster layers 673 

of point density, pulse density, flightline timestamp information, terrain and surface elevation, and masks 674 

of water areas, roads, buildings, powerlines and NA values. These data products hold great value for 675 

ecological and geospatial applications, including species distribution modelling, habitat characterization, 676 

and forest and biodiversity dynamics monitoring. The availability of these ready-to-use LiDAR metrics 677 

enables ecologists and researchers to integrate detailed ecosystem structural information from complex 678 

3D point clouds into their studies without the burden of handling large ALS datasets and computational 679 

challenges. Additionally, the dataset serves as a valuable resource for detecting vegetation structural 680 

changes and analysing ecosystem dynamics using multi-temporal remote sensing techniques. 681 

Several key aspects should be considered when utilizing the presented data products. First, many 682 

commonly used LiDAR-derived metrics, especially those related to vegetation height (e.g. maximum 683 

vegetation height, 95th percentile height, mean height), are often highly correlated (Kissling and Shi, 2023; 684 

Shi et al., 2018a). To gain a more comprehensive understanding of ecosystem structure, it is advisable to 685 

use a complementary set of LiDAR metrics that captures different dimensions of ecosystem structure, or 686 

to use dimensionality reduction methods (such as a principal component analysis) to avoid multi-687 

collinearity (Kissling and Shi, 2023)(Kissling and Shi, 2023). For instance, using the coefficient of 688 

variation of vegetation height (Coeff_var) instead of the standard deviation (Hstd) as a metric of structural 689 

variability can avoid correlations with mean or canopy vegetation height (Hmean and Hp95) (Kissling 690 

and Shi, 2023)(Kissling and Shi, 2023). Second, vegetation cover in different height layers is a crucial 691 

component of forests and other ecosystems, influencing energy fluxes between the ecosystem and the 692 

atmosphere (Shugart et al., 2010; Toivonen et al., 2023). Unlike the cover metrics proposed by Moudrý 693 

et al. (2022)(2022), where herbaceous, shrub and tree layers were used to represent different vegetation 694 

strata, our metrics use fixed height intervals (e.g. 1–2 m, 2–3 m, 3–4 m, 4–5 m, 5–20 m, above 20 m) to 695 

ensure applicability across diverse ecosystems. Not all ecosystems share the same vegetation growth 696 

forms, making these height bin-defined metrics more ecosystem-agnostic. The cover metrics from 697 

different height layers can be used as predictors of animal species richness (Goetz et al., 2007), species 698 

distributions (Davies and Asner, 2014),(Davies and Asner, 2014), plant diversity (Coverdale and Davies, 699 
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2023) and habitat characteristics (Vierling et al., 2008; Bakx et al., 2019). Third, LiDAR metrics related 700 

to vegetation structural variability (e.g. Hstd, Hskew, and Hkurt) are often influenced by various 701 

ecological and sensing methodology-related factors, making them potentially challenging to interpret 702 

(Assmann et al., 2022)(Assmann et al., 2022). However, metrics representing structural variability are 703 

valuable input for models assessing forest functional diversity and structural types, (Atkins et al., 2023), 704 

especially when combined with optical remote sensing (Kamoske et al., 2022; Zheng et al., 2021). Thus, 705 

careful selection of LiDAR metrics for specific applications is highly recommended. Terrain and surface 706 

descriptors such as DTMs and DSMs (or canopy height model as derivative) can be additionally 707 

considered because they are important for forest and habitat classifications (Shoot et al., 2021)(Shoot et 708 

al., 2021), quantifying soil moisture or wetness (Assmann et al., 2022)(Assmann et al., 2022), and 709 

analysing species composition (Toivonen et al., 2023; Hill and Thomson, 2005). However, since the AHN 710 

programme has already provided DTM and DSM layers for the AHN2, AHN3, and AHN4 datasets at 0.5 711 

m and 5 m resolutions in their repository, we did not reproduce these data products.  712 

While multi-temporal ALS data offer valuable insights into fine-scale vegetation structural 713 

changes and ecosystem dynamics, there are also notable challenges, especially when performing change 714 

detection across point clouds with different characteristics, such as point density, scanning angle, and 715 

varying vertical and horizontal accuracy (White et al., 2016).and spatial comparisons across point clouds 716 

with different characteristics, such as point/pulse density, scanning angle, and varying vertical and 717 

horizontal accuracy (White et al., 2016; Kissling et al., 2024a). Instead of performing change detection 718 

directly on point clouds (Xu et al., 2015; Kharroubi et al., 2022), many studies use rasterized LiDAR 719 

metrics for monitoring changes on vegetation structure. This is computationally less computational 720 

intensive and better suited for areas with complex vegetation structure as it regularizes complex 3D point 721 

cloud information onto a 2D grid (Vastaranta et al., 2013; Choi et al., 2023). Several commonly used 722 

change detection methods can be applied to the multi-temporal data with rasterized LiDAR metrics. These 723 

include image differencing (i.e. subtracting the pixel values of one raster layer, such as Hp95 from AHN3, 724 

from the other, such as Hp95 from AHN4), threshold-based change detection (i.e. classifying the pixels 725 

as “changed” or “unchanged” based on a set threshold after image differencing), and post-classification 726 

comparison (i.e. comparing classified raster layers, such as maps of vegetation types based on derived 727 

LiDAR metrics, from different time periods) (Noordermeer et al., 2019; Dalponte et al., 2019). Those 728 

methods can be applied to the provided AHN data products, especially after masking water areas, roads, 729 

buildings, and powerlines, and NA values. Change metrics derived from multi-temporal LiDAR data can 730 

also be combined with clustering methods to characterize areas of structural changes, such as 731 

modifications of forests by the eastern spruce budworm (Trotto et al., 2024)(Trotto et al., 2024). Together 732 

with the development of deep learning on change detection (Bai et al., 2023)(Bai et al., 2023), more in-733 

depth insights from the presented AHN datasets can be revealed, enabling accurate and comprehensive 734 

analysis of ecosystem dynamics. Given the consistent coordinate system used in the four AHN datasets 735 
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(EPSG: 28992, NAP: 5709; see Table 1), additional georeferencing steps are unnecessary before 736 

conducting further analysis with the data products that we provide. The scan angle, overlapping rate, and 737 

vertical accuracy of AHN2–AHN4 are rather comparable (Table 1), potentially reducing errors related to 738 

systematic differences across time. However, the data products are generated from point clouds with 739 

different point density, which may introduce inconsistencies in capturing vegetation structure. 740 

Nevertheless, analyses of tree growth using multi-temporal LiDAR data with different point density in 741 

forests of Scotland implied that the accuracy does not decrease as long as the point density is exceeding 742 

7 pts m-2 (Zhao et al., 2018). Several studies also indicated that the spatial distribution of the point cloud 743 

remains similar even if the point density varies and increasing point density does notand pulse density, 744 

which may introduce inconsistencies in capturing vegetation structure. However, our sensitivity analyses 745 

showed that most of the vegetation metrics calculated at a 10 m resolution are robust in relation to changes 746 

in pulse density, even when down-sampled to pulse densities of ≤ 4 pulses/m2. This was largely consistent 747 

across different habitat types. Exceptions are canopy cover (“Density_above_mean_z”) and the Shannon 748 

index (“Entropy_z”), and to a lesser extent the coefficient of variation of vegetation height (“Coeff_var”), 749 

especially in grasslands and shrublands. Low vegetation (e.g. in grasslands and dunes) is generally prone 750 

to be misclassified as ground points and a low pulse and point density can influence normalization and 751 

feature extraction. We therefore recommend that temporal vegetation changes of < 0.5–1 m should be 752 

carefully explored, e.g. by using the provided auxiliary data of point density, pulse density, and flightline 753 

timestamp information. Still, several studies indicate that the spatial distribution of the point cloud 754 

remains similar with variation in point density and that increases in point density do not necessarily 755 

increase area-based estimation accuracy (Hudak et al., 2012; Fekety et al., 2015; Cao et al., 2016). We 756 

therefore anticipate that the data products from AHN2, AHN3, and AHN4 are sufficiently comparable 757 

for reliable for a careful change detection. However, due to the low point density and reduced accuracy, 758 

we do not recommend including the data products from AHN1 in multi-temporal analyses.  759 

All software and tools employed in the pipeline for producing the data products are free and open-760 

source, ensuring a standardized yet flexible processing framework for country-wide ALS data and 761 

enabling reproducibility for future surveys. While existing ALS processing software such as OPALS 762 

(Pfeifer et al., 2014)(Pfeifer et al., 2014) and LAStools (http://lastools.org/) are not (fully) open-source, 763 

and others like FUSION (https://forsys.sefs.uw.edu/fusion/fusionlatest.html), CloudCompare 764 

(https://www.danielgm.net/cc/), and lidR (Roussel et al., 2020)(Roussel et al., 2020) lack horizontal 765 

scalability and doare not providespecifically designed for processing large ALS datasets on cloud 766 

infrastructures with reproducible end-to-end workflows for large ALS datasets, the employed 767 

“Laserfarm” workflow fills a niche by addressing these challenges. Laserfarm is a high-throughput, 768 

modular, and reproducible end-to-end workflow designed for efficiently extracting LiDAR metrics of 769 

ecosystem structure using distributed computing infrastructures (Kissling et al., 2022)(Kissling et al., 770 

2022). With the workflow materials that we provide, users can implement additional pre-processing steps 771 
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(e.g. splitting, reclassification) and customize required parameters based on the input ALS data and 772 

available computing resources. The demonstrated configurations of IT infrastructure, computational cost, 773 

and time efficiency for processing multi-temporal AHN datasets serve as a reference for users to estimate 774 

the processing requirements for future national or regional ALS datasets. It is worth noting that the 775 

normalization method implemented in the Laserfarm workflow subtracts the elevation of the lowest point 776 

within a given neighbourhood to remove the influence of the terrain. This approach was specifically 777 

chosen for its effectiveness in handling small ditches and canals that are common in the Dutch landscape, 778 

providing a straightforward way to generate positive height values after normalization. However, it may 779 

be less suited for capturing continuous normalized height values and fine-scale terrain variability in 780 

smaller grid cells (< 1 m) (Kissling et al., 2022).(Kissling et al., 2022). For complex terrains and 781 

mountainous areas, both ground classification and terrain model derivation remain challenging and could 782 

lead to uncertainties in the generation of vegetation structure properties.       783 

The data products presented here also make a great contribution to multi-source data fusion in 784 

remote sensing and ecological research (Ghamisi et al., 2019)(Ghamisi et al., 2019). Through the two use 785 

cases in Sect. 4, we demonstrate the utility of these multi-temporal datasets for monitoring long-term 786 

forest dynamics and characterizing habitat types. These applications can be further extended to other 787 

studies, such as improving land cover classification accuracy, particularly for objects composed of similar 788 

materials (e.g. grasslands, shrubs, and trees). Moreover, the fusion of vegetation structural information 789 

from LiDAR, spectral data from optical remote sensing (e.g. high-resolution digital aerial 790 

photogrammetry, Landsat and Sentinel-2 imagery), climate data, and field measurements underscores the 791 

value of integrating complementary remote sensing data across diverse applications. These include 792 

wildlife habitat characterization (Boelman et al., 2016)(Boelman et al., 2016), tree species identification 793 

(Shi et al., 2018b)(Shi et al., 2018b), forest structure and carbon stock mapping (Li et al., 2024)(Li et al., 794 

2024), as well as assessing disturbances and recovery of ecosystem process (Li et al., 2023)(Li et al., 795 

2023). Additionally, combining ecosystem structure data from multiple LiDAR platforms, such as 796 

terrestrial, drone-based, airborne, and spaceborne LiDAR, could provide a more comprehensive 797 

understanding of ecosystem structure, spanning from understory to canopy level and across local plots to 798 

national or continental level. 799 

6 Code availability 800 

Jupyter Notebooks for processing AHN datasets: https://github.com/ShiYifang/AHN 801 

Laserfarm workflow repository: https://github.com/eEcoLiDAR/Laserfarm 802 

Laserchicken software repository: https://github.com/eEcoLiDAR/laserchicken 803 

Code for downloading AHN dataset: https://github.com/ShiYifang/AHN/tree/main/AHN_downloading 804 

Code for generating masks for AHN datasets: https://github.com/ShiYifang/AHN/tree/main/AHN_masks 805 
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Code for demonstration of ecological use cases: https://github.com/ShiYifang/AHN/tree/main/Use_case 806 

7 Data availability 807 

All data products from AHN1–AHN4 (25 GeoTIFF layers for each AHN dataset), threesix DTM and 808 

DSM layers (for AHN2–AHN4), seven masks (two for roads, water surfaces, and buildings from both 809 

AHN3 and AHN4, and one for powerlines generated from AHN4),, and four for NA values for AHN1–810 

AHN4), four point density layers (for AHN1–AHN4), two pulse density layers (for AHN3–AHN4), and 811 

two flight timestamp layers (for AHN3–AHN4) are available from a Zenodo repository 812 

(https://doi.org/10.5281/zenodo.13940846) (Shi and Kissling 2024). The data used for the demonstrated 813 

use cases are also provided in the same repository. A detailed description of the provided data can be 814 

found in the README file in the data repository.  815 
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8 Conclusions 816 

Ecosystem structure information derived from country-wide ALS data becomes increasingly needed for 817 

biodiversity science and ecosystem monitoring. The multi-temporal data products of ecosystem structure 818 

and the employed workflow presented here not only provide ready-to-use information for ecosystem 819 

monitoring and modelling within the Netherlands, but also enable reproducing desired data products from 820 

existing and upcoming large-scale ALS data beyond the Netherlands. We highlight the capability of multi-821 

temporal ALS data products in capturing ecosystem structural dynamics across time and their usability in 822 

combination with other data sources. We also carefully evaluated the limitations and usability of 823 

generated data products and provided solutions or recommendations for future processing and usage. We 824 

envisage that the provided data products and the employed workflow will empower a wider use and 825 

uptake of ecosystem structure information in biodiversity and ecosystem science, land management, 826 

natural resource conservation, and policy support and decision making. 827 

  828 
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Appendix A 829 

The source information about Natura 2000 sites was retrieved from the Europe Environment Agency 830 

(Natura 2000 (vector) - version 2021). The shapefile of the Natura 2000 sites and the attributes of each 831 

site that we used for the analysis were downloaded via 832 

https://sdi.eea.europa.eu/datashare/s/JWt9KJCFMrPQDc7/download. The information on the habitat 833 

class (from the table named “Natura2000_end2021_HABITATCLASS.csv”) was used to group them into 834 

five habitat types (i.e. dunes, marshes, shrublands, grasslands, and woodlands). The table contains the 835 

following information: description of the habitat class, habitat code, site code, and percentage of habitat 836 

composition within the site.  837 

We first selected all the Natura 2000 sites within the Netherlands (i.e. SITECODE starting with 838 

NL), then summarized the highest percentage of habitat class within each site and grouped them into six 839 

main habitat types: water, dunes, marshes, shrubland, grassland, and woodland. For water, we included 840 

marine areas, sea inlets (habitat code: N01), tidal rivers, estuaries, mud flats, sand flats, and lagoons 841 

(habitat code: N02), and inland water bodies (habitat code: N06). For dunes, we included costal sand 842 

dunes, sand beaches, and machair (habitat code: N04). For marsh, we included bogs, marshes, water 843 

fringed vegetation, and fens (habitat code: N07) and salt marshes, salt pastures, and salt steppes (habitat 844 

code: N03). For shrubland, we included heath, scrub, maquis and garrigue, and phygrana (habitat code: 845 

N08). For grassland, we included dry grassland, steppes (habitat code: N09), humid grassland, mesophile 846 

grassland (habitat code: N10), and improved grassland (habitat code: N14). For woodland, we included 847 

broadleaved deciduous woodland (habitat code: N16), coniferous woodland (habitat code: N17), 848 

evergreen woodland (habitat code: N18) and mixed woodland (habitat code: N19). For each Natura 2000 849 

site, the habitat type with the highest composition percentage was chosen as the dominate habitat. In total, 850 

there were 197 Natura 2000 sites within the Netherlands, including 36 water sites, 25 dune sites, 23 marsh 851 

sites, 17 shrubland sites, 54 grassland sites, and 42 woodland sites. For our study, we excluded water sites 852 

for the vegetation structure analysis (remaining 161 sites in total). For each habitat type, we randomly 853 

selected 100 sample plots (10 m × 10 m for each plot, i.e. in total 500 plots) where Hp95 is not NA 854 

(assuming vegetation occurring in the plots) using the sampleRandom() function in R (Figure A1). The 855 

shapefile of the 500 sample plots across the Natura 2000 sites was then used to extract the pixel values of 856 

the LiDAR metrics for comparison.  857 

The shapefile of the Natura 2000 sites within the Netherlands (with habitat class information in 858 

attributes), 100 sample plots for each habitat class, original and grouped habitat class information (.csv 859 

files), and the R processing script are provided in the data repository (see Sect.7).  860 

 861 
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 862 

Figure A1. Natura 2000 sites and their habitat types in the Netherlands. The non-water habitat types were 863 

grouped into 5 classes (i.e. dunes, marshes, grasslands, shrublands, and woodlands) to conduct vegetation 864 

structure comparisons. For each class, we randomly sampled 100 plots (10 m × 10 m each) where Hp95 865 

was not NA (assuming that vegetation occurs in the plots) for the analysis (n = 500 in total).  866 

  867 
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Appendix B 868 

 869 

Figure B1. Robustness of vegetation metrics in dune habitats. Twenty-five LiDAR metrics (blue: 870 

vegetation height metrics, green: vegetation cover metrics, orange: vegetation structural variability 871 

metrics) were calculated with different pulse densities across 100 plots of 10 × 10 m resolution in dune 872 

habitats in the Netherlands. Pulse densities were systematically down-sampled based on their GPS time 873 

from the original AHN4 dataset to the pulse density of AHN3 and two lower pulse densities (i.e. 1/2 874 

and 1/4 of the pulse density of AHN3 to represent AHN2 and AHN1, respectively). Boxes represent the 875 

interquartile range, horizontal red lines the medians, whiskers extend to the 5th and 95th percentiles, 876 

and outliers are plotted as dots. See Table 3 for metric explanations. 877 
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 878 

Figure B2. Robustness of vegetation metrics in marsh habitats. Twenty-five LiDAR metrics (blue: 879 

vegetation height metrics, green: vegetation cover metrics, orange: vegetation structural variability 880 

metrics) were calculated with different pulse densities across 100 plots of 10 × 10 m resolution in marsh 881 

habitats in the Netherlands. Pulse densities were systematically down-sampled based on their GPS time 882 

from the original AHN4 dataset to the pulse density of AHN3 and two lower pulse densities (i.e. 1/2 883 

and 1/4 of the pulse density of AHN3 to represent AHN2 and AHN1, respectively). Boxes represent the 884 

interquartile range, horizontal red lines the medians, whiskers extend to the 5th and 95th percentiles, 885 

and outliers are plotted as dots. See Table 3 for metric explanations. 886 

 887 
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 888 

Figure B3. Robustness of vegetation metrics in grassland habitats. Twenty-five LiDAR metrics (blue: 889 

vegetation height metrics, green: vegetation cover metrics, orange: vegetation structural variability 890 

metrics) were calculated with different pulse densities across 100 plots of 10 × 10 m resolution in 891 

grassland habitats in the Netherlands. Pulse densities were systematically down-sampled based on their 892 

GPS time from the original AHN4 dataset to the pulse density of AHN3 and two lower pulse densities 893 

(i.e. 1/2 and 1/4 of the pulse density of AHN3 to represent AHN2 and AHN1, respectively). Boxes 894 

represent the interquartile range, horizontal red lines the medians, whiskers extend to the 5th and 95th 895 

percentiles, and outliers are plotted as dots. See Table 3 for metric explanations. 896 

 897 
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 898 

Figure B4. Robustness of vegetation metrics in shrubland habitats. Twenty-five LiDAR metrics (blue: 899 

vegetation height metrics, green: vegetation cover metrics, orange: vegetation structural variability 900 

metrics) were calculated with different pulse densities across 100 plots of 10 × 10 m resolution in 901 

shrubland habitats in the Netherlands. Pulse densities were systematically down-sampled based on their 902 

GPS time from the original AHN4 dataset to the pulse density of AHN3 and two lower pulse densities 903 

(i.e. 1/2 and 1/4 of the pulse density of AHN3 to represent AHN2 and AHN1, respectively). Boxes 904 

represent the interquartile range, horizontal red lines the medians, whiskers extend to the 5th and 95th 905 

percentiles, and outliers are plotted as dots. See Table 3 for metric explanations. 906 

 907 
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 908 

Figure B5. Robustness of vegetation metrics in woodland habitats. Twenty-five LiDAR metrics (blue: 909 

vegetation height metrics, green: vegetation cover metrics, orange: vegetation structural variability 910 

metrics) were calculated with different pulse densities across 100 plots of 10 × 10 m resolution in 911 

woodland habitats in the Netherlands. Pulse densities were systematically down-sampled based on their 912 

GPS time from the original AHN4 dataset to the pulse density of AHN3 and two lower pulse densities 913 

(i.e. 1/2 and 1/4 of the pulse density of AHN3 to represent AHN2 and AHN1, respectively). Boxes 914 

represent the interquartile range, horizontal red lines the medians, whiskers extend to the 5th and 95th 915 

percentiles, and outliers are plotted as dots. See Table 3 for metric explanations. 916 

  917 
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Appendix C 918 

Background 919 

Since the methods/algorithms used in the pre-classification of the AHN datasets are unclear (no specific 920 

documents or information are publicly available) and differences in pre-classification methods between 921 

AHN datasets can potentially lead to some biases in vegetation change detection (Fareed et al., 2023; 922 

Wu et al., 2019), we performed a preliminary assessment of the effect of terrain filtering on vegetation 923 

change detection across AHN datasets (i.e. AHN2–AHN4).  924 

Study area 925 

The study area for this analysis is in the Amsterdam Water Supply Dunes (AWD), which is a 34 km2 926 

dune ecosystem in the west of Amsterdam, stretching 8 km along the Dutch North Sea coast with a 927 

width varying from 1.5 to 5 km. The AWD area is dominated by various dune habitats, including 928 

shifting white dunes, fixed coastal dunes with herbaceous vegetation, dunes with sea-buckthorn 929 

formations, wooded dunes and humid dune slacks (Kissling et al., 2024b). Vegetation types include 930 

grasses (46 %), scrublands (22 %), forests (21 %), sand (6 %) and other low vegetation. To evaluate the 931 

impact of varying ground point classification approaches (for AHN2, AHN3, and AHN4) on derived 932 

LiDAR vegetation metrics, we selected three sample plots within the AWD area to conduct our 933 

analysis. We selected three sample areas (1 km × 1.3 km each) for this analysis, and the specific 934 

locations of each sample plots are: Area 1 (5.437882°E, 52.304127°N), Area 2 (5.480002°E, 935 

52.278998°N), and Area 3 (5.501239°E, 52.289103°N).  936 

Methods 937 

First, we computed 25 LiDAR-derived vegetation metrics using the pre-classified AHN datasets (class 938 

“unclassified” as in the main text. Second, we applied a filtering algorithm with identical parameter 939 

settings to the original multi-temporal AHN point clouds to reclassify the terrain and vegetation points 940 

consistently across AHN2–AHN4. We then derived the same 25 LiDAR metrics using the reclassified 941 

data, following the same workflow applied to the pre-classifications. All LiDAR metrics were derived 942 

and compared at a 10 m resolution. To further assess the differences in LiDAR-derived vegetation 943 

metric change across multi-temporal datasets, we conducted pairwise comparisons between AHN2 and 944 

AHN3, and between AHN3 and AHN4. The differences (delta metrics) were calculated by subtracting 945 

the vegetation metrics of the earlier datasets from those of the later ones (i.e. subtracting AHN2 from 946 

AHN3 and subtracting AHN3 from AHN4). The height of non-ground points was normalized using the 947 

height of the lowest point within each 1 m × 1 m grid cell (in line with the Laserfarm workflow). The 948 

resulting vegetation metrics were first exported as GeoTIFF files with a 10 m resolution, after which 949 

pixel-wise subtraction was performed. 950 



51 

 

We used an iterative grid-based filtering approach to segment terrain (i.e. ground) points from 951 

raw LiDAR point clouds, enabling efficient separation of vegetation and ground points in the dune 952 

environments. This filtering approach consists of four steps: 953 

Step 1: Preprocessing 954 

This step mainly removes the outliers of the original point cloud of AHN datasets. The statistical 955 

outlier removal (SOR) was employed to remove noise points with the method proposed in Rusu et al. 956 

(2008). Suppose 𝑃 is a set of 3D points, and for each query point 𝑝𝑞𝑢𝑒𝑟𝑦 ∈ 𝑃,  𝑑 is the mean distance of 957 

a query point to its 𝑘 nearest neighbors. For all points in 𝑃, the mean distance and standard deviation of 958 

the distances of their 𝑘 nearest neighbors are then determined. Only those points are kept which have 959 

distances that are close to the mean distance of the closest neighbours, using Equation (1). 960 

𝑃𝑘 = {𝑝𝑞 ∈ 𝑃 |(𝜇𝑘 − 𝛼𝜎𝑘) ≤ �̅� ≤ (𝜇𝑘 + 𝛼𝜎𝑘)}                                    (1) 961 

Here, 𝛼 is a density threshold coefficient, and 𝜇𝑘 and 𝜎𝑘 are the mean and standard deviation of 962 

the distance from a query point to its 𝑘  closest neighbors. 𝑃𝑘  is the point set that is kept, i.e. after 963 

removing the outliers. 964 

Step 2: Grid initialization 965 

The original 3D point cloud of the AHN is divided into a virtual grid layer, starting with a coarse 966 

resolution. The indices of the grids are calculated using Equation 2. 967 

𝑛𝑖 =
𝑃𝑖−𝑃𝑚𝑖𝑛

𝑖

𝑆𝑖𝑧𝑒𝑔
𝑖 (𝑖 ∈ 𝑥, 𝑦, 𝑧)                                                        (2)   968 

Here, 𝑃𝑖 is the coordinates of a point and 𝑆𝑖𝑧𝑒𝑔
𝑖  is the grid size. 969 

Step 3: Elevation interpolation 970 

For each grid cell in the bottom layer, elevation 𝐸𝑔  is interpolated using a distance-weighted 971 

average of points within the grid using Equation 3. 972 

𝐸𝑔 =
∑𝐸𝑝(

𝐿

√2
−𝐷𝑔)

∑(
𝐿

√2
−𝐷𝑔)

                                                                  (3) 973 

Here, 𝐿 is the grid size, 𝐸𝑝 is the elevation of a point, and 𝐷𝑔 is the distance from the point to the 974 

geometric centre of the grid.  975 

Step 4: Iterative refinement 976 

The generated grids are iteratively subdivided by halving the grid size per iteration until reaching 977 

the minimum grid size. For the points that exceeding a height threshold above the interpolated terrain 978 

elevation are classified as vegetation points.  979 
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Finally, the original points are classified into terrain (i.e. ground) points and vegetation point 980 

categories. The classified vegetation and terrain points are applied to the computation of the LiDAR 981 

vegetation metrics. The parameter settings in this workflow were: minimum grid size: 1 m; maximum 982 

grid size: 15 m; height threshold: 0.5 m. 983 

Results and Conclusions 984 

Our results revealed that the differences between the vegetation changes generated from point clouds 985 

using the AHN pre-classification and using a consistent terrain filtering method across the AHN2–AHN4 986 

datasets is negligible. The only exceptions were the pulse penetration ratio (“PPR”), the coefficient of 987 

variation of vegetation height (“Coeff_var”), and the Shannon index (“Entropy_z”), where small 988 

differences were observed (Fig. C1–C3). This analysis thus provides first insights into the reliability of 989 

the pre-classification of the AHN datasets when calculating vegetation change. Conditional on those 990 

results, we conclude that most LiDAR metrics based on the pre-classifications of AHN (AHN2–AHN4) 991 

datasets are reliable, with only a few vertical variability metrics showing a detectable effect of potential 992 

differences in the ground classification methods between AHN2–AHN4 datasets. It should be noted that 993 

we conducted this assessment only in the Dutch coastal dunes, and similar assessments can be done across 994 

different sites and different habitats in future studies for a more comprehensive understanding on this 995 

topic. 996 



53 

 

 997 

 998 

Figure. C1 Pixel-wise comparisons of LiDAR-derived vegetation changes from Area 1 using the pre-999 

classifications from the AHN2–AHN4 datasets (blue) vs. those using a consistent terrain filtering method 1000 

across the three AHN datasets (orange). The total number of pixels in Area 1 is 13,416 (n = 13,416).  1001 

 1002 

 1003 
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 1004 

Figure. C2 Pixel-wise comparisons of LiDAR-derived vegetation changes from Area 2 using the pre-1005 

classifications from the AHN2–AHN4 datasets (blue) vs. those using a consistent terrain filtering method 1006 

across the three AHN datasets (orange). The total number of pixels in Area 2 is 13,416 (n = 13,416). 1007 
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 1008 

Figure. C3 Pixel-wise comparisons of LiDAR-derived vegetation changes from Area 3 using the pre-1009 

classifications from the AHN2–AHN4 datasets (blue) vs. those using a consistent terrain filtering method 1010 

across the three AHN datasets (orange). The total number of pixels in Area 3 is 13,416 (n = 13,416). 1011 

 1012 

 1013 

 1014 

 1015 

 1016 
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