
1 
 

Reply to reviewers comments for the UWO open dataset 

ESSD-2024-47 | Data description paper 

Submitted on 06 Feb 2024 

The UWO dataset – long-term observations from a full-scale field laboratory to better understand 

urban hydrology at small spatio-temporal scales 

Frank Blumensaat, Simon Bloem, Christian Ebi, Andy Disch, Christian Förster, Max Maurer, 

Mayra Rodriguez, and Jörg Rieckermann 
 

Jörg Rieckermann 

30.6.2025 

 

 

Response to Reviewer #1 (Agnethe Nedergaard Pedersen) 
 

We thank the reviewer for the positive feedback on the quality and utility of the dataset and the 

accompanying manuscript. We appreciate the constructive suggestions and have addressed 

all comments (red colour) in the revised manuscript as outlined below. Final changes are 

formatted in blue colour. 

 

 

RC1: 'Comment on essd-2024-47', Agnethe Nedergaard Pedersen, 09 Feb 2025  reply  

 

Dear authors 

Thank you for a very well written and descriptive paper of the UWO dataset. The 

submission describes a three year long comprehensive measuring campaign of the 

urban drainage system in a Swiss minor city along with an accompanying SWMM 

model. The dataset is unique and well described in the manuscript with thorough 

supplementary material. The manuscript highlights well-thought potential 

application areas of the dataset. Dataset is made accessible and with a link to a data 

viewer. Translating this viewer would be of high value for the future users not able 

to read Swiss. The data structure of the SQL databases are well structured and it is easy 

to understand data. 

We appreciate the positive evaluation. Language should not be a barrier, because 

browsers like Google Chrome, Firefox, Edge and Safari offer translation features, either as 

built-in features or through extensions (red circle).  

https://editor.copernicus.org/#RC1
https://editor.copernicus.org/index.php?_mdl=msover_md&_jrl=386&_lcm=oc116lcm117t&_acm=open&_ms=117976&p=281313&salt=896655372066703991
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I have a few comments and corrections for the manuscript: 

 

RC1.1: Maybe a question of taste, but why do you use both footnotes and references? 

We agree this may be stylistically inconsistent. We have removed all footnotes in the main 

text and replaced them with inline citations or explanations. 

 

RC1.2: Figure 2, top: It seems that the top figure is missing. 

Thank you for spotting this. The missing figure has been reinstated in the revised 

manuscript.  

 

RC1.3: Figure 2, buttom: It is not very clear which combination of the letters and numbers 

that are the naming of the manhole. Suggestion to make bold text for names. The light 

colors are not clear when being printed. 

We updated the figure to use bold fonts for manhole IDs and improved the color contrast 

for better print readability. 
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RC1.4: Figure 3, left: It is not easy to read the small text. Please make it larger. The 

throttle says <75 L/s but in Figure 2 it says 80 L/s. Which one is correct? (Please also 

correct in text Line143). Are some of the text tagnames of the sensors? 

Please excuse this error which carried over from a previous version of the manuscript. It is 

80 L/s as documented in the Flow Data (signal: bf_f03_11e_russikerstr)… 

 

 

Also documented in the SWMM file (faf.inp) for the CSO tank Russikon RKB_Morgental 

max flow =80 l/s  

 

 

RC1.5: Line 142. What does it mean that the nearby villages are “largely” connected to 

Fehreltorfs. Please specify. 
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We changed the text to:  

ll.153ff: 

The nearby villages of Russikon (3320 inhabitants) and Rumlikon (451 inhabitants) 

are also largely connected to Fehraltorf’s wastewater treatment plant (WWTP) 

(HBT, 2016) (Figure 2). Only a very small neighbourhood of Russikon (Madetswil) 

connects to the catchment of WWTP Bläsimühle. The foul sewage contribution 

from this area is negligible; the contributing area is not included. 

 

RC1.6: Figure 4, left: The legends are hard to read. Are groundwater levels also a part of 

the dataset? Otherwise consider removing on figure, or indicate where to find data. I 

cannot see the WWTP on the figure. Is it hidden behind the other signatures? 

We improved the legend, clearly labelled the WWTP and added a Reference to the GW 

data.  

We deliberately excluded Groundwater level data to keep the complexity of the data set 

tractable. Apparently, the hydrogelological situation in the catchment is very complex. 

Nevrtheless, groundwater level data are available in this repository  

https://opendata.eawag.ch/dataset/stein-variational-gradient-descent-

fehraltorf/resource/faeaa307-3b42-47b2-adde-6fb59cceff96 

Readme: "the hydraulic head data should be in the Python pickle file dictionary_data.p" 

which we included in our list of references. We extended the Section 4.2 (now 6.1.2) to:  

ll.520ff: 

Future work could use the spatially detailed GWI rates (Ramgraber, 2025) to better 

capture the sewer-groundwater interactions. This could build on recent work, which 

added a groundwater module to the SWMM model and simulated dynamic 

infiltration in Fehraltorf (Rodriguez Bennadji, 2022; Rodriguez et al., 2024). 

 

RC1.7: Line 235ff: Is the maintenance information from the utility company available for 

the specific measuring period? 

No, unfortunately not. No maintenance data from the utility’s SCADA system are included, 

because the small utility (only four employees) does not systematically document sensor 

maintenance tasks. 

 

https://opendata.eawag.ch/dataset/stein-variational-gradient-descent-fehraltorf/resource/faeaa307-3b42-47b2-adde-6fb59cceff96
https://opendata.eawag.ch/dataset/stein-variational-gradient-descent-fehraltorf/resource/faeaa307-3b42-47b2-adde-6fb59cceff96
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RC1.8: Line 375ff: You mention the installation of a flow-limiting hardware. Can you clarify 

where the device is installed or give a reference to the supplementary information. 

Wouldn’t it affect the measurements?  

Thank you for pointing out this issue. We realised that this aspect needs additional and 

better explanation.  

Despite the fact that the implementation of a new flow limiter is documented in the 

supporting information [cf. S3.5 Stormwater treatment facility RUB 59 (RUB ARA): “Until 

2020, the inflow to the wastewater treatment plant (WWTP) was monitored using a level 

sensor and controlled to a calculated maximum inflow of 180 L s-1 through an electric-

hydraulic slide gate at the in-sewer flow splitting structure US 58. In August 2020, a new 

flow control system from Stebatec AG (type TF-PNA16) was implemented in the main 

collector just upstream of the sewage treatment plant inlet.”] we changed the description in 

Section S3.5 to make this aspect clearer. In the manuscript, we provide a link to the 

Supplement (see line 398, page 15) and added further details there for a more precise 

description of the drainage situation.  

Initially (until July 2020), the inflow to the WWTP was controlled through an electric-

hydraulic slide gate at the in-sewer flow splitting structure US 58 located about 350 m 

upstream of the WWTP inlet in the main collector. The flow was monitored just upstream 

of the WWTP inlet using a level sensor. The level sensor signal was used to control the 

slide gate so that the WWTP inflow rate did not exceed 180 L s-1. In August 2020, a flow 

control system (Stebatec AG, type TF-PNA16) was implemented in the main collector 

just upstream of the sewage treatment plant inlet (close to node 597a in the SWMM 

model). The operation mode of the RUB ARA remained unchanged. Also, the maximum 

WWTP inflow rate remained at 180 Ls-1, except that the impoundment point moved 

'closer' to the WWTP. Thus, the upstream storage volume has increased by 

approximately 120 m³.  

The installation of the new flow control device does affect the measurements: 

measured WWTP inflow (now directly derived from a flow measurement of the flow 

control system) had become more precise. Further, we expect that the additional in-

sewer retention volume (in the flow limiter is operated accordingly) may affect the 

spilling activity at the overflow structure RUB 59 just upstream of the WWTP.  

We are hesitant to include such detail in the main manuscript. Now, with the link to the SI 

in the chapter related to the SWMM model, we hope that this detail is now sufficiently 

addressed without lengthening the main text in the manuscript. 

 

RC1.9: Line 393: Please clarify what “similar to previous work” means. 

This refers to the experience gained from previous Open Data Publications in ESSD. In 

previous work (Špačková et al., 2021), we also provide a web-based dashboard as a pre-

viewer to the data. 
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RC1.10: Line 444: You mention GWI ranges from 10-15 L/s. But where? At the treatment 

plant or at all sensor-points? 

This refers to the estimated contribution from the Fehraltorf catchment. It is documented in 

the SI (S9.2) “The analysis allows quantifying the “inner” infiltration within the Fehraltorf 

catchment, excluding imported groundwater upstream of F02 and F03. This ranges from 

10 to 15 Ls-1 depending on the season. Infiltration dynamics are illustrated at F00, using 

the WWTP inflow as an example.” We adjusted the text accordingly. 

ll.512ff: 

To estimate the contribution of groundwater infiltration (GWI) rates from the 

Fehraltorf catchment, we analyzed long-term flow recordings, focusing on dry 

weather night-minimum flows and excluding rain-induced infiltration. Using the 

night-minimum flow, GWI rates were estimated as the difference between GWI at 

the catchment outlet (F00) and the inflow, i.e. two upstream contributions from 

Rumlikon and Russikon (F02 and F03). 

 

RC1.11: Line 445ff: How do you know how many manholes the high groundwater table 

affected? Is it based on traceback assumptions? Please elaborate. 

This is based on GIS analyses comparing manhole invert levels with interpolated 

groundwater levels from the thesis on GW modelling (see SI Section S9.2). As described 

above, GW data are not part of the dataset, but are openly accessible on ERIC 

(https://doi.org/10.25678/00035V) 

We added the reference here  

l.518ff: 

For example, in April 2018, using the data from Ramgraber (2025), a high 

groundwater table affected 256 out of 459 manhole inverts, while in October 2018, 

only 100 manholes were impacted (Figure 8). 

 

RC1.12: Line 465ff: Great with an example of how redundant sensors can check data 

quality, but the text could be improved. I am not sure it is an incorrect level sensor 

processing, but erroneous sensor settings. Please clarify. 

Thank you for the relevant hint. We agree with your comment: the current technical 

explanation as well as the formulation in the manuscript leaves room for improvement. We 

rewrote section 4.3 completely to better outline the principle and the value of sensor 

redundancy/ diversity when monitoring CSO activity. It now is section 6.1.3: 

ll.528ff: 

https://doi.org/10.25678/00035V
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6.1.3 The value of redundant sensors in event-duration monitoring 

Assessing CSO activity is crucial for quantifying pollution and optimizing sewer 

networks. Typically, level sensors are used to monitor water levels in the tank and 

next to overflow weir crests. This inside-tank level data is then used to derive 

overflow volumes or even spill duration. The latter process can be a very difficult 

topic, because it essentially means splitting a continuous process into “events”, 

which are not precisely defined (hysteresis). In addition, a single (level) sensor can 

drift or change over time due to issues such as temperature influence and the 

presence of spider webs. In our example, a second, capacitive sensor serves as a 

rather robust indicator for spill duration, i.e. the start and stop of a spill event. This 

becomes even more relevant as to date, more and more countries have 

implemented data-based compliance assessments of CSOs and make spill data, 

e.g. from overflow event duration monitoring, available to the public (EC, 2022; 

Rieckermann et al., 2021). However, ensuring data quality is a real challenge and 

research explores various monitoring techniques to make data-based compliance 

assessment more reliable. 

In the UWO, we equipped all CSO tanks in the Fehraltorf system with multiple 

ultrasonic level and capacitive sensors to independently monitor overflow duration 

and to investigate how redundant signals would reduce the uncertainty of CSO 

event-duration monitoring (SI, Section S9). The results shown in Figure 9 (middle, 

right) demonstrate that comparing the capacitive sensor signal (bm dl332 | y-axis) 

with the level signal (bl dl311 | x-axis) greatly improves data confidence and allows 

for post-calibration. Initially, we severely underestimated the CSO activity at this 

particular location due to the tank level being recorded with an incorrectly 

configured level sensor. The opportunity to cross-compare with the ‘same’ spill 

duration, but derived from a simple yet reliable capacitive sensor signal (see Figure 

9, middle), revealed the configuration error (i.e. an incorrect offset). Here, this 

resulted in 50 % less cumulative overflow duration in a total monitoring period of 

1’077 days. 

 

RC1.13: Figure 9, left: The triangles are really hard to read in print version. 

 

Thank you for the comment. We did our best to provide the figure in high quality to meet 

the journal’s requirements. The triangles in the left plot show binary data at 5-minute 

resolution, which means that symbols overlap and appear as lines, no matter whether we 

use squares or even dots. We tried several alternatives but couldnot find a clearer way to 

show the data without losing its meaning.  

 

RC1.14:Figure 9, middle and right: Please give appropriate titles to the figures. 
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Titles have been added to clarify what each subfigure represents. In addition, explanations 

given in the caption have been made clearer. 

 

RC1.15:Line 488 and 489: Should K (-2 K and 5 K) be replaced with Celsius degree? 

Yes, thank you. We replaced “K” with “°C” to avoid confusion. The temperature 

differences are now expressed as: “–2 °C and +5 °C.” 

 

RC1.16:Table 2: You have an asterisk, what does it mean? 

Nothing. We removed the Asterisk from year 2018, because it was a left-over from an 

earlier version of the manuscript and is not needed anymore. 

 

Response to Reviewer #2 (Anonymous) 
https://doi.org/10.5194/essd-2024-47-RC2  

 

We thank the anonymous reviewer for the detailed and insightful comments. We have 

implemented revisions to the structure and clarity of the manuscript. Please find our point-by-

point response below.  

 

RC2: 'Comment on essd-2024-47', Anonymous Referee #2, 13 Mar 2025  reply  

In this work, the authors presented the Urban Water Observatory dataset. The dataset 

includes the data of more than 120 sensors over three years in high temporal resolution, 

complemented by descriptions about the underlying sewer network. Besides the description of 

the dataset, data access, implemented quality check and some preliminary analyses are 

presented.  

RC2.1: THE UWO dataset represents a comprehensive dataset highly needed in the field of 

urban drainage networks, and can have therefore a significant impact on future research. 

Thank you for this positive assessment of our work. It is in line with the comments we received 

from user groups who have started to work with our data (see below). 

In the invitation to the review, it was mentioned that the provided dataset should be 

interpretable without looking at the manuscript. Therefore, I started to provide the feedback 

with the data set first and then continued with the manuscript. Please find detailed comments 

below, which should be addressed in a revision of this work. 

*Data base* 

https://doi.org/10.5194/essd-2024-47-RC2
https://essd.copernicus.org/#RC2
https://editor.copernicus.org/index.php?_mdl=msover_md&_jrl=386&_lcm=oc116lcm117t&_acm=open&_ms=117976&p=283266&salt=1395652036477731795
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RC2.2: It is specified in the journal instruction, that “data are distributed under a non-

restrictive licence such as CC BY 4.0 or equivalent”. Currently, “No License Provided” is 

mentioned on the webpages. Therefore, please include a corresponding licence. 

We have now clearly stated that all datasets are released under CC0, which is compatible with 

CC BY 4.0 as per journal policy (see Section 6, Data Availability). 

 

 

 

 

 

 

RC2.3:  
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1. In the provided links, there are two databases with different time lengths, namely the 

downloadable SQL databases with duration from 2019 to 2021 and the database which 

is accessible via the web platform with data up to now. What is the difference between 

these two databases besides the different time lengths, what was the motivation for 

having two different databases, and which database should be used in future? 

Additionally, it is unclear for me, why the downloadable SQL databases are only until 

2021 and a time near data provision would clearly increase the impact of this work. To 

further increase the impact of this work, I would also suggest to provide scripts for 

an access to the database accessible via the web platform, which allows the 

access to the newer data. 

 

Thank you. This is a valid point that we need to clarify. We would like to emphasize that 

the downloadable SQLite databases (packages A) represent a validated and ‘frozen’ 

subset of the data from 2019–2021, which has undergone manual and automated quality 

checks as described in Section 4.3.1. In contrast, the web-based data viewer also 

provides access to newer, quasi real-time data from ongoing monitoring operations. This 

real-time data is subject to automated flagging but may contain artefacts or unchecked 

values, as the implementation of robust, fully automated quality control remains a work in 

progress—a classic hen-and-egg problem. To minimize the risk of misinterpretation, we 

currently limit public downloads to validated data and intend to incrementally publish 

further curated subsets as quality assurance processes mature, in line with FAIR 

principles, as “living data” (ESSD LD) https://www.earth-system-science-

data.net/living_data_process.html.  

We changed the last paragraph of section 3.4 (now 4.4 Data access and tools) to: 

ll.409-414: 

Public access is granted via ERIC/open, which currently offers only limited data 

exploration. Therefore, we provide an R-Shiny web dashboard for interactive 

preview and filtering by signal type, source, or location (Figure 6) (Eawag-SWW, 

2025). The downloadable SQLite databases contain a validated and frozen subset 

(2019–2021) with broad sensor coverage, while the online viewer shows real-time 

data that may include artefacts, as automated quality control is still evolving. To 

prevent misuse of unchecked data, we restrict downloads to the validated subset 

and plan to release further curated data over time. 

 

RC2.4:  

2. All the information and files are provided for access to the databases. However, they 

are downloadable and described on separated webpages, requiring some efforts to 

understand how they are connected to each other. Therefore, I suggest placing them 

either all on one webpage or provide an overview of the individual webpages with key 

points on the content to improve the comprehensibility. 

https://www.earth-system-science-data.net/living_data_process.html
https://www.earth-system-science-data.net/living_data_process.html
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Thank you for the helpful suggestion. In fact, this was precisely the motivation for placing 

the overview in Figure 1—to clearly illustrate how the individual data packages are 

structured and connected. We also created a dedicated overview page for the Urban 

Water Observatory (https://opendata.eawag.ch/group/urban-water-observatory-uwo ), 

which is linked as the first item on each data package page. While we understand the 

appeal of consolidating all content on a single page, Eawag’s internal policy requires 

separate pages for each data package to ensure proper versioning, updates, and curation 

by the responsible teams. This modular setup has worked well in practice—several 

research groups have accessed and used the data without reported issues. 

 

RC2.5:  

3. When running the supplementary SWMM files I get the error of the missing rain file 

“r02_mm_utc0_1min_corr.dat”. Besides, it seems that the coordinates for rus are wrong 

in faf_rus.inp. 

 

Thank you very much for the really careful review. We apologize for this oversight and 

have corrected this pointer to wrong rain input file (“r02_mm_utc0_1min_corr.dat”) in the 

new versions of the SWMM input files for Rumlikon and Russikon: rum.inp; rus.inp 

The corresponding lines in the SWMM input file reads as follows: 

Old: [RAINGAGES] 

;;Name        Format Interval SCF   Source     

;;-------------- --------- ------ ------ ---------- 

rain_gauge    VOLUME 00:01 1.0   FILE    "r02_mm_utc0_1min_corr.dat" r02    

 MM  

New: [RAINGAGES] 

;;Name        Format Interval SCF   Source     

;;-------------- --------- ------ ------ ---------- 

rain_gauge    VOLUME 00:01 1.0   FILE    "r02_mm_utc0_1min_feb16_apr20.dat" 

r02     MM    

Also the coordinates have been transformed from the historical Swiss LV03 to the 

concurrent LV95 projection. Below the example of rus.inp file 

https://opendata.eawag.ch/group/urban-water-observatory-uwo
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RC2.6:  

4. Additionally, what does A1 to A4 in the file 

“data_uwo_sqlite_content_overview.csv” mean? It is described in the 

manuscript, but it should be also described at the platform. 

Thank you once more for excellent review and for shedding light on this aspect!  

“We added this information to the data repository and revised the Readme.md 

documentation accordingly.” 

'data_uwo_sqlite_content_overview.csv': Information about which package (A1-A4) 

a source belongs to.  

 A1: contains all precipitation and further meteorological variables, 

 A2: all hydraulic measurements,  

 A3: all temperature readings and  

 A4: the complete wireless sensor network and its nodes. 

 

RC2.7:  

http://readme.md/
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5. I tested the provided Python script for extracting data from the SQL databases, please 

also include an information, if there are any limitation regarding Python version and if 

yes, which Python version is needed for running the scripts. Further suggestions to 

improve the usability are to include some exemplary information in the main function as 

comment, e.g., “# data_uwo_2019.sql in the folder uwo_data_slice” for add_argument 

filename and “#data_uwo_sqlite_content_overview.csv in the folder uwo_data_slice” for 

add_argument contentlist. 

 

We updated the README to state compatibility with Python ≥3.8. Example commands 

and inline comments have been added. Below screenshots from the file. 

 

 

 

 

~~~~~ 

*Manuscript* 

In general, the manuscript is well written and understandable. However, the structure and 

content of the individual sections as well as their differences are not always comprehensible: 

RC2.8:  
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1. This is for example obvious for Section 2 Material and Section 3 Methods, which both 

include parts of introduced data pipeline in Figure 3 (e.g., for the sensors and the data 

collection it is referred to section 2, while data warehouse with data quality checks are 

section 3). Also, the content is described unevenly in these two sections (e.g., much 

more description for the utilised sensors, while the description of the data warehouse is 

really short and referred to the supplementary for more information). Therefore, I 

recommend to combine these two sections into one section (e.g., Materials and 

Methods), to shorten the text and to focus on the most important information required 

for the readers (for detailed information, it can be referred to the Supplementary as 

already done by the authors) to improve the comprehensibility. 

Thank you for your helpful suggestion. We agree that the original structure blurred the 

boundary between sensor deployment and data processing. Rather than merging 

Sections 2 and 3, we have restructured the manuscript to better distinguish between 

the real-world system (sensor network and observations) and the “digital system” 

(data pipeline, storage, and quality control). The new structure is inspired by similar 

papers on ESSD, such as the CAMELS-DE (https://doi.org/10.5194/essd-16-5625-2024), 

CAMELS-CH (https://essd.copernicus.org/articles/15/5755/2023/) and the Bellinge dataset 

(sewer oriented) (https://essd.copernicus.org/articles/13/4779/2021/) and includes: 

● Dedicated sections on the Catchment and Sensor Data, focusing on physical 

infrastructure and measurements. 

● A separate section on the digital system Data Pipeline and Quality Assurance 

aligned with Figure 5, covering data collection, QA/QC, and access tools. 

Here is a short overview on the new structure:  

https://doi.org/10.5194/essd-16-5625-2024
https://essd.copernicus.org/articles/15/5755/2023/
https://essd.copernicus.org/articles/13/4779/2021/
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1. Introduction 

2. Description of the Catchment 
● Description of the study area 
● The urban wastewater system and the River Luppmen/Kempt 

3. Sensor Data 
● Overview of sensors and installation 
● Measurement types and locations 
● Sensor maintenance and metadata 

4. Data Pipeline and Quality Assurance 
● Data collection and transmission (Figure 5) 
● Data storage and structure (Datapool) 
● Quality control (range/gradient checks, consistency) 
● Data access and tools 

5. Simulation Model 
● SWMM implementation  
● Model calibration 

6. Research Opportunities 
● Applications of the datasets and model 
● Future research directions 

7. Conclusions 

This structure improves clarity for both infrastructure-focused and data-focused readers, 

while addressing your comment about uneven detail. We also included a new section of 

future use of the data, also requested in comment (RC2.10), and improved the cross-

referencing to the Supplementary Information. 

 

RC2.9:  

2. Since the structure of this manuscript was not presented in the introduction, I would 

have expected that the manuscript follows the standard structure for articles, including 

a section on results and discussions. However, in the current version, the results and 

discussion section is missing, which makes the results of this work less comprehensible 

and unfortunately also reduces the impact of this work from my point of view. From the 

Introduction, I would have expected the presentation of the UWO dataset including 

some first analysis as the main result of this work, while from the descriptions in the 

Method section, it would be the analysis of the performance of the implemented 

processes for data quality checks. Besides, results and discussion can be found 

throughout the manuscript (e.g., evaluation of LoRaWAN ranges in method). Therefore, 

I highly recommend to include a section “Results and Discussion” focusing on the 

provided UWO dataset to better present this great dataset, and extending it with 

already performed analysis throughout the manuscript. By doing so, this should also 

make the conclusions drawn in section 7 better comprehensible. 
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Including a dedicated “Results and Discussion” section is an interesting suggestions. We 

fully agree that many ESSD articles do present results in the form of derived or 

preprocessed data products, especially in the domain of remote sensing where a novel 

method to process satellite data, yields new insights (XREFs). However, this manuscript 

presents a “pure” observational dataset, as described in the ESSD-Editorial 

(https://essd.copernicus.org/articles/10/2275/2018/) and thus also follows the typical 

structure of observational infrastructure and open dataset papers, such as the 

CAMELS datasets or the Bellinge dataset (see RC2.8), where the main result is the 

dataset itself, not a new processing method or analytical insight. 

In our case, the contribution lies in: 

● the design and implementation of a long-term, high-resolution urban hydrology 

observatory; 

 

● the provision and documentation of curated raw and quality-flagged data; 

 

● and the enabling of future research, which we illustrate through use cases and 

example opportunities in Section 4 and the Supplement (cf. S9 - Research 

opportunities). 

 

We acknowledge that this may not have been sufficiently clear in the introduction and 

conclusions. To address this, we have: 

● Clarified upfront that the dataset and infrastructure are the primary outcomes of 

the work. 

ll.104-108:  

The remainder of the article is structured as follows (Figure 1): we first describe the 

catchment of Fehraltorf and then the sensor data. We then describe the methods 

used to collect, process and explore the data and the accompanying data, 

including a hydraulic rainfall-runoff model implemented in SWMM. Finally, we 

highlight five exemplary research opportunities . We emphasize that the main 

novelty of this work is the dataset itself, not the described methods for data 

curation and cleaning or the provided examples, which motivate future research on 

the UWO dataset. 

 

● Modified the "Research Opportunities" section into “examples” and “future research” to 

explain the role of the presented applications as illustrative, yet not conclusive, analyses. 

 

● Improved the linkage between these examples and the conclusions, to highlight 

how the dataset supports broader reuse. 

https://essd.copernicus.org/articles/10/2275/2018/
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We hope this clarification better reflects the manuscript’s alignment with the ESSD scope 

and intention. 

 

RC2.10:  

3. The aim of section 4 is to present some possible research opportunities. However, the 

descriptions are more about presenting previous research performed by the authors, 

while there is a lack of concrete research opportunities to the scientific community 

noticeable. For me, this analysis could be part of the Results and Discussions section 

discussed in the previous comment. Additionally, I highly recommend to include also 

concrete research questions/task into the manuscript. 

 

Thank you for this valuable suggestion. We agree that the goal of section "Research 

Opportunities" is to support future use of the UWO dataset by the wider scientific 

community. The section currently draws on example analyses from our own team to 

demonstrate, as explicitly requested by ESSD Editors, “the validity and applicability of 

[our] datasets and data products.”1 — but we understand that this may have read more as 

retrospective results than forward-looking opportunities. 

To address this we revised the original Section 4 (now 6) and structured it into 

“Applications of the dataset” and “Future research”.  

● The “applications” section emphasizes that we provide illustrative applications of 

the data as use cases intended to inspire reuse.  

● In the “future research”, we provide explicit research questions to highlight and 

guide potential directions for future work (e.g., anomaly detection, sensor 

performance evaluation, hydrological modeling). We added future research 

opportunities in a dedicated subsection, rather than moving them into a traditional 

“Results and Discussion” section, in line with ESSD conventions for dataset-

focused papers. 

We hope this revision makes the section more useful and engaging for potential dataset 

users, and we appreciate your suggestion to suggest concrete future research 

opportunities. 

ll. 597ff: 

6.2 Future research directions 

 
1 https://essd.copernicus.org/articles/10/2275/2018/ 3.5 Extensive validations  

Authors will need to demonstrate, first to reviewers and later to a wide range of users, the validity and 
applicability of their datasets and data products. Exact mechanisms and options for validation will vary 
substantially among and across data products. Because ESSD serves to ensure the suitability of 
published data for future research, each ESSD paper should demonstrate skill and utility of the 
submitted data product [...]. 

https://essd.copernicus.org/articles/10/2275/2018/
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In the future, our drainage systems should be more adaptive and resilient and we 

should have a good understanding of their performance. Future research should 

therefore focus on optimizing sensor placement for both understanding and control, 

developing predictive models that account for uncertainty, and adopting adaptive 

monitoring strategies. Advancing FAIR data infrastructure will further support 

broad, intuitive access and reuse of high-resolution observational data, e.g. for 

machine learning and data-driven modelling. 

 

6.2.1 Optimizing sensor placement and sampling for system understanding and 

control 

Monitoring networks in urban drainage systems are important to understand the 

behaviour of the system and to enable real-time control, but they are also 

challenging to maintain, and manage. Future research should therefore focus on 

methods for sensor placement that maximize the value of the data collected. Key 

research questions include: “How many locations should we monitor with which 

measurement type to capture critical flow dynamics?” “Which monitoring points 

provide little (added) value?”. Addressing these questions requires a systematic 

assessment of the information contribution of each sensor location, possibly using 

information theory or graph-based methods (Crowley et al., 2025; Villez et al., 

2016). 

Also, future research should investigate adaptive spatio-temporal sampling 

strategies. Sewer observation using uniform high-frequency monitoring is rarely 

sustainable, as it consumes power and continuously changing batteries puts a 

practical limit to the number of sensors a utility can maintain. Future monitoring 

strategies should therefore be adaptive, adjusting logging intervals based on 

system needs and external triggers, e.g. weather radar. Key questions include 

“When should sensors switch to high-frequency mode?” and “How can targeted 

sampling schemes for sewer capacity or groundwater infiltration or routine 

monitoring look like?” The UWO dataset is dense, well-documented and, with the 

accompanying SWMM model, provides an excellent foundation for sensor 

placement. 

 

6.2.2. Adapting Urban Drainage to Climate Change with Grey-Green Infrastructure 

Urban drainage systems must be adapted to climate change using smart 

combinations of grey infrastructure and Blue-Green Infrastructure (BGI), yet the 

interaction between these systems remains poorly understood. Future research 

should therefore focus on quantifying the contribution of BGI to overall system 

performance, especially under extreme weather conditions and in the context of 
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climate resilience. Key research questions include: “How effectively does BGI 

reduce peak runoff under extreme rainfall?” and “Can BGI also support thermal 

energy recovery or mitigate urban heat stress?” To address these questions, 

detailed hydraulic and thermal simulations are needed that account for both 

conventional and nature-based infrastructure. Combining the available rainfall, 

flow, and temperature measurements with a model such as SWMM-HEAT —offers 

a unique opportunity to simulate such future climate scenarios and assess the 

performance of integrated grey-green solutions. 

 

6.2.3 Developing predictive models and Real-Time Control strategies 

Real-time control (RTC) of urban drainage systems depends on the ability to 

predict system states reliably under a wide range of rainfall and runoff conditions. 

Future research could use the UWO data to develop predictive models that support 

effective control strategies. Central research questions include: “Which types of 

rainfall events are most critical for triggering control actions?”, “How can we use 

monitoring data, which are never 100% accurate, to quantify the performance of 

RTC systems?”, “Can observed flow patterns be used to predict system states and 

guide real-time decisions?”. One very interesting direction, which is not widely 

discussed, is “Can we use the SCADA system to identify important characteristics 

of the full-scale system?” where controlled interventions in the full-scale system 

can actively test sensor performance and system behaviour. For example, 

operators can trigger actuators like pumps or gates and directly observe the sensor 

response to identify delays, outliers, or faults (Sant’Anna et al., 2024). 

 

6.2.4 Accounting for uncertainty and improving statistical inference 

Reliable model predictions depend on properly accounting for uncertainty 

especially given the fact that urban drainage models contain structural bias (Del 

Giudice et al., 2013, 2015). Also, flow and rainfall measurements are also often 

systematically wrong, e.g. through offset, calibration shifts or drift (Del Giudice et 

al., 2016). Future research could therefore use the provided data packages to 

explore what methods are promising to describe prediction uncertainty in a 

statistically correct way, e.g. conformal predictions (Vovk et al., 2025) and how 

autocorrelation, multiple data sources and input errors from rain gauges can be 

accounted for (Auer et al., 2024; Sun and Yu, 2022). 

 

6.2.5 Enabling smart data infrastructures 

Despite the increasing volumes of monitoring data, urban drainage datasets remain 

underused due to insufficient metadata, inconsistent formats, and limited user 
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access. To unlock their full potential, future research should invest in FAIR data 

infrastructure that enables intuitive, domain-aware interaction with complex 

environmental data. One promising avenue is the development of interfaces that 

translate natural language queries into structured database queries (text-to-SQL), 

allowing users to retrieve relevant data without deep technical knowledge of the 

schema (Allemang and Sequeda, 2024). Ideally, one could directly ask the 

database “Which pipe is at capacity?”, “What was the annuity of the thunderstorm 

last Friday?” and “Which city district has the highest infiltration rate?” To support 

such functionality, data models must be semantically rich and ideally rely on 

ontologies and standardized knowledge graphs. A starting point could be the Dutch 

Urban Drainage ontology (GWSW) (The Dutch Urban Drainage Ontology (GWSW), 

2025), which defines classes and relationships within urban drainage systems and 

is already integrated with national tools for asset management and modelling. As it 

is mostly focused on asset representation rather than on sensor time series, further 

semantic developments are needed to support such queries. 

 

 

 

 

RC2.11: 

4. The conclusions drawn by the authors are not always comprehensible, as they are 

discussed for the first time in the manuscript (e.g., learning effects, …). Maybe this is 

already solved by the recommended inclusion of a Results and Discussion section, 

otherwise the authors can also include a subsection with a critical discussion about 

their learnings. 

 

Although reviewer #1 did not suggest modifications to our conclusions, we agree with the 

reviewer #2 that it is not good practice to bring up entirely new information, e.g. on the 

ontologies. We addressed this by including the subsection on “Future research”, which 

makes it possible to reduce the original “Conclusion and Outlook” to a “Conclusion” 

section. 

The key conclusions are: 

● Open data is still the exception—structured data sharing remains rare. 

● IoT-based technology greatly helps, but it does not replace traditional monitoring- a 

balanced combination of few reliable sensors plus many low-cost ones give both 

accuracy and spatial insight. 

● More flow sensors require more rain gauges to interpret runoff patterns. 
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● Real-time data only adds value if validated—automated checks help, but manual 

checks are still needed. 

● The UWO data is relevant, which we demonstrate by several applications, such as 

understanding infiltration, CSO, sewer heat exchange and also for the 

telecommunications domain. 

● There are a lot of promising future research possibilities, especially regarding ML 

development, uncertainty quantification, testing BGI impacts and smart databases 

which can make sewer data truly usable. 

The complete changes are: 

ll.668ff: 

● Urban drainage monitoring is evolving, but despite progress in data acquisition and 

processing, widespread open data sharing is still the exception rather than the rule. 

● IoT-prone transmission technologies and advances in sensor development offer 

the opportunity to revolutionize sewer process monitoring by enabling real-time, 

spatially differentiated information. However, they do not replace traditional 

methods and are not yet a plug-and-play solution for ubiquitous sensing. Power 

supply of many sensors is still a major bottlenecks and limits scalability, especially 

for small utilities with few resources. 

● In terms of sensors, we conclude that a dual-sensor strategy pays off: using a few 

high-quality sensors for key measurements (e.g., rainfall, pipe flow) ensures 

trustworthy reference data, while low-cost sensors, such as ultrasonic water level 

sensors support dense deployment and gathering spatial information, which then 

provides a deeper understanding how the urban drainage system functions. It is 

important that sensor deployment must be supported by adequate rainfall and 

climate monitoring, especially if spatially resolved runoff patterns are to be 

interpreted meaningfully. Simply put: More flow sensors generally necessitate more 

rain gauges. 

● To fully benefit from monitoring data, it is crucial to ensure that streaming the 

sensor data in real time is sufficiently reliable. Collecting field observations without 

timely validation does not make sense, and regular manual checks for consistency 

and homogeneity remain essential to ensure data accuracy. We found that 

automated quality checks, such as range and gradient tests, are adequate to 

detect anomalies and become particularly important when handling more than 30 

to 40 sensor signals. Differentiating whether anomalies are caused by sensor 

malfunction or actual system behaviour requires more advanced analysis which 

still has to be standardized. 

● For important urban drainage processes, such as sewer infiltration, overflow 

behaviour and thermal energy exchange, the suggested applications of the UWO 

dataset demonstrate that high-resolution, long-term monitoring is essential to 

understand the relevant dynamics. In addition, the provided telemetry data offer a 

real-world benchmark for assessing IoT performance from underground 

environments, enabling further research on optimizing network design, power use, 

and data reliability in smart city applications. 
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● Future research should use the UWO dataset to develop and benchmark ML-

based anomaly detection and data recovery methods using the long time series. It 

also seems very promising to investigate in how far BGI can help us to make our 

urban drainage systems more resilient and adaptable and especially to test 

modern methods of uncertainty quantification, such as conformal predictions. 

Future work should also focus on smart databases by combining semantic web 

technologies with data-driven modelling, e.g. Large Language Models. Urban 

drainage ontologies and standardized descriptions of monitoring data will probably 

improve integration, interoperability and even reasoning. Combined with natural 

language interfaces, these systems could allow users to query sewer data more 

intuitively, e.g. “Which pipe is at capacity?”, “What was the annuity of the heavy 

storm last Friday?” 

 

RC2.12: 

5. For a better reference to the individual subfigures, I recommend including subheadings 

such as (a), (b) ,… instead of top/bottom. 

Very good suggestion. Adjusted as recommended. 

 

RC2.13: 

6. Figure and table captions are quite long and should be shorten. Instead, the figure and 

table contain should be described in more details in text. 

Here, we disagree slightly. Informative captions which give the main message of the figure 

make it easier for the reader to screen the paper whether the content is relevant. 

However, we shortened the captions as much as possible. 

 

Figure 2a): Overview of the Fehraltorf catchment, including urban drainage 

network, geography and land use. b): Simplified flow scheme of the combined 

sewer system of Fehraltorf. The main flow path through the network is from top 

right to the left (bold line). The relevant characteristics of sub-catchments can be 

found in the supporting information. Indicated flow times are calculated assuming 

a constant flow velocity in the sewer of 1 ms-1. 

Figure 3a): CAD model of the overflow structure “RÜB Morgental” including inflow 

chamber, detention tank, overflow to receiving water, and installed sensors, b): 

Cross-section at the sensor bl_plsRKBM1201_rubmorg_inflow (not drawn to 

scale). Detailed information of all other detention basins and flow control 

structures is provided in the SI. 



23 
 

Figure 4a): Georeferenced locations of sensors, b): Example of a heat map 

representing the completeness of data in the monitoring period from 01-01-2019 

to 31-12-2021. A1 = precipitation data; A2 = hydraulic data; A3 = temperature 

data. A4= LPWAN sensor data is not shown. The color saturation indicates the 

degree of data completeness (weekly granularity). Dark blue indicates periods 

with 100 % data completeness; white indicates periods with no data. Light blue 

indicates a reduced number of data points, either through sensor maintenance, 

sensor outage or incomplete data transmission. We provide a dynamic plot in 

package C, which can be used to interactively explore the data availability and 

view details. See SI Section 6 for details. Groundwater levels are not part of this 

dataset, but available at ERIC (Ramgraber, 2025). 

Table 1: Overview of installed sensors including relevant characteristics on 

sensor type, temporal granularity of data, and the type of data transmission. 

Figure 5: The individual components of the data pipeline for collecting, storing, 

and using UWO data from the sensor to the data service. The numbers refer to 

the corresponding Sections.  

Figure 7, left: Observations with potential anomalies. Highlighted sections show 

the benefit of multiple sensors in detecting anomalies. While the high variability on 

the left is reflected by all sensors, on the right only a single signal appears 

abnormal. Right: F1 scores for different methods for pre-processing (A-D). An F1 

score of 0.5-0.8 is considered medium quality, 0.8-0.9 good and above 0.9 

excellent. For real-world data (A-C), the performance increases with increasing 

levels of pre-processing. For real-world data, ARIMA performs best and the 

Autoencoder never reaches the performance on synthetic data (D). 

Figure 8, left: In total 256 sewer manholes in the Fehraltorf network are potentially 

affected by groundwater (April 2018). The darker the colour, the more are 

manholes submerged in GW. Right: in total 100 sewer manholes were affected by 

groundwater in October 2018.  

Figure 9a): Continuous tank level measurements (dots) and binary data 

(triangles). The latter are derived from the capacitive sensor signal, reflecting an 

overflow activity during a period of two days for which two independent overflow 

events were recorded, b) and c): Event-specific overflow durations derived from 

one capacitive sensor (bm_dl332_rub_morg) and one ultrasonic level sensor 

(bl_dl311_rubmorg_inflow). The overflow duration derived from the erroneously 

calibrated level sensor (dl311) with an incorrect offset in b) is corrected to a 

correct offset in c). 

 

RC2.14: 

7. As described in the manuscript composition, footnotes should be avoided in the text. 
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Agree. This has been addressed in RC1.1.  

 

RC2.15: 

8. L17: Would be ‘barriers’ a better word instead of ‘deterrents. 

Yes, this would indeed be much better. We replaced it. 

 

RC2.16: 

9. L32: From the descriptions, it is unclear for me how the development of ontologies and 

knowledge graphs can help to extend the application of sewer observation data. 

Besides, knowledge graph is only mentioned in the abstract. 

 

Yes, we agree it’s not ideal to introduce new ideas in the conclusions. That said, the current 

success of large language models relies on massive, well-structured data collections—only 

possible if data are semantically labeled. Ontologies provide shared concepts and relations, 

allowing unique identifiers for things like sewer flow data. Knowledge graphs help structure 

metadata (e.g., diameter, slope), enabling automated checks using simple physical models. 

Since LLM integration with ontologies has progressed during the review phase, we think it is 

appropriate to mention this as a future research direction. 

ll.655ff: 

 

6.2.5 Enabling smart data infrastructures 

Despite the increasing volumes of monitoring data, urban drainage datasets remain 

underused due to insufficient metadata, inconsistent formats, and limited user 

access. To unlock their full potential, future research should invest in FAIR data 

infrastructure that enables intuitive, domain-aware interaction with complex 

environmental data. One promising avenue is the development of interfaces that 

translate natural language queries into structured database queries (text-to-SQL), 

allowing users to retrieve relevant data without deep technical knowledge of the 

schema (XREF). Ideally, one could directly ask the database “Which pipe is at 

capacity?”, “What was the annuity of the thunder storm last Friday?” and “Which city 

district has the highest infiltration rate?” To support such functionality, data models 

must be semantically rich and ideally rely on ontologies and standardized knowledge 

graphs. A starting point could be the Dutch GWSW ontology (XREF), which defines 

classes and relationships within urban drainage systems and is already integrated 

with national tools for asset management and modelling. As it is mostly focused on 

asset representation rather than on sensor time series, further semantic 

developments are needed to support such queries. 
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Further reading in this direction, which we did not integrate into our article to keep it 

tracktable, is 

● A popular very recent study suggests that LLMs struggle with formal logical 

reasoning and depend heavily on pattern matching. https://arxiv.org/abs/2410.05229  

● Well-designed ontologies (vocabularies) make environmental and geospatial data 

FAIR and machine-reasonable, improving reuse and automated interpretation. 

https://www.semantic-web-journal.net/system/files/swj653.pdf 

● There is evidence that investing knowledge graphs, namely the ontology, provides higher 

accuracy for LLM powered question answering systems.https://arxiv.org/abs/2405.11706 

 

 

RC2.17: 

10. L38 - 52: In my opinion, the lists of challenges require more detailed explanations to 

make them comprehensible without detailed knowledge of drainage networks (e.g., 

from the literature review it is not clear, why there is a need for better understanding the 

rainfall-runoff processes). 

 

We understand this, and added some concise explanations to clarify key points without 

increasing the length too much. More detailed information is available in the referenced 

literature. 

  

ll. 45-56 

“However, reliably collecting minute-by-minute rainfall data over many years can be 

challenging, because rain gauges are prone to clogging, especially from leaves, 

insects, or vandalism. Moreover, urban drainage catchments are often small and 

heterogeneous, so a single rain gauge cannot reliably capture localized, convective 

rainfall events—multiple, well-placed gauges are usually needed. Monitoring 

stormwater runoff, wastewater flows, and pollution processes at a minute scale is 

equally resource-consuming, as it requires high-frequency sensors that must operate 

reliably in harsh environments such as sewer pipes. Specialized equipment, training, 

and software (Dürrenmatt et al., 2013; Mourad and Bertrand-Krajewski, 2002), as 

well as considerable investments, are required to collect and manage the data, and 

to maintain the sensors (Blumensaat et al., 2019; Hoppe et al., 2016). Arguably, 

sensor maintenance to ensure good data quality is one of the biggest challenges in 

urban monitoring, as sensors can drift, foul, or lose power without notice (Mourad and 

Bertrand-Krajewski, 2002; Nedergaard Pedersen et al., 2021). Data quality is often 

dubious due to the low data literacy of the sewer workforce and lack of incentives to 

use data for evidence-based management of urban drainage systems (Manny et al., 

2021). In addition, the lack of standards and meta-data makes it difficult to work with 

existing or historical data, especially when trying to reuse them across different 

systems, tools, or studies.” 

https://arxiv.org/abs/2410.05229
https://www.semantic-web-journal.net/system/files/swj653.pdf
https://arxiv.org/abs/2405.11706
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RC2.18: 

11. L43: Please add information which high-resolution data is needed, e.g., temporal, 

spatial, or both. 

 

Thank you for the comment. The type of high-resolution data needed depends on the 

application. For rainfall-runoff processes, temporal resolution is generally more important to 

capture rapid dynamics during storm events. In contrast, spatial resolution is more critical for 

understanding infiltration patterns. For combined sewer overflows (CSOs), both temporal 

and spatial resolution are relevant.  

We added a sentence and reference that explains this for the rainfall-runoff process: 

 

ll.43ff: 

“Understanding urban hydrological processes require high-resolution data on both, the 

input - such as rainfall - and the output - such as wastewater flows and pollution. For 

rainfall-runoff, a high temporal resolution seems to be more important than spatial 

resolution, though both interact closely (Ochoa-Rodriguez et al., 2015). However, 

reliably collecting minute-by-minute rainfall data over many years can be challenging 

(Bianchi et al., 2013),” 

 

 

RC2.19: 

12. L50: I would suggest to rephrase “often dubious due to the low data literacy of the 

sewer workforce” with something such as “is influenced by errors in the data knowledge 

of employees”. 

Yes. We replaced it with:  

ll.53ff: 

"Data quality is often affected by limited familiarity of operational staff with data 

handling and interpretation as well as a lack of incentives to use data for evidence-

based management." 

 

RC2.20: 

13. L61: The descriptions how the following factor has “fueled” the demand for open data 

sets can be improved, e.g., for me the advancements in lower-power electronics have 

opened new ways in data collection rather than increasing the need for open data sets. 
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Yes, that is a good point. We re-phrase to describe the “push” for open datasets, which 

describes it much better. 

 

ll.65-74: 

In recent times, several developments have contributed to a growing push for open 

datasets in urban hydrology. First, advancements in low-power electronics, data 

transmission (Ebi et al., 2019) and sensor application (Boebel et al., 2023; Mathis et 

al., 2022) have significantly reduced the effort of data collection. Second, efforts for 

standardized meta-data and exchange formats facilitate data sharing (Bustamante et 

al., 2021; Taylor et al., 2013). Third, scientific data collection efforts, such as the data 

set “Catchment Attributes and Meteorology for Large-sample Studies (CAMELS)” 

(Addor et al., 2017; Newman et al., 2015), have truly revolutionized the field of 

hydrology through the use of advanced data-driven models (Kratzert et al., 2018). 

Fourth, the public demands greater transparency of urban infrastructure performance 

(Benyon, 2013; Giakoumis and Voulvoulis, 2023) and regulatory bodies, such as 

those in the UK (Environment Act, 2021) and in the EU (EC, 2022), are demanding 

more monitoring. At the same time industry initiatives, such as STREAM (Stream - 

Portal, 2025), further emphasize the importance of collecting and sharing water 

company data. 

 

RC2.21: 

14. Please specify, what the main novelty of this work is compared to the mention projects 

CAMEL and STREAM, as it seems, they are having the same aim? 

 

This is a good question. CAMELS focuses on river hydrology on the national level and is not 

suited for urban or in-sewer applications. STREAM is industry-driven and aims at 

transparency, but only provides aggregated summaries (e.g. number of overflows per year), 

not full time series or raw data needed for scientific analysis and modelling. So the ideas are 

similar (CAMELS- scientific focus, STREAM- urban drainage focus), but do not provide both, 

which is the main novelty of the UWO dataset. 

 

RC2.22: 

15. L87: For me, the description about the provided data packages belong to the methods 

section rather than in the Introduction. Instead, I would expect an outlook, how the 

manuscript is structured. 

Agree. Implemented with RC2.9. 

 

RC2.23: 
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16. Fig. 1 und Fig. 5 are quite redundant and can be combined into one. 

 

Thank you for the suggestion. We respectfully disagree. Fig. 1 outlines the structure of the 

manuscript and the overall data concept, while Fig. 5 focuses on the actual datasets, their 

spatial and temporal coverage and availability. Since they serve different purposes—one 

conceptual, one data-driven—we think that both are really needed. Also no similar concerns 

were raised by other reviewers. 

 

RC2.24: 

17. Fig2: It seems that the top is missing. I also suggest to include the meaning of triangles 

(instead of the Figure caption) and circles in the legend. 

Yes, thank you. That mistake occurred during final formatting. Next time we’ll use 

Latex again… 

RC2.25: 

18. L119: Reference is made to Fig 2., but none of this information is shown there. 

Fixed with RC2.24.  

RC2.26: 

19. L121 - 126: Instead of the historical weather values, the authors can include the 

measured values from the dataset. Besides, what does a high variability and frequency 

mean? 

 

Good comment. We now include measured annual rainfall from our dataset (FAF) and the 

nearby MeteoSwss station (KLO): 

 

2019: FAF: 1096 mm, KLO: 1073 mm 

2020: FAF: 1059 mm, KLO: 833 mm 

2021: FAF: 1339 mm, KLO: 1083 mm 

 

which confirms that our measurements are within the typical range of long-term annual 

rainfall. The phrase “high variability and frequency” refers to short, intense rainfall events, 

which are common in convective storms. We added a reference to Section S1.6, where we 

briefly describe the new extreme value statistics from MeteoSwiss (not available at 

submission). For the nearby station KLO, tt estimates the intensity for a 10-year event is 

119 mm/h (95 % CI: 107–141 mm/h) for a 5min duration. For a 20-year return period, it rises 

to 134 mm/h (CI: 118–168 mm/h). Starting in May 2025, MeteoSwiss is gradually making its 

data accessible as Open Government Data. 
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ll.135ff: 

Our measurements show annual rainfall totals between 1096–1339 mm, compared to 

833–1083 mm from the MeteoSwiss station KLO. The climate region has a high 

variability in weather patterns and the frequency of storms and extreme weather 

events. The intensity for a 5-minute rainfall with a 20-year return period is estimated at 

134 mm/h (95% CI: 118–168 mm/h) according to new extreme value statistics from 

MeteoSwiss (see Section S1.6). 

 

RC2.27: 

20. L142 + Fig. 3: Is the information about RUB Morgental needed in the manuscript? 

Yes, we firmly believe that it is needed for completeness. In our view, it also nicely illustrates 

the level of detail we provide and the effort that went into curating the dataset and metadata. 

We improved the readability of the annotations (see RC1.4). 

 

RC2.28: 

21. Figure 4: The legend is hardly readable, and how are sensor and sensor nodes 

distinguished? Additionally, I recommend to include names of rivers and special 

structures, as spatial information in combination with Fig 2. Instead, the right part of the 

Figure would belong the results and not to Materials. 

 

We increased the size of the legend and included the names of rivers and special structures. 

As Figure 4a shows the spatial coverage, we believe that it is reasonable to show the 

temporal coverage in 4b. We deleted sensor nodes in the caption to avoid confusion. 

 

In the UWO dataset, the difference between a sensor and a sensor node is: 

● Sensor: The actual device that measures a physical parameter (e.g. water level, 

temperature, flow, rainfall).  

● Sensor node: A complete unit that includes the sensor plus supporting components—

typically a logger, power supply (e.g. battery), and communication module (e.g. 

LoRaWAN, cellular). 

This is described in ll.189-190. 

 

 

RC2.29: 

22. L201: What does in contrast to Bellinge dataset mean? 
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“In contrast to Bellinge dataset” means that the UWO dataset differs in its focus and design 

priorities. In contrast to the Bellinge dataset, which is a rich and comprehensive utility 

dataset, even including CCTV inspections and two hydrodynamic models, the UWO dataset 

was purpose-built as a scientific field lab. This design makes UWO better suited for 

understanding fine-scale urban hydrological processes, especially where detailed and 

reliable rainfall-runoff observations are essential—such as anomaly detection, infiltration 

studies, and sensor performance evaluation. 

We extended the description to: 

ll.219-221: 

“In contrast to the Bellinge rainfall data, which come from a national network 

(Nedergaard Pedersen et al., 2021) and are likely quality-controlled and processed 

using standardized tools, the UWO rain gauges were installed specifically for local 

monitoring, providing more targeted and detailed rainfall-runoff data although their 

measurements have not been quality controlled a priori.” 

 

RC2.30: 

23. L263: Is it right, that operating LPWANs has become straight forward? In contrast, why 

did the author reduce the number of sensors, developed the LoRa-based mesh 

technology and recommend a monitoring backbone? 

Thank you. We interpret and address this comment as follows: why didn’t we (the authors) 

implement even more sensors if installing LPWAN sensor networks is so straightforward? 

As a matter of fact the ever growing IoT community not only develops new approaches but 

also collects more experience in existing, yet new techniques. As actors gain more insights 

and experience, technological solutions become more robust and more comfortable to be 

used. Our team had the chance to witness and shape (hopefully a bit) this evolution in an 

early stage. Nowadays large-scale rollouts in the context of Smart City projects exist [e.g. 

Amsterdam, Zurich, Basle, Berlin, Hamburg, etc.], underlining that the LPWAN techniques 

made their way from a niche technology to an established, flexible and cost-effective 

monitoring approach especially in urban areas. Still, implementation and maintenance of a 

what-so-ever number of sensors is effort and consumes resources. Since also our resources 

and access to skilled technicians were limited, we had to reduce the number of sensors 

following the constraints given by the available budget. In addition to that, we were always 

keen on minimising the numbers of sensors that have limited value, because high 

maintenance efforts are difficult to justify if the sensor ultimately contributes little information. 

We started to develop the LoRa-based mesh technology in 2016, almost a decade ago, to 

overcome limitations we identified with the standard LoRaWAN technique when monitoring 

underground infrastructure, which is a rather special application case. Systematically we 

reduced those sensors in the standard LoRaWAN which had poor to mediocre performance. 

We replaced them with mesh sensors as long as we had our own prototypes available.  

Overall, it can be unambiguously stated that operating LPWANs has become 

straightforward, but more advanced sensors (e.g. flow monitors as part of the so-called 

backbone) are still required to provide rather accurate reference measurements. The 
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challenge to optimise the monitoring layout beyond how we have done this is formulated as 

a research opportunity in Section 6.2.1. 

 

 

RC2.31: 

24. L330: Could the authors give more details about the quality check – what was the 

motivation to focus on range and a gradient check, what was used for the valid range 

(e.g., system boundaries, measurement range, calibration range) and maximum or 

minimum gradient to distinguish between measurement fluctuations with ultrasonic 

sensors and rainfall event, …? 

Sewer flow and level data follow rather complex dynamics. Despite the fact we did research 

more advanced data validation techniques, we identified that simple data validation rules 

(range, gradient checks) were sufficient and robust (!) enough to identify questionable data. 

A further differentiation of “questionable” data often requires expert knowledge, and - so far 

and to the best of our knowledge - no reliable more advanced data validation routine for in-

sewer process data is available. Hence we formulated this task as research opportunity in 

Section 6.1.1 and S 9.1.  

To address your comment we added the following sentence:  

ll.352ff: 

Upper and lower limits for range checks are individual for each sensor as they are 

defined through i) the device specification and configuration as well as ii) constraints 

given through actual installation in the field.  

… and the following at line 336: 

The values implemented in gradient tests vary depending on the observed system 

dynamics, i.e. they were manually adjusted to obtain meaningful results.  

 

RC2.32: 

25. L350: Please add details about the types of regular check, how often were they 

performed, how is data consistency and homogeneity defined, and what conditions 

have to be fulfilled to classify the data as wrong? 

 

The procedure we refer to in Section 3.2.2 (now 4.3.2) aims at ensuring data consistency 

and homogeneity by regular semi-automated data validation.  

More concretely that is accomplished by i) a regular (every morning), visual inspection of 

sensor data time series focusing at new sensor data that had arrived overnight. With the 

growing number of sensor data acquired, this process was/is supported by ii) an automated 

flagging routine based on range and gradient checks. Methodological details are given in 

Section 4.3.1.  
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Eventually, the daily (workdays only) data inspection routine, carried out by a person in 

charge, enabled us to identify gross errors in the recent data in quasi real-time, and to timely 

address these errors by on-demand sensor inspections in the field. While basic automated 

data validation techniques (step ii) help to filter out “questionable data”, expert knowledge is 

used to further differentiate phenomena (sensor failures or system-immanent process 

dynamics) in “questionable data” and identify errors and the need for sensor maintenance 

(step i). 

We added the following section after the first paragraph in Section 4.3.2 

ll.373-395: 

The continuous verification of consistency and homogeneity helps to ensure that 

the UWO dataset reflects real-world processes adequately across time and space. 

In this context we define consistency and homogeneity as follows: 

Data consistency refers to the sufficient availability of plausible data over time. 

Specifically, data should not contain large gaps, inexplicable jumps or unrealistic 

values that conflict with the known behaviour or physical constraints of an urban 

drainage system, e.g. manhole water levels beyond terrain level.  

Data homogeneity refers to the uniformity of data characteristics over the 

observation period. For example, a sensor’s signal should consistently represent 

the same physical quantity under the same conditions. Changes in installation, 

sensor type, or surrounding hydraulics that could affect the signal interpretation 

were tracked to ensure the dataset remains temporally coherent. 

More concretely, we accomplish this by i) a visual inspection of sensor data time 

series every morning, reviewing new sensor data that has arrived overnight in the 

context with historic data. With the growing number of UWO sensors, i.e. data 

collected, this process was supported by ii) an automated flagging routine based on 

range and gradient checks (see Section 4.3.1). This daily inspection routine enabled 

us to identify anomalies in quasi real-time (e.g. due to sensor malfunction, clogging, 

configuration changes, or physical alterations to the sewer system), and to timely 

address these phenomena by on-demand sensor maintenance in the field. While 

basic automated data validation routine (step ii) help to filter out “questionable data”, 

expert knowledge is used in i) to further differentiate observed phenomena (is it a 

sensor failure or just typical, normal system behavior?) in “questionable” data and 

identify errors and the need for sensor maintenance. We differentiate between 

“doubtful” and “undoubtedly” data points. The so as “doubtful” identified data were 

kept in the dataset but annotated, enabling users to exclude or inspect them as 

needed. Clemens et al., 2021 propose more classes, but we found that this was 

difficult to implement in our case. 

 

RC2.33: 



33 
 

26. L354 – 357: This paragraph should belong to the Future Research section as it is 

discussing future research opportunities. 

Yes, this is a good point. We integrated this into the Future Research section. 

 

RC2.34: 

27. L363: Could you please describe which data (period, sensors, …) was used for the 

calibration. 

This information has been provided in Appendix S7 - Hydrodynamic sewer models. 

Basically, since 2016, the SWMM model has been thoroughly revised continuously: dry 

weather flows, storage volumes, pump curves, and control logic were verified, while pipe 

and manhole geometries largely followed the official municipal cadastre from the original 

MIKE Urban model.  

The final calibration of the provided SWMM model was based on measured inflow to the 

WWTP and flow observations at four additional locations during several non-extreme rain 

events (March–May 2016). Model performance was evaluated using cumulative volume bias 

and Nash-Sutcliffe efficiency (NSE), which is described in Section S7.3 and Figure S40. 

 

ll.457ff: 

The final calibration of the provided SWMM model was based on measured inflow to 

the WWTP and flow observations at four additional locations during several non-

extreme rain events (March–May 2016). Details are described in Section S7.3 and 

Figure S40. 

 

RC2.35: 

28. L375: Is it correct, that the calibrated base model has a different underlying hydraulic 

structure then the provided dataset? If yes, could you please provide a description 

about the modifications and the expected impact (e.g., which sensors should 

correspond with the simulations and for which sensors there is a high difference 

expected). This would be a really important information for future work integrating 

hydrodynamic model and measurement data. 

 

The given calibrated base model has a very similar structure as the provided data set. The 

only major limitation is the fact that the STEBATEC pneumatic flow limiter (is not 

implemented in the Model. We addressed this by including more details in the supporting 

information S3.5 and explicitly mentioning it in the main manuscript. See answer to RC1.8.  

 

ll.467-471: 
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The SWMM model structure files as well as input files, flow patterns are available in 

package B. As with any other drainage system, the sewer network in Fehraltorf is 

subject to changes. For instance, with the commissioning of new flow-limiting 

hardware in August 2020, modifications were made to the network that are not yet 

considered in the currently provided model structure (cf. SI Section S3.5). Further 

information on the rainfall-runoff model, as well as on the accompanying data can be 

found in the SI. 

 

RC2.36: 

29. L379: Section 3.4 shows some overlapping with section 6 Data availability. To avoid 

these overlaps, I recommend to combine these two sections in a joint section. 

Yes, this makes sense. This has been merged into the new structure and is now considered 

in Section 4.4 “Data access and tools” 

 

RC2.37: 

30. Figure 9: The total overflow duration is the same in the middle and right chart, although 

there should be a difference according to L467. Based on the results, why is the 

capacitive sensor signal not directly used for estimating the total overflow duration, and 

what is the need of the level sensor? 

Thank you for pointing this out. We agree that the formulation in L466 ff is a little misleading. 

To be clearer we adopted the text in the manuscript as follows:  

 

ll.540-551: 

“In the UWO, we equipped all CSO tanks in the Fehraltorf system with multiple 

ultrasonic level and capacitive sensors to independently monitor overflow duration to 

investigate how redundant signals would reduce the uncertainty of CSO event-

duration monitoring (SI Section S9.3). 

The results shown in Figure 9 b) and c) illustrate that the CSO duration derived from 

an erroneously calibrated level sensor (Fig. 9b - dl311, x-axis) can significantly differ 

from the CSO duration derived from a correctly configured level sensor (Fig. 9c - 

dl311, x-axis). Only by comparing the level-sensor prone information with the CSO 

duration derived from the capacitive sensor signal (reference signal), the systematic 

deviation due to the wrongly configured level sensor becomes obvious. In the given 

example, with the incorrect level sensor configuration the CSO activity is severely 

underestimated - about 50 % less cumulative overflow duration is documented in the 

overall monitoring period of 1’077 days. Generally, the redundant information from a 

robust capacitive sensor (only dry/wet status; consecutive wet intervals are counted 

to give an overflow duration) helps to verify data from typically implemented level 

sensors. Once successfully verified, level data can then be used to quantify not only 
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overflow duration but also overflow volume, i.e. spill rates. Capacitive sensors alone 

provide reliable information on overflow duration and overflow frequency.  

 

RC2.38: 

31. L485: Please include a definition of headspace and bulk liquid temperatures and a 

description how condensation and evaporation affect the sewer heat transfer processes 

for a better understanding, as it remains unclear from the descriptions. 

 

We added the definitions. l.567f 

Headspace temperature refers to the air above the wastewater surface in the sewer 

pipe, bulk liquid temperature to the wastewater itself.  

 

RC2.39: 

32. L487: In Figure 10, only the temperature is shown and it remains unclear, how the 

author determines if there is a real evaporation or condensation. From my 

understanding, the humidity is an important factor affecting these processes. 

Additionally, it is unclear, what medium evaporates or condensate. 

This is correct, we forgot to include important information in the description of this section, 

which is only available in the Supporting Information of Figueroa et al. 

Basically, the latent heat transfer analysis in the Supplementary Information was intended 

as a didactical demonstration, rather than a direct representation of dynamic field 

conditions. 

To clarify: 

a) As shown in Figure 2 (Figueroa SI, see below), we measured relative humidity (RH) in 

the sewer headspace at four locations in the Urban Water Observatory (UWO). The 

observations show that RH typically ranges from 83% to 98%, but only rarely reaches full 

saturation (100%)—even during humid summer conditions. This suggests that net latent 

heat fluxes (evaporation or condensation) are indeed possible under real operating 

conditions. 
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To analyse the effect of these processes, we made a simplifying assumption: 

 

We treated the relative humidity as stationary with a fixed value of 91.4%, which 

corresponds to the mean RH across the observed locations in the above Figure. 

Using this fixed RH, we classified field observations of sewer headspace and bulk liquid 

temperatures into periods of: 

● Evaporation (when T_headspace > T_liquid, shown in red), and 

 

● Condensation (T_headspace > T_liquid, shown in blue) 

 as visualized in the corresponding figure. 

We then selected two representative periods for detailed exploration (indicated by green 

and yellow boxes in the plot). These were used to simulate two contrasting 

thermodynamic scenarios, where we examined how bulk liquid temperature responds to 

variations in: 

● Relative velocity between air and water surface (𝑟𝑣𝑒𝑙), 
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● Relative humidity (𝑟ℎ𝑢𝑚), 

 

● and Bulk liquid depth. 

As an example, here are the results of Figure 5  

 

 

To avoid this confusion, we suggest the following changes: 

 

ll.565ff: 

Using a subset of the provided temperature time series, we investigated the 

difference between headspace and bulk liquid temperatures to identify conditions 

for A) condensation and B) evaporation (SI of Figueroa et al. (2021)). Headspace 

temperature refers to the air above the wastewater surface in the sewer pipe, bulk 

liquid temperature to the wastewater itself. To do this, we analyse the provided 

temperature data in three locations dl933, dl935 and dl931 (Figure 10), assuming a 

fixed relative humidity of 91.4%, which is the mean value observed across several 

sewer locations (Figueroa et al. (2021) Figure 2, SI). This simplification enabled a 

didactical classification of temperature observations into evaporation (red) and 

condensation (blue) periods, based solely on the temperature gradient between the 

headspace and the wastewater. 

We found that condensation takes place in April when the typical temperature 

difference between the sewer headspace and the bulk liquid temperature is -2 °C. In 

contrast, with warmer ambient air and headspace temperatures, evaporation 

occurs. Maximum differences can amount to 5 °C, at location dl931. Based on these 

results, Figueroa et al. (2021) concluded that latent heat transfer should not be 

neglected, especially in areas with shallow flows and high velocity differences 

between wastewater and headspace, i.e. in steep catchments and peripheral 

regions. Even in scenarios with high relative humidity values, latent heat processes 

play a crucial role and should be considered. This makes the provided temperature 
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data an ideal source for further developing heat exchange models for sewer 

networks. 

 

RC2.40: 

33. Figure 10: The y-labels have the unit [°C], while the temperature differences in the text 

are °K. 

Thank you, we fixed this (see RC2.39) 

 

RC2.41: 

34. L518: It should be section 5 instead of section 6, which is the same for the following 

sections. 

Thank you, we fixed this.  

 

RC2.42: 

35. Author contributions: Andreas Scheidegger and Uwe Schmitt are mentioned here, but 

they are not listed in L5. 

Thank you for spotting this. This was a leftover from an earlier version of the paper. Given 

their more technical support role, it is more appropriate that they are mentioned in the 

acknowledgements. 

 


