Table S1. Criteria used for filtering GEDI data

Description	Justification			
Dropped the points with quality_flag = 0	Guarantees good waveform quality			
Observations limited to nighttime (solar elevation ≤ 0	Mitigates influence of background noise from			
degrees)	reflected solar radiation			
Dropped the points with degrade flag = 0	Avoids potential geolocation errors under suboptimal			
Dropped and points with doged do_ready	conditions			
	Prevents inaccuracies in vegetation height on steep			
Dropped the points with footprint slope > 20 degrees	terrain. Slope is determined by the Shuttle Radar			
	Topography Mission (SRTM) data (see GEE code).			
Dropped the points with urban_proportion > 5%	Focuses on non-urbanized forest settings			
Dropped the points with	Eliminates areas with consistent water coverage			
<pre>landsat_water_persistence = 0</pre>				
Dropped the points with landsat_tree_cover <	Confirms significant forest canopy presence			
10%				
Dropped the points with $rh98 > 100 m$	Maintains focus on typical forest canopy heights,			
bropped the points with high > 100 hi	avoiding outliers			
Dropped the points with $rh50 \le 0$ m	Confirms presence of vertical structure in vegetation			
Dropped the points with total canopy cover ≤ 0.1	Indicates significant presence of canopy materials			
	Ensures data represents vegetation during growing			
Dropped the points with leaf-off_flag $\neq 0$	season, avoiding underestimation of structural			
	complexity in deciduous trees			
Dropped the points with pum dot oct odmodos = 0	A signal without modes is indicative of pure noise,			
biopped inc points with fram_detected nodes = 0	lacking information on forest vertical structure			
Dropped the points with surface flag = 0	Ensures presence of ground returns in waveform,			
	essential for accurate vertical structure determination			
Dropped the points with sensitivity < 0.95	Provides high confidence in proper representation of			
	forest's vertical structure			

Figure S1. Vegetation vertical profile (denoted as VP) as detected by GEDI waveform (left panel). The numbers within the first panel indicate the four moments (for notation see Appendix A1 main text). The second panel shows the corresponding cumulative distribution function (CDF) of the relative heights (RH) (right panel).

Figure S2. Examples of different unimodal vertical profiles and their relative moments μ , σ , γ , κ . Panel (a): $\mu = 30$, $\sigma = 6$, $\gamma = 0$, and $\kappa = 0$ (i.e. normal distribution). Panel (b): variation of μ (20, 30, 40 m) with fixed σ (6 m), fixed γ (0), and fixed κ (0). Panel (c): variation of σ (3, 6, 9 m) with fixed μ (30), fixed γ (0), and fixed κ (0). Panels d: variation of γ (-1.2, 0, 1.2) with fixed μ (30 m), fixed κ (2.2), and σ equal 3 m (panel d1), 6 m (panel d2), and 9 m (panel d3). Panels e: variation of κ (-0.6, 0, 3) with fixed μ (30 m), fixed γ (0), and σ equal 3 m (panel e1), 6 m (panel e2), and 9 m (panel e3).

Table S2. List of the remote sensing predictors used for Random Forest Modelling. β = SM stands for spatial mean. β = ASM, ENT, DISS stands for the texture metrics Angular Second Moment (ASM), entropy (ENT), and dissimilarity (DISS) index, respectively, see Section 1 in the main text for more details. S1, S2, and AP2 stands for Sentinel-1, Sentinel-2 and AIOS-PULSAR-2, respectively.

Predictor	Description	β	Composite	SRS	
$\phi^{eta}_{S1VVgs\mu},\phi^{eta}_{S1VHgs\mu}$	Growing season VV and VH	SM, ASM,	Six-month		
	mean	ENT, DISS			
$\phi^{eta}_{S1VVgs\sigma}$, $\phi^{eta}_{S1VHgs\sigma}$	Growing season VV and VH	SM	Two-month		
	standard deviation				
$\phi^{eta}_{{\scriptscriptstyle S}{\scriptscriptstyle 1}VVpre\mu},\phi^{eta}_{{\scriptscriptstyle S}{\scriptscriptstyle 1}VHpre\mu}$	Pre-peak growing season mean	SM	Two-month	S 1	
$\phi^{eta}_{S1VVact\mu},\phi^{eta}_{S1VHact\mu}$	Peak growing season mean SM Two-month				
$\phi^{eta}_{S1VVpost\mu},\phi^{eta}_{S1VHpost\mu}$	Post-peak growing season mean	SM	Two-month		
$\phi^{eta}_{\scriptscriptstyle CO}$	Coherence 12 days summer	SM	Summer		
$\phi^{eta}_{\scriptscriptstyle AP2HH}$, $\phi^{eta}_{\scriptscriptstyle AP2HV}$	Annual HH and HV	SM, ASM,	Annual	ΔΡ2	
		ENT, DISS		111 2	
$\phi^{eta}_{\scriptscriptstyle NDVI}$	Normalized difference	SM, ASM,	Six-month		
	vegetation index	ENT, DISS			
$\phi^{eta}_{\scriptscriptstyle NDVI\sigma}$	Normalized difference	SM	Six-month		
	vegetation index standard				
	deviation				
$\phi^{eta}_{\scriptscriptstyle NDWI}$	Normalized difference water	SM, ASM,	Six-month		
	index	ENT, DISS		S2	
$\phi^{eta}_{\scriptscriptstyle NDRE}$	Normalized difference red edge	SM, ASM,	Six-month		
	index	ENT, DISS			
$\phi^{eta}_{\scriptscriptstyle MSAVI}$	Modified soil adjusted	SM, ASM,	Six-month		
	vegetation index	ENT, DISS			
$\phi^{eta}_{\scriptscriptstyle GNDVI}$	Green normalized vegetation	SM, ASM,	Six-month		
	index	ENT, DISS			

Figure S3 Predicted structural diversity at a 5 km resolution, derived from the Random Forest modelling. Each panel illustrates the geographic distribution of a specific metric (see methods for metric details). The colour palette transitions from purple to yellow, denote an increasing gradient of structural diversity, with warmer colours signifying higher values.

Figure S4 Predicted structural diversity at a 1 km resolution, derived from the Random Forest modelling. Each panel illustrates the geographic distribution of a specific metric (see methods for metric details). The colour palette transitions from purple to yellow, denote an increasing gradient of structural diversity, with warmer colours signifying higher values.

Fig. S5 Predicted structural diversity variables in climate coordinates. The results refer to the dataset at 5 km resolution.

Fig. S6 Predicted structural diversity variables in climate coordinates. The results refer to the dataset at 1 km resolution.

Figure. S7 Pairwise correlations for predicted structural diversity indices. Panel A shows the correlations among indices predicted at a 10 km x 10km resolution, Panel B at a 5km x 5km resolution, and Panel C a 1km x 1km. Each heatmap visualises the interrelationships of structural diversity indices derived from the Random Forest model, highlighting variations across resolutions.

Figure S8 Summary of model selection results using 47 predictors as input variables for models fitted to 8 diversity metrics at different resolutions (1 km, 5 km, 10 km). The y-axis shows the predictors, and the x-axis shows the diversity metrics. Colours indicate whether a specific predictor was selected at one or more resolutions.

Figure S9. Results from the random forest modelling exercise at 5 km resolution. Panels display the variable selection frequencies (A and B) and model performance, as indicated by the R² values derived from two types of validation methods (C). Panel D shows the results of the Principal Component Analysis (PCA) conducted on the predicted metrics at this resolution.

Figure S10 Results from the random forest modelling exercise at 1 km resolution. Panels display the variable selection frequencies (A and B) and model performance, as indicated by the R² values derived from two types of validation methods (C). Panel D shows the results of the Principal Component Analysis (PCA) conducted on the predicted metrics at this resolution.

Figure S11. Standard errors of predictions for models trained at 10 km resolution using Random Forest modelling. These errors were calculated using the infinitesimal jackknife method (see Methods for details). The colour palette transitions from purple to yellow, denoting increasing standard error, with warmer colours signifying higher values.

Figure S12 Standard errors of predictions for models trained at 5 km resolution using Random Forest modelling. These errors were calculated using the infinitesimal jackknife method (see Methods for details). The colour palette transitions from purple to yellow, denoting increasing standard error, with warmer colours signifying higher values.

Figure S13 Standard errors of predictions for models trained at 1 km resolution using Random Forest modelling. These errors were calculated using the infinitesimal jackknife method (see Methods for details). The colour palette transitions from purple to yellow, denoting increasing standard error, with warmer colours signifying higher values.