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Abstract.

The Global Inundation Extent from Multi-Satellites (GIEMS) database first published in 2001 (Prigent et al., 2001) was

a key advance toward the accurate representation of wetlands globally by providing dynamic time series of global surface

water based on passive microwave observations. This study supplements the second version of GIEMS (GIEMS-2) with other

datasets to produce GIEMS-MethaneCentric (GIEMS-MC), a dynamically mapped dataset of methane-emitting waterlogged5

and inundated ecosystems. We separated open water from wetlands in GIEMS-MC by using the Global Lakes and Wetlands

Database version 2 (GLWDv2), while adding unsaturated peatland areas undetected by GIEMS-2. Rice paddies are identified

using the Monthly Irrigated and Rainfed Crop Areas (MIRCA2000) product. A specific coastal zone filtering is applied to avoid

ocean artifacts while preserving coastal wetlands. GIEMS-MC covers the period 1992-2020 on a monthly scale at 0.25°x0.25°

spatial resolution. The GIEMS-MC product includes two layers of monthly wetland time series - one for flooded and saturated10

wetlands and another for all wetlands and peatlands - together with seven layers of compatible static maps of open water

bodies (lakes, rivers, reservoirs) and seasonal rice paddy maps used in its production. The dominant vegetation and wetland

types per pixel are also provided in GIEMS-MC variables. GIEMS-MC is compared to Wetland Area and Dynamics for

Methane Modelling (WAD2M), a dataset providing dynamic wetland information. In terms of wetland extent, GIEMS-MC

all wetlands and peatlands and WAD2M show similar results, with a mean annual maximum of 7.8 Mkm2 for GIEMS-MC15

and 6.8 Mkm2 for WAD2M, and similar spatial patterns in most regions. The GIEMS-MC seamless time series represents a

significant advance in wetland representation for methane modelling, although limitations remain in the accurate identification

of rice, coastal and peatland areas. This resource provides harmonized dynamic maps of aquatic methane emitting surfaces and

is available at https://zenodo.org/records/13919645.
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1 Introduction20

Following a stable period from 1999 to 2006, atmospheric methane levels have started to rise again, reaching a record growth

rate of +18 ppb yr−1 in 2021 (Lan et al., 2024). This increase is a cause for concern, particularly given that anthropogenic

emissions of this potent greenhouse gas account for approximately one-third of the human-induced radiative forcing (Szopa

et al., 2021). As a chemically active greenhouse gas with multiple, time-varying sources and sinks (Saunois et al., 2024),

closing the methane budget is challenging. The causes of the observed increase in atmospheric methane remain uncertain.25

Potential factors include increased human or natural emissions, reduced sinks, or a combination of these factors. However,

isotopic evidence suggests that biogenic sources (livestock, wetlands, waste, etc.) may play a significant role in the observed

increase (Nisbet et al., 2016, 2019).

Among the sources, natural emissions from wetlands and freshwater ecosystems account for 145 to 369 Tg CH4 yr−1, i.e.,

25 to 51% of global methane emissions (Saunois et al., 2024). Wetland emissions show significant inter-annual variability30

(Bousquet et al., 2006; Bridgham et al., 2013) and are sensitive to climate (Bridgham et al., 2013; Zhang et al., 2023). Thus,

better understanding natural methane emissions variability in the past will inform future predictions of wetland emissions and

their feedback on climate. Large uncertainties remain for both wetlands and freshwater ecosystems methane emissions (Saunois

et al., 2020; Canadell et al., 2021). This is due to the difficulty of modelling methane fluxes, which depend on many biotic and

abiotic factors (Bridgham et al., 2013; Ge et al., 2024), to the small number of flux observations (Canadell et al., 2021), and to35

uncertainties in wetland and freshwater area (Bridgham et al., 2013; Melton et al., 2013; Saunois et al., 2020; Canadell et al.,

2021), including issues of double counting, where the same area may be counted twice under different categories, inflating

estimated emissions (Canadell et al., 2021; Thornton et al., 2016). Yet, the area covered by seasonal wetlands remains the

single largest source of uncertainty on wetland CH4 emissions (Melton et al., 2013; Peltola et al., 2019; Poulter et al., 2017;

Zhang et al., 2017).40

The first global wetland map was produced by Matthews and Fung (1987), providing composite static information on wetland

types. Since then, new static wetland products have been established, either from composite information (Lehner and Döll,

2004; Tootchi et al., 2019; Tuanmu and Jetz, 2014) or from remote sensing approaches (Loveland et al., 2000; Friedl et al.,

2002; Bartholomé and Belward, 2005; Carroll et al., 2009; Feng et al., 2016). Further datasets have been developed based

on hydrological model outputs (Ringeval et al., 2012; Wania et al., 2013; Xi et al., 2022), presenting their advantages and45

disadvantages compared to satellite-derived products. Those models can be used both to reconstruct the historical distribution

of wetlands and to predict their future evolution. Modelling can be an effective method for producing a global map of wetlands,

particularly where physics-based models can reflect the mechanisms by which wetlands are formed. The two main limitations

of these model outputs are 1) that hydrological models are simplified representations of the real-world complexity of wetlands

(e.g., models often focus on a single water surface generation process (Obled and Zin, 2004)), and 2) that human interference50

is not well accounted for in the models (Hu et al., 2017). Moreover, observations are required to constrain and/or validate these

model predictions.
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However, there are only a few available observational dynamic time series of surface water maps at a global scale. Notably,

these include: 1. the Global Inundation Extent from Multi-Satellites (GIEMS and GIEMS-2) (Prigent et al., 2001, 2007; Papa

et al., 2010; Prigent et al., 2020) and its downscaled versions (Fluet-Chouinard et al., 2015; Aires et al., 2017), and 2. the55

Surface Water Microwave Product Series (SWAMPS) (Schroeder et al., 2015; Jensen and Mcdonald, 2019).

GIEMS-2 and SWAMPS both provide monthly fractions of surface water at 0.25°x0.25° for 1992-2020, mainly based on

passive microwave observations from Special Sensor Microwave Imager (SSM/I) and the Special Sensor Microwave Imager

Sounder (SSMIS). Although SWAMPS and GIEMS-2 both aim to represent both inundated surfaces and are produced using

similar input data, they present significant differences both in terms of spatial distribution and inter-annual variations (Pham-60

Duc et al., 2017; Bernard et al., 2024b).

GIEMS-2 and SWAMPS products do not differentiate surface water categories, e.g., wetland, lake, reservoir, pond, or rice

paddy, and are therefore not directly usable for wetland studies modeling seasonally inundated wetlands separately from open

water bodies. Recent efforts have been made by Zhang et al. (2021b) to produce the Wetland Area and Dynamics for Methane

Modeling (WAD2M) product based on SWAMPS, which represents a pioneering attempt to dynamically map wetlands, in-65

cluding peatlands. Using additional high-resolution static estimates of wetlands and open permanent water, as well as seasonal

information on rice paddies, Zhang et al. (2021b) were able to apply these correction layers to SWAMPS to distinguish wet-

lands from other surface water. WAD2M version 2.0 (Zhang et al., 2021a) provides monthly estimates on a global scale for

2000-2020 at 0.25°x0.25°. However, WAD2M has encountered difficulties in capturing reliable inter-annual trends (Zhang

et al., 2021b; Bernard et al., 2024b). In fact, issues in SWAMPS are propagated into WAD2M, such as ocean/desert artifacts70

leading to overestimation and abrupt changes in time series partly due to changes in satellites (Pham-Duc et al., 2017; Bernard

et al., 2024b).

In an attempt to compare the corrected wetland extent of WAD2M and GIEMS, McNicol et al. (2023) applied the same cor-

rection layers to GIEMS-2, but this exercise did not eliminate the large differences between these two datasets. In particular,

the WAD2M procedure rescales the SWAMPS surface water extent fractions, which are always positive, with other high reso-75

lution static wetland datasets, which potentially produces some unreliable seasonality where the wetland fractions in SWAMPS

are below the instrumental noise level. On the contrary, GIEMS-2 shows some zero fractions over numerous pixels where no

water is detected. This makes it impossible to use the same procedure as in Zhang et al. (2021b) to produce WAD2M from

SWAMPS. The correction procedure needs to be modified to adapt to GIEMS-2. Furthermore, since the release of WAD2M,

the most recent maps of aquatic ecosystems have been aggregated into the Global Lakes and Wetlands Database version 280

(GLWDv2), which now offers the most comprehensive and up-to-date representation of global wetland classes (Lehner et al.,

2024a).

This study presents a new comprehensive database of methane emitting surfaces, named the Global Inundation Extent

from Multi-Satellites-MethaneCentric (GIEMS-MC). GIEMS-MC aims at providing spatially and dynamically consistent maps

of the different methane-emitting ecosystems, with the purpose of providing data for modelling methane emissions at the85

global scale (0.25°x0.25°) over 1992-2020. In particular, two time series of wetland maps are developed at monthly timescale:

inundated and saturated wetlands (ISW), and all wetlands including non-inundated peatlands (inundated and saturated wetlands
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+ peatlands, ISW+P). GIEMS-MC also provides compatible information from the ancillary data used, including static surface

extents of open permanent waters (lakes, rivers, reservoirs), and seasonal surface extents of rice paddies, along with dominant

vegetation on wetland classes. GIEMS-MC takes advantage of the GIEMS-2 product that offers ∼30-year seamless time90

series of surface water with realistic seasonality and inter-annuality (Prigent et al., 2020; Bernard et al., 2024b), and largely

benefits from the recently developed comprehensive static map of GLWDv2 (Lehner et al., 2024a). This article outlines the

methodology behind the production of GIEMS-MC and provides an analysis and comparison with existing datasets : WAD2M

(Zhang et al., 2021b), GLWDv2 (Lehner et al., 2024a), and the original GIEMS-2 (Prigent et al., 2020). Two inundation

products based on Cyclone Global Navigation Satellite System (CYGNSS) data are also used for comparison over the Sudd95

(Zeiger et al., 2023; Gerlein-Safdi et al., 2021). The sensitivity of the wetland estimates to the different process steps is also

discussed.

2 Datasets

This section presents the three types of data used in the production of GIEMS-MC: 1. the surface data of the different aquatic

ecosystems, 2. the data used for the masks and additional ecosystem layers, and 3. the WAD2M comparison dataset.100

2.1 Input datasets to GIEMS-MC (GIEMS-2, GLWDv2, MIRCA2000)

The GIEMS-2 dataset, spanning 1992 to 2015 and extended to 2020 in this study, uses mainly passive microwave observations

from the SSM/I and SSMIS satellites at frequencies from 19 to 85 GHz, as described in Prigent et al. (2020). This dataset

utilizes also active microwave satellite data and Normalised Difference Vegetation Index (NDVI) derived from visible and

near-infrared measurements to characterize vegetation and mitigate its influence on the passive microwave signal. The initial105

GIEMS-1 methodology (Prigent et al., 2001, 2007) has been thoroughly evaluated (Papa et al., 2006; Prigent et al., 2007; Papa

et al., 2008, 2010), as was the new GIEMS-2 algorithm (Prigent et al., 2020; Bernard et al., 2024b). GIEMS-2 provides monthly

global maps of surface water extent with a spatial resolution of 0.25°x0.25°. The continuity of this dataset relies on carefully

intercalibrated SSM/I and SSMIS observations (Fennig et al., 2020). GIEMS-2 includes all continental water surfaces, such

as wetlands, rice paddies, rivers, reservoirs, and lakes, with the exception of large lakes (> 15 000 km2), which have been110

masked out. Microwave observations used in GIEMS-2 are sensitive to the presence of snow, and this contamination prevents

the calculation of surface water over snow-covered regions. Thus, snow-covered pixels are set to 0 fraction using ERA5 in the

previous studies and in the distributed GIEMS-2 product. Passive microwaves are sensitive to the presence of water, including

estuarine and offshore marine waters. To avoid misinterpretations of the data, coastal pixels have been filtered out from the

distributed GIEMS-2 product, leading to possible underestimation of inundated surface extent in the coastal areas. Here we115

use an unfiltered version of GIEMS-2 in which coastal regions are not excluded, in order to improve the cleaning of the coasts

during the production process of GIEMS-MC based on GLWDv2, as described in Sect. 3.

The Global Lakes and Wetlands Database version 2 (GLWDv2) (Lehner et al., 2024a) provides comprehensive global maps

of aquatic ecosystems synthesized from a variety of ground- and satellite-based data products. GLWDv2 combines various data
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products to generate consolidated and harmonized static maps representative of the period 1990-2020. The GLWDv2 product120

contains 33 wetland and water body classes, which are listed in Supplementary Table S1. GLWDv2 represents the maximum

extent of each of its 33 classes (in pixel fraction) at a resolution of 15 arc seconds (approximately 500 m at the equator). For

this study, the 33 GLWDv2 class maps were aggregated at 0.25°x0.25°.

Rice cultivation varies seasonally according to cropping calendars, and their inundated cover can be confused with that of

wetlands. The majority of global rice paddy maps are static representations, typically for a specific time period. A notable125

data source that gives insights into the seasonality of rice paddy at global scale is the MIRCA2000 dataset (Portmann et al.,

2010). MIRCA2000 provides data on irrigated and rainfed cultivated areas at a resolution of 5 arc minutes for each month

of a reference year (representative of circa 2000). The dataset integrates several data sources, including agricultural statistics

such as cropping calendar and remote sensing data. This study uses both irrigated and rainfed rice data extracted from the

MIRCA2000 dataset.130

2.2 Ancillary and correction datasets (ERA5, ESA CCI)

The European Centre for Medium-range Weather Forecasts reanalysis (ECMWF-ERA5) (Hersbach et al., 2020) is a state-

of-the-art reanalysis for climate applications. It provides global climate and weather data spanning from 1940 to the present.

ERA-5 uses assimilation techniques by integrating a wide diversity of observational data to deliver hourly estimates of multiple

atmospheric, land, and oceanic variables at a resolution of 31 km. ERA5 can be downloaded at a resolution of 0.25° x 0.25°135

from https://cds.climate.copernicus.eu/. In the GIEMS-2 and GIEMS-MC process, the area covered with snow in a pixel is

derived from the ERA5 variables snow density and snow depth.

The European Space Agency (ESA) Climate Change Initiative (CCI) Land Cover dataset (ESA, 2017) provides a classifica-

tion of land cover features at a spatial resolution of 300 m for each year from 1992 to 2022. The dataset is derived from various

satellite Earth observation data. According to the standards of the United Nations Land Cover Classification System (Di Gre-140

gorio and Jansen, 2005), it contains 22 land cover classes (Supplementary Table S2), including 18 vegetation categories and

urban, bare, water bodies, and snow/ice categories. The ESA CCI Land Cover dataset can be accessed via the ESA CCI Land

Cover project website : https://maps.elie.ucl.ac.be/CCI/viewer/download.php. Here, we aggregated a version to 0.25° x 0.25°,

where the dominant class within each pixel is determined based on the highest fractional coverage.

2.3 Comparison dataset (WAD2M)145

The Wetland Area and Dynamics for Methane Modeling (WAD2M) version 2.0 dataset (Zhang et al., 2021a, b) is a compre-

hensive global product designed to support methane modelling. It provides the fraction of wetland area, including peatlands, at

a resolution of 0.25°x0.25°, and at a monthly time step for 2000-2020. The WAD2M dataset uses dynamic data from the Sur-

face Water Microwave Product Series (SWAMPS) dataset (Jensen and Mcdonald, 2019), which provides monthly inundation

fraction at 0.25°x0.25°. Similar to GIEMS-2, SWAMPS is derived mainly from passive microwave observations from SSM/I150

and SSMIS, but the methodology and ancillary data used differ between the two products (Schroeder et al., 2015; Prigent

et al., 2020), resulting in important differences in some regions (Pham-Duc et al., 2017; Bernard et al., 2024b). The creation
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of WAD2M involved combining SWAMPS surface inundation time series with static datasets to distinguish between different

wetland types. The static datasets used in WAD2M production are 4 peatlands maps (NCSCD from Hugelius et al. (2013),

CAWASAR from Widhalm et al. (2015), GLWDv1 from Lehner and Döll (2004), and CIFOR from Gumbricht et al. (2017)),155

one inland open water map (GSW from Pekel et al. (2016)), one coastal mask (MOD44W from Carroll et al. (2009)), and

seasonal irrigated rice map (MIRCA2000 from Portmann et al. (2010)). These static layers allow the wetland fractions to be

rescaled to include non-inundated wetlands (peatlands) and exclude non-wetland inundated areas (irrigated rice paddies and

open waters).

3 Methods160

3.1 Overview of the methodology

GIEMS-2 uses satellite passive microwave data, which are particularly responsive to the presence of water, to determine the

fraction of inundated and saturated soil per pixel. However, modifications to the GIEMS-2 dataset are required in order to

remove inundated or saturated areas that are not wetlands (e.g., rice paddies, lakes, rivers, reservoirs), and to add wetlands

where the water table may be undetectable below ground level (e.g., some peatlands). As a consequence of the aforementioned165

remote sensing approach, the present study will first distinguish the inundated wetlands identified by GIEMS-2 and then add

the unsaturated wetlands. In addition to GIEMS-2, the GLWDv2 dataset will be used.

The original GIEMS-2 product (Prigent et al., 2020) has been extended to 2020 (Bernard et al., 2024b), and a special version

without coastal filtering is used here. In total, seven steps, described in the following subsections, are required to derive wetland

maps from this data. The operations are made in terms of pixel fraction f on a regular grid of 0.25°x0.25°. Multiplication by170

pixel area is then needed to derive wetland extent. A summary of the procedure is shown in Fig. 1, and the seven steps are

described in detail in the following subsections.

3.1.1 Applying ocean mask

For consistency with GLWDv2, we here used the regional shapefiles of the HydroATLAS database (version 1.0; Linke et al.

(2019)), which provides near-identical coastlines as GLWDv2. This allowed us to calculate the ocean fraction for each 0.25°175

x 0.25° pixel. The ocean water fraction is set to -999 if the ocean fraction of a pixel is greater than 99%, to avoid confusion

between ocean pixels and pixels where no surface water was detected (zero fraction pixels).

3.1.2 Applying snow mask

GIEMS-2 surface water detection relies primarily on passive microwave observations, which are affected by the presence of

snow (Foster et al., 1984). Thus, the surface water fraction cannot be reliably quantified in the presence of snow. Consequently,180

the surface water detection algorithm in the GIEMS-2 production is not run when snow is present in a pixel. To exclude these

snow-covered pixels, ECMWF snow information from ERA5 is used in the GIEMS-2 processing, and pixels with a snow
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Figure 1. Schematic of the GIEMS-MC dataset production process. All operations are performed in terms of pixel fractions at a resolution

of 0.25°x0.25°. Ocean pixels are set to -999, snow-covered pixels are set to -998, and urban pixels are set to -997 in a revised version of

GIEMS-2. Open permanent water and then rice paddies areas are subtracted from the surface water areas. A specific coastal cleaning is

applied to remove ocean contamination, resulting in a dynamic map of Inundated and Saturated Wetland (GIEMS-MCISW). Peatlands areas

undetected by GIEMS-2 are added to derive a dynamic map of all wetlands including peatlands, called Inundated and Saturated Wetland +

Peatland (GIEMS-MCISW+P). Finally, initial ancillary data information is added to the product so that users can easily access the different

fraction maps of all surface water categories, including Inundated and Saturated Wetland, Inundated and Saturated Wetland + Peatland, open

permanent waters, rice paddies, and the dominant wetland and vegetation classes. fi refers to the fraction of a pixel i before the corresponding

step. pos(f ) refers to the positive part of f , i.e. pos(f ) = max(f ,0). GLWDv2 Open Permanent Water (GLWDv2OPW) is the sum of all

GLWDv2 classes 1 to 5. GLWDv2 Inundated and Saturated Wetland (GLWDv2ISW) is the sum of all GLWDv2 wetlands excluding peatlands

corresponding to classes 8 to 21, 28, 29, 31, and 32. GLWDv2 Peatland (GLWDv2peat) is the sum of all GLWDv2 peatlands corresponding

to classes 22 to 27. 7
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fraction above 2% are set to a surface water fraction of 0 (Prigent et al., 2020). In GIEMS-MC, the pixel value is given its

dedicated snow flag value of -998 when the snow fraction of a pixel is greater than 2%. It should be noted that this mask

remains for all subsequent steps and is therefore also applied to the peatlands (step 7).185

3.1.3 Applying urban mask

It has been observed that unexpectedly large water surfaces are detected by GIEMS-2 in areas of high urban density. This could

be due to the different surface materials used in buildings, some of which strongly reflect microwaves. For example, highly

reflective areas over Paris are misinterpreted as water due to predominance of zinc roofs. To apply an urban mask, the urban

class product of the ESA CCI land cover map aggregated at 0.25°x0.25° is used. The grid cells with urban percentage above190

40% are systematically masked to -997 to avoid any confusion between urban and water surfaces. Note that applying this urban

mask results in neglecting change in terms of surface water global area (<1% change on mean extent), but this avoids local

artifacts over the high urban density areas.

3.1.4 Subtracting open permanent waters

Inland permanent open waters are considered separately from wetlands in methane budgets (Saunois et al., 2020; Canadell et al.,195

2021), as different methane production and transport processes are involved. To derive wetland maps, these open permanent

surface water areas must be subtracted from the GIEMS-2 estimates. Here, we define permanent open water as non-vegetated,

permanently inundated areas that are not wetland. Some dynamic datasets could have been used, but consistency was preferred,

so GLWDv2 harmonized maps were used in GIEMS-MC production. Then, permanent open water areas of GLWDv2 corre-

sponding to layers 1 to 5 (Freshwater Lake, Salt Lake, Reservoir, Large River and Large Estuarine River) are subtracted from200

the GIEMS-2 fractions. These GLWDv2 areas are derived from HydroLAKES (Messager et al. (2016) ; Lakes), the Global

Dam Watch (GDWv1) database (Lehner et al. (2024b) ; Reservoirs), the Global River Width from Landsat (GRWL) dataset

(Allen and Pavelsky (2018) ; Large Rivers) and augmented with the Global Surface Water (GSW) database (Pekel et al., 2016)).

3.1.5 Subtracting rice paddies

Rice paddies are intermittently saturated or inundated depending on irrigation practices, and their methane emissions are205

considered to be an anthropogenic source that should be separated from those of natural wetlands. GLWDv2 contains a static

rice paddy map, but the seasonal variation of rice paddies is important in terms of extent and needs to be taken into account to

avoid over-subtraction of rice paddies in the GIEMS-MC process. However, there is to our knowledge no dynamic (intra-annual

resolution) product available that represents rice paddies at global scale over our observation period. As the MIRCA2000

product provides maps with a typical seasonality (circa 2000) of global rice paddies, it appears to be the most appropriate210

product available. Consequently, the MIRCA2000 12-month seasonality of irrigated and rainfed rice paddy areas is subtracted

from the area estimates. This rice paddy processing and its uncertainties are discussed further in Sect. 5.2.2.

8

https://doi.org/10.5194/essd-2024-466
Preprint. Discussion started: 17 October 2024
c© Author(s) 2024. CC BY 4.0 License.



3.1.6 Correcting ocean contamination

The GIEMS-2 version used here has not been filtered in coastal areas, as it is usually done in the distributed GIEMS-2 version.

The SSM/I and SSMIS passive microwave observations used in GIEMS-2 production are very sensitive to the presence of water,215

including the ocean. The GIEMS-2 fraction and seasonality estimates are less reliable for pixels with larger ocean fractions.

Thus, pixels containing more than 10% ocean in GLWDv2 (GLWDv2ocean> 10%) are set to 0. Tests were made to tune this

10% threshold, to avoid masking all pixels containing a small fraction of ocean area, while ensuring reasonable seasonality.

However, pixels containing up to 10% ocean area will undergo an additional coastal cleaning procedure that follows. Ocean

contamination can arise from the presence of ocean within the pixel, but also from the ocean in neighboring pixels. A GIEMS-2220

pixel (∼800 km2 at the equator, ∼400 km2 at 60°N or S) is smaller than the -3dB footprint of the original microwave satellite

observations (69 km×43 km at 19 GHz and 37 km×28 km at 37 GHz). Moreover, microwave energy is also measured in the

side lobes of the satellite instrument footprint. Coastal areas should then undergo a cleaning process to reduce these artifacts.

Pixels whose centers are between 0 and 50 km from a coastline or large lakes (> 15 000 km2) are considered as coastal areas.

In an attempt to correct for ocean contamination, the following procedure is applied to ensure that the wetland areas in225

GIEMS-MC in coastal regions are equal to or lower than the GLWDv2 inventory. This is done by calculating GLWDv2

Inundated and Saturated Wetland (GLWDv2ISW), i.e., the sum of all GLWDv2 wetlands excluding peatlands (which are not

necessarily saturated surface water) corresponding to classes 8 to 21, 28, 29, 31, and 32. The fraction of the modified version of

GIEMS-2 up to this step, incorporating the 5 aforementioned corrections and cleaning processes (ocean, snow, urban masks and

open water, and rice paddies removal), is called f. Its Mean Annual Maximum f MAmax is calculated by taking a monthly average230

over all years and taking the maximum of this monthly seasonality for each pixel i. In the coastal region, for each time step and

for each pixel i, with the resulting areas called Inundated and Saturated Wetland map in GIEMS-MC (GIEMS-MCISW):

– if GLWDv2ocean, i > 10%:

then GIEMS-MCISW, i = 0

– if GLWDv2ocean, i ≤ 10% and f MAmax, i < GLWDv2ISW, i:235

then GIEMS-MCISW, i = f i

– if GLWDv2ocean, i ≤ 10% and f MAmax, i > GLWDv2ISW, i:

then GIEMS-MCISW, i = f i * GLWDv2ISW, i
fMAmax, i

3.1.7 Adding peatlands

Finally, in order to have a complete map of wetlands, the peatlands not detected by GIEMS-2 (monthly unsaturated or unflooded240

peatlands) have to be taken into account in the wetland fraction. This is done using the following procedure. The sum of

GLWDv2 peatlands, i.e. GLWDv2 classes 22 to 27, is denoted here as GLWDv2peat. GLWDv2 peatland information is a

composite product relying on most up-to-date peatland maps : PeatMap (Xu et al. (2018), global), SoilGrids250m (Hengl

et al. (2017), global), Northern Peatlands (Hugelius and Olefeldt, north of 23° N), and CIFOR (Gumbricht et al. (2017), only

9

https://doi.org/10.5194/essd-2024-466
Preprint. Discussion started: 17 October 2024
c© Author(s) 2024. CC BY 4.0 License.



south of 23.5° N). More details can be found in Lehner et al. (2024a). GLWDv2peat represents 4.26 Mkm2, which is consistent245

with primary PeatMap estimates of 4.23 Mkm2. The peatlands detected by GIEMS-2 are derived by the difference, if positive,

between GIEMS-MCISW and GLWDv2ISW. The undetected peatlands are then derived for each month as the difference between

GLWDv2peat and the peatlands detected by GIEMS-2. These undetected peatlands are added to the GIEMS-MCISW, resulting

in GIEMS-MC Inundated and Saturated Wetland + Peatland (GIEMS-MCISW+P), i.e., for each pixel i :

undetected peatlandsi = pos[GLWDv2peati - pos(GIEMS-MCISWi - GLWDv2ISWi) ]250

GIEMS-MCISW+P = GIEMS-MCISW + undetected peatlands.

The uncertainty in terms of areas of this step is discussed in Sect. 5.2.3.

3.2 Comparison

GIEMS-MCISW is compared with the original GIEMS-2 product and GLWDISW. GIEMS-MCISW+P is compared to GLWDv2ISW+P

(GLWDv2ISW + GLWDv2peat) and to WAD2M, as all also include peatlands (Table 3, Fig.2, and Supplementary Fig.S1). As255

GLWDv2 is a static map representing long term maximum extent, the GIEMS-MC Long Term maximum (LTmax) will be used

for comparison with GLWDv2 instead of MAmax (Table 3). To derive this LTmax, the maximum of each pixel over the whole

time period is selected. This can lead to the selection of extreme values with moderate reliability, and LTmax should then be

interpreted with caution.

3.3 Description of GIEMS-MC dataset260

Following the seven steps outlined, a netcdf product at 0.25°x0.25° resolution containing the derived variables and ancillary

variables is created. The variables included in this product are detailed in Table 1. Its components include both dynamic

monthly maps of GIEMS-MCISW and GIEMS-MCISW+P. Permanent Open Water classes (GLWDv2), i.e., Freshwater Lake,

Saline Lake, Reservoir, River, and Estuarine River, are also added as static variables in GIEMS-MC. The 12-month seasonality

of Irrigated and Rainfed Rice Paddy (MIRCA2000) is included. Three static maps provide information on the main ecosystems265

per pixel : the dominant aquatic class (GLWDv2), the dominant wetland or peatland class (GLWDv2), and the dominant land

cover class (ESA CCI Land Cover map).
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GIEMS2-MC variable Long name Type Primary or main data

source

Time res-

olution

inund_sat_wetland_frac Inundated and Saturated Wetland fraction GIEMS-2 monthly

inund_sat_peat_wetland_frac Inundated and Saturated Wetland +

Peatland

fraction GIEMS-2 + GLWDv2 monthly

fresh_lake_frac Freshwater Lake fraction GLWDv2 static

saline_lake_frac Saline Lake fraction GLWDv2 static

reservoir_frac Reservoir fraction GLWDv2 static

river_frac Large River fraction GLWDv2 static

estu_river_frac Large Estuarine River fraction GLWDv2 static

rice_irri_frac Irrigated Rice Paddy fraction MIRCA2000 12-month

seasonal-

ity

rice_rainfed_frac Rainfed Rice Paddy fraction MIRCA2000 12-month

seasonal-

ity

dom_aqua_class Dominant Aquatic Class 33 classes

(Table S1)

GLWDv2 static

dom_wet_peat_class Dominant Wetland or Peatland Class 25 classes

(Table S1)

GLWDv2 static

dom_land_cover_class Dominant Land Cover Class 37 classes

(Table S2)

ESA CCI Land Cover static

Table 1. Summary of GIEMS-MC variables with corresponding data sources and temporal resolution. For details about data sources, see

Sect. 2 or Prigent et al. (2020) for GIEMS-2, Lehner et al. (2024a) for GLWDv2, Portmann et al. (2010) for MIRCA2000, and ESA (2017)

for ESA CCI Land Cover.

4 GIEMS-MC results

4.1 Global inland water areas

To quantify the variations in terms of extent, the Mean Annual maximum (MAmax), Mean Annual mean (MAmean), and Mean270

Annual minimum (MAmin) are calculated by averaging the 29-year data to a typical 12-month seasonality for each pixel. Then,

the maximum, the mean, and the minimum are respectively selected for each pixel.

Globally, GIEMS-MCISW represent 3.90 Mkm2, with a MAmean of 1.27 Mkm2 (Table 2). The addition of peatlands greatly

increases these global areas, with GIEMS-MCISW+P reaching 7.83 Mkm2 (+3.93 Mkm2) in terms of MAmax and 3.54 Mkm2
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(+2.27 Mkm2) in terms of MAmean. This increase is mainly due to Europe+Siberia, and North America, where large peatlands275

contribute significantly to the total wetland area (74% and 58% respectively).

Global Africa Asia
Europe

+Siberia Oceania
North

America
South

America

GIEMS-MCISW
(Inundated and Saturated

Wetland)

MAmax 3895 518 1034 618 207 837 676

MAmean 1274 166 276 155 103 262 308

MAmin 264 48 31 12 46 32 93

GIEMS-MCISW+P
(Inundated and Saturated

Wetland + Peatland)

MAmax 7834 638 1212 2370 522 1993 1019

MAmean 3538 296 403 889 429 794 666

MAmin 1318 183 97 79 378 78 455

Freshwater lake static 2045 197 76 429 22 1214 81

Saline lake static 359 33 97 88 40 21 20

Reservoir static 316 40 62 71 6 87 47

River static 384 40 72 109 13 53 93

Estuarine river static 79 5 12 16 9 10 13

Irrigated
Rice Paddy

MAmax 639 14 509 16 46 14 22

MAmean 431 8 355 6 30 8 10

MAmin 64 0 62 0 0 0 0

Rainfed
Rice Paddy

MAmax 614 42 452 0 71 3 25

MAmean 251 21 178 0 29 1 12

MAmin 1 0 0 0 0 0 0

Total MAmax 12271 1013 2495 3102 731 3400 1326

Total distribution MAmax 100% 8.3% 20.3% 25.3% 6.0% 27.7% 10.8%
Table 2. Global and continental surfaces of GIEMS-MC variables in 103 km2. For dynamic classes, MAmax and MAmin are shown. Total

MAmax is the sum of GIEMS-MC Inundated and Saturated Wetland + Peatland MAmax, open permanent water (Freshwater Lake, Saline

Lake, Reservoir, River, Estuarine River) from GLWDv2, and Rice Paddy from MIRCA2000 MAmax (Irrigated and Rainfed). Regions

correspond to the shapefiles of HydroATLAS database (version 1.0; Linke et al. (2019)).

GIEMS-MCISW consistently shows much lower extent than the original GIEMS-2 (MAmax reduced from 6.80 Mkm2 to

3.90 Mkm2) that comprises all inundated and saturated areas, including non-wetland categories. The lower areas in GIEMS-

MCISW is mainly due to the removal of open permanent waters in Europe, Siberia, and North America, and to rice paddies

subtraction in Asia. The LTmax of GIEMS-MCISW reaches 8.90 Mkm2, close to the GLWDv2ISW estimates of 8.22 Mkm2.280

Globally, the MAmean estimates of GIEMS-MCISW+P and WAD2M are in agreement (resp. MAmean of 3.54 Mkm2 and

4.21 Mkm2), but regional differences exist in Africa (MAmean of 296 and 719 103km2, respectively) and Oceania (MAmean

of 429 and 572 103km2, respectively). In those regions, WAD2M detects comparatively more water, likely due to desert con-
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tamination in the SWAMPS product used in the WAD2M production (see Fig.2 and Supplementary Fig.S1). In Asia, Europe,

Siberia, and North America, GIEMS-MCISW+P shows similar MAmean areas but has a larger MAmax-MAmin amplitude,285

possibly due to 1) higher peatland estimates in GLWDv2 than in the ancillary data used in WAD2M production, which could

explain the higher MAmax, and 2) more stringent snow and coastal filtering in GIEMS-MC, which could explain the lower

MAmin. As GLWDv2 peatlands are used to derive GIEMS-MCISW+P from GIEMS-MCISW, similar total extents are consis-

tently found between GIEMS-MCISW+P LTmax of 12.24 Mkm2 and GLWDv2ISW+P LTmax of 12.49 Mkm2.

Global Africa Asia
Europe

+Siberia Oceania
North

America
South

America

GIEMS-MCISW
(Inundated and Saturated

Wetland)

LTmax 8894 1414 2177 1551 648 1606 1493

MAmax 3895 518 1034 618 207 837 676

MAmean 1274 166 276 155 103 262 308

MAmin 264 48 31 12 46 32 93

Orginal GIEMS-2

MAmax 6796 631 1793 1071 339 1804 945

MAmean 2730 236 659 339 216 647 506

MAmin 795 88 149 42 133 93 218

GLWDv2ISW
(Inundated and Saturated

Wetland)
static 8223 1010 1958 1416 541 1755 1269

GIEMS-MCISW+P
(Inundated and Saturated

Wetland + Peatland)

LTmax 12374 1516 2321 3116 915 2639 1786

MAmax 7834 638 1212 2370 522 1993 1019

MAmean 3538 296 403 889 429 794 666

MAmin 1318 183 97 79 378 78 455

WAD2M

MAmax 6756 1077 743 1675 678 1308 985

MAmean 4208 719 370 776 572 760 778

MAmin 2437 479 184 176 482 293 639

GLWDv2ISW+P
(Inundated and Saturated

Wetland + Peatland)
static 12486 1147 2156 3280 878 3023 1646

Table 3. Comparison of GIEMS-MCISW and GIEMS-MCISW+P surface extents with WAD2M (Zhang et al., 2021b) and GLWDv2 (Lehner

et al., 2024a) datasets, in 103 km2. For dynamic classes, MAmax and MAmin are shown. GLWDv2ISW refers to the sum of GLWDv2 classes

8 to 21, 28, 29, 31, and 32, while GLWDv2ISW+P refers to the sum of GLWDv2 classes 8 to 29, 31 and 32. Regions correspond to the

shapefiles of HydroATLAS database (version 1.0; Linke et al. (2019)).
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Figure 2. Global distribution of the MAmax of GIEMS-MCISW, GIEMS-MCISW+P, and WAD2M (Zhang et al., 2021b), as well as the

difference of MAmax from GIEMS-MCISW+P and WAD2M. Refer to Supplementary Fig. S1 for maps with MAmin.

Figure 3 provides the latitudinal distribution of a) GIEMS-MC variables and b) GIEMS-MCISW+P against WAD2M. GIEMS-290

MCISW shows a relatively uniform distribution across all latitudinal zones, with a peak just south of the equator due to the

Amazon basin. The inclusion of peatlands in GIEMS-MCISW+P increases largely the wetland area in the boreal (>55°N, e.g.,

the Hudson Bay and the Siberian Low Lands) and tropical (10°S-5°N, e.g., the Congo) bands, leading to a similar distribution

as in WAD2M (Fig. 2 and 3.c). Differences between GIEMS-MCISW+P and WAD2M are observed around 15°N and 10-30°S,

due to discrepancies between the SWAMPS and GIEMS-2 methodologies (Pham-Duc et al., 2017; Bernard et al., 2024b),295

mostly related to desert contamination in SWAMPS (Sahel and Australia on Fig. 2).
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Figure 3. Latitudinal distributions of a. the GIEMS-MC wetland variables (Inundated and Saturated Wetlands, Inundated and Saturated

Wetlands + Peatlands), b. GIEMS-MC wetland ancillary variables (Rice Paddy, and the sum of Open Permanent Water), and c. GIEMS-

MCISW+P and WAD2M product. For dynamic variables, solid lines represent the MAmean, while colored fillings represent the MAmax-

MAmin interval. The extents are given per 1-degree latitudinal bin.

4.2 Regional spatial patterns over main basins

GIEMS-MCISW and GIEMS-MCISW+P data are analyzed in the following sections over large wetland complexes representing

different environments : the Siberian Lowlands, the Sudd, the Amazon and South-East Asia.

As expected, peatland addition noticeably amplifies the extent between GIEMS-MCISW and GIEMS-MCISW+P over the Ob300

basin (Western Siberian Low Lands, Fig. 4). WAD2M and GIEMS-MCISW+P consistently present similar patterns. However,

discrepancies occur in the southern part of the Ob basin that can be attributed to different snow filtering between SWAMPS

(used for WAD2M) and GIEMS-2 (used for GIEMS-MC).

In the Sudd basin shown in Fig. 5, GIEMS-MCISW+P extent corresponds essentially to GIEMS-MCISW, indicating minimal

presence of peatlands. For comparison, two other products, both derived from Cyclone Global Navigation Satellite System305
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L-band remote sensing observations, are also shown (Zeiger et al., 2023; Gerlein-Safdi et al., 2021). Gerlein-Safdi et al. (2021)

estimates are available for the southern part of the basin (MAmax of 0.27 Mkm2 for 2018-2019), and are much higher than the

GIEMS-MC (MAmax of 0.04 Mkm2 for 2018-2019) and WAD2M (MAmax of 0.1 Mkm2 for 2018-2019) estimates. Zeiger

et al. (2023) product provides an MAmax of 0.06 over 2018-Aug to 2019-Jul, which is within the GIEMS-MC and WAD2M

estimates. While good agreement is observed in the southern part of the basin between the spatial pattern of GIEMS-MCISW+P,310

WAD2M, and the product of Zeiger et al. (2023), significant disparities emerge between WAD2M and the two products in the

northern-east desert region of the Sudd basin, probably due to contamination in the original SWAMPS dataset.

Over the Amazon (Fig. 6), GIEMS-MCISW fractions are high (>0.5) along the main river channel, while including peatlands

adds smaller surfaces, resulting in finer spatial patterns. The resulting GIEMS-MCISW+P MAmax map closely resembles that

of WAD2M.315

GIEMS-MCISW+P and WAD2M agree well in South-East Asia (Fig. 7), with GIEMS-MCISW+P showing greater peatland

extent than WAD2M due to higher peatland areas estimated by GLWDv2 used in GIEMS-MC production than the earlier

estimates used in WAD2M.

These findings underline the legacy of the two original microwave-based datasets (GIEMS-2 and SWAMPS) used respec-

tively in GIEMS-MC and WAD2M production, despite the corrections. Indeed, methodological disparities between GIEMS-2320

and SWAMPS production may lead to distinct spatial inundation detection patterns, particularly in regions where contamina-

tion from ocean, desert, and snow need careful consideration.

Figure 4. MAmax and MAmin maps of GIEMS-MCISW (1992 to 2020), GIEMS-MCISW+P (1992 to 2020), and WAD2M (2000 to 2020) over

the Ob, as well as GLWDv2 (static) peatland map. Low MAmin are due to the snow mask.
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Figure 5. MAmax and MAmin maps over the Sudd region of GIEMS-MCISW, GIEMS-MCISW+P (1992 to 2020), WAD2M (2000 to 2020)

and CYGNSS-based estimates from Gerlein-Safdi et al. (2021) (2017-Jun to 2020-Apr) and Zeiger et al. (2023) (2018-Aug to 2020-Jul). The

available periods differ between the products.

Figure 6. MAmax and MAmin maps of GIEMS-MCISW (1992 to 2020), GIEMS-MCISW+P (1992 to 2020), and WAD2M (2000 to 2020) over

the Amazon basin.
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Figure 7. MAmax and MAmin maps of GIEMS-MCISW (1992 to 2020), GIEMS-MCISW+P (1992 to 2020), and WAD2M (2000 to 2020) over

South-East Asia.

4.3 Temporal seasonal and inter-annual variations

The temporal dynamics of GIEMS-2 was extensively examined in Prigent et al. (2020) and evaluated in Bernard et al. (2024b),

where it was compared with other hydrological observations, including MODIS-derived surface water extent (Frappart et al.,325

2018; Normandin et al., 2018, 2024), CYGNSS-derived (Zeiger et al., 2023) surface water extent, and river discharge. The

evaluation showed that GIEMS-2 reliably captures temporal variations, including seasonality and inter-annual variabilities,

even in regions with dense vegetation cover (Fig. 8 and Fig. 9).
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Figure 8. Left: Monthly mean seasonal cycle of GIEMS-MCISW, GIEMS-MCISW+P, and WAD2M over different regions. Right: Deseason-

alized monthly anomalies of the same three variables. To derive the deseasonalized monthly anomalies, the average monthly seasonal cycle

was subtracted from the long term monthly time series. For the Sudd basin seasonality comparison, estimations from Gerlein-Safdi et al.

(2021) (2017-06 to 2020-04) and Zeiger et al. (2023) (2018-08 to 2020-07) are added.
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Figure 9. Left: Monthly mean seasonal cycle of GIEMS-MCISW, GIEMS-MCISW+P, and WAD2M over different latitudinal bands. Right: De-

seasonalized monthly anomalies of the same three variables. To derive the deseasonalized monthly anomalies, the average monthly seasonal

cycle was subtracted from the long term monthly time series.

4.3.1 Seasonal variations

The 2000-2020 mean seasonality of GIEMS-MCISW, GIEMS-MCISW+P, and WAD2M over the Ob, the Sudd, the Amazon, the330

Congo, and South-East Asia, are presented in Fig. 8 (left). The seasonal variations of the GIEMS-MC variables are driven by

the dynamics of saturated and inundated wetlands (GIEMS-MCISW), with peatlands contributing to an offset effect between

GIEMS-MCISW and GIEMS-MCISW+P. In the Ob, the Amazon, the Congo, and South-East Asia, GIEMS-MCISW+P exhibits

comparable magnitudes than WAD2M. In the Sudd region, WAD2M shows distinct seasonality than GIEMS-MC and the two

CYGNSS derived products, probably due to the SWAMPS artifacts in desert regions mentioned above.335

Across latitudinal bands, the global seasonality of GIEMS-MCISW and GIEMS-MCISW+P are mainly driven by the boreal and

temperate northern regions, due to snow cover changes (Fig. 9, left). However, notable differences in terms of seasonal cycle

between GIEMS-MCISW+P and WAD2M exist over the mid to high latitudes. Indeed, larger peatland surfaces are included in

GIEMS-MC than in WAD2M (higher amplitude) and the more widespread snow masking in GIEMS-MC in the temperate
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zone leads to a stronger seasonal cycle compared to WAD2M. The seasonal cycles over the tropics and southern hemisphere340

are more similar between GIEMS-MCISW+P and WAD2M, but surface extents are larger in WAD2M, predominantly due to

desert and ocean contamination in SWAMPS, as discussed in Sect. 4.1.

4.3.2 Inter-annual variations & trends

Figure 8 (right) shows the deseasonalized monthly anomalies of GIEMS-MCISW, GIEMS-MCISW+P, and WAD2M over differ-

ent regions, while Fig. 9 (right) corresponds to latitudinal bands. The reference seasonality period subtracted is the 2000-2020345

seasonal average. As expected, GIEMS-MCISW and GIEMS-MCISW+P have the same anomalies for latitudes below 30°N be-

cause the temporal dynamics comes from the inundated and saturated wetlands, and not from the static peatland map. For

northern temperate and boreal areas, the snow cover also imposes a seasonality on peatlands, which explains larger anomalies

of GIEMS-MCISW+P than in GIEMS-MCISW. For GIEMS-MCISW+P over the boreal region (55°N-90°N), a positive trend is

detected over May and June (+10 103 km2 yr−1) and September and October (+24 103 km2 yr−1) months that can possibly be350

attributed to earlier snow melt and delayed snow cover arrival.

No long-term trends were found at regional scales in GIEMS-MCISW, except for South-East Asia, where a small positive

trend was found (+1.7 103 km2 yr−1, i.e. ∼+50 103 km2 for 30 yr). This is likely mostly due to the increasing trend in rice

paddies, which is not taken into account because only the MIRCA2000 climatology is used, and new rice paddies over the

years are then aliased to wetlands over time (see Discussion Sect.5.2.2).355

An abrupt change in WAD2M inter-annual variability amplitude occur over the Amazon and Congo basins in 2009, attributed

to a change in one of the satellite data used in SWAMPS, together with a decreasing trend also found in the SWAMPS data

(Fig. 8). Due to these problems in SWAMPS, the inter-annual variability of WAD2M should be considered with caution, and

makes time-series comparison with GIEMS-MCISW+P difficult over these regions.

5 Discussion360

The production of GIEMS-MC involves seven steps, each of which contributes to the transition from inundation time series to

wetland map time series, but also to the uncertainties of the final product. It has been estimated that the GIEMS product possibly

underestimates surface water areas by less than 10% (Prigent et al., 2007). This value can be used as an order of magnitude of

the uncertainty in GIEMS-2, although methodological improvements have been made between GIEMS and GIEMS-2 (Prigent

et al., 2020). This is also likely a realistic approximation for the GIEMS-MCISW error, as it uses mainly GIEMS-2 information.365

A quantification of the uncertainties of the GIEMS-MC variables would require a deeper knowledge of the measurement and

detection uncertainties of all the products used, some of which are not calculated in the original source, which is beyond the

scope of this study. However, it is possible to quantify the influence of each step in the GIEMS-MC procedure and to study the

sensitivity of the results to the processing choices.
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5.1 Quantification of the influence of each process step on the GIEMS-MC global extents370

Table 4 shows the influence of the successive steps in terms of MAmax, MAmean and MAmin. The removal of open permanent

water (Step 4.), as well as the subtraction of rice paddies (Step 5.), have a significant impact on the global extent, both resulting

in a subtraction of -2.34 Mkm2 on MAmax and -1.16 Mkm2 on MAmean. Coastal cleaning also has a large influence on the

reduction of the area: -2.60 Mkm2 in MAmax and -1.60 Mkm2 in MAmean, and especially on MAmin, which decreases from

1.17 Mkm2to 0.26 Mkm2. In fact, the coastal region has an artificially high minimum value due to ocean contamination before375

this cleaning step. Finally, the addition of peatlands turns out to be an extremely significant step in terms of surface area for

GIEMS-MCISW+P, with large increases observed in both MAmax (+3.94 Mkm2) and MAmean (+2.27 Mkm2) extents.

Step Step description MAmax MAmean MAmin

0 GIEMS-2 revised version 9.02 4.15 1.63

1 to 3 After masking oceans, snow and urban areas 8.83 4.03 1.58

4 After subtracting open permanent water 7.10 3.20 1.30

5 After subtracting rice paddies 6.49 2.87 1.17

6 After cleaning coasts (GIEMS-MCISW) 3.89 1.27 0.26

7 After adding peatlands (GIEMS-MCISW+P) 7.83 3.54 1.32

Table 4. Global MAmax, MAmean and MAmin in Mkm2 after each step of GIEMS-MC production. It should be noted that snow and oceans

were already set to zero fraction in GIEMS-2, and that the snow mask is applied to all wetlands, including peatlands, and is then responsible

for the low MAmin values.

5.2 Sensitivity to the GIEMS-MC procedure

The three critical stages in the production of GIEMS-MC are further discussed in this section, along with the use of a snow

mask.380

5.2.1 Coastal processing

In the Methods Sect. 3.1.6, we chose to apply a cleaning procedure to coastal pixels located within 50 km of the coast.

Figure 10.a shows the global mean seasonality of GIEMS-MCISW and GIEMS-MCISW+P when considering coastal bands

ranging between 0 and 100 km from the coast to be processed using GLWDv2 information, following the methodology in

Sect. 3. After removing the pixels with more than 10% ocean, the cleaning of the coastal band up to 30 km from the coast385

reduces GIEMS-MCISW MAmax by 0.7 Mkm2. Cleaning also the 30-50 km band reduces it further by 0.5 Mkm2, while the

50-70 km (-0.12 Mkm2) and 70-100 km (-0.08 Mkm2) bands have smaller effects. The cleaning over 50 km is consistent with

our technical understanding of the contamination.
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Figure 10. Sensitivity of GIEMS-MC averaged seasonality to the different steps of the production procedure : a. the coastal threshold for

coastal cleaning, b. the rice procedure, and c. the way peatlands are added. Solid lines represent the extent of GIEMS-MCISW, while dashed

lines represent GIEMS-MCISW+P. Colors show the different GIEMS-MC treatments.

5.2.2 Rice subtraction

An issue concerning rice in GIEMS-MC production stems from the classification used in the MIRCA2000 dataset, which390

separates rice paddies into irrigated and rainfed types. Irrigated paddies are typically fully inundated at least part of the year.

Rainfed paddies have variable levels of submergence, with approximately 80% inundated and 20% remaining upland paddies

(Maclean et al., 2013). Under these conditions, the upland rice (9% of total rice paddies area ; Maclean et al. (2013)) should

not be subtracted from GIEMS-2 in the GIEMS-MC processing steps, if we could distinguish upland rice from the rest of

the rainfed paddies. To explore this, we attempted a classification based on topographic information to separate inundated395

from non-inundated within the rainfed rice category. The resulting maps, shown in Supplementary Table 3, lead to surface

extent inconsistent with FAO statistics per country (FAO, 2002). In the absence of any reliable distinction possibility, the

total rice paddies were subtracted, acknowledging that the subtracted area might be overestimated by about 9%. Note that

this light overestimation of subtracted rice paddies might be counterbalanced by the fact that MIRCA2000 areas estimates are

underestimated when compared to FAOSTAT (Fig. 11).400

In WAD2M production, the MIRCA2000 is also used to differentiate rice paddies from wetlands, but only irrigated paddy

class is subtracted (Zhang et al., 2021b). To evaluate the impact of rice handling in GIEMS-MC, Fig. 10.b shows global

seasonality of GIEMS-MCISW and GIEMS-MCISW+P if only irrigated rice paddies are subtracted, or if both irrigated and rainfed

are subtracted. The difference occurs mainly between June and October, in the Northern Hemisphere summer, corresponding

to a difference of 0.25 Mkm2 in terms of MAmax (6% of GIEMS-MCISW and 3% GIEMS-MCISW+P MAmax). While this has405

a moderate influence on global extent, this difference can be important in rice cultivating countries, e.g., a difference of 30%

in GIEMS-MCISW MAmax over India depending on the type of subtraction used. For GIEMS-MCISW+P, as the total surfaces

are higher, the influence of rice paddy subtraction is proportionally less important.

Finally, subtracting the MIRCA2000 climatology in the GIEMS-MC processing and not taking into account the inter-

annual variation of some rice paddies over the period 1992-2020 can lead to misclassification of rice paddies as wetlands.410
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The MIRCA2000 product is compared in Fig. 11 with the estimates from the Food and Agriculture Organization (FAO) of

the United Nations estimates FAOSTAT (https://www.fao.org/faostat/en/#data/QCL, access 30/06/2023). FAOSTAT is widely

used for global estimates of methane emissions from rice paddies, notably in the Emissions Database for Global Atmospheric

Research (EDGAR ; Janssens-Maenhout et al. (2019)). The cropland area of rice paddies is increasing in South-East Asia,

with FAOSTAT estimating +60 103 km2 between 1992 and 2020 in this region, which corresponds to the increasing trend of415

∼+50 103 km2 in GIEMS-MCISW over this period (Sect. 4.3.2).

MIRCA2000 (MAmax of 1.25 Mkm2) presents smaller rice paddies extent than FAOSTAT (1.47 Mkm2 in 1992 to 1.64 Mkm2

in 2020). In GLWDv2, the map from Salmon et al. (2015) is used as primary information but undergoes numerous corrections

related to artifacts in the product, including double-checking information using the RiceAtlas (Laborte et al., 2017). This lead to

a static map of rice paddies of 1.2 Mkm2, close to MIRCA2000 MAmax estimates. Then, various inventories of anthropogenic420

methane emissions that are accounting for rice methane emissions are not using the same maps for rice paddies, which can

lead to mismatches across the estimates (surfaces double counting or miscounting). Efforts to use similar compatible rice maps

between the two research communities would greatly improve the consistency of wetland time series, and then the methane

emission estimates. A dynamic map that accurately reflects the temporal variation of inundated rice paddies would better meet

the needs of remote sensing wetland mapping. This approach would address the limitations of existing classifications, such as425

MIRCA’s irrigated/rainfed or FAO’s yearly irrigated/rainfed/upland categories, which do not adequately address the specific

needs of the community.
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Figure 11. Rice paddy surface extent estimations from MIRCA2000 (Portmann et al., 2010), FAOSTAT (https://www.fao.org/faostat/en/

#data/QCL), and GLWDv2 (Lehner et al., 2024a). MIRCA2000 MAmax is higher than the maximum of the MIRCA2000 seasonality plot

because not all pixels have their maximum in the same month.

5.2.3 Peatland integration

Peatlands contribute to more than a half of areas in GIEMS-MCISW+P (Table 4), and depends highly on the GLWDv2 peatland

map used here.430
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Most of the peatlands are not saturated or inundated areas, although some can have their water table above the peat surface

intermittently (Lourenco et al., 2023). A large part of peatlands are then not detected by GIEMS-2. Three ways of integrating

GLWDv2 peatlands were tested to assess how sensitive the peatlands integration method is. For each pixel i, we did the

following:

1. Set GLWDv2peat fraction as the minimum of GIEMS-MCISW+P, minimizing GIEMS-MCISW+P areas:435

if GIEMS-MCISWi<GLWDv2peati, then GIEMS-MCISW+Pi=GLWDv2peati.

2. Attempt to add only the peatlands not detected by GIEMS-2 as described in Methods Sect. 3.1.7:

GIEMS-MCISW+Pi=GIEMS-MCISWi + pos[ GLWDv2peati - pos( GIEMS-MCISWi - GLWDv2ISW+Pi ) ]

3. Add all GLWDv2 peatland, maximizing GIEMS-MCISW+P areas:

GIEMS-MCISW+Pi=GIEMS-MCISWi+GLWDv2peati.440

The effect of these three peatland integration approaches on GIEMS-MCISW+P extent are represented in Fig. 10.c. A differ-

ence of 0.85 Mkm2 (11%) is found for GIEMS-MCISW+P MAmax between the two extreme approaches 1 and 3. Approach 1

likely underestimates peatland integration, as some pixels can contain both inundated or saturated wetlands and peatlands. Ap-

proach 3 likely overestimates peatland integration, as some peatlands (inundated and saturated) should be detected in GIEMS-

2. The method 2 appears as a sensible consensus, but this approach also likely overestimates peatland surfaces, as GLWDv2445

wetland categories, used to discriminate detected and non-detected peatlands by GIEMS-2 (see Sect. 3.1.7), is a long term

maximum.

5.2.4 Snow-covered pixel masking

Due to the influence of snow on passive microwave observations, snow-covered pixels are masked in the estimation of GIEMS-

2 and GIEMS-MC inundation fractions (see 3.1.2). This masking prevents models from accounting for methane emissions450

from snow-covered areas. However, cold-season methane fluxes in arctic peatlands and tundra have been shown to contribute

between 25% and 50% of the annual local fluxes (Bao et al., 2021; Ito et al., 2023; Mastepanov et al., 2008; Rößger et al.,

2022; Zona et al., 2016). Therefore, the sensitivity of microwave remote sensing to snow is a limitation in boreal regions.

Nevertheless, the boreal zones are estimated to contribute only about 5% of annual global wetland and inland freshwater

emissions using a top-down approach, and about 10% using a bottom-up approach (Saunois et al., 2024), with only up to half455

of these boreal emissions potentially occurring during the cold season. Consequently, the exclusion of snow-covered areas is

likely to add only a few percents of uncertainty to global methane emissions from wetlands and inland waters.

6 Perspectives

Several key areas for future improvement of the GIEMS-MC production process were identified. First, taking into account

the inter-annual variations of rice paddies would help improve the accuracy and in particular the long-term trend of GIEMS-460

MC. Ideally, these estimates should be consistent with those used in anthropogenic greenhouse gas emission inventories such

25

https://doi.org/10.5194/essd-2024-466
Preprint. Discussion started: 17 October 2024
c© Author(s) 2024. CC BY 4.0 License.



as FAOSTAT. Secondly, a better distinction between inundated and dry peatlands would allow a more accurate integration

of peatlands into GIEMS-MCISW+P. New satellite data, such as the 2022-launched Surface Water and Ocean Topography

(SWOT) with its Ka-band Radar Interferometer, hold promise for the monitoring of continental surface water area and height

at high spatial resolution and temporal sampling (Neeck et al., 2012; Pedinotti et al., 2014; Biancamaria et al., 2016; Prigent465

et al., 2016; Peral and Esteban-Fernandez, 2018). In particular, either high resolution SWOT data or water table depth from

a hydrological model combined with the 500 m GLWDv2 data could help to better distinguish the inundated from the non-

inundated peatlands to improve the integration of non-inundated peatlands in GIEMS-MCISW+P. In addition, the upcoming

NASA-ISRO Synthetic Aperture Radar (NISAR), scheduled for launch in 2025, will provide high-resolution (below 7 m)

observations in L and S bands (Chuang et al., 2016; Adeli et al., 2021). These frequencies are particularly advantageous for470

mapping of sub-canopy inundation in forested wetlands, as they penetrate vegetation more effectively than the Ka band used

for SWOT.

GIEMS-MC dynamics is derived from GIEMS-2, which provides valuable insights into global water surface dynamics with

seamless time series of surface water extent. The continuity of GIEMS-2 production holds the potential to extend the temporal

coverage of the GIEMS-MC maps. However, no new SSMIS instrument is planned to be launched when the current instruments475

(F15 to F18) are decommissioned. Adaptations to the GIEMS-2 process, such as the incorporation of Advanced Microwave

Scanning Radiometer (AMSR) data, will be required to extend the observation period despite critical changes in satellite

overpassing local time and spatial resolution. Other passive microwave future missions are expected to cover all or part of the

SSMIS microwave frequency range, such as the MicroWave Imager (MetOp-SG, D’Addio et al. (2014)) or the Copernicus

Imaging Microwave Radiometer (CIMR, Vanin et al. (2020)), offering alternative data sources for GIEMS-MC production but480

also requiring adjustment to the methodology. In addition, plans to increase the temporal resolution of GIEMS-2 to a 10-day

data record could provide a more detailed understanding of wetland dynamics over time.

7 Conclusion

Despite numerous advances in methane measurements and modeling, the extent of wetlands remain a key gap. Here, GIEMS-2

product was combined with other information to produce GIEMS-MethaneCentric (GIEMS-MC), a dataset containing spatially485

and dynamically consistent maps of different methane-emitting aquatic ecosystems. In particular, GLWDv2 dataset enables the

separation of open water surfaces (lakes, rivers, reservoirs) in GIEMS-2, as well as the addition of peatlands not detected by

microwaves satellite observations used in GIEMS-2 production. Rice paddies are identified using the MIRCA2000 product.

Updated coastal zone filtering improves on the previous complete masking in the distributed version of GIEMS-2.

GIEMS-MC provides two harmonized times series maps at 0.25°x0.25° and monthly time step of wetland surfaces from490

1992 to 2020: one representing inundated and saturated wetlands, and the other covering all wetlands, including peatlands. In

addition, GIEMS-MC provides consistent maps of rice paddies and categories of open permanent water. Information on the

dominant vegetation type and wetland type per pixel is also provided. This comprehensive database will hopefully set a new

standard for harmonizing and consistently mapping methane emission from the different aquatic ecosystems.
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Data availability. GIEMS-MC dataset in NetCDF format and its documentation are available at https://zenodo.org/records/13919645 (Bernard495

et al., 2024a).
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