
Reviewer 1 
The article presents a large dataset of 25 ecosystem structure metrics for the entire area of the 
Netherlands at 10 m resolution. The metrics are calculated from openly available airborne laser 
scanning (ALS) data and across multiple ALS campaigns, making it a highly valuable dataset to 
assess ecosystem dynamics. The article is well-written, with great attention to detail – I 
particularly commend the tables and figures that present a lot of information without feeling 
overly complex. The paper also follows a nice logical flow, from presenting the ALS pipeline, to 
detailed justifications for the derived metrics, to 2 sample case studies that have high relevance 
for applied research (changes in ecosystem structure + a comparison of structural indices 
across different ecosystem types). The resulting product provides insight into high resolution 
ecosystem change over at least 15 years from 2007-2022 (Note that I am not counting the first 
ALS campaign which likely does not reach minimum quality standards for ecological analysis). It 
thus has great potential to become a standard tool both for practitioners and researchers 
interested in ecosystems in the Netherlands. It could also become a nice reference dataset for 
similar efforts at larger scale. 

Response: Thank you very much for your positive evaluation. We appreciate your valuable 
comments which have helped us to improve the quality of the manuscript. We have thoroughly 
addressed your comments one by one. See details below. 

I will now provide my main comments, with line-by-line comments following below. 

Main comment 1: Robustness of pipeline to pulse density / leaf phenology 

The main issue where the authors have not (yet) convinced me is whether comparisons in time 
between different AHN surveys are robust to acquisition properties. Large disturbances (e.g. 
clear cutting, logging) will obviously be visible and can be separated from noise, but how about 
growth or smaller disturbances? The authors mention at the end of the introduction that 
intercomparisons between different instruments and scanning conditions could lead to 
considerable errors, but then do not really provide means to assess the sensitivity of the 
products or to correct for some of these problems. This is important, because the surveys of 
AHN1 and even AHN2 differ strongly from AHN3-5 in terms of pulse density, and even the more 
recent high quality surveys may differ in leaf phenology. E.g., a scan in April will likely already 
measure some vegetation in early leaf-on conditions, and this might create bias compared to a 
scan in December. 

Overall, I see three points that I would like the authors to address: 

1.  Sensitivity analysis: The authors should provide a sensitivity analysis of the pipeline with 
regard to pulse density, e.g., how much do the inferred 25 metrics change when the pulse 
density of a high quality scan (AHN4-5) is degraded to levels of AHN1 or AHN2. This can then 
be used to provide clear bounds on what is ecologically interpretable. The simplest way to do 



this would be to a) use the site in case study 1, degrade the point cloud from AHN5 and check 
robustness of the metrics, and b) to repeat case study 2, with the exact same sites and metrics, 
but with AHN1 or AHN2. Is the analysis reproducible for ecosystems with low vegetation and 
small differences between them? I do not expect all metrics to be perfectly stable for this study 
to be published, but having an estimate of uncertainty for all of them would be key. Note that I 
would degrade pulse density (the number of shots) and not point density (the number of shots + 
returns) to accurately simulate a lower-quality scan. 

Response: Thank you for your insightful comment. We agree that the robustness of LiDAR 
metrics against varying pulse density is crucial for the interpretation and usage of the data 
products. We have therefore conducted a comprehensive sensitivity analysis on the robustness of 
the generated 25 LiDAR metrics based on different pulse densities. Note that for the four 
completed AHN surveys only the AHN3 and AHN4 provide pulse information (e.g. “return 
number”, “number of returns”) in the point cloud, whereas the AHN1 and AHN2 do not provide 
such information. Considering that different pulse densities can potentially have different effects 
on LiDAR metrics in different habitat types, we have performed this sensitivity analysis in five 
major habitat types (i.e. dunes, marshes, grasslands, shrublands, and woodlands) within Natura 
2000 sites in the Netherlands. For each habitat type, we randomly selected 100 sample plots (10 
m × 10 m, 500 plots in total) in which Hp95 is not NA (i.e. assuming that vegetation occurs in 
the plots). The detailed methodology for plot selection is provided in Appendix A. For each 
sample plot, the pulse density (i.e. the density of first return points) of AHN4 was systematically 
down-sampled to the same pulse density as AHN3, and then to 1/2 of the pulse density of AHN3 
(assuming comparability with AHN2), and to 1/4 of the pulse density of AHN3 (assuming 
comparability with AHN1). For systematic down-sampling, we used a methodology that we 
recently developed (see Appendix B of Kissling et al. 2024), i.e. the first return points were first 
sorted according to their GPS acquisition time (from earliest to latest) and then down-sampled to 
the different densities. For instance, for woodlands, we have down-sampled pulse density from 
25 pulses/m2 (AHN4) to 14 pulses/m2, 7 pulses/m2, and 4 pulses/m2, respectively. We then 
calculated the 25 LiDAR metrics for the original AHN4 point cloud and for the down-sampled 
point clouds. Our analysis revealed that almost all LiDAR-derived vegetation metrics in all 
habitats are robust to varying pulse densities at 10 m resolution, even when calculated with 
strongly down-sampled pulse densities of ≤ 4 pulses/m2 (see Figure B1–B5 in Appendix B). 
The exception was canopy cover (“Density_above_mean_z”) and Shannon index (“Entropy_z”) 
which markedly decreased with lower pulse densities in all habitat types, and the coefficient of 
variation of vegetation height (“Coeff_var”) in grasslands and shrublands (Appendix B). Some 
metrics in grasslands also showed larger variability with down-sampled pulse densities.  

This sensitivity analysis provides comprehensive insights into the effects of pulse densities on 
metric calculations across different habitat types and helps to make our data ecologically 
interpretable. From this we derived usage notes for users to interpret the LiDAR metrics. We 
have included the sensitivity analysis and our interpretation into the revised manuscript under 
Sect. 3.4 “Limitations and usage notes”. See Sect. 3.4.4 “Sensitivity analysis” and Appendix B 



for more details. We have also added a few sentences in the discussion to address this point. See 
lines 703–712.  

2. Leaf phenology: If possible, the authors should provide a timestamp/acquisition time for 
every 10 m x 10 m pixel. There are vector files with information on flight lines available for 
AHN2-5 online, so maybe these could be rasterized? Some of the layers are likely incomplete, 
but having information on flight time for the pixels down to the month would make the dataset 
very valuable. 

Response: We agree that providing a timestamp raster layer at 10 m resolution would be 
beneficial for comparing the time of acquisition for each grid cell among the datasets and 
generated properties. We have now processed the flight line information to timestamp raster 
layers for both AHN3 and AHN4 at 10 m resolution across the whole Netherlands. For both 
AHN3 and AHN4 surveys, a flightline vector layer is available with complete flight 
year/month/date information across the country. Note that the flightline layer of AHN2 is not 
complete and only a small portion of available flightlines has information on flight year and 
month. Hence, we eventually did not include the AHN2 flightlines in the processing. For the 
ongoing AHN5 survey, the flight timestamp raster layer can be included in the future. For AHN3 
and AHN4, we first downloaded the flightline vector layers from https://www.ahn.nl/dataroom, 
and then generated a buffer zone around the flightlines using the function “Buffer” in ArcGIS 
Pro with the setting of a distance (on both sides of each flightline) of 300 m for AHN3 and 700 
m for AHN4, and dissolved the neighboring buffer zones if they had the same flight time. The 
distance of the buffer zone was set based on the distance between two flightlines for the target 
AHN survey. We then rasterized the generated buffer zone polygons into raster layers at 10 m 
resolution. For areas with multiple flightlines overlapping, we assigned the latest flight date to 
the raster pixel to be consistent with the flight year maps provided by AHN (see Fig. 1). We 
suggest that users take the surrounding pixel information into account when investigating 
overlapping areas. We make the generated timestamp layers for AHN3 and AHN4 available in 
the same data repository as the data products.  

We have added related information in section 3.3 Auxiliary data, see lines 354–369.  

3. Quantitative guidelines: Finally, the paper should provide clear quantitative guidelines for 
researchers or practitioners on what kind of differences are interpretable ecologically. E.g., if I 
notice a change in height of 1m between 2017 and 2022, is this a real height change, or does 
this fall within the uncertainty due to laser instrumentation/DTM derivation? Vegetation growth 
can be slow (0.1-0.5 m/ year), so it is important to be able to separate noise/artefacts from 
actual change. Cf. also the second main comment. 

Response: We agree that small height changes (e.g. within 0.5–1 m) can be difficult to 
distinguish from noises or uncertainties introduced by systematic errors or DTM derivation. 
Given the vertical accuracy of AHN2–AHN4 (i.e. 5–15 cm), classification related errors, and the 
potential influence of acquisition time of the datasets, we suggest that small vegetation changes 
(e.g. less than 0.5–1 m) should be interpreted with caution. Such small height changes can be 

https://www.ahn.nl/dataroom


influenced by vertical height uncertainties, low vegetation points being wrongly classified as 
ground points, or differences in leaf phenology due to varying data acquisition times rather than 
representing real vegetation changes. When comparing vegetation changes between the AHN3 
and AHN4 metrics, users can make use of the flight time raster layers to take vegetation 
phenology differences into account. Based on our sensitivity analysis, we also suggest that users 
should be aware that some LiDAR metrics from open and heterogeneous habitats such as 
grasslands and shrublands might be less robust to varying point and pulse densities than those 
from dunes, marshes and woodlands.    

We have added this information in the revised manuscript under Sect. 3.4 “Limitations and usage 
notes”. See lines 525–534. 

Main comment 2: Independent comparison and NA values 

I carried out a quick comparison with our own laser scanning pipeline, which we have previously 
tested for robustness (Fischer et al., 2024, Methods in Ecology and Evolution 
(https://doi.org/10.1111/2041-210X.14416). I will call this the LAStools pipeline, and the author’s 
pipeline the Laserfarm pipeline. I have uploaded the products of this comparison to Zenodo so 
that the authors can compare it to their results: https://zenodo.org/records/14722001.   

I only carried out a simple comparison: I compared the 95th percentile of canopy height at 10 m 
resolution from two CHMs produced via the LAStools pipeline (“chm_lspikefree.tif” and 
“chm_tin.tif”) with the Laserfarm hp95 product at the site in case study 1. The main findings are: 

1. NA values: The products in the Laserfarm hp95 sometimes seem to have a considerable 
amount of NA values. Unfortunately, these NA values are not consistent across AHN surveys, 
so comparisons of canopy height change may vary depending on how these NA values are 
dealt with across surveys: when I ignored these differences and simply calculated the difference 
in canopy height means at the study site, I would get a height loss of -3.84 m from AHN2 to 
AHN3, a height increase of 0.45 m from AHN3 to AHN4, and then again a loss of -0.57 m from 
AHN4 to AHN5. When only considering areas that were not NA in any of the surveys, the height 
changes were as follows: -3.30 m, -0.03 m, -0.12 m, so differences of up to 0.5 m. The authors 
should either try to remove the NA values consistently from all products (this should be possible, 
as shown by the products I derived with the LAStools pipeline), or provide a mask and a clear 
guideline on how to deal with them. Cf. the attached pdf for a visualization of the NA values. 

 

https://doi.org/10.1111/2041-210X.14416
https://zenodo.org/records/14722001
https://zenodo.org/records/14722001


 

Response: Thank you very much for carrying out such a comparative analysis. The NA values 
result from metric calculations in grid cells where no vegetation points are available. Those areas 
are often bare ground, buildings or water bodies, which should be excluded from vegetation 
structure assessments. We have now generated a NA value mask for each AHN dataset, which 
can be used for masking out areas with potentially no vegetation. We have added detailed 
information into the manuscript (see lines 485–491). We did not choose to remove the NA values 
consistently from all products as not all users might look into temporal changes across the AHN 
datasets. Instead, we provide individual NA value masks for each AHN dataset. This benefits 
also users who only want to use one scene of raster layers for their analysis, e.g. if they want to 
remove the non-vegetation areas from that specific period. 



Users can also combine the NA value masks when comparing vegetation changes across multiple 
AHN datasets. We also noted in the revised manuscript that some of the NA values can result 
from misclassifying very low vegetation into ground points. Hence, “no-vegetation areas” as 
derived from the NA value masks may differ from real land cover. See lines 491–494. 

2. Differences between pipelines: The products from the LAStools pipeline are CHMs, 
whereas hp95 is derived from the point cloud, so we expect some differences, but they should 
not be massive, as both are assessing top canopy height. However, I still found clear 
quantitative and qualitative differences. With the chm_lspikefree.tif (the closest equivalent to top 
height) I found a height loss of -3.94 m from AHN2 to AHN3, a further loss of -0.36 m from 
AHN3 to AHN4, and then a minimal gain of -0.05 m to AHN5. The pattern was similar with 
chm_tin.tif, but with smaller shifts: -2.51 m, -0.47 m, then a minimal loss of -0.02 m. The 
absolute differences between chm_tin.tif and chm_lspikefree.tif are expected (cf. Fischer et al. 
2024), but both suggest a clear height loss from AHN2-AHN3, a smaller, but clear loss from 
AHN3-AHN4, and then stabilization between AHN4-AHN5. This is in contrast to the results 
described above for hp95, which shows different patterns. 

Response: Thank you very much for the detailed comparison of the differences between 
pipelines. Differences between pipelines can result from various reasons. Evaluating the 
vegetation change over a rather large area (1200 m × 1200 m in the conducted comparison) 
solely by an average height gain/loss can be problematic. The presence/absence of NA values as 
mentioned above can already have a strong influence on such average height gain/loss 
calculations. Moreover, the layers “chm_lspikefree.tif” and “chm_tin.tif” derived from LAStools 
are calculated at a 1 m resolution, whereas the “Hp95.tif” derived from the Laserfarm workflow 
is calculated at a 10 m resolution. Directly comparing those products with different resolutions is 
problematic because the top height in a 10 m pixel will likely differ from the average top height 
of the 100 pixels with 1 m resolution within the same 10 m pixel. A meaningful comparison 
should thus be calculated at the same resolution.  

My main takeaway from this comparison is that change analysis in forest ecosystems is tricky 
and that average differences < 1.0 m may be hard to interpret/verify, unless robustness is 
explicitly quantified or pulse density included in the analysis. It would be good if the authors 
could reflect on this more clearly in the paper and supplement the current paper with a 
robustness test as described in point 1. 

Response: Thanks for the valuable insights and suggestions. Vegetation changes less than 0.5–1 
m may indeed be difficult to interpret and verify. As a supplement, we have now added a 
comprehensive sensitivity analysis of the generated LiDAR metrics regarding changing pulse 
density. This provides insights into the robustness of each LiDAR metric in different habitat 
types and inform users on potential uncertainties of the data products. We now also provide two 
raster layers (at 10 m resolution) that contain flight timestamp information for the AHN3 and 
AHN4 datasets, so that users can also take the time of acquisition into account when comparing 



vegetation changes across the datasets. Moreover, we also provide individual NA value masks 
for each AHN dataset, assisting users to remove NA values from further analysis.  

We have addressed the abovementioned questions one by one in detail (see responses above) and 
have added related information in the revised manuscript accordingly.  

Line-by-line: 

14: I appreciate that the authors calculated structural metrics also for AHN1, but it seems to me 
that the data from AHN1 cannot really be interpreted for ecological purposes due to their low 
and highly varying quality. The authors suggest as much in the text. I think a more accurate 
description here would be 2007-2022, and then mentioning in the text that, theoretically, AHN1 
is also available, but should only be used with great caution. 

Response: We agree that the AHN1 dataset has a rather poor quality, which limits its use for 
ecological applications, especially if one aims for a high accuracy at a fine (e.g. 10 m) resolution.  
We have now reformulated the text in the revised manuscript, e.g. at the end of the introduction 
(see lines 139–140) and in section 2.2 (see lines 163–165). 

27-29: Impressive data volumes 

Response: True. 

39: Great! 

Response: Thanks. 

55: Minor comment, but I would disagree that laser scanning is more “direct” than field 
measurements. It involves scanners, processing point clouds or waveforms, making 
assumptions about their properties, then aggregating with indices, etc. Maybe another word 
would be appropriate: “more precise measurements”? “more robust”? 

Response: We have changed the wording to “airborne laser scanning has enabled precise and 
spatially contiguous measurements of ecosystem structural properties…”. 

61: the type of the object (“Classification”) is not recorded by the laser sensor. This is post-
processing and involves many assumptions. I would remove this here. 

Response: Removed. 

99: I agree that terrain modelling is the primary aim, but I would not call a DSM a terrain model, 
maybe remove and only mention DTMs 

Response: We now better specified this in the text, i.e. mentioning both terrain and surface 
elevation models such as Digital Terrain Models (DTMs) and Digital Surface Models (DSMs).  



109-126: I fully agree. Particularly, for multi-temporal lidar, harmonization is key. 

Response: Agree. 

154-155: The Dutch campaigns are impressive, but two clear caveats need to be mentioned in 
the study: 1/ Winter acquisitions are not ideal for vegetation structure assessments, because 
they will make it harder to detect small shrubs and lead to different estimates of canopy height 
between deciduous/broadleaf trees and evergreen/conifer trees. 2/ December to April is actually 
quite a long period. I imagine that April is already springtime in the Netherlands, with many 
deciduous trees growing their first leaves and thus capturing more returns higher in the canopy. 
A repeat study with the first scan in December and the second scan in April might thus (wrongly) 
conclude that a forest has increased in canopy height/closure. 

Response: We fully agree with the reviewer that the acquisition times of the different AHN 
surveys are not ideal for measuring vegetation structure change, especially for areas in which the 
data collections were conducted in different months (ranging from December to April). We have 
therefore supplemented the data products now with newly calculated flight timestamp raster 
layers so that users can take these differences into account (see lines 354–369 and Sect.7 Data 
availability).  

158-159: While I agree that it’s great to provide AHN1 as well, maybe this should state that it is 
not suitable for vegetation assessments? Under the worst circumstances (1 point per 16 sqm), 
analyses would be highly biased both due to DTMs and CHMs. 

Response: Agree. We have now added a sentence in the revised manuscript to make this more 
clear. See lines 163–165. 

161: Is this point or pulse density? I think pulse density is generally preferable as it is less 
instrument dependent 

Response: On the official AHN website (https://www.ahn.nl/kwaliteitsbeschrijving), 
“Puntdichtheid” is used to describe the datasets, which translates to “point density”. For 
consistency, we also use point density provided by the AHN throughout the manuscript. For 
comparison, we have now also produced the pulse density raster layers for the AHN3 and 
AHN4, and conducted the robustness test of the generated LiDAR metrics based on pulse 
density.  

184: Nice table, very clear, thanks! 

Response: Thanks. 

189-207: This sounds like a great pipeline, but I am missing key information on robustness here. 
Just from reading this, it is not at all clear to me that the pipeline produces “consistent […] 
geospatial products from different ALS data.” A couple of points come to mind: 

https://www.ahn.nl/kwaliteitsbeschrijving


● Have you tested how the pipeline performs when laser scan pulse density (not point 
density) is degraded systematically, e.g., from 10 to 5 to 2 to 1?  

● Maybe the description of the normalization is incomplete, but, as it is currently described, 
it seems non-standard and prone to large biases. The standard approach is to (robustly) 
ground-classify points, then interpolate a DTM, and use the inferred heights to normalize 
the point clouds. Using the lowest points, by contrast, seems prone to introduce a lot of 
noise, plus: what happens to cells that do not have a lowest point? Are cells with a single 
point by default classified as 0 height? 

● I do not by default understand what an “infinite square cell” is, and I think this should be 
explained without needing to refer to another publication 

Response: Thanks for the comment. We address each point one by one below: 

• We have added a comprehensive robustness analysis using systematically down-sampled 
pulse densities in five major habitat types (dunes, marshes, grasslands, shrublands, and 
woodlands). These results are consistent with a previous robustness analysis of the 
Laserfarm workflow which was conducted by down-sampling point densities in 
woodland habitats only (see Appendix B of Kissling et al. (2024): 
https://doi.org/10.1016/j.ecolind.2024.112970). The results of our new robustness 
analysis are presented in Sect. 3.4.4 Sensitivity analysis and Appendix B. 
 

• We apologize for not being very clear about the description of the normalization step. In 
the Laserfarm workflow, a Digital Terrain Model (DTM) is constructed using the lowest 
point within a given grid cell (in our case, 1 m × 1 m grid cell is used). The lowest point 
in each cell is taken as the height of the DTM. Each point in the cell is then assigned a 
normalized height with respect to the derived DTM height (Meijer et al., 2020). It results 
in strictly positive heights and smooths variations in elevation on scales larger than the 
cell size. When there are no points within a cell, the cell will be assigned as NA. When 
there is only one point in a cell (1 m × 1 m), it will be treated as the lowest point and 
assign normalized height as 0. Since the final feature extraction was based on 10 m × 10 
m grid cells, any normalization biases caused by single point within a 1 m × 1 m grid cell 
is negligible. Nevertheless, we agree that mentioning more details of the normalization 
method and potential biases is useful, so we made the text more explicit in the revised 
manuscript (see lines 475–479 and lines 738–740). We have also made the description of 
the normalization step more complete (see lines 200–204). 
 

• In the Laserchicken software (i.e. the software on which the Laserfarm workflow is based 
on), four options are provided for defining volume geometries, i.e. for defining the 
neighboring points for feature calculation (see Fig. 2 below). Fig. 2a illustrates an 
“infinite square cell”, which is a 3D square column with a base area of 10 m × 10 m and 
an infinite Z value. We have now made the description of the “infinite square cell” more 
clear in the revised manuscript (see lines 206–207). 



 

 

Fig. 2. Examples of volume geometries (red) available to define neighborhoods (shown as red 
points; enclosed): (a) an infinite square cell, (b) an infinite cylinder, (c) a cube, and (c) a sphere 
(Meijer et al., 2020). 

214: So you use ground classification for normalization? I am confused now. Cf. my points 
above regarding normalization 

Response: For AHN1 and AHN2, the “gefilterd” (ground) and “uitgefilterd” (non-ground) were 
retiled separately and then merged together (under the same tile number) and used for 
normalization and feature extraction. However, the classification values were not used for 
normalization, but only for filtering points during feature extraction. We have corrected this in 
the revised manuscript, see line 211. 



210-212: In terms of robustness, relying only on provided ground classifications puts a lot of 
trust into pre-existing classifications and their comparability across campaigns. They may be 
good, but can you guarantee that the same algorithms were used for ground classification in 
AHN2 and AHN4? Have you assessed this. 

Response: We could not find any documents or information about the algorithms that were used 
for ground classification for AHN datasets. It is only mentioned in the official AHN website that 
AHN datasets were first classified automatically and then followed by manual corrections for 
noises and errors. This was done by commercial companies and no detailed quality report is 
publicly available, and it is therefore difficult to assess the accuracy of the pre-classification of 
the AHN datasets. However, a preliminary assessment of the terrain filtering process in the 
Dutch coastal dunes did not reveal a strong impact of the ground point pre-classification of AHN 
datasets on vegetation change detection (Appendix C ). We have now mentioned this point in the 
revised manuscript. See lines 223–228. 

231-250: This is a very technical description, but I think it is great, because it can serve as a 
guideline for other efforts to produce streamlined products like this.  

Response: Thanks! 

262: Why does the data volume increase under normalization? Usually it decreases, no? Do 
you store the data at different precision? 

Response: In the Laserfarm workflow, the normalization step calculates the normalized height 
value and stores it (32-bit floating-point precision) as a new attribute for each individual point. 
Therefore the volume increases after normalization. 

280-284: These are descriptions of normalization, etc., that have already been provided above. I 
would remove them, and move the outlier filter further upwards to the “Processing workflow” 
section. 

Response: Done. 

275: The metrics are well-chosen in terms of ecological relevance and very nicely explained in 
the Table. This is very nice and well thought-through. However, I don’t see any reference to 
robustness. As the introduction of the article rightly points out, harmonizing data across different 
laser sensors and campaigns is a major challenge. To ensure robustness, structural metrics 
should also be selected by how robust they are with regard to pulse density. Metrics that  I 
would suspect of being particularly sensitive to laser instrumentation are PPR, the Shannon 
index, and any of the densities of vegetation points below 3 m (below 1, 1-2, 2-3). Minor 
inaccuracies in ground classification could introduce huge biases/errors. Further candidates for 
sensitive metrics would be Kurtosis, Roughness and the 25th percentile. 



Response: Please see our response to main comment 1 about our newly implemented sensitivity 
analysis. 

301: I like how thoroughly the paper catalogues all metrics and procedures. The authors 
deserve a commendation for their attention to detail! 

Response: Thanks! 

323-331: This is also great work. Only two comments: 

● Could you use this to provide an assessment of how metrics change with pulse/point 
density? 

● I don’t know how much work this would be, but I would generally prefer a pulse density 
raster (i.e. first or last return density), or ideally, both pulse and point density rasters. 
Pulse density gives a more direct impression of sampling effort and does not confound it 
with the increasing power of modern laser scanners and sensors (more returns per 
pulse). 

Response: We have conducted a sensitivity analysis of the robustness of the LiDAR metrics 
against changing pulse density. See our responses above and Sect.3.4.4 Sensitivity analysis. We 
have also generated two pulse density raster layers (at 10 m resolution) for the AHN3 and 
AHN4, and we additionally provide the point density layers for each AHN dataset. All are made 
available in the data repository together with other auxiliary data. See lines 343–348.  

357: A key bit that is missing in validation is how the metrics respond to variation in pulse 
density. For pulse density, we would usually expect the opposite biases (i.e., much lower errors 
at the top, but much more near the ground, cf. Fischer et al. 2024, MEE). 

Response: Please see the response to main comment 1 above. When assessing the robustness of 
the metrics against changing pulse density, our results showed indeed effects of lower pulse 
densities on the Shannon index and on the number of returns above mean height within a cell 
("Density_above_mean_z"). In addition, a few LiDAR metrics (e.g. “Coeff_var”) showed larger 
variability with down-sampled pulse densities in grasslands and shrublands, but not in other 
ecosystems (i.e. woodlands, dunes, marshes). Hence, there are not necessarily more biases in the 
metrics describing the lower strata (e.g. Hp25, BR_1_2) than those describing top canopy layers 
(e.g. Hp95, BR_5_20). We have added the details into the revised manuscript, see lines 518–524. 

406-408: Cf. my above concerns about PPR. 

Response: Our sensitivity analysis did not show strong bias in the pulse penetration ratio 
towards changing pulse density (Appendix B). However, we did find errors in the PPR layers 
where pixels that cover water surfaces were given the value of 0, which falsely indicates dense 
vegetation cover. This was because there were no ground points in the water surface and it 
resulted in 0 values during the calculation of the PPR (ratio of number of ground points to total 



number of points). We have therefore masked out water surfaces from PPR layers and updated 
the data products. This was done by masking out water areas (from TOP10NL) from the pulse 
penetration ratio layers using the “Extract by Mask” function in ArcGIS Pro. See lines 418–423. 

467: This is a nice figure and very intuitive, but I am missing a bit the quantitative assessment 
and how changes in growth compare to errors. 

Response: We have added some quantitative assessments of the vegetation changes in the study 
area. See lines 544–547.  

520: Also a nice analysis and a good use case. 

Response: Thanks! 

513-518: Or this could be a methodological artefact. DTM models are not always super robust 
and small shifts by 10-50 cm might already introduce lots of noise into these assessments. 

Response: Agree. We have added a few sentences in the revised manuscript. See lines 525–534. 

553-555: I am a big fan of the CV, but in my experience, it will also be negatively correlated with 
mean height (which is intuitive, since it is computed with a division by mean height). You could 
also consider standardizing it between 0 and 1, as described in Lobry et al. 2023, MEE 
(https://doi.org/10.1111/2041-210X.14197). 

Response: The standard deviation is often correlated with the mean, while the coefficient of 
variation (CV) – also known as relative standard deviation – is not. We have done a PCA test on 
the 25 metrics in a previous study using the 25 LiDAR metrics from AHN3 across the whole 
Netherlands (https://doi.org/10.1111/ddi.13760) and it revealed that the CV is not strongly 
correlated with the mean. See Fig. 3 below: 

https://doi.org/10.1111/2041-210X.14197
https://doi.org/10.1111/ddi.13760


 

Fig. 3. Covariation among 25 metrics of vegetation structure derived from a country-wide, 10 m 
resolution airborne laser scanning dataset across the whole Netherlands. (a) Correlation matrix 
(Spearman's Rank correlation coefficients r) of metrics grouped into vegetation height, cover and 
vertical variability. (b) Axes from a Principal Component Analysis (PCA) explaining in 
total ~ 75% of variation among the 25 metrics (Kissling and Shi 2023).  

573-575: I think this is a bit of a shame, because most research in ecology would likely require 
the DTMs with the canopy metrics, and at the same resolution. Maybe you could consider 
providing a few DTM metrics in the future to complement the canopy metrics? 

Response: We have now generated the DTM layers for each AHN dataset at the same resolution 
as the provided LiDAR metrics (10 m resolution). We used the DTM layers provided by AHN 
and resampled them to 10 m resolution using an unweighted average method. We did the same 
for the DSM layers available from AHN. The DTM and DSM layers can be found as auxiliary 
data in the repository with provided data products. See lines 370–376. 

598-603: I disagree with this. Our own research found clear problems in canopy robustness 
down to 2 pulses per m2. 

Response: We have removed this part from our manuscript, and added the results from our 
sensitivity analysis. See lines 518–524 and lines 703–712.  

617: This is broadly correct, but there is also the lasR package from the lidR developers that 
intends to be used for large-scale processing 



Response: We have changed the wording in the revised manuscript to “…, lack horizontal 
scalability and are not specifically designed for processing large ALS datasets on cloud 
infrastructures with reproducible end-to-end workflows, …”. See lines 723–725. 

626-630: The Dutch terrain is certainly a very specific configuration and this point should be 
highlighted more, as more complex terrain poses many challenges. Ground classification in 
mountainous settings poses huge challenges, for example. This is not only where the terrain is 
difficult, but also where a lot of forest area remains. 

Response: Agree. We have highlighted this point in the revised manuscript. See lines 475–479, 
and lines 738–740. 

 

  



Reviewer 2 

This manuscript describing a series of rasterized ALS structure products for Holland was 
well designed and written. It still suffers from a few areas of unclarity and/or inaccuracy 
which I outline below. I would also offer a few suggestions, such as  

(1) I suggest "lidar" as the consensus spalling and most accepted modern usage (see: 
https://lidarmag.com/wp-content/uploads/PDF/LiDARNewsMagazine_DeeringStoker-
CasingOfLiDAR_Vol4No6.pdf);  

Response: Thank you for your suggestion. Since we have been using “LiDAR” throughout our 
research and publications as well as education from the beginning, and many others do so as 
well, we would like to keep it as it is in this manuscript for consistency.    

(2) Please provide information on point cloud geolocation precision AND vertical precision. 

Response: We have now added information on horizontal accuracy in addition to vertical 
accuracy of AHN datasets in Table 1.  

(3) Please provide information on point cloud classification methods. 

Response: We could not find any documents or information about the algorithms that were used 
in the classification of the AHN datasets. It is only mentioned in the official AHN website that 
AHN datasets were first classified automatically and then followed by manual corrections for 
noises and errors. This is typical for many ALS datasets (highlighted as one of the challenges for 
monitoring habitat condition from ALS in Kissling et al. 2024, 
https://doi.org/10.1016/j.ecolind.2024.112970) as it was done by commercial companies that do 
not publish detailed quality reports. Differences in pre-classification methods can potentially lead 
to some biases in vegetation change detection. However, a preliminary assessment of the terrain 
filtering process in the Dutch coastal dunes that we have now performed did not reveal a strong 
impact of the ground point pre-classification of AHN datasets on vegetation change detection 
(see our new Appendix C). Nevertheless, we suggest that this could be more comprehensively 
assessed in future studies, including different sites and different habitats. See lines 223–228. 

(4) Some of the references (eg Asner) are a bit out of date and do not engage with 
theoretical developments in the literature like: 

a. Coops et al. 2021. Modelling lidar-derived estimates of forest attributes over space and 
time: A review of approaches and future trends. Remote Sensing of Environment 260, 
112477. https://doi.org/10.1016/j.rse.2021.112477 

 
b. Cloverdale et al. 2023. Unravelling the relationship between plant diversity and 

https://doi.org/10.1016/j.ecolind.2024.112970
https://doi.org/10.1016/j.rse.2021.112477


vegetation structural complexity: A review and theoretical framework. Journal of Ecology 
111.7 (2023): 1378-1395. 

and especially for this purpose those that engage with structural typologies based on ALS: 

c. Atkins et al. 2023. Integrating forest structural diversity measurement into ecological 
research. Ecosphere. 14(9), e4633. 

and 

d. Hakkenberg and Goetz 2021. Climate mediates the relationship between plant 
biodiversity and forest structure across the contiguous United States. Global Ecology and 
Biogeography. 30:2245–2258. https://doi.org/10.1111/geb.13380 

Response: Thank you for your suggestions. We have included the suggested literature in the 
revised manuscript.   
 
Beyond these, find some row-by-row comments and questions below: 
 
278 - Is having the median and 50th percentile not redundant? Why have both? 

Response: The 50th percentile of normalized height is indeed corresponding to the median 
height. We keep them both for the sake of the completion in statistical terms (e.g. max, mean, 
median) and percentile calculations (i.e. 25th, 50th, 75th, 95th).  

278 - Why not Hp98 or Hp100? Are you not biasing results by having a low max Ht (5% 
below top)? 

Response: We do provide the Hp100, which is the Hmax, for quantifying the top height. We 
provide the 95th percentile of vegetation height to quantify near-top tree canopy height while 
reducing the effect of outliers of the single highest points.   

279 - Why 10000m? Seems too large a value. Would 1000m or even 100m not also be 
appropriate for Holland? 

Response: The 10000 m was set to filter out outliers in the raw data, which can be noises or 
errors during data collection. The actual vegetation would be less than 100 m, but we did not 
exclude points taller than 100 m for the completion of the mapping. Yet, we provided masks for 
removing those artifacts, and we provide the recommendation to filter out abnormal values 
before using the data products for further analysis, e.g. by removing grid cells with Hp95 > 50 m, 
Hp95 > 40 m or Hp95 > 30 m when analyzing vegetation heights. See Sect. 3.4.1 and lines 472–
474. 



284 - Was there no independent DEM for verification of ground elevation? I really like the 
use of cadastral data for masking and verification. 

Response: The DEMs provided by AHN are generated from AHN point clouds. To our 
knowledge, there is no publicly available independent DEM data to verify the ground elevation 
across the Netherlands.  

287 - How accurate are these 1m vertical bins when the older imagery likely lacks that 
precision with so sparse a point density? 

Response: We agree that the data quality of AHN1 is poor. We have clarified this point in the 
manuscript. See lines 139–140, lines 163–165, and lines 716–717,  

Table 3 - Why 0.5m for Shannon's H and not 1m? This metric would suffer even more from 
vertical precision issues as noted above. Also please indicate the constraints of i. In other 
words i=1:? The standard answer is top HT, which in this case is biased low at Hp95. 

Response: The choice of 0.5 m for Shannon's H supports it’s calculation in non-forest habitats 
that have low-stature vegetation, such as grasses, dwarf shrubs (e.g. heath), reedbeds etc. This 
allows to have i > 1 in low-stature vegetation habitats such as dunes, grasslands, marshes etc. 
Most applications of Shannon's H to ALS data have been conducted in forests rather than low-
stature vegetation habitats. Since we also cover a lot of non-forest habitats, we prefer 0.5 m over 
1 m.  

Fig. 3 - What is BR? Should be defined in caption. 

Response: BR indicates band ratio. For instance, “BR_4_5” indicates the vegetation density 
between 4–5 m, feature name: “band_ratio_4_normalized_height_5”. We have added the 
explanation in caption. See lines 326–327. 

338 - Prior to this section, could you provide some information how (what method used) for 
classification? 

Response: We could not find any documents or information about the algorithms that were used 
in the classification of the AHN datasets. It is only mentioned in the official AHN website that 
AHN datasets were first classified automatically and then followed by manual corrections for 
noises and errors. This was done by commercial companies and no detailed quality reports were 
publicly available. We have clarified this point in the revise manuscript. See lines 224–228. 

461 - This statement on Shannon's index is incorrect. H is NOT evenness. For that you 
could use a metric like Pielou's J. Shannon's H is a mix of evenness and richness, where 
richness is the number of Ht bins and is highly correlated with Hp95 because the number of 
height bins is a primary parameter to the equation (the range of i, currently missing from the 
equation in Table 3). 



Response: We have reformulated the text in the revised manuscript and made clear that the 
Shannon's index represents the proportion of points within 0.5 m height layers. See line 561.  
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