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Abstract. Forest structural diversity, defined as the heterogeneity of canopy structural elements in space, is an important axis 12 

of functional diversity and is central to understanding the relationship between canopy structure, biodiversity, and ecosystem 13 

functioning. Despite the recognised importance of forest structural diversity, the development of specific data products has 14 

been hindered by the challenges associated with collecting information on forest structure over large spatial scales. However, 15 

the advent of novel spaceborne LiDAR sensors like the Global Ecosystem Dynamics Investigation (GEDI) is now 16 

revolutionising the assessment of forest structural diversity by providing high-quality information on forest structural 17 

parameters with a quasi-global coverage. Whilst the availability of GEDI data and the computational capacity to handle large 18 

datasets have opened up new opportunities for mapping structural diversity, GEDI only collects sparse measurements of 19 

vegetation structure. Continuous information of forest structural diversity over large spatial domains may be needed for a 20 

variety of applications. The aim of this study was to create wall-to-wall maps of canopy structural diversity in European forests 21 

using a predictive modelling framework based on machine learning. We leverage multispectral and Synthetic Aperture Radar 22 

(SAR) data to create a series of input features that were related to eight different structural diversity metrics, calculated using 23 

GEDI. The models proved to be robust, indicating that active radar and passive optical data can effectively be used to predict 24 

structural diversity. Our dataset finds applications in a range of disciplines, including ecology, hydrology, and climate science. 25 

As our models can be regularly rerun as new images become available, it can be used to monitor the impacts of climate change 26 

and land use management on forest structural diversity.  27 

 28 
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1 Introduction 29 

Information on forest canopy structure is important for several disciplines, including Earth System Science, Ecology, 30 

Hydrology, and Climate Science. Forest canopy structure plays a fundamental role in ecosystem functioning by affecting 31 

carbon storage and cycling, regulating the hydrological cycle, and influencing local and regional climate patterns (Migliavacca 32 

et al., 2021; Shugart et al., 2010; Sun et al., 2018). In addition, canopy structure is critical for maintaining high levels of 33 

biodiversity by supporting a high diversity of ecological niches (Larue et al., 2019). 34 

The concept of structural diversity or complexity, herein defined as the heterogeneity or variability of canopy structural 35 

elements in vertical or horizontal space (Ehbrecht et al., 2021; Hakkenberg et al., 2023; LaRue et al., 2019), is central to 36 

understanding the relationship between canopy structure, biodiversity, and ecosystem functioning. Structurally diverse forests 37 

can host a wide variety of functionally complementary species, which tend to increase resource-use efficiency and promote 38 

feedbacks that enhance resource availability (Gough et al., 2019; Murphy et al., 2022). As a result, these forests can capture 39 

light more efficiently, leading to increased ecosystem productivity (Atkins et al., 2018; Toda et al., 2023). Therefore, the 40 

availability of data on forest structural diversity over large spatial scales is critical for predicting and managing the response 41 

of forest ecosystems to global change. 42 

Mapping forest structural diversity over large spatial scales proved challenging due to the lack of comprehensive datasets and 43 

consistent data collection methodologies, hindering our ability to predict ecosystem function at large geographic scales. Whilst 44 

forest structural parameters can be measured in various ways, traditional field-based measures of stand structure are generally 45 

labour-intensive and have been limited to small areas (Goodbody et al., 2023). Laser scanning, or LiDAR, has been proved a 46 

sound alternative for measuring tree height from 3D data measured through echoes (Coops et al., 2021). However, data from 47 

airborne LiDAR have been limited in spatial and temporal coverage to specific regions (Hancock et al., 2021). Recent advances 48 

in satellite remote sensing technology and computational capabilities have made it possible to measure a range of structural 49 

variables at larger scales than ever before. Notably, the Global Ecosystem Dynamics Investigation (GEDI) (Dubayah et al., 50 

2020a) instrument, placed on board the International Space Station (ISS) in December 2018, collecting LiDAR samples until 51 

March 2023, has revolutionized the assessment of forest structure. Recent studies have shown how structural data collected by 52 

GEDI can be used in several applications ranging from biomass estimation to the monitoring of biodiversity and ecosystem 53 

disturbances (Crockett et al., 2023; Hakkenberg et al., 2023; Holcomb et al., 2024). These early examples demonstrate the 54 

future potential of the GEDI mission. 55 

 56 

Whilst the availability of GEDI data and the computational capacity to handle large datasets have opened up new opportunities 57 

to map structural diversity, GEDI only collects sparse measurements of vegetation structure. Although the GEDI mission has 58 

recently been extended until 2030, it is expected to cover only a minimal portion of the land surface. Depending on the 59 

application of interest, continuous information on structural diversity over forests may be needed. Combining GEDI with other 60 

types of satellite remote sensing data within a machine learning framework may thus be necessary for the creation of structural 61 
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diversity data products that have continuous coverage and that extend beyond the timeframe covered by the GEDI mission. 62 

Several recent studies have successfully combined GEDI data with other remote sensing data sources to predict canopy 63 

structure in areas not covered by GEDI, paving the way for mapping specific structural features of vegetation regionally and 64 

globally (Aragoneses et al., 2024; Lang et al., 2023; Potapov et al., 2021; Schwartz et al., 2024). Additionally, preliminary 65 

efforts to assess the potential of GEDI data to capture canopy diversity over different regions have been carried out (Schneider 66 

et al., 2020). However, despite these significant advances, no efforts have been made to map forest structural diversity at a 67 

continental scale in Europe.  68 

 69 

To address the lack of readily available structural diversity data, we combined a suite of structural diversity indicators 70 

calculated using GEDI data with active radar and passive optical data from the Sentinel-1, Sentinel-2, and ALOS-PALSAR 71 

missions. These different sources of data were then integrated using a predictive modelling framework, based on a machine 72 

learning method. The resulting models were used to predict structural diversity across Europe. Although Sentinel-1, Sentinel-73 

2 and ALOS-PALSAR-2 data have been previously used for predicting canopy height and other structural components of 74 

forests, their joint use for the prediction of forest structural diversity has not yet been attempted. Our analysis includes a total 75 

of eight structural diversity metrics, including metrics that quantify the vertical and horizontal heterogeneity of the canopy, as 76 

well as metrics that quantify the heterogeneity of forest structure among GEDI observations within a given area. The dataset 77 

presented here is readily available for use as input in various environmental models and analyses.  78 

 79 

2 Methods  80 

 81 

We calculated eight forest structural diversity metrics using NASA GEDI observations (Dubayah et al., 2020b). A list of the 82 

metrics is reported in Table 1. A machine learning (ML) framework was used to model the relations between each metric and 83 

a series of predictors derived from passive optical and active radar remote sensing data. The model was then used to create a 84 

structural diversity dataset that covers the whole forested domain of Europe, extending up to ~52° North. The creation of the 85 

dataset involved five main steps (Fig. 1): (i) satellite remote sensing data pre-processing, (ii) structural diversity metric 86 

calculation (iii) model training, (iv) model validation, and (v) prediction (Fig 1). Data from GEDI, Sentinel 1 and 2, ALOS-87 

Palsar-2 were pre-processed and downloaded from Google Earth Engine (GEE), a cloud-based infrastructure that combines a 88 

multi-petabyte catalogue of satellite imagery and geospatial datasets with planetary-scale analysis capabilities (Gorelick et al., 89 

2017).  90 

 91 

We used data covering forests that had remained ecologically stable, meaning they experienced no canopy loss, from 2000 to 92 

2021, as identified through the Global Forest Change product by Hansen et al. (2013). Furthermore, our analyses were limited 93 

to areas where tree cover exceeded 30% and which bordered at least 6 out of 8 neighbouring pixels, also with tree cover 94 
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exceeding 30%. While our threshold is more stringent than Food and Agriculture Organization (FAO) definition of forest 95 

(FAO, 2000), which specifies an area spanning more than 0.5 hectares with trees taller than 5 metres and a canopy cover of 96 

more than 10%, it was chosen to capture areas with substantial arboreal density. Although our selection was guided by the 97 

FAO's broader forest criteria, we customized these guidelines to suit our research focus. 98 

 99 

Figure 1. General workflow employed in the creation of the forest structural diversity dataset. The workflow is segmented by a red dashed 100 

line, delineating the Remote Sensing predictors from the inputs to the target GEDI data. Boxes with solid edges represent the data that were 101 

directly utilised to train the Random Forest models. Conversely, boxes with dashed edges symbolize the raw, original data from which the 102 

training data were derived. The grey boxes indicate the preliminary steps undertaken before the model training phase. The process culminates 103 

with yellow boxes, which signifies the development of the predictive model itself, leading to the green box that represents the final output 104 

outcome—the forest structural diversity dataset. 105 

 106 
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2.1 Structural diversity metrics 107 

Structural diversity can be characterized in a variety of ways depending on the data from which it is calculated and the intended 108 

application. In this work we adopted the common definition where diversity is defined in the vertical dimension as 109 

heterogeneity of vegetation height and in the horizontal dimension as canopy heterogeneity (Hakkenberg and Goetz, 2021). 110 

We chose a set of metrics that would characterize the heterogeneity within and among structural features for a given area, 111 

reflecting both local (alpha) and regional (beta) measures of structural diversity. These complementary metrics have been 112 

demonstrated to be particularly crucial for predicting tree diversity and ecosystem functioning (Coverdale and Davies, 2023; 113 

Ma et al., 2022; Zhai et al., 2024). The metrics were also chosen to ensure they would not be redundant with structural variables 114 

already provided by GEDI. A summary of the metrics with the input data used is reported in Table 1. 115 

 116 

2.1.1 GEDI input data and general framework 117 

GEDI data are collected from a full waveform LiDAR sensor operating onboard the International Space Station (ISS) from 118 

April 2019 until January 2023. Due to the orbital path of the International Space Station (ISS), GEDI's coverage is primarily 119 

limited to latitudes between ~50° North and south. The instrument provides sparse measurements (hereinafter sample plots or 120 

shots) of vegetation structure over an area defined by a sampling footprint of about 25 m diameter. 121 

 122 

Input data included the GEDI Level 2A Relative Heights (RH), and the Level 2B total Canopy Cover (CC) values (see Table 123 

1). In the literature, 𝑟ℎ98 is taken as a reference for the top canopy height (CH) (Lang 2022), CC is the proportion of the shot 124 

covered by the vertical projection of the tree crowns. The GEDI data were downloaded from Google Earth Engine after 125 

applying a filtering procedure (Table S1 in the Supplement). 126 

 127 

The diversity metrics of a given area (i.e. the pixel) are calculated by collecting all the 𝑀  valid GEDI shots between April 128 

2019 and January 2023 overlapping the area, each shot 𝑖  characterized by its RH distribution 𝑅𝐻𝑖 = {𝑟ℎ𝑖
𝑘 ,  𝑟ℎ𝑖

𝑘+1,   … ,  𝑟ℎ𝑖
100} 129 

with 𝑘:  𝑟ℎ𝑖
𝑘   ≥ 0 (i.e. just the positive values were considered) and total canopy cover 𝑐𝑐𝑖. Pixels with fewer observations than 130 

the threshold determined by the median value were excluded, and metric values exhibiting a z-score deviation greater than 3 131 

were also discarded as outliers. We conducted our calculations using three different grid resolutions: 1km, 5km and 10km. 132 

These grids were set up in the Lambert Azimuthal Equal Area (LAEA) geographic projection. The largest of these grids, 10km 133 

was determined to be the most suitable resolution for our study. It offers an optimal balance between accurately representing 134 

forest structural features within a given area and the predictability of the structural diversity metrics derived from those 135 

features. These samples were then used to compute the structural diversity metrics for that specific pixel.  136 

 137 
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In the following sections, we detail the methodology employed for calculating the diversity metrics and predictor variables, 138 

which makes use of the mean 𝜇(𝑋), standard deviation 𝜎(𝑋), skewness 𝛾(𝑋), excess kurtosis 𝜅(𝑋), coefficient of variation 139 

𝑐𝑣(𝑋)  of a variable 𝑋 = {𝑥1,   … ,  𝑥𝑀} , where X represents a vector of observations (see Appendix A for the explicit 140 

formulations). 141 

 142 

2.1.2 Vertical Diversity Metrics 143 

RH metrics provide information on the vertical distribution of the plant elements, that is, the vertical profile (VP) of the 144 

vegetation (see Fig. S1 in the Supplement). The VP in a sample can be reconstructed from the corresponding RH distribution, 145 

and the profile’s moments (i.e. mean, standard deviation, skewness, kurtosis) are well approximated by the RH distribution’s 146 

moments (Fig. S1 in the Supplement). 147 

 148 

The following calculated indicators characterise the heterogeneity of the vertical profile: 149 

1. the average coefficient of variation of the vertical profiles 150 

𝜏𝐶𝑉 = 𝜇(𝐶𝑉) 151 

with 𝐶𝑉 = {𝑐𝑣(𝑅𝐻1),   … ,  𝑐𝑣(𝑅𝐻𝑀)}. Because 𝑐𝑣(𝑅𝐻) shows the extent of vertical variability in relation to the expected 152 

value of the VP, the latter being a measure of the central tendency, a higher 𝜏𝐶𝑉 indicates greater dispersion and, therefore, 153 

more vertical heterogeneity; 154 

2. the average skewness of the vertical profiles 155 

𝜏𝑆𝐾 = 𝜇(Γ) 156 

with Γ = {𝛾(𝑅𝐻1),   … ,  𝛾(𝑅𝐻𝑀)}. Skewness 𝛾(𝑅𝐻), or third standardized moment is a measure of the asymmetry of the VP 157 

about its mean, and it can be positive, negative, or zero (Fig. S2 in the Supplement). If VP is an unimodal distribution (a 158 

distribution with a single peak), positive skewness generally indicates an asymmetric tail extending toward larger height values 159 

(overstorey heterogeneity), while negative skewness suggests a tail extending toward smaller height values (understorey 160 

heterogeneity).  However, note that in the cases where one tail is long, but the other tail is fat, or the distribution is multi-161 

modal, skewness does not always obey this simple rule. 162 

 163 

 164 

3. the average excess kurtosis of the vertical profiles 165 

𝜏𝐾𝑈 = 𝜇(Κ) 166 

with Κ = {𝜅(𝑅𝐻1),   … ,  𝜅(𝑅𝐻𝑀)}. Excess kurtosis 𝜅(𝑅𝐻) is a measure of the "tailedness" of the VP, and it is equal to 0 for 167 

any univariate normal distribution, (Fig. S2 in the Supplement). Distributions with negative/positive excess kurtosis are said 168 

to be platykurtic/leptokurtic. Platykurtic distributions show fewer and/or less extreme outliers than the normal distribution. In 169 
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this case, the vegetation mass is more concentrated around the VP mean than near the vertical extremes (i.e. the ground and to 170 

top canopy height). However, it is important to note that while kurtosis, the fourth moment, does play a role in characterizing 171 

the shape of VP, its influence is comparatively smaller than that of the standard deviation, the second moment, and skewness, 172 

the third moment. For instance, two distinct VPs may exhibit identical excess kurtosis while displaying markedly disparate 173 

distributions in terms of standard deviations.  174 

 175 

2.1.3 Horizontal Diversity Metrics 176 

We calculated 5 vertical horizontal diversity indices.  177 

 178 

1. the standard deviation of the canopy heights 179 

𝜏𝐶𝐻 = 𝜎(𝐶𝐻) 180 

with 𝐶𝐻 = {𝑟ℎ1
98,   … ,  𝑟ℎ𝑀

98}. 𝜏𝐶𝐻 indicates the spread of the canopy heights in the area. 181 

2. the standard deviation of the total canopy cover 182 

𝜏𝐶𝐶 = 𝜎(𝐶𝐶) 183 

with 𝐶𝐶 = {𝑐𝑐1,   … ,  𝑐𝑐𝑀}. 𝜏𝐶𝐶  indicates the spread of the total canopy cover in the area. 184 

 185 

2.1.3 Combined Vertical and Horizontal and Diversity Metrics 186 

 187 

3. the Shannon-Weaver index 188 

𝜏𝑆𝑊 = − ∑ 𝑝𝜀𝜋𝜊𝜔 log 𝑝𝜀𝜋𝜊𝜔

⬚

𝜀𝜋𝜊𝜔

 189 

in a 4D cartesian space defined on the basis (𝑟ℎ50,  𝑟ℎ75,  𝑟ℎ98,  𝑐𝑐), where 𝑝𝜀𝜋𝜊𝜔 is the fraction of the GEDI samples falling 190 

in a specific bin (see Appendix A2). We used a 5-unit bin size on each axis, and the GEDI CC values were amplified by 10. 191 

𝜏𝑆𝑊  measures the uncertainty or disorder inherent to the variable's possible outcomes. 𝜏𝑆𝑊 = 0 when all observations are 192 

confined within a single bin, otherwise 𝜏𝑆𝑊is larger than zero. Higher values indicate heterogeneity, while lower values suggest 193 

homogeneity. 194 

4. Rao’s quadratic diversity index 195 

𝜏𝑅𝐴𝑂 = ∑ ∑ 𝑝𝜀𝜋𝜊𝜔

⬚

𝜀′𝜋′𝜊′𝜔′

⬚

𝜀𝜋𝜊𝜔

 𝐷𝜀𝜋𝜊𝜔
𝜀′𝜋′𝜊′𝜔′

 𝑝𝜀′𝜋′𝜊′𝜔′  196 
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in the 4D cartesian space defined on the basis (𝑟ℎ50,  𝑟ℎ75,  𝑟ℎ98,  𝑐𝑐), where 𝑝𝜀𝜋𝜊𝜔 is the fraction of the GEDI samples falling 197 

in a specific bin and 𝐷𝜀𝜋𝜊𝜔
𝜀′𝜋′𝜊′𝜔′

 the cartesian distance between two bins (see Appendix  A2). We used a 1-unit bin size on each 198 

axis, and the GEDI CC values were amplified by 10. 𝜏𝑅𝐴𝑂 ranges from zero, indicating no diversity, to positive numbers. 199 

Differently from 𝜏𝑆𝑊index, 𝜏𝑅𝐴𝑂  considers both abundance (𝑝𝜀𝜋𝜊𝜔  terms) and dissimilarity in the sampled data (𝐷𝜀𝜋𝜊𝜔
𝜀′𝜋′𝜊′𝜔′

 200 

term). 201 

5. convex hull volume 202 

𝜏𝐶𝑉𝐻 = 𝐶𝑉𝐻(𝑆𝐻𝑇) 203 

in the 4D cartesian space defined on the basis (𝑟ℎ50,  𝑟ℎ75,  𝑟ℎ98,  𝑐𝑐). We used a 1-unit bin size on each axis, and the GEDI 204 

CC values were amplified by 10. 𝐶𝑉𝐻  is the function calculating the convex hull volume on the ensemble 𝑆𝐻𝑇 =205 

{𝑠ℎ𝑡1,   … ,  𝑠ℎ𝑡𝑀}, with 𝑠ℎ𝑡𝑖 = (𝑟ℎ𝑖
50,  𝑟ℎ𝑖

75,  𝑟ℎ𝑖
98,  𝑐𝑐𝑖). Larger volumes indicate increased heterogeneity. 206 

 207 

Table 1. Structural diversity metrics computed in this study. 208 

 209 

Metric Description Units GEDI data Diversity 

𝜏𝐶𝑉 VP coefficient of variation  - RH vertical 

𝜏𝑆𝐾 VP skewness - RH vertical 

𝜏𝐾𝑈 VP excess kurtosis - RH vertical 

𝜏𝐶𝐻 CH standard deviation m 𝑟ℎ98 horizontal 

𝜏𝐶𝐶  CC standard deviation - 𝑐𝑐  horizontal 

𝜏𝑆𝑊 Shannon-Weaver index - (𝑟ℎ50, 𝑟ℎ75, 𝑟ℎ98, 𝑐𝑐) combined 

𝜏𝑅𝐴𝑂  Rao’s quadratic entropy index - (𝑟ℎ50, 𝑟ℎ75, 𝑟ℎ98, 𝑐𝑐) combined 

𝜏𝐶𝑉𝐻 Convex Hull volume - (𝑟ℎ50, 𝑟ℎ75, 𝑟ℎ98, 𝑐𝑐) combined 

 210 

 211 

2.2 Predictor variables 212 

The variables used as ML predictors were calculated from Sentinel-1, Sentinel-2, and ALOS-Palsar-2 observed data, via the 213 

following steps: 214 

1. appropriate bands/indices 𝜙𝛼 were calculated from the remote sensing raster images; 215 

2. the 𝜙𝛼,𝑖
𝛽

 values, with 𝛽 equal to SM, ASM, ENT, or DISS, are calculated from the pixels within the 7x7 window 216 

aligned with the footprint of the GEDI shot 𝑖 . 𝜙𝛼,𝑖
𝑆𝑀is the spatial mean. 𝜙𝛼,𝑖

𝐴𝑆𝑀, 𝜙𝛼,𝑖
𝐸𝑁𝑇, and 𝜙𝛼,𝑖

𝐷𝐼𝑆𝑆 are the texture metrics 217 

Angular Second Moment (ASM), entropy, and dissimilarity index, respectively (see Appendix A3). 218 
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3. the raster images of the predictors were computed as 𝜙𝛼
𝛽

= 𝜇(Φ𝛼
𝛽

), where the mean is calculated on the 𝑀 values 219 

Φ𝛼
𝛽

= {𝜙𝛼,1
𝛽

,   … ,  𝜙𝛼,𝑀
𝛽

} corresponding to the geographical positions that overlap the image pixels. 220 

In the following, we present what satellite remote sensing data were used and how they were combined for the calculation of 221 

the indices. A total of 47 predictors were derived. A summary of the predictors is reported in Table S2 in the Supplement. 222 

2.2.1 Sentinel-1 radar data 223 

The European Space Agency’s (ESA) Sentinel-1 (S1) comprises a constellation of two polar-orbiting satellites, sun-224 

synchronous orbit with a 12-day repeat cycle, which operate day and night a C-band (λ = 5.5 cm) Synthetic Aperture Radar 225 

(SAR) to capture data at a spatial resolution of approximately 10 meters. The radar enables the acquirement of imagery 226 

regardless of the weather, and the C-band frequency is particularly effective in interacting with fine vegetative elements such 227 

as leaves and branches (Naidoo et al., 2015). In our study, from Sentinel-1 we utilized both backscatter and coherence data.  228 

Backscatter is the portion of the outgoing radar signal that the target redirects directly back towards the radar antenna. The 229 

backscatter characteristics provide crucial insights into the physical properties of forest canopies. For the year 2020, we focused 230 

on the signal dual-polarization VV and VH Sentinel-1A (S1A) and Sentinel-1B (S1B) Ground Range Detected (GRD) data, 231 

acquired in the Interferometric Wide (IW) swath mode, as it predominantly covers land masses (Kellndorfer et al., 2022). 232 

VV(H) is a mode that transmits vertical waves and receives vertical (horizontal) waves to create the SAR image. We selected 233 

data from the descending orbit, which has been shown to exhibit fewer correlations with evapotranspiration (ET)  (Mueller et 234 

al., 2022). Sentinel-1 data used in this study were obtained from Google Earth Engine, where they had already undergone some 235 

pre-processing. Preprocessing steps carried out by the Google Earth Engine team include applying the orbit file for geocoding, 236 

removing GRD border noise and thermal noise, and performing radiometric calibration. We performed a radiometric terrain 237 

correction following (Vollrath et al., 2020), as well as the removal of stripes and edges. We selected all the valid images 238 

captured over Europe within a six-month window, centred around the day of maximum NDVI from the Sentinel-2 dataset 239 

(explained in section 2.2.3). We then derived: 240 

1. the S1 backscatter six-month mean 𝜙𝑆1𝑉𝑉𝑔𝑠𝜇 and 𝜙𝑆1𝑉𝐻𝑔𝑠𝜇, where the mean is intended to mitigate speckle noise 241 

while emphasizing the vegetation growing season; 242 

2. the S1 backscatter standard deviation growing season 𝜙𝑆1𝑉𝑉𝑔𝑠𝜎  and 𝜙𝑆1𝑉𝐻𝑔𝑠𝜎; 243 

3. the S1 backscatter bi-monthly mean 𝜙𝑆1𝑉𝑉𝑝𝑟𝑒𝜇 and 𝜙𝑆1𝑉𝐻𝑝𝑟𝑒𝜇 for a window extending two months before the month 244 

before the peak, 𝜙𝑆1𝑉𝑉𝑎𝑐𝑡𝜇 and 𝜙𝑆1𝑉𝐻𝑎𝑐𝑡𝜇 for the period spanning one month before to one month after the peak, and 245 

𝜙𝑆1𝑉𝑉𝑝𝑜𝑠𝑡𝜇 and 𝜙𝑆1𝑉𝐻𝑝𝑜𝑠𝑡𝜇 for the two months after the month after the peak. 246 

Coherence is the relationship between waves in a beam of electromagnetic (EM) radiation. Two wave trains of EM radiation 247 

are coherent when they are in phase. In radar, the term coherence is also used to describe systems that preserve the phase of 248 

the received signal. Coherence measurements serve as a valuable tool for monitoring temporal changes in forested 249 
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environments (Bruggisser et al., 2021; Cartus et al., 2022). The coherence data utilized in this study were extracted from the 250 

dataset developed by Kellndorfer et al. (2022). This dataset is the product of multi-temporal, repeat-pass interferometric 251 

processing of S1 SAR images. It incorporates signal dual-polarization VV and VH data from S1A and S1B in Single Look 252 

Complex (SLC) format, utilizing the IW swath mode from the year 2020. The product is divided into seasonal sets, and we 253 

selected summer (June-August) coherence metrics 𝜙𝐶𝑂, aligned with the growing season, employing a 12-day repeat-pass 254 

interval to optimize the balance between image continuity and temporal resolution. This interval was chosen to minimize gaps 255 

in the image series, compared to shorter intervals (such as 6 days), while longer intervals (e.g., 18, 24, 36, or 48 days) could 256 

result in excessive decorrelation. With a relatively unchanged scene between acquisitions, higher coherence values are 257 

achieved, which correlate strongly with the radar signal and hence, reduce noise levels. Furthermore, we prioritized signal VV 258 

polarization to enhance our understanding of the data, as it minimizes vegetation decorrelation effects (Pan et al., 2022)  259 

 260 

2.2.2 ALOS-PALSAR-2 radar data 261 

 262 

The ALOS-PALSAR-2 (Advanced Land Observing Satellite - Phased Array type L-band Synthetic Aperture Radar) system, 263 

developed by the Japan Aerospace Exploration Agency (JAXA), operates in the L-band frequency (λ = 23.62 cm) at a spatial 264 

resolution of 25 meters. The L-band is particularly effective at penetrating canopy layers to provide backscatter signals from 265 

larger vegetative features such as branches and trunks, and even from the ground. For our analysis, we made use of the global 266 

mosaic of backscatter annual composites, which incorporate signal dual-polarization HH and HV data (Shimada et al., 2014) 267 

from the years 2019 and 2020, accessed via GEE. In instances where the data availability was constrained for an annual 268 

composite, the dataset was supplemented with observations from adjacent years. To ensure the reliability of our dataset and 269 

account for possible gaps in observations, we averaged data across two years to generate 𝜙𝐴𝑃2𝐻𝐻𝜇 and 𝜙𝐴𝑃2𝐻𝑉𝜇 data. This 270 

approach helps mitigate noise and stabilize the composite images. 271 

 272 

2.2.3 Sentinel-2 optical data 273 

The ESA Sentinel-2 (S2) mission comprises a constellation of two polar-orbiting satellites placed in the same sun-synchronous 274 

orbit, phased at 180° to each other. Its high revisit time (10 days at the equator with one satellite, and 5 days with 2 satellites 275 

at best) allows monitoring of the Earth's surface changes. The Multi-Spectral Instrument (MSI) on board the 2 platforms 276 

collects the sunlight reflected from the Earth and supplies high-resolution multispectral imagery with resolutions of 10 and 20 277 

meters. Data are acquired at 10 m spatial resolution for Visible (Blue, Green, Red) and Near-Infra-Red (NIR) bands, and at 20 278 

m spatial resolution for VNIR-Red Edge (RE1, RE2, RE3, RE4) and Short Wave Infra-Red (SWIR) bands (SWIR1, SWIR2). 279 

The Level-2A product provides atmospherically corrected Surface Reflectance (SR) images. In this study we used all the 280 

Level-2A images from 2000 to 2021 identified by a scene-level cloud and snow cover smaller than 70% and 5%, respectively, 281 

as provided by Google Earth Engine. We then calculated: 282 

1. the Normalized Difference Vegetation Index 283 
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𝜙𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅  −  𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑
 284 

as proposed by (Rouse et al., 1974) it is a widely recognized index strongly correlated with vegetation health and primary 285 

productivity; 286 

2. the Normalized Difference Water Index 287 

𝜙𝑁𝐷𝑊𝐼 =
𝜌𝑁𝐼𝑅  −  𝜌𝑆𝑊𝐼𝑅1

𝜌𝑁𝐼𝑅 + 𝜌𝑆𝑊𝐼𝑅1
 288 

as proposed by (Gao, 1996), it is correlated with leaf water content. 289 

3. the Normalized Difference Red Edge Index 290 

𝜙𝑁𝐷𝑅𝐸 =
𝜌𝑁𝐼𝑅  −  𝜌𝑅𝐸1

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝐸1
 291 

as proposed by Gitelson and Merzlyak, (1994) it offers sensitivity to chlorophyll content and is useful in assessing forest 292 

composition and canopy cover; 293 

4. the Modified Soil Adjusted Vegetation Index 294 

𝜙𝑀𝑆𝐴𝑉𝐼 =
2  ∙  𝜌𝑁𝐼𝑅  +  1  −  √(2  ∙  𝜌𝑁𝐼𝑅  +  1)2  −  8  ∙  ( 𝜌𝑁𝐼𝑅  −   𝜌𝑅𝑒𝑑)

2
 295 

as proposed by (Qi et al., 1994), it is suited to monitoring vegetation density and dynamics, particularly during early growth 296 

stages when bare soil is prevalent, thereby minimizing soil background effects; 297 

5. the Green Normalized Difference Vegetation Index 298 

𝜙𝐺𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅  −  𝜌𝐺𝑟𝑒𝑒𝑛

𝜌𝑁𝐼𝑅 + 𝜌𝐺𝑟𝑒𝑒𝑛
 299 

as proposed (Gitelson and Merzlyak, 1998), it responds to chlorophyll concentration and is indicative of vegetation 300 

composition, structure, habitat conditions, and species diversity; 301 

6. the standard deviation of NDVI 302 

𝜙𝑁𝐷𝑉𝐼𝜎 =  𝜎(𝜙𝑁𝐷𝑉𝐼) 303 

as noted by (Perrone et al., 2024), it accounts for a significant portion of the variability observed in-situ plant diversity. 304 

 305 

2.3 Model training and validation 306 

 307 

We used a machine learning method - Random Forest (Breiman, 2001) - to quantify the relations between the remote sensing 308 

predictors and the eight metrics. Random Forest is an ensemble learning method based on decision trees that is widely 309 

employed for regression tasks. A key advantage of Random Forests is that model fitting is relatively fast and hyperparameter 310 

optimization requires only a moderate amount of tuning, compared to other machine learning methods. Optimization of the 311 

Random Forest model typically involves tuning a number of hyperparameters. These include the size of the forest (i.e. the 312 
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number of decision trees), the method of bootstrapping samples, and the setting of the maximum depth for the trees. We 313 

specified a fixed number of trees, 600; bootstrapping, a technique that involves random sampling with replacement, which 314 

contributes to the diversity of the decision trees in the model and helps prevent overfitting; and we did not impose any 315 

limitations on the depth of the individual decision trees, allowing them to expand fully. To evaluate the performance of the 316 

Random Forest model, we used mean squared error (MSE) as the metric. 317 

To mitigate the potential for overfitting, we used a backward stepwise selection process that begins with a full model including 318 

all available predictors. The algorithm then iteratively removes the least important feature, as determined by its contribution 319 

to model performance. The relative importance of predictors was assessed using a permutation procedure (Altmann et al., 320 

2010). At each iteration, the model complexity is reduced by one predictor, and the resulting model is evaluated. We compared 321 

each newly simplified model to the immediate predecessor to determine whether there was an improvement in performance or 322 

a decrease that was less than 1% worse. The elimination process is halted if the removal of additional predictors causes the 323 

model's performance to decrease by more than 1% compared to the previous iteration. At each step, a spatial cross-validation 324 

procedure is used to assess the performance of the model. The metric we utilized to assess model performance throughout this 325 

process was the coefficient of determination (R²). 326 

To validate the reduced models, we used two types of validation techniques to assess their predictive accuracy and robustness: 327 

• Random train-validation split: in this approach, the dataset was randomly split, allocating 33% for model validation. 328 

Random validation is a common method that provides a quick and often effective means of evaluating model 329 

performance on unseen data. However, it has a notable drawback when dealing with spatial data: it disregards the 330 

spatial structure inherent in the dataset (i.e. points close to each other are, generally, more similar than points further 331 

away). By ignoring this spatial autocorrelation, random validation may inadvertently conceal overfitting issues, 332 

leading to an overly optimistic perception of the model's predictive capabilities. 333 

• 10-Fold Spatial Cross-Validation (Roberts et al., 2016): we implemented a 10-fold spatial cross-validation procedure 334 

to address the shortcomings of random validation, thus reducing the overfitting. This more sophisticated method 335 

partitions the data into ten spatially distinct subsets, or folds, ensuring that each fold comprises disjointed sets that are 336 

geographically separated. The partitioning is achieved by clustering data points according to their spatial coordinates, 337 

which preserves the spatial structure and autocorrelation present in the dataset. During the validation process, each 338 

fold is used once as a validation set while the remaining folds serve as the training set. This technique provides a more 339 

realistic evaluation of the model's performance and its ability to generalize across different spatial regions, thereby 340 

offering a safeguard against overfitting and ensuring a more reliable assessment of the model's true predictive power. 341 

Models were fitted to datasets created at different resolutions including data calculated at 10 km, 5 km and 1 km. Prediction 342 

uncertainty was quantified by calculating the standard deviation of predictions across the ensembles of decision trees in the 343 

Random Forest models. This metric captures the variability in predictions among individual trees within each model, providing 344 

a measure of uncertainty associated with predictions for the different response variables. 345 
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 346 

3 Results 347 

 348 

3.1 Predicted patterns of forest structural diversity 349 

The dataset includes spatial grids for eight structural diversity metrics at three different resolutions (10 km, 5km and 1 km).  350 

These metrics show a significant variation in structural diversity across the European forests as shown in Fig. 2 (see also Fig. 351 

S3 and Fig. S4 in the Supplement for 5km and 1km resolution datasets). 352 

 353 

 354 

Figure 2. Predicted structural diversity at a 10 km resolution, derived from the Random Forest modelling. Each panel illustrates the geographic distribution 355 

of a specific metric (see methods for metric details). The colour palette transitions from purple to yellow, denote an increasing gradient of structural diversity, 356 

with warmer colours signifying higher values.  357 

 358 

 359 
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An examination of the variability in the 10 km resolution metrics in climate space revealed distinct patterns along temperature 360 

and precipitation gradients (Fig. 3).   361 

 362 

 363 

Figure 3. Predicted structural diversity variables in climate coordinates. The results refer to the dataset at 10 km resolution. Coloured bins depict variation in 364 

structural diversity, calculated as the average of the structural diversity values falling within each bin. Grey bins indicate those containing fewer than 5 365 

observations, for which the average was not calculated. 366 

 367 

Patterns of variability in metrics describing vertical heterogeneity showed significant differences when comparing the 368 

coefficient of variation (𝜏𝐶𝑉) and skewness (𝜏𝑆𝐾) against kurtosis (𝜏𝐾𝑈). The coefficient of variation and skewness primarily 369 

exhibited high values at the extremes of the climatic gradient. This is observed in warm and arid climates where total annual 370 
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precipitation is below ~500 mm and Annual Mean Temperature is above ~10 °C, as well as in colder climates where Annual 371 

Mean Temperature is below ~5 °C. Patterns of variability in the kurtosis were more nuanced, consistently showing negative 372 

values across the European domain, which suggests a tendency for a platykurtic distribution in the vertical profile of canopies 373 

under diverse environmental conditions. The most pronounced negative kurtosis values were observed for the northern part of 374 

the temperate climate zone (Fig. 3). By contrast, more heterogeneous patterns occurred in other areas such as those with a 375 

Mediterranean climate, showing high variability (Fig. 3). 376 

Diversity metrics describing structural heterogeneity in horizontal space, as well as combined metrics, (𝜏𝐶𝐻 ,𝜏𝐶𝐶 , 𝜏𝑆𝑊, 𝜏𝑅𝐴𝑂 , 377 

𝜏𝐶𝑉𝐻) also showed considerable variability along precipitation and temperature gradients. With the exception of the convex 378 

hull (𝜏𝐶𝑉𝐻), all metrics displayed low diversity values in hot and dry climates. Specifically, a combination of precipitation 379 

levels below ~500 mm and annual mean temperatures above ~10°C (Fig. 3) was associated with the lowest levels of diversity. 380 

By contrast, the highest levels of diversity generally occurred in areas with higher precipitation levels (> 500 mm). 381 

 382 

Patterns of variability in the metrics in climate space for 5km and 1 km resolution (see Fig S5 and Fig S6 in the Supplement) 383 

dataset were broadly concordant with the 10km dataset, indicating that the results are insensitive to the grain size at which they 384 

were calculated. The metrics for the 10 km dataset generally showed low to modest amounts of intercorrelation (Fig. 4D and 385 

Fig. S7 in the Supplement). This pattern was also consistent for the higher resolution datasets (5 km and 1 km) (Fig. S7, Fig. 386 

S9D and Fig. S10D in the Supplement). 387 

 388 

3.2 Variable importance and model performance 389 

The final models, derived from the stepwise backward elimination procedure, retained between 7 and 23 predictors, 390 

representing the extremes observed across various resolutions of input data and output variable types. The number of selected 391 

predictors generally increased with the resolution of the input data (Fig S8 in the Supplement). Models trained for standard 392 

deviation of canopy cover (𝜏𝐶𝐶) and convex hull (𝜏𝐶𝑉𝐻) retained the highest number of predictors. In contrast, models for 393 

skewness (𝜏𝑆𝐾) and Rao quadratic entropy (𝜏𝑅𝐴𝑂) retained the lowest number of predictors (Fig S8 in the Supplement). 394 

An examination of the type of predictors selected in the final models highlighted the importance of radar-related predictors, 395 

over optical ones as shown in Fig. 4A (see Fig. S9A and Fig. S10A in the Supplement for the 5 km and 1 km datasets). The 396 

average proportion of radar-related variables selected across all diversity metrics and resolutions was 0.64, although there was 397 

considerable variability. In general, as the resolution of the input dataset increased, the proportion of radar-related variables 398 

selected through the feature elimination procedure also increased (Fig. 4A; for the 5 km and 1km datasets see Fig. S9A and 399 

Fig. S10A in the Supplement). The diversity variables for which the highest number of radar-related predictors were selected 400 

was the convex hull (𝜏𝐶𝑉𝐻). On the other hand, the one for which the highest number of optical-related predictors were selected, 401 

was canopy cover (𝜏𝐶𝐶).  402 

Among the predictors retained in the final models, texture-related types were the most commonly selected, followed by 403 

backscatter, spectral indices, and coherence (Fig. 4B; for the 5 km and 1km datasets see Fig. S9B and Fig. S10B in the 404 
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Supplement). Notably, texture metrics constituted, on average, the largest proportion of selected variables at a 10 km resolution 405 

(Fig 4B). Conversely, the proportion of backscatter-related variables and spectral indices increased in models using the finer 406 

resolution input data (Fig. S9B and Fig. S10B in the Supplement). 407 

 408 

 409 

 410 

Figure 4. Results of the random forest modelling exercise at 10 km resolution. Panels display the variable selection frequencies (A and B) 411 

and model performance, as indicated by the R² values derived from two types of validation methods (C). Panel D shows the results of the 412 

Principal Component Analysis (PCA) conducted on the predicted metrics at this resolution. 413 

 414 

Model validation revealed that random cross-validation consistently outperformed spatial cross-validation across all 415 

resolutions. The 10 km resolution analysis, the model for Shannon index  𝜏𝑆𝑊  achieved the highest scores, with 0.73 in random 416 

validation and 0.64 in spatial validation (Fig 4C and Tables B1 and B2). Conversely, the model with convex hull (𝜏𝐶𝑉𝐻)  as a 417 

variable showed the lowest performance, scoring 0.29 in random cross-validation and 0.20 in spatial cross-validation. The 418 

best-performing models at 5 km and 1 km differed from those at 10 km. These trends varied across resolutions, with skewness 419 
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models (𝜏𝑆𝐾) yielding the best results at both 5 km and 1 km, while cover (𝜏𝐶𝐶) was the worst-performing at 1 km and convex 420 

hull (𝜏𝐶𝑉𝐻))  at 5 km (Tables B1 and B2; Fig. S9C and Fig. S10C in the Supplement)   421 

 422 

An examination of the standard deviation of predictions revealed generally increasing trend of prediction uncertainty across 423 

resolutions (Fig. S11, Fig. S12 and Fig. S13 in the Supplement), except in Rao (𝜏𝑅𝐴𝑂) and convex hull (𝜏𝐶𝑉𝐻).  Generally, low 424 

standard deviations in the predictions from the models are observed across the spatial domain of interest, reflecting limited 425 

variability within the ensemble. Notable exceptions occur in the Mediterranean region for the convex hull, kurtosis, and 426 

standard deviation of canopy height metrics. Further variability is observed in Eastern Europe, particularly for the convex hull, 427 

skewness, kurtosis, Shannon index, and standard deviation of canopy height. 428 

 429 

4. Discussion 430 

4.1. Model-based predictions of structural diversity 431 

 432 

Our dataset provides eight metrics describing the structural heterogeneity of European forests. To our knowledge, this is the 433 

first attempt to comprehensively map forest structural diversity at a quasi-continental scale (because GEDI is unable to observe 434 

anything above 50° North). Datasets such as the one presented here contribute to an emerging landscape of data products based 435 

on spaceborne LiDAR data, ranging from regional to global scales (e.g. Lang et al., 2023; Shendryk, 2022; Sothe et al., 2022). 436 

However, while most efforts have primarily focused on mapping top canopy height, we aimed to create a set of complementary 437 

metrics describing the diversity of canopy structure, an ecologically important yet neglected aspect in research. 438 

 439 

Some of the ecological indices employed in this study are routinely applied to optical data to quantify landscape-level 440 

heterogeneity using multispectral data (Tuanmu and Jetz, 2015). For instance, the Rao and Shannon diversity indices, which 441 

can be calculated from spectral indices, have been widely used to quantify the heterogeneity of vegetation and are often 442 

proposed as indicators of ecosystem heterogeneity (Rocchini et al., 2021). These heterogeneity indicators have proved to be 443 

useful in a variety of contexts, including biodiversity modelling and quantifying the vulnerability of forest ecosystems to 444 

disturbances  (Forzieri et al., 2021; Taddeo et al., 2021). However, indices based solely on optical data fail to capture crucial 445 

aspects of structural heterogeneity, which are related to the three-dimensional arrangement of vegetative elements in the canopy 446 

(Fassnacht et al., 2022). Our study addresses a critical gap by introducing the first consistent dataset that maps structural 447 

diversity across the forested domain in Europe. This development will contribute to a more detailed and robust regional analysis 448 

on ecosystem dynamics, which critically depend on vegetation structure (Migliavacca et al., 2021) and structural diversity 449 

(LaRue et al., 2023), and other facets of biodiversity, which requires information on the vertical profile of plants (Fassnacht et 450 

al., 2022).  451 

 452 
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Our findings revealed that model performance differed according to the spatial resolutions and diversity metrics, with several 453 

models achieving R2 values indicative of moderate to strong predictive accuracy, particularly at coarser spatial resolutions 454 

(Appendix B, Tables B1 and B2). This variation highlights the critical role of resolution in model performance, indicating that, 455 

depending on the application of interest, coarser resolutions may optimize the utility of the models. As expected, spatial cross-456 

validation consistently yielded lower R² values than random train-validation random validation across most metrics and 457 

resolutions. This outcome reflects the challenges inherent on machine learning methods (Meyer and Pebesma, 2021) of 458 

predicting outcomes in areas geographically distinct from the training data. Neverthless, the decrease was generally modest, 459 

affirming the broad applicability of our models beyond the training domain.  460 

 461 

The recursive feature elimination procedure highlighted the importance of textural variables (Fig. S8 in the Supplement) across 462 

diversity metrics and spatial resolutions. Entropy, derived from ALOS-PALSAR-2 data, stood out as the most influential 463 

variable, corroborating research that demonstrates textural metrics' effectiveness in capturing spatial heterogeneity in structural 464 

diversity (Bae et al., 2019). Additionally, the significant role of coherence, which aligns with evidence of its predictive power 465 

for forest structural features (Bruggisser et al., 2021; Cartus et al., 2022), suggests its potential in reflecting changes in forest 466 

structural density and composition. Collectively, our findings underscore the benefits of integrating various sensor data to 467 

enhance the prediction of structural diversity, as evidenced by the diverse contributions of optical and radar-based predictors. 468 

 469 

4.2. Potential applications  470 

 471 

We envisage that our structural diversity dataset will significantly advance future research and practical applications across 472 

several disciplines. We identify three key areas where the dataset could be utilised.  473 

 474 

Firstly, the dataset could aid in the development of different biodiversity indicators. Ecosystem structure has been identified 475 

as an Essential Biodiversity Variable (EBV) (Valbuena et al., 2020), and a wide range of studies have shown a strong 476 

correlation between LiDAR-based metrics and ground-based biodiversity measurements (Marselis et al., 2020). The metrics 477 

developed here could be used to identify areas with unique structural features that harbour high levels of biodiversity. 478 

Furthermore, integrating them with data from other sensors, such as Sentinel 1 and Sentinel 2, offers a promising avenue for 479 

generating accurate spatial predictions of different indicators, thus paving the way for the development of frameworks for 480 

monitoring long-term biodiversity changes. 481 

 482 

Secondly, the dataset offers a valuable resource for quantifying the observed impacts of global change drivers on the 483 

functioning of European forest ecosystems. The increasing recognition of the role of structural diversity in driving ecosystem 484 

processes (Ali et al., 2016; Aponte et al., 2020; Listopad et al., 2015) underscores the importance of our metrics. Consequently, 485 

our dataset provides a crucial tool for enabling comprehensive, data-driven assessments of the impact of climate and land cover 486 
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changes on the functioning of forest ecosystems across large scales, addressing the previous limitations posed by the 487 

unavailability of structural diversity data over extensive spatial scales. 488 

 489 

Thirdly, the dataset could be used for improving Earth system models. Historically, plant canopy structure has not been 490 

adequately represented in these models (Atkins et al., 2018; Schneider et al., 2020). This lack of detailed representation can 491 

lead to significant errors in predicting energy balance, carbon cycling, and ecosystem responses to environmental changes 492 

(Duveiller et al., 2023). Integrating structural diversity into these models has the potential to enhance the accuracy of 493 

simulations by incorporating more realistic representations of light interception, photosynthetic rates, and energy fluxes. 494 

 495 

5. Data availability 496 

The structural diversity metrics generated in this study can be accessed at Figshare: 497 

https://doi.org/10.6084/m9.figshare.26058868  (Girardello et al., 2024). All maps are available at three spatial resolutions (1 498 

km, 5 km, and 10 km) in the EPSG:3035 (LAEA) spatial reference system. 499 

 500 

 501 

. All maps are available at three spatial resolutions (1 km, 5 km, and 10 km) in the EPSG:3035 (LAEA) spatial reference 502 

system. 503 

 504 

6. Code availability 505 

Google Earth Engine code for data preparation and data for reproducing the figures are available at 506 

https://github.com/drmarcogir/structuraldiversity 507 

 508 

7. Conclusions  509 

 510 

We generated a spatially-explicit dataset on eight forest structural diversity metrics at multiple resolutions (10km, 5km, 1km) 511 

encompassing temperate, Mediterranean, and continental regions of Europe. Models developed to create the dataset were 512 

robust. The dataset generated in our study represents a novel contribution to the Essential Biodiversity Variables (EBV) 513 

framework, and the metrics can be used in various applications, ranging from the study of biodiversity to ecosystem 514 

functioning. We conclude that combining GEDI data with those from other satellite sensors paves the way for developing a 515 

consistent and scalable framework to monitor structural diversity across Europe. 516 

 517 

 518 

 519 

 520 
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 521 

 522 

Appendices  523 

 524 

Appendix A: Supplementary Methods 525 

 526 

A1 Statistical indicators 527 

The statistical indicators used in this study are detailed below. The mean 𝜇, standard deviation 𝜎, skewness 𝛾, excess kurtosis 528 

𝜅, coefficient of variation 𝑐𝑣  of a variable 𝑋 = {𝑥1,   … ,  𝑥𝑁} are defined as: 529 

 530 

𝜇(𝑋) =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 531 

𝜎(𝑋) = {
1

𝑁
∑[𝑥𝑖 − 𝜇(𝑋)]2

𝑁

𝑖=1

} 532 

𝛾(𝑋) =
∑ [𝑥𝑖 − 𝜇(𝑋)]3𝑁

𝑖=1

[𝜎(𝑋)]3
 533 

𝜅(𝑋) =
∑ [𝑥𝑖 − 𝜇(𝑋)]4𝑁

𝑖=1

[𝜎(𝑋)]4
 535 

 534 

𝑐𝑣(𝑋) =
𝜎(𝑋)

𝜇(𝑋)
                     (A1) 536 

 537 

A2 Binning in cartesian 4d space 538 

 539 

𝑝𝜀𝜋𝜊𝜔 indicates the fraction of the GEDI shots falling in the bin identified by the indices (𝜀, 𝜋, 𝜊, 𝜔) in the 4D cartesian space 540 

defined on the basis(𝑒𝜀, 𝑒𝜋, 𝑒𝜊, 𝑒𝜔), see Figure S2, with 541 

                                                                 ∑ 𝑝𝜀𝜋𝜊𝜔
⬚
𝜀𝜋𝜊𝜔 = 1                                               (A2) 542 

where ∑ ⬚⬚
𝜀𝜋𝜊𝜔  stands for ∑ ∑ ∑ ∑ ⬚

𝑁𝑏𝑖𝑛
𝑒𝜔

𝜔=1

𝑁𝑏𝑖𝑛𝑠
𝑒𝜊

𝜊=1

𝑁𝑏𝑖𝑛𝑠
𝑒𝜋

𝜋=1

𝑁𝑏𝑖𝑛𝑠
𝑒𝜀

𝜀=1 , with 𝑁𝑏𝑖𝑛𝑠
𝑒𝜀

 number of bins in the 𝑒𝜀  dimension, and 𝐷𝜀𝜋𝜊𝜔
𝜀′𝜋′𝜊′𝜔′

 543 

indicates the cartesian distance between (𝜀, 𝜋, 𝜊, 𝜔) and (𝜀′, 𝜋′, 𝜊′, 𝜔′) bin. 544 

 545 
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 546 

Figure A1. example of 𝑝𝜀𝜋 and 𝐷𝜀𝜋
𝜀′𝜋′

estimation in the 2D cartesian space defined on the basis (𝑟ℎ98,  𝑐𝑐). The GEDI shots are 547 

reported with the red X, GEDI cc values have been amplified by 10. 548 

 549 

A3 Predictor calculation 550 

Starting with appropriate bands/indices (step 2 of the workflow in the main text), the four scalars 𝜙𝛼,𝑖
𝛽

, where 𝛽 ∈551 

{𝑆𝑀,  𝐴𝑆𝑀,  𝐸𝑁𝑇,  𝐷𝐼𝑆𝑆}, are calculated from the cluster of 7x7 pixels 𝜙𝛼,𝑖(𝑝, 𝑞) overlapping the footprint of the GEDI shot 552 

𝑖 , where 𝑝  and 𝑞  represent the pixel indices within the window. In details, we calculated: 553 

1. the spatial mean (SM) 554 

                                                 𝜙𝛼,𝑖
𝑆𝑀 = 𝜇 (𝜙𝛼,𝑖(𝑝, 𝑞))     (A3) 555 

which is performed to compensate for potential footprint geolocation inaccuracies, and reduce the presence of noise, and three 556 

texture metrics. Texture metrics provide spatial content information (Nichol and Sarker 2011), and are highly effective in 557 

capturing the pixels heterogeneity. Defining 𝜙
𝛼,𝑖

(𝑝, 𝑞) as the grey-levels matrix, which is calculated from 𝜙𝛼,𝑖(𝑝, 𝑞) by 558 

normalizing the values* within the range of [0, 1] based on the 1st and 99th percentiles, 𝐶𝛼,𝑖(𝑚, 𝑛) as the corresponding grey-559 

levels co-occurrence matrix (GLCM), with dimension 256x256 (Haralick et al. 1973): 560 

𝐶𝛼,𝑖(𝑚, 𝑛) = ∑ ∑ 1

6

𝑞=1

7

𝑝=1

,  𝑖𝑓 𝜙
𝛼,𝑖

(𝑝, 𝑞) = 𝑚 𝑎𝑛𝑑 𝜙
𝛼,𝑖

(𝑝, 𝑞 + 1) = 𝑞;  0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 561 
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and 𝑝𝛼,𝑖(𝑚, 𝑛) as the probability that grey-level 𝑚 occurs close to the grey-level 𝑛 : 562 

           𝑝𝛼,𝑖(𝑚, 𝑛) =
𝐶𝛼,𝑖(𝑚,𝑛)

∑ ∑ 𝐶𝛼,𝑖(𝑝,𝑞)255
𝑞=0

255
𝑝=0

                         (A4) 563 

we calculated: 564 

 565 

2. the angular second moment (ASM) 566 

                         𝜙𝛼,𝑖
𝐴𝑆𝑀 = − ∑ ∑ [𝑝𝛼,𝑖(𝑚, 𝑛)]

2255
𝑛=0

255
𝑚=0                             (A5) 567 

ASM is a measure of the homogeneity or uniformity of pixel values within a neighbourhood. It reflects the degree to which 568 

pixel values deviate from the mean, providing insights into the texture's smoothness or roughness; 569 

3. the entropy 570 

            𝜙𝛼,𝑖
𝐸𝑁𝑇 = − ∑ ∑ 𝑝𝛼,𝑖(𝑚, 𝑛) log 𝑝𝛼,𝑖 (𝑚, 𝑛)255

𝑛=0
255
𝑚=0                      (A6) 571 

Entropy is a measure of the randomness or disorder in the distribution of grey levels. It quantifies image non-uniformity, with 572 

higher entropy values indicating a more random distribution of pixel values within a neighbourhood; 573 

4. the dissimilarity index 574 

𝜙𝛼,𝑖
𝐷𝐼𝑆𝑆 = ∑ ∑ 𝑝𝛼,𝑖(𝑚, 𝑛)|𝑚 − 𝑛|𝑜𝑔𝑝𝛼,𝑖(𝑚, 𝑛)255

𝑛=0
255
𝑚=0                             (A7) 575 

Dissimilarity measures the complexity and the nature of grey-level transitions among neighbouring pixels (Conners et al. 576 

1984). It quantifies image contrast, with higher dissimilarity values reflecting pronounced differences among neighbouring 577 

pixel values. 578 

* For Sentinel-2 data, we retained only pixels with NDVI values greater than 0, as values below 0 are more likely to represent 579 

non-vegetative features. 580 

 581 

 582 

 583 

 584 

 585 

 586 

 587 

 588 

 589 

 590 

 591 

 592 

 593 
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Appendix B: Model validation results  594 

 595 

Table B1. Results of the random validation procedure conducted for the forest structural metrics at three spatial resolutions: 596 

1x1km, 5x5km, and 10x10km. The validation outcomes are presented in terms of the coefficient of determination (R²), which 597 

quantifies the proportion of the variance in the dependent variable that is predictable from the independent variables. 598 

 599 

Metric 1 km  5 km  10 km  

CV of vertical profile (𝜏𝐶𝑉) 0.36 0.51 0.58 

Skewness of vertical profile (𝜏𝑆𝐾) 0.47 0.64 0.69 

Kurtosis of vertical profile  (𝜏𝐾𝑈) 0.28 0.48 0.6 

𝜎 of Canopy Height  (𝜏𝐶𝐻) 0.26 0.39 0.43 

𝜎 of Canopy Cover (𝜏𝐶𝐶) 0.16 0.37 0.47 

Shannon Entropy (𝜏𝑆𝑊) 0.39 0.63 0.73 

Rao Quadratic Entropy (𝜏𝑅𝐴𝑂) 0.32 0.52 0.58 

Convex Hull Volume (𝜏𝐶𝐻𝑉) 0.26 0.34 0.29 

 600 

Table B2. Results of the spatial cross-validation procedures conducted for the forest structural metrics at three spatial 601 

resolutions: 1x1km, 5x5km, and 10x10km. The validation outcomes are presented in terms of the coefficient of determination 602 

(R²). 603 

 604 

Metric 1 km  5 km  10 km  

CV of vertical profile (𝜏𝐶𝑉) 0.33 0.43 0.48 

Skewness of vertical profile (𝜏𝑆𝐾) 0.43 0.57 0.61 

Kurtosis of vertical profile  (𝜏𝐾𝑈) 0.24 0.41 0.5 

𝜎 of Canopy Height  (𝜏𝐶𝐻) 0.25 0.34 0.36 

𝜎 of Canopy Cover (𝜏𝐶𝐶) 0.14 0.29 0.36 

Shannon Entropy (𝜏𝑆𝑊) 0.36 0.55 0.64 

Rao Quadratic Entropy (𝜏𝑅𝐴𝑂) 0.29 0.44 0.47 

Convex Hull Volume (𝜏𝐶𝐻𝑉) 0.2 0.25 0.2 

 605 
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