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Abstract. The frequency and severity of fire weather have increased under climate change, particularly in high-latitude boreal 10 

forests. Lightning, a key ignition source globally, is also expected to become more frequent with climate change and could 

significantly increase burn area. Current research on lightning-ignited wildfires (LIW) has a long history in boreal ecosystems 

but has typically focused on North America due to better data availability, while the lack of publicly available data for Eurasia 

has hindered our comprehensive understanding of important characteristics of LIW, such as holdover time, lightning-ignition 

efficiency, frequency, and spatial distribution of lightning-ignited wildfires in boreal forests. This study introduces the 15 

Temporal Minimum Distance (TMin) method, a novel approach to matching lightning strikes with wildfires without requiring 

ignition location, that outperformed current methodologies. As a result, we developed a comprehensive dataset of lightning-

ignited wildfires across the entire boreal forest from 2012 to 2022, encompassing 6,228 fires — 4,186 in Eurasia and 2,042 in 

North America — each over 200 hectares in size. This dataset provides new opportunities to model ignition and spread 

dynamics of boreal wildfires and offers deeper insights into lightning-driven fire activity globally. 20 

1. Introduction 

Forest fires are the primary disturbance agent in global boreal forests, burning an estimated 10-15 million ha each year on 

average across Siberia, Canada, and Alaska (Flannigan et al., 2009). Boreal fires play a crucial role in shaping boreal forest 

composition and structure (Podur et al., 2003), and they also have a significant impact on the global carbon cycle (Stocks et 

al., 2001). The global boreal forests house roughly 32 % of terrestrial carbon stocks (Pan et al., 2011) and are considered to be 25 

globally important carbon sinks. However, due to the observed and predicted increases in temperatures in high latitudes 

(Melillo et al., 2014; Natali et al., 2019; Post et al., 2019; Soja et al., 2007), thawing of the permafrost, increase in vegetation 

stress due to drought, and an increase in fire frequency and burned area (Gillett et al., 2004; Flannigan et al., 2009), there is 

concern that boreal forests could be pushed to be a net positive carbon source (Watts et al., 2023 and references therein). Since 

at least 2000, carbon dioxide emissions from boreal forest fires have been on the rise, reaching a record high in 2021, where 30 
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they contributed to 23 % of global wildfire carbon dioxide emissions, a significant increase from the historical average of 10 

% (Zheng et al., 2023). Additionally, Black carbon from boreal forest fires contributes to increased pollution levels in the 

Arctic (Bond et al., 2013; Lavoué et al., 2000; Stohl, 2006) and could accelerate losses of snow and ice (Hansen and Nazarenko, 

2004). Kim et al.'s (2005) findings indicate, for example, that black carbon aerosols (soot) are rapidly transported from central 

Alaska to the Arctic Ocean, as well as to glaciers in southern Alaska, where up to 20 % of these aerosols may be deposited, 35 

changing the albedo and possibly increase the melting of the arctic. All in all, increasing forest fires will challenge the boreal 

carbon sink and it is thus essential to understand global distribution and trends in boreal forest fires.  

 

One of the major processes underlying the observed increase in forest fires in boreal regions is a notable rise in the frequency 

and intensity of fire weather, a trend that is projected to worsen with global warming (Hessilt et al., 2022; Jones et al., 2022). 40 

This trend in fire weather frequency has already led to approximately 50 % increases in burned area between 2001–2019 in 

certain extratropical forest ecoregions, such as the Pacific US and high-latitude forests, with an expected increase in forest fire 

activity and severity in some higher-latitude regions (De Groot et al., 2013; Descals et al., 2022; Flannigan et al., 2000; Stocks 

et al., 1998; Zheng et al., 2023). Yet, for a forest to burn there needs to be a source of ignition, with lightning being a key 

source of wildfire ignition in boreal forests (Gao et al., 2024; Moris et al., 2020; Pérez‐Invernón et al., 2023; Sofronov et  al., 45 

1998; Veraverbeke et al., 2017). Lightning-ignited wildfires are a significant cause of burn area in boreal forests (Hanes et al., 

2019; Kasischke et al., 2002; Nash and Johnson, 1996; Veraverbeke et al., 2017), and they are more difficult to detect, suppress 

and extinguish than human-caused fires (Flannigan and Wotton, 1991; Kourtz and Todd, 1991; Podur et al., 2003; Wotton and 

Martell, 2005). Under the influence of climate change, the scale and occurrence of lightning-ignited wildfires in boreal forests 

are projected to increase significantly. Janssen et al. (2023), for instance, estimated that 77 % of the burned areas in 50 

extratropical intact forests are attributable to lightning, with lightning occurrences projected to increase by 11 % to 31 % for 

each degree of warming. Additionally, Krause et al. (2014) suggest a potential 21.3 % rise in cloud-to-ground lightning activity 

by the end of the century under the RCP8.5 scenario, potentially doubling the burned area in high-latitude regions.  That said, 

the lightning-ignition efficiency, i.e. the number of fires ignited per lightning, can differ significantly by region and land cover 

(Podur et al., 2003). Lightning storms can also result in concentrated clusters of large numbers of fires (Flannigan and Wotton, 55 

1991; Kourtz and Todd, 1991; Podur et al., 2003; Woolford et al., 2021) and lightning-ignited wildfires can smoulder for long 

periods of time before igniting fully, in what is referred to as the holdover time (time between fire ignition and detection; 

Flannigan and Wotton, 1991; Wotton and Martell, 2005). Holdover time presents a true challenge for real-time lightning-

ignited wildfire detection in boreal forests. They are still not fully understood and likely depend heavily on initial detection 

and ignition characteristics. Their duration can vary heavily, with some literature suggesting up to around a week (Anderson, 60 

2002; Flannigan and Wotton, 1991; Moris et al., 2023), while others suggest they can last up to a few weeks in boreal forests 

(Moris et al., 2023; Nash and Johnson, 1996; Scholten et al., 2021; Wotton and Martell, 2005). Scholten et al. (2021) reported 

that fire managers in Alaska and Canada have started reporting extreme holdover times, where fires “hibernate” over winter 

(up to seven or eight months) only to re-emerge the following fire season as “overwintering fires.” The spatial distribution, 
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characteristics and potentially complex interactions of lightning-ignited wildfires in boreal forests are thus not fully understood, 65 

partly due to a lack of global data on lightning-ignited fires. 

 

Recent advancements in remote sensing and lightning location systems have significantly enhanced our understanding of 

lightning-ignited wildfires. More specifically, the precise geolocation of lightning paired with spatially explicit information on 

wildfires allows us to distinguish lightning from human-caused ignitions by matching wildfire and lightning location data 70 

(Larjavaara et al., 2005; Nash and Johnson, 1996; Wotton and Martell, 2005). Current methods search for the most likely 

individual lightning event based on its temporal and spatial distance to the fire’s ignition point. These methods use a buffer 

area around the ignition point and a backward temporal window to account for location and holdover time and typically stem 

from Larjavaara et al.'s (2005) proximity index: a spatio-temporal index to match candidate lightning to fires using holdover 

time (t) and spatial distance (S). Variations of lightning and wildfire matching methodologies are used often in scientific 75 

literature and have been implemented on a local, regional, and global scale; a few case studies specifically from a boreal 

perspective include: Finland (Larjavaara et al., 2005), northeastern China (Gao et al., 2024), North America (Hessilt et al., 

2022; Nash and Johnson, 1996), and Siberia (Xu et al., 2022). Testing the effectiveness of some of these variations, Moris et 

al. (2020) found that the Maximum Index A (MaxA) and Daily Minimum Distance (DMin) produced a high match between 

candidate lightning (lightning that was most likely to start the ignition) and the ignition, as well as the lowest values of distance 80 

and holdover time (ex: MaxA within a 10 km radius and a 14-day holdover time to be highly effective, with 80 % of fires 

detected within 3 days). However, these existing methodologies rely on the availability of ignition point locations, which are 

often absent in datasets produced without input from local fire and forest authorities. Most research on lightning-ignited 

wildfires has thus been conducted in North America, where fire point and polygon datasets are available from the Canadian 

National Fire Database (Canadian Forest Service, 2024) and the Bureau of Land Management’s Alaska Fire Service (U.S. 85 

Department of the Interior, Bureau of Land Management, Alaska Fire Service, 2024a&b). Both datasets include key 

information such as fire start and end date and ignition cause and location. Unfortunately at this time, there are no other publicly 

available agency datasets within the boreal biome that provide this crucial information. Both existing products are built upon 

local context and knowledge provided by forest authorities and personnel; which is not reproducible on a global scale. Although 

global remote sensing-based wildfire datasets do exist like Collection 6 MCD64A1 burned area (Giglio et al., 2018), FRY 90 

(Laurent et al., 2018), and FIRECCI5 (Lizundia-Loiola et al., 2020), they lack ignition location and cause. Consequently, a 

comprehensive pan-boreal forest lighting-ignited wildfire dataset does not currently exist.  

 

Here, we introduce the pan-boreal forest lightning-ignited wildfire dataset (BoLtFire), an Earth-observation-based database on 

lightning-ignited wildfire across global boreal forests. Our database overcomes challenges with existing methods by 95 

introducing a new methodology specifically designed for detecting lightning-ignited wildfires in boreal forests and without 

exact ignition location. More specifically, the objectives of our study were to: 
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1. Develop and implement a new approach to identify lightning-ignited wildfires that do not rely on ignition locations 

and benchmark this new approach with a regional test case using the Canadian National Fire Database and Alaska 

Fire Service datasets 100 

2. Apply the new approach globally across the boreal forest biome to create a pan-boreal dataset of lightning-ignited 

wildfires across the global boreal forest, leveraging lightning location data from the Earth Networks Total Lightning 

Network (ENTLN) and fire location data from the GlobFire Fire Perimeters dataset (Artés et al., 2019) 

3. Enhance understanding of holdover time, distance to fire perimeter, lightning-ignition efficiency, frequency of fires, 

total burned area, and spatial distribution of lightning-ignited wildfires in boreal forests 105 

2. Data and methods 

2.1 Study area 

The boreal zone, a vast circumpolar vegetation region situated between latitudes 45˚N and 70˚N, represents one of the world's 

largest biogeoclimatic zones. It plays a critical role in providing renewable resources, supporting diverse habitats, regulating 

global climate, sequestering carbon, and is recognized as one of the fastest-warming biomes (Brandt, 2009; Brandt et al., 2013; 110 

Zheng et al., 2023). Spanning 1.89 billion hectares, the boreal zone encompasses 1,133 million hectares in Russia, 552 million 

hectares in Canada, and 73.7 million hectares in the United States, with additional areas across Finland, Sweden, China, 

Norway, Mongolia, Iceland, Kazakhstan, Greenland, and Saint Pierre and Miquelon (Brandt, 2009; Brandt et al., 2013). 

2.2 Boreal forest fire regimes 

A lightning-ignited fire progresses through three primary phases: (1) ignition, (2) survival (or smouldering), and (3) arrival 115 

(Anderson, 2002; Kourtz and Todd, 1991; Martell and Sun, 2008; Pérez‐Invernón et al., 2023). The survival and arrival phases 

of ignition depend heavily on the fuel availability and composition, weather conditions and topography (Anderson, 2002; 

Flannigan and Wotton, 1991; Kourtz and Todd, 1991; Martell and Sun, 2008; Pérez‐Invernón et al., 2023). During the ignition 

phase, lightning triggers an ignition which can then smoulder within the duff layers. Certain duff layers, such as the needle-

covered ground beneath conifers, are particularly susceptible to ignition and prolonged smouldering (Flannigan and Wotton, 120 

1991). The ignition will either “self-extinguish” or if the conditions are conducive to fire, the fire will enter the survival and 

arrival phase (Anderson, 2002; Flannigan and Wotton, 1991; Martell and Sun, 2008; Pérez‐Invernón et al., 2023). 

 

Wildfires are a natural process and important drivers of forest dynamics (Latham and Williams, 2001; Podur et al., 2003; Seidl 

et al., 2020; Vajda et al., 2013). Over long time scales, fires will create a mosaic of burned, recovering and unburned patches, 125 

with patch characteristics (i.e. size and shape), fire frequency and recovery dynamics largely determining the resulting 

landscape mosaic (Turner, 2010). Fire-adapted forests can typically be classified into two distinct categories; (1) forests with 

species that can regenerate independently and (2) forests that require species members to regenerate. The first category includes 
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species such as conifers which store their seeds in insulated serotinous cones that only open to heat, and secondly, hardwoods 

which regenerate from the root layer after a fire (Stocks et al., 2001). North American boreal forests, for example, contain 130 

Pinus banksiana (jack pine) and Picea mariana (black spruce), which both require fire to regenerate (Rogers et al., 2015; Stocks 

et al., 2001). In contrast, Eurasian boreal forests are dominated by non-serotinous conifers and other species that release seeds 

annually, resulting in heterogeneous, uneven-aged forests (Stocks et al., 2001). Due to the predominant tree species, Rogers et 

al. (2015) suggest that North American boreal forests are more prone to high-intensity crown fires, which consume large 

amounts of vegetation and detritus, whereas Eurasian forests typically experience lower-intensity surface fires that burn less 135 

vegetation and fewer trees (De Groot et al., 2013; Rogers et al., 2015).  

2.3 Summary of datasets 

2.3.1 Lightning data 

The Earth Networks Total Lightning Network is a global network of 1800 sensors across more than 100 countries (Liu and 

Heckman, 2011; Zhu et al., 2022). Their network is further enhanced by an integration with the World Wide Lightning Location 140 

Network (Rodger et al., 2004). The ENTLN detects wideband electric field signals (1 Hz to 12 MHz) that are emitted by cloud-

to-ground and intracloud lightning. Only cloud-to-ground flash data are used in this study. Each cloud-to-ground flash has at 

least one return stroke (Liu and Heckman, 2011).  Intracloud pulses occur within the cloud and do not strike the ground as a 

return stroke, making them irrelevant for wildfire ignition. Using the time-of-arrival technique, they report the time, location 

(latitude and longitude), type of discharge, peak current, and polarity (positive or negative), of each lightning event. Individual 145 

strokes are clustered into a flash if they are located within 10 kilometres and within 0.7s of each other (Liu and Heckman, 

2011). For each flash, multiplicity, start time, end time, and duration are reported. 

 

Detection efficiency refers to the percentage of flashes or strokes detected by the network and can vary depending on the 

location and the distance between the sensors and the lightning event. Relative detection efficiency assumes a uniform 150 

detection efficiency across the network. The ENTLN's cloud-to-ground stroke detection efficiency across the CONUS is 

reported to be greater than 90 % (Lapierre et al., 2020), with relative detection efficiency values ranging from 85 % to 100 % 

across the Americas and similar levels in Europe and Australia (Bui et al., 2015). Significant improvements have been observed 

over the years due to advancements in processor technology (Mallick et al., 2013; Mallick et al., 2015;  Zhu et al., 2017; Zhu 

et al., 2022). The most recent processor has achieved a stroke classification accuracy of 94 % and has reduced the median 155 

location error from 215 meters to 92 meters when compared to ground truth data in Florida (Zhu et al., 2022). Globally, this 

upgrade has resulted in a 149 % increase in the overall global detection of pulses, with North America showing a 145 % gain, 

Asia a 142 % gain, and Europe a 152 % gain. However, in more remote areas, detection efficiency tends to be lower, and 

location errors can extend up to several kilometres. Additionally, there are no sensors located in Russia, all lightning is detected 

by sensors in neighbouring countries. 160 
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2.3.2 Wildfire data 

The MODIS Collection 6 MCD64A1 burned area product (Giglio et al., 2018) utilizes daily 500-meter resolution MODIS 

surface reflectance data in conjunction with 1-kilometer resolution MODIS active fire observations (Giglio et al., 2020). The 

GlobFire algorithm was applied to the MCD64A1 product to create the GlobFire Fire Perimeters [2002-2023] dataset (Artés 

et al., 2019). Each yearly fire shapefile has a unique fire id, an initial date, a final date, the geometry and the final area in 165 

hectares for each fire within. Within their algorithm, a fire event is a set of burned areas that are intersecting or touching. Each 

fire event comprises interconnected burned areas that are only treated as separate fires if there is a temporal distance of more 

than five days between each event. If there is no new burned area after 16 days, the fire is no longer considered active. 

2.3.3 Agency reference fire occurrence records 

We used the Canadian National Fire Database Fire Point and Polygon datasets along with the Alaska Fire History Location 170 

Points and Perimeter Polygons datasets to assess our BoLtFire dataset. The Canadian National Fire Database fire points and 

polygons are compiled from various jurisdictions, including provinces, territories, and Parks Canada; and represent a 

collaborative effort by all Canadian fire agencies. This database is the most comprehensive resource for fire points and 

perimeters in Canada. The point data includes critical fire information such as fire ID, fire report date, out date, cause, and 

ignition point. Hanes et al. (2019) states that these points are just the presumed points of ignition. The polygon data includes 175 

similar information, with fire ID, fire report date, out date, cause, and map source, available until December 2020. Fire 

perimeters are typically derived through the interpretation of Landsat (30m) or other satellite imagery, and are sometimes 

derived from aerial or field surveys by fire management agencies.  

The Bureau of Land Management’s Alaska Fire Service maintains a detailed record of all detected natural or human-caused 

wildfire events in Alaska from 1940 to 2023. The Alaska Fire History Location Points dataset provides fire-specific 180 

information, including fire ID, discovery date, out date, estimated fire size, and cause. The perimeters in the Alaska Fire History 

Perimeter dataset were mapped using ground and airborne surveys, as well as aerial photography and Sentinel-2 satellite 

imagery (10m). This dataset includes details such as fire ID, estimated burned area size, map source, geographical coordinates, 

and fire out date, but does not include the fire start date or cause. 

2.4 Processing of the lightning and wildfire datasets 185 

Both the lightning and wildfire location datasets utilized in this study are global products and were initially filtered in order to 

only include those points which fell within the Boreal Forests/Taiga biome as defined by Ecoregions 2017 (Olson et al., 2001). 

Due to detection efficiency and location errors of lightning, the ENTLN was only filtered to the Biome location, while the 

GlobFire dataset went through additional filtering. Given MODIS burned area product’s inability to adequately detect smaller 

fires, those less than 200 ha were excluded from the analysis (Giglio et al., 2009). This should not significantly influence the 190 

overall outcome of this dataset, as typically within boreal forests, large fires account for 85 % of the burned area (Macias 
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Fauria and Johnson, 2007). Fires were then filtered based on the majority land cover class using the MODIS MCD12Q1v061 

Land Cover Type 1: Annual IGBP classification datasets from 2012-2022, with a 500 m spatial resolution (Friedl and Sulla-

Menashe, 2022). Non-forest and non-native forest land covers were excluded from the analysis (Table A1). Fire class size was 

then added based on Talucci et al. (2022) (Table A2). Each fire was then assigned a country using the same methodology along 195 

with the World Bank Official Boundaries dataset (World Bank, 2020). We removed three fires as they did not have a country 

location. A complete list of input datasets used can be found in Table 1. 

 

Both the lightning and wildfire location datasets were then converted from their original coordinate system to their respective 

Global LANd Cover mapping and Estimation (GLANCE) Grids - Version 01 CRS (North American, Europe, and Asia) for 200 

the matching process (Arevalo et al., 2022). Though the ENTLN dataset was only filtered by its biome, it did receive land 

cover and country labels for additional analysis. The filtering process identified a total of 27,525,747 lightning flashes within 

the boreal forest biome, with 12,526,781 occurring in North America and 14,998,966 in Eurasia. Data for 4 November 2014, 

9 May 2016, and 19 May 2019 were unavailable. Additionally, the process identified 31,363 total GlobFire events, comprising 

5,290 in North America and 26,073 in Eurasia. 205 

 

Table 1: Description of variables provided for each lightning-ignited wildfire within the BoLtFire dataset.  

Column Name Description 

FireID Unique fire identification number 

StartDate Start date of the fire 

EndDate End date of the fire 

FireYear Year fire was discovered 

AreaHa Total burned area of the fire in hectares 

ClassSize Fire class size; Small ≤ 1,000 ha, Moderate 1,000 ≤ 10,000 ha, Large 10,000 ≤ 50,000 ha, Extremely 

Large 50,000 ≤ 100,000 ha, Mega Fires > 100,000 ha 

BiomeName Biome name based on Olson et al. (2001) 

EcoBiome Ecoregion Biome number based on Olson et al. (2001) 

EcoName Ecoregion name based on Olson et al. (2001) 
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EcoID Ecoregion ID based on Olson et al. (2001) 

Realm  Realm based on Olson et al. (2001) 

LCDN Land cover type number based on Friedl and Sulla-Menashe (2022) 

LCName Land cover type name based on Friedl and Sulla-Menashe (2022) 

Country Country where fire is located based on World Bank (2020) 

Continent Continent on which the fire was located 

HoldoverD Holdover in days 

HoldoverRD Holdover in days, rounded to the day 

IgnLat Latitude location of the candidate lightning 

IgnLong Longitude location of the candidate lightning  

DisPol Distance to polygon if ignition point is outside polygon 

PerCheck True(1)/False(0) if the candidate lightning is within the fire perimeter 

 

2.5 Processing of the agency reference datasets 

To ensure a consistent assessment between the agency reference dataset and the BoLtFire dataset, the agency reference datasets 210 

were filtered by size, start date, and ignition cause. Prescribed burns were removed. The fire perimeters and points from the 

agency references were initially joined based on their respective fire ID keys (Canadian National Fire Database: NFDBFIREID 

and CFS_REF_ID; Alaska Fire Service: ID and FIREID). Polygons without points were removed from the dataset. Points 

without corresponding perimeter IDs were categorized into two groups: those located within an existing fire perimeter and 

occurring within seven days of the fire start date and those that do not. For the latter (as not all fire parameters have been 215 

mapped yet; Canadian Forest Service, 2024), the fire area was used to determine the fire radius, which was then used to 

generate a fire buffer perimeter. For perimeters without corresponding point IDs, if there was an unmatched point within the 

perimeter within seven days of the fire start date, that became the fire's ignition point. If there were no points located within 

the perimeter, the fire was left without an ignition point and was removed from the dataset. Both datasets were then merged 

https://doi.org/10.5194/essd-2024-465
Preprint. Discussion started: 29 October 2024
c© Author(s) 2024. CC BY 4.0 License.



9 

 

and filtered based on the majority land cover class. The filtering process yielded an agency reference dataset consisting of 220 

2,424 fires across Alaska and Canada. 

2.6 BoLtFire dataset creation method 

Existing methodologies for fire ignition detection require an ignition point for each fire, which is not provided by the original 

MCD64A1 nor the GlobFire dataset. To address this, a Temporal Minimum Distance (TMin) methodology is proposed. This 

approach searches for a candidate lightning within the fire's perimeter starting from its ignition date and searches until a 225 

candidate lightning is found or a 14-day window has been reached. The first candidate lightning found within the perimeter is 

designated as the candidate lightning and the ignition point. If multiple potential candidate lightnings are found, the one closest 

in time to the ignition date is chosen. If no candidate lightning is found within the perimeter, the search extends to a 10 km 

radius outside the perimeter, following the same temporal process. If multiple potential candidate lightning are found, the 

stroke closest both spatially to the perimeter and temporally to the start date is selected as the ignition point (Larjavaara et al., 230 

2005). A visualization of the process can be seen in Fig. 1. The proposed TMin methodology was then applied to the filtered 

ENTLN and GlobFire datasets to create the BoLtFire dataset.  

 

Figure 1: Visualization of the temporal minimum distance process, where lightning candidates are first searched for within the fire 

perimeter before then searching the buffered area if one is not found. 235 
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2.7 Agency reference comparison and analysis 

We conducted three different comparison assessments using the proposed TMin approach: (1) a candidate lightning 

methodology comparison, (2) a spatial and temporal accuracy comparison, and (3) fire count and size comparison. The 240 

matching lightning methodology comparison was implemented to gauge the performance of the proposed (TMin) methodology 

to currently established methodologies (DMin and MaxA). To align our methodologies to the current literature, all three 

methodologies were implemented using input parameters of tmax of 14 days and a Smax of 10 km. The methodologies were 

applied to the agency reference dataset as both datasets provide a start date and an ignition point, allowing for a more precise 

comparison of the candidate lightning’s distance to ignition location and holdover time across the methodologies. The 245 

following variables were analysed: candidate lightning agreement, fire count, fire size, holdover time, and distance to the 

ignition point. The mean, median, and histograms of distance and holdover time were also produced. Additionally, a detailed 

analysis of the location of the candidate lightning in or outside (and distance there-from) the fire perimeter was conducted, to 

gauge the approach’s ability to accurately locate the ignition point. We conducted a secondary benchmark comparison, where 

we compared the temporal and spatial locations of the fire perimeters to determine the overlap and difference between both 250 

datasets (agency vs North America (NA) BoLtFire). The NA BoLtFire dataset successfully located a fire if it was within seven 

days (before or after the start date) and 10 km of the agency’s fire perimeter. A large spatial and temporal window was used 

to encompass reporting errors by both the agencies and errors from MODIS. The BoLtFire dataset successfully located a fire 

if it was within seven days (before or after the start date) and 10 km (Fusco et al., 2019) of the agency’s fire perimeter. Multiple 

NA BoLtFire fires could be matched to one agency fire. If a NA BoLtFire fire was not within this spatial and temporal window, 255 

then it was unsuccessful. A confusion matrix was used to evaluate the performance of the dataset. A third and final comparison 

was conducted in line with that by Artés et al. (2019), where the total fire count and fire size between the NA BoLtFire and 

the agency reference datasets were compared.  

3 Results 

3.1 Matching lightning methodology comparison 260 

3.1.1 Candidate lightning agreement 

The TMin method slightly outperformed the MaxA and DMin methods, matching 74.71 % of the total agency reference dataset 

fires while DMin matched 71.49 %, and MaxA matched 66.67 % (Table 2). Each methodology selected different candidate 

lightnings, with general agreement between all three methodologies at 35.97 %. DMin and MaxA selected 55.86 % of the same 

overlapping lightning. There was a general decreasing trend in identical candidate lightnings as fire size increased. For 21.82 265 

% of the fires, all three methodologies failed to find a matching lightning candidate; and 42.20 % of the matched fires had 
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different or no candidate lightning. Breaking down candidate lightning agreement by fire size, the DMin method shows the 

highest candidate lightning matching for small fires (74.25 %), but its performance declines significantly for larger fires, 

particularly for XLarge and Mega fires, where it drops to 57.14 % and 64.00 %, respectively. Conversely, the TMin method 

shows improvement with larger fires, achieving its highest matching for Mega fires at 92.00 %. The matching accuracy for 270 

Moderate and Large fires using the TMin method is also noteworthy at 74.54 % and 78.59 %, respectively. MaxA, while less 

accurate overall, shows a similar trend to DMin with a decreasing accuracy to increasing fire size, particularly for XLarge fires 

where it drops to 52.38 %. 
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3.1.2 Fire count and size 280 

For Small fires, the TMin method matches more lightning candidates (72.36 % by total burned area) compared to MaxA (68.34 

% by ha), with DMin slightly outperforming TMin (Table 2). For all other fire sizes, TMin has a similar advantage (74.94 %) 

over MaxA (66.45 %) and DMin (70.55 %). For Large fires, TMin continues to perform better (76.56 %) than MaxA (58.05 

%) and DMin (63.23 %), showing a significant drop in accuracy for MaxA. XLarge fires exhibit a consistent pattern with 

TMin at 75.20 %, ahead of MaxA (51.43 %) and DMin (56.56 %), demonstrating the lowest accuracy for MaxA. Mega fires 285 

also see the highest accuracy for TMin (93.34 %), outperforming both MaxA (61.75 %) and DMin (61.75 %). 

 

3.1.3 Holdover times 

In all three methods, the holdover time showed an exponential decrease over time (Figure 2). Over 50 % of candidate lightnings 

among the three methodologies (TMin: 55.27 %, MaxA: 57.49 %, and DMin: 64.80 %) were found within the first 3 days 290 

(Day +1/0-2; Table B1); over 88 % within the first 10 days (TMin: 88.74 %, MaxA: 91.34 %, and DMin: 92.96 %). The largest 

frequencies for the TMin, MaxA, and DMin were found on Day 0 (503, 449, and 546 respectively). These results align with 

the overall trend that most wildfires occur within the first few days following a lightning event, with the majority occurring 

within two weeks. The TMin method shows the highest median and mean holdover times (2.20 and 3.97 days, respectively; 

Table B2), with overlapping confidence intervals for both medians and means when compared to MaxA, which has slightly 295 

lower values (2.12 and 3.64 days). The DMin method, while showing the shortest median and mean holdover times (1.84 and 

3.05 days), does not have overlapping confidence intervals with the other methods. 
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Figure 2: Distribution of lightning candidates by holdover time and distance to the ground truth ignition point. Holdover time is 

calculated as the difference between the start date of each lightning-ignited wildfire and the time of the occurrence of the candidate 300 
lightning. Distance is calculated as the distance of the lightning candidate from the ignition point of each lightning-ignited wildfire.  
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3.1.4 Distance to the ignition point 

The median distance of the selected candidate lightnings from the ground truth ignition point varied greatly for all three 

methodologies. Both the MaxA and DMin methods identify candidate lightnings with shorter distances from the ignition point 

compared to the TMin method. The TMin has a median of 4,592.00 meters and a mean of 6,110.32. MaxA identified the 305 

lightning candidates closest to the ignition point with a median distance of 3,155.20 meters and a mean distance of 3,771.49 

meters (Table B2). DMin also identifies candidate lightnings with a shorter distance than TMin, with a median of 3,968.77 

meters and a mean of 4,391.07 meters. These results were expected as both the MaxA and the DMin approaches rely on the 

ignition point in order to select the candidate lightning while the TMin looks to select the lightning candidate first within the 

fire perimeter, prioritizing candidates that are only closer temporally to the start date, before then checking outside the 310 

perimeter.  

 

Within the agency reference dataset, 246 of the fires had ignition points located outside of the fire perimeter, and 2,178 within 

the fire perimeter (where the ignition of the fire should most likely occur). All three methodologies show varying levels of 

effectiveness in selecting a lightning candidate point inside or outside the ignition perimeter. The TMin methodology offers a 315 

balanced performance with a moderate overall accuracy of 32.29 %, making it the most reliable across both inside and outside 

the perimeter (Table B3). Both the MaxA and DMin methodologies did well correctly locating points outside the fire perimeter, 

but both struggled to locate them inside the fire perimeter leading to an overall accuracy of 26.11 % and 24.50 % respectively. 

Overall, while all three struggle to accurately determine if the ignition point is inside or outside the perimeter, TMin appears 

to be the most consistent with a higher overall accuracy. 320 

https://doi.org/10.5194/essd-2024-465
Preprint. Discussion started: 29 October 2024
c© Author(s) 2024. CC BY 4.0 License.



16 

 

3.2 Evaluation of TMin and the BoLtFire dataset 

3.2.1 Confusion matrix results  

 

Figure 3: Within this figure there are four different fires: A, B, C, D. Fire A: BoLtFire 16389528 ignited on 26 July 2014 and was 

extinguished on 12 August 2014. It burned 11,699.48 ha and was located in Sweden. Fire B: Visual comparison of matched agency 325 
reference dataset fire 15BN-MACK (magenta) and BoLtFire 17455090 (blue). The lightning-ignited wildfire, 15BN-MACK, 

occurred in Saskatchewan, Canada on 26 June 2015 and lasted until 29 July 2015 burning roughly 38,249.32 ha. Its perimeter was 

mapped and created using Aerial GPS. Fire C is unique as occurred on the border between both Alaska and Canada. On the Alaska 

side, Fire C shows two fires (blue), fire 39800 started on 26 June 2017 and burned 37,846.33 ha and fire 39832 started on 03 July 

2017 and burned 31,912.67 ha. On the Canadian side (magenta), fire 2017OC010 started on 22 June 2017 and was 97102.29 ha. 330 
BoLtFire 19856819 shows these fires as one fire that started on 29 July 2017 but was only 67,932.6 ha in size. Fire D: BoLtFire 

24442738 occurred on 22 August 2021 in Russia and burned 77,645.45 ha. Base imagery is Landsat 8 ©USGS. 

 

The overall accuracy was 63.04 %, commission error was 30.06 % and the omission error was 53.63 %, indicating that approx. 

70% of the fires detected in BoLtFire were correctly classified, but that approx. 54 % of all occurring fires were missed in 335 

BoLtFire (Table C1). The BoLtFire database is thus conservative in comparison to the agency datasets. Within the agency 

reference dataset, of the 2,424 lightning-ignited wildfires, 1,124 wildfires had a BoLtFire dataset match while 1,300 remained 

unmatched. Of the 2,042 lightning-ignited wildfires in the BoLtFire dataset for North America, 1,559 lightning-ignited 

wildfires were matched while 483 remained unmatched. Overall, the matched fires accounted for 46.37 % of the total fires in 

the agency reference dataset but covered 70.15 % of the total burned area from the agency reference dataset. An example of 340 

agency fires and its matched BoLtFire can be seen in Fig. 3B and Fig. 3C. Within the agency reference dataset, fire count and 

size fluctuated drastically across the years, with a recorded total of 2,424 fires, burning approximately 19.66 million ha (Table 

C2). The year 2015 recorded the highest number of fires, with 514 incidents burning approximately 4.53 million ha, while 
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2021 witnessed the lowest number of fires, with only seven incidents, burning only around 30,259.57 ha. In terms of matched 

fires, 2017 had the highest match rate at 186 fires (55.19 % of the 2017 agency reference dataset total lightning-ignited wildfire 345 

count), and 2019 had the lowest, with just 30 of the 158 agency reference dataset lightning-ignited wildfires, representing 

18.99 % of the total lightning-ignited wildfire count for that year.  

 

One noticeable trend was that as fire size increased, both the amount of total fires as well as total burned area generally 

improved. Small fires have the lowest matching success, as only 24.36 % of the total Small fires successfully matched the 350 

agency reference dataset (Table 3), with a delta of -71.53 % of the total burned area matched. Moderate and Large fires show 

moderate success, with about 55-70 % of fires and burned areas matched, while XLarge and Mega fires exhibit a strong 

matching performance, with 76.19 % of XLarge fires matched with 73.76 % of the total burned area and 80.00 % of the Mega 

fires matched with 82.30 % of the total burned area. The 10 unmatched XLarge and 5 unmatched Mega fires accounted for 

approximately 1.73 million unmatched hectares, representing 29.45 % of the total unmatched burned area. When Small and 355 

Moderate fires were removed, 287 of the remaining 408 fires were matched, increasing the overall matching from 46.37 % to 

70.34 % of total fires, and increasing the matched total burn area from 70.15 % to 74.04 %. Overall, we found that the matching 

process is more effective for larger fires, both in terms of the number of fires and the total burned area matched. 

 

Table 3: Compares the total number of fires and the total burned area by fire size category between the agency reference dataset 360 
(ARD) and matched fires in the North American BoLtFire dataset, using the total burned area for both from the agenda reference 

dataset.  

 
Agency Reference 

Dataset 

Matched Fires in the NA BoLtFire Dataset Delta (Agency Reference Dataset to North 

America BoLtFire) 

Fire Size Total 

LIW 

Total Burned 

Area (Ha) 

Total 

LIW 

Percent of 

Total 

LIW 

Total Burned 

Area from 

ARD (Ha) 

Percent of Total 

Burned Area 

from ARD (Ha) 

Total 

LIW 

Percent 

Total 

LIW 

Total Burned 

Area from 

ARD (Ha) 

Percent Total 

Burned Area 

(Ha) 

Small 932 460,119.82 227 24.36 % 130,977.77 28.47 % -705 -75.64 % -329,142.05 -71.53 % 

Moderate 1,084 3,768,131.15 610 56.27 % 2,233,730.82 59.28 % -474 -43.73 % -1,534,400.33 -40.72 % 

Large 341 7,096,947.69 235 68.91 % 4,820,762.69 67.93 % -106 -31.09 % -2,276,185.00 -32.07 % 

Xlarge 42 2,972,699.20 32 76.19 % 2,192,740.13 73.76 % -10 -23.81 % -779,959.07 -26.24 % 

Mega 25 5,359,454.62 20 80.00 % 4,410,940.26 82.30 % -5 -20.00 % -948,514.36 -17.70 % 

Total 2,424 19,657,352.47 1,124 46.37 % 13,789,151.67 70.15% -1,300 -53.63 % - 5,868,200.80 -29.85 % 
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3.2.2 Fire count and fire size comparison 

The agency reference dataset reports 2,424 fires, burning approximately 19.66 million ha, while the NA BoLtFire dataset 365 

records 2,042 lightning-ignited wildfires with a total burned area of approximately 12.01 million ha (Table 4). Small fires were 

more frequently recorded in the NA BoLtFire dataset (1,003 fires) compared to the agency reference dataset (932 fires), though 

the difference in the burned area for Small fires was relatively minor. However, the agency reference dataset records a higher 

number of Moderate (delta of 287), Large fires (delta of 137), XLarge (delta of 21) and Mega (delta of 8) fires, burning 

significantly more hectares than in the NA BoLtFire dataset. Moderate fires also show a significant difference, with the agency 370 

reference dataset reporting 287 more incidents and a 30.14 % larger total burned area. The most notable differences between 

the two datasets can be seen in the larger fire categories, with the agency reference dataset showing significantly more Large, 

XLarge, and Mega fires, resulting in a 38 % to 53 % larger burned area (40.79 %, 53.40 %, 38.17 % respectively). Overall, 

the agency reference dataset reflects a higher total count and larger burned area, particularly in the larger fire size categories, 

while the NA BoLtFire dataset is slightly higher in small fires but substantially lower across all other fire sizes. 375 

 

Table 4: Total count and total burned area of both the agency reference dataset and the North America BoLtFire Dataset from 2012-

2022 organized by fire size. The delta was calculated between the Agency Reference Dataset and the North America BoLtFire 

Dataset. 

  Agency Reference 

Dataset 

North America BoLtFire 

Dataset 

Delta 

(Agency Reference Dataset to North America BoLtFire) 

  LIW 

Count 

Total 

Burned 

Area (Ha) 

LIW 

Count 

Total Burned 

Area (Ha) 

LIW 

Count 

Percent 

LIW Count 

Total 

Burned 

Area (Ha) 

Percent Total 

Burned Area 

(Ha) 

Small 932 460,119.82 1003 481,707.10 -71 -7.62 % -21,587.28 -4.69 % 

Moderate 1,084 3,768,131.15 797 2,632,230.98 287 26.48 % 1,135,900.17 30.14 % 

Large 341 7,096,947.69 204 4,202,232.89 137 40.18 % 2,894,714.80 40.79 % 

XLarge 42 2,972,699.20 21 1,385,300.87 21 50.00 % 1,587,398.33 53.40 % 

Mega 25 5,359,454.62 17 3,313,507.60 8 32.00 % 2,045,947.02 38.17 % 

Total 2,424 19,657,352.47 2042 12,014,979.44 382 15.76 % 7,642,373.03 38.88 % 
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 380 

3.3 BoLtFire dataset overview  

 

Figure 5: Visual depiction of all located in forest and forest-like land covers in boreal forests from 2012-2022 that are equal to or 

greater than 200 ha. 

Of the original 31,363 total filtered GlobFire events, 6,228 were identified through the TMin methodology (within 14 days 385 

and 10 km of the GlobFire event) to be lightning-ignited (19.86 %). The BoLtFire dataset encompasses lightning-ignited 

wildfires located in forest and forest-like land covers in boreal forests from 2012-2022 that are at least 200 ha in size. Of the 

6,228 fires, 4,186 were located in Eurasia and 2,042 were located in North America (Figure 5). Within those 4,184 fires 

identified as lightning-ignited wildfires within Eurasia, 4,137 are located in Russia, 40 are in Mongolia, 8 are in Sweden and 

1 is located in Finland. Of the 2,042 in North America BoLtFire, 1,759 are located in Canada and 283 are located in Alaska, 390 

United States. The BoLtFire dataset encompasses a total of approximately 33.09 million ha of burned area (21.07 million ha 

in Eurasia and 12.01 million ha in North America) with an overall average burned area per fire of 5,312.84 ha. The information 

included for each fire within the dataset can be found in Table 1. 

3.4 Characterization of lightning-ignited wildfires 

We summarized the following metrics for each continent: holdover time, distance to fire perimeter, lightning-ignition 395 

efficiency, frequency of fires per year and total burned area, area burned by fire size class, and total burned area per land cover. 

3.4.1 Holdover  

Similar to the agency reference dataset, the holdover time within the BoLtFire dataset exhibited an exponential decline, with 

the highest frequency occurring within the first 24 hours (Figure 4). Specifically, 711 lightning-ignited wildfires (11.42 %) 

were identified on the first day, and 1,963 lightning-ignited wildfires (31.52 %) ignited within the first three days (Day 0 to 400 

Day 2; Table D1). The cumulative number of lightning-ignited wildfires increased quickly, with nearly half of all fires recorded 

within 5 days (Day 0 to Day 4) and 78.23 % occurring within the first 10 days. 
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Figure 4: Top graph compares the holdover time for the total number of fires over a 15-day period between the Eurasia and North 

America BoLtFire dataset continents. Bottom graph compares the distance of the candidate lightning from the fire perimeter for all 405 
of the fires whose candidate lighting was located outside the fire perimeter within the Eurasia and North America BoLtFire dataset 

continents. 

3.4.2 Distance to fire perimeter 

The analysis of the distance of the ignition point from the perimeter of the fire revealed a pattern similar to that of the holdover, 

a decrease in total fires as the distance from the perimeter increases (Figure 4). A total of 1,495 of the ignition points were 410 

located within the perimeter of the fire. The remaining 4,733 ignition points were located outside of the perimeter, 174 were 

within 100 m of the fire perimeter, 957 (20.22 %) were within 1 km and over half (2585, 54.62 %) were within 4 km (Table 

D2). This trend was mirrored in both Eurasia and North America. 

3.4.3 Lightning-ignition efficiency 

The BoLtFire dataset reveals variations in the incidence of lightning ignition efficiency (LIE) across both continents (Table 415 

D3). Eurasia recorded a higher number of total strokes (approximately 15 million) and a greater number of lightning-ignited 

wildfires (4,186), compared to North America's 12.53 million strokes and 2,042 lightning-ignited wildfires. Approximately 

0.0279 of lightning strokes resulted in ignition in Eurasia, while just 0.0163 of strokes led to an ignition in North America. 
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Overall, the combined data across both continents shows a total of nearly 27.53 million strokes, resulting in 6,228 lightning-

ignited wildfires, with an overall lightning-ignition efficiency of 0.0226. To better understand the lightning-ignition efficiency 420 

at a more regional level, it was calculated by country: The United States (Alaska) has the highest lightning-ignition efficiency 

at 0.5079.  Mongolia has the next highest efficiency at 0.075 with Russia following with 0.029. Canada has a much lower 

lightning-ignition efficiency of 0.0141, while Sweden and Finland have the lowest lightning-ignition efficiencies at 0.0037 

and 0.0003, respectively. This data suggests that the likelihood of lightning igniting wildfires varies considerably across these 

countries for larger fires.  425 

3.4.4 Frequency of fires per year and total burned area  

Understanding the number of fires per year is critical for assessing the frequency and trends of wildfire occurrences. The total 

frequency of lightning-ignited wildfires exhibited substantial year-to-year variability across both continents, with the most 

amount of lightning-ignited wildfires found in 2013 (923) and the least found in 2019 (104) (Table D4). From a total burned 

area perspective, even though 2013 had the most lightning-ignited wildfires, it burned the third most amount of area at close 430 

to 4.31 million ha; while 2021 had the most burned area at 6.07 million ha and 2019 had the least at 832,307 total ha burned. 

In 2012, the dataset shows that Eurasia had no lightning-ignited wildfires, while North America had 219. This discrepancy is 

most likely due to the ENTLN having fewer sensors available at the time, as only 244 total lightning strokes were found in 

that year in Eurasia (the average amount is approximately 1,363,542 per year). In 2013, despite Eurasia having more lightning-

ignited wildfires, North America experienced a significantly larger burned area (2.62 million ha compared to 1.69 million ha 435 

in Eurasia).  

3.4.5 Area burned by fire size class  

Within the BoLtFire dataset, Small fires are the most common, with 3,299 LIW, burning a total of approximately 1.56 million 

ha, resulting in an average of 141,428.26 ha per year and 471.57 ha per fire (Table D5 and D6). Moderate fires follow with 

2,344 lightning-ignited wildfires, contributing to a total burned area of about 7.45 million ha, and an average of 677,225.82 ha 440 

per year and 3,178.11 ha per fire. Although Large fires are less frequent, with 484 incidents, they account for a significant 

burned area of approximately 10.15 million ha, averaging 923,008.77 ha per year and 20,977.47 ha per fire. XLarge and Mega 

fires are the least common (52 and 49 incidents respectively), but they contribute disproportionately to the total burned area. 

XLarge fires burned 3.56 million ha, with an average of 323,826.30 ha per year and 68,501.72 ha per fire, while Mega fires 

had the largest average burned area at 942,543.65 ha per year and 211,591.43 ha per fire, totaling approximately 10.37 million 445 

ha. When reviewing all fire sizes, North America has an average burned area of 5,883.93 ha per fire, which is relatively close 

to Eurasia’s 5,034.25 ha per fire. When averaging the smaller fire sizes (Small and Moderate fires), North America has a higher 

average burned area of 1,729.97 ha per fire, compared to Eurasia’s 1,532.98 ha per fire. When looking at just the larger fire 

sizes (Large, XLarge, and Mega), Eurasia has a significantly larger average burned area of 44,262.75 ha compared to North 
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America’s 36,781.16 ha burned area. Overall, North American Small and Moderate fires tend to be larger than Eurasia’s, but 450 

Eurasia tends to have larger Large, XLarge, and Mega fires. 

3.4.6 Total burned area per land cover 

Within the BoLtFire dataset, Woody Savannas and Savannas are the most affected forest or forest-like land cover types, with 

2,861 and 2,051 fires respectively, contributing to the largest total burned areas of approximately 15.81 million ha and 13.86 

million ha; 89.69 % of the total burned area (Table D7). Evergreen Needleleaf Forests also had an impact, with 418 fires 455 

burning approximately 1.47 million ha, accounting for 4.45 % of the total burn area. Open Shrublands and Mixed Forests 

experienced moderate impacts, accounting for 3.58 % and 1.44 % of the total burn area, respectively. Unsurprisingly, Savannas 

had the largest average burn area per fire at 6,759.60 ha, followed closely by Woody Savannas at 5,526.64 ha, Evergreen 

Needleleaf Forests at 3,520.17 ha, and Open Shrublands at 3,076.51. Deciduous Broadleaf Forests, Permanent Wetlands, and 

Deciduous Needleleaf Forests had the fewest total burned ha, and some of the smallest average burned area per ha. The total 460 

burned area was driven strongly by the Woody Savannas and Savannas land covers and this trend was also mirrored in both 

Eurasia and North America.  

 

When all other land covers besides forest-specific ones (Deciduous Broadleaf Forests, Deciduous Needleleaf Forests, 

Evergreen Needleleaf Forests, and Mixed Forests) were removed, Eurasia, contained a total of 579 fires, contributing to a 465 

combined fire area of 1,108,490.08 ha, with an overall average fire size of 1,914.49 ha. In North America, there were 176 fires, 

with a total area burned of 940,773.94 hectares and an overall average fire size of 5,345.31. While Eurasia had a larger overall 

combined burn area and more fires, North America experienced larger fires on average. North America had on average larger 

Small (460.74 ha vs 484.77 ha, respectively), Moderate (2,921.58 ha vs 3,550.06 ha), and Large (17,323.29 ha vs 21,621.91 

ha) fires. Eurasia did not contain any forest land cover-based XLarge fires, while North America had five, totaling 321,079.76 470 

ha with an average fire size of 64,216.95 ha. While Eurasia experienced a significantly higher number of fires, North America 

had fewer but larger fires on average, particularly in the extreme fire size categories. This suggests potential differences in fire 

management or environmental conditions influencing fire behavior between the two continents. 

4 Discussion 

4.1 Agency reference dataset and NA BoLtFire dataset comparison 475 

The candidate lightning agreement highlighted the important methodological choices when matching lightning candidates 

(Moris et al., 2020). Although all three methods performed relatively well, finding candidate lightnings for at least 66 % of the 

agency reference dataset, they had difficulty agreeing on the “correct” lightning candidate, with only 35.97 % agreement across 

all three methodologies. This discrepancy is likely due to the differences in methodological approaches, as MaxA and DMin, 

who have similar methodologies, agreed on 55.86 % of candidates, while TMin agreed with MaxA on only 41.50 % and DMin 480 
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on 37.13 %. Overall, the TMin matched the most lightning candidates (74.71 %); while DMin and MaxA matched slightly 

fewer at 71.49 % and 66.67 %, respectively. However, significant differences became clear in the total burned area matched: 

out of approximately 19.66 million ha in the agency reference dataset, TMin identified candidate lightning for approximately 

15.83 million ha, whereas DMin identified only 12.47 million ha (3.36 million ha less than TMin) and MaxA identified only 

11.78 million ha (4.05 million ha less than TMin). 485 

While TMin matched more large fire sizes, MaxA identified the lightning candidates closest to the ignition point but correctly 

located only 22.68 % within the fire perimeter. While the agency reference dataset did have 246 ignition locations outside the 

fire perimeter, 89.85 % of ignitions occurred within the fire perimeter. Of the 2,178 ignitions inside the fire perimeter, TMin 

had the highest accuracy, correctly identifying 719 of those ignitions within the perimeter (33.01 % accuracy). This low 

accuracy could be attributed to several factors, one of which could be due to the TMin methodology, though it originally looks 490 

for only candidate lightnings within the perimeter; if one is not found within a certain window (14 days), then it starts to look 

outside the perimeter. The holdover for these fires could be longer than 14 days, as holdovers in boreal forests can last for a 

significant period of time before flaming (Scholten et al., 2021). Additionally, it could be due to location error of the lightning 

locations, as quite a large portion of the boreal forest is remotely located. Furthermore, as noted by Hanes et al. (2019), the 

Canadian National Fire Database points are just the presumed points of ignition, which may also explain why 246 of the 495 

ignition locations were not within their corresponding fire polygons. Furthermore, as Crowley et al. (2023) highlighted, both 

points and perimeter polygons in the Canadian National Fire Database are compiled and submitted by different provinces, 

potentially adding additional discrepancies and leading to variations in definitions across the datasets.  

The results of the confusion matrix comparing the temporal and spatial overlap of the agency reference dataset and the NA 

BoLtFire dataset indicated that our proposed TMin methodology was promising; with low commission and moderate omission 500 

errors of 30.06 % and 53.63 %, respectively. Interestingly, Small and Moderate fires matched the fewest fires, and when they 

were removed, the overall matching increased from 46.37 % to 70.34 % of total fires; indicating that fires that are less than 

10,000 ha are more difficult to match than larger fires. This may be due to the difficulty MODIS has in detecting smaller 

wildfires (discussed further in Sect. 4.3, Limitations). Another possible explanation could be the size of the matching temporal 

window. In their study, Fusco et al. (2019) used a seven-day window when spatially matching their MODIS fires, which is 505 

what we also implemented. After applying this window, we had five unmatched Mega fires which we then reviewed visually 

to better understand why they were unmatched. We noticed that three of the five had fire perimeters within the agency reference 

dataset that matched well visually, but all had start dates outside of seven days, but within 30 days of the agency reference fire. 

Due to the remoteness of some of these fires and possible fire recognition issues with the underlying MODIS data, an increase 

in the window size could include more fires. This increase in window size could also cause fires to be incorrectly associated 510 

with neighboring fires due to the increase in window size. Overall errors of omission are likely due to the detailed limitations 

mentioned below, as well as differences in pixel resolution, satellite overpass time, and cloud and smoke cover (Giglio et al., 

2009; Hantson et al., 2013; Hawbaker et al., 2008; Johnston et al., 2018; Roy et al., 2005). Errors of commission are likely due 

to fire-free surfaces that are highly reflective (Cardoso et al., 2005; Giglio et al., 2009; Hantson et al., 2013); though less likely 
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in this study as both urban and agricultural land uses were removed. As we removed fires that were smaller than 200 ha, our 515 

errors of omission and commission are likely to be lower than expected.  

4.2 BoLtFire dataset  

From a global perspective, the BoLtFire dataset provided interesting insights that could help enhance our understanding of 

holdover time, lightning-ignition efficiency, primary characteristics, frequency, and spatial distribution of lightning-ignited 

wildfires in boreal forests. The holdover phenomenon poses a significant challenge to the real-time detection of lightning-520 

ignited wildfires. While our results generally align with current literature, as the frequency of the holdover decreased over 

time, it differs in its initial detection, as the majority of lightning-ignited wildfires are typically detected within the first 24 

hours (Gao et al., 2024; Moris et al., 2023). Our lightning-ignited wildfire holdovers resulted in just 11.42 % occurring within 

the first 24 hours, with 47.80 % within a five-day window (Day 0 to Day 4) days. This could be due to a variety of factors, 

including the global scale of our results (most studies are done at a local or more regional level). Additionally, lightning-ignited 525 

wildfire ignition is strongly influenced by fuel type, weather, and topography; holdover times could reflect this dependency.  

 

The analysis of the distance of the ignition point from the perimeter of the fire also revealed a decrease in total fires as the 

distance from the perimeter increased. While the agency reference dataset did have ignition points outside the fire perimeter, 

these accounted for 10.15 % of the total dataset. Within the BoLtFire dataset, 76.00 % of fires have an ignition point outside 530 

the fire perimeter. This could be due to a couple of different reasons, either the ignition point was associated with the wrong 

fire perimeter (i.e., the correct fire perimeter was not identified by MODIS, or was removed in the filtering process), the correct 

lightning candidate within the fire perimeter was not within the ENTLN dataset, or possibly, it could be due to spatial location 

errors from either, or both, the underlying MODIS dataset or the ENTLN dataset. Benali et al. (2016) found that there could 

be up to a 12 hr temporal and 2 km spatial lag between data reported by agencies and data that was derived by a satellite. We 535 

think it is most likely both, as within the 4,733 ignition points located outside the perimeter, 20.22 % were located within 1 

km of the perimeter, 33.33 % were within 2 km, and over half were within 4 km.  

 

While thunderstorms generate thousands of strikes a year, the likelihood of ignition occurring from a lightning strike is low, 

as only a few manage to persist long enough to enter a flaming stage (Wotton and Martell, 2005; Pineda and Rodríguez, 2023; 540 

Podur et al., 2003). Latham and Williams (2001) found that within much of North America, 0.01 to 0.04 actually ignites a fire; 

on average about 0.00167 caused an ignition in Alaska (Wendler et al., 2010), 0.001329 in Alberta and Saskatchewan (Nash 

and Johnson, 1996), 0.02 in British Columbia and 0.00071 in Alberta (Wierzchowski et al., 2002). Our lightning-ignition 

efficiency across North America and Eurasia varies from that found in the literature, though likely due to the regionality of the 

other studies and to our filtering process. When reviewed more closely, the lightning-ignition efficiency of our lightning-545 

ignited wildfires in Canada were roughly 0.000141 and Alaska’s lightning-ignition efficiency was roughly 0.005079, or 3/595. 

Though Canada’s lightning-ignition efficiency rate is not in line with the literature, Alaska’s is. This could be due to the 200 
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ha filter, which would have removed a significant amount of smaller fires. Canada’s lightning-ignition efficiency is still not in 

line with more local studies. This could still be due to the filtering, but could also indicate that lightning-ignition efficiency 

needs to be conducted at a more local and regional level. Furthermore, upon visual inspection, some lightning data was located 550 

within a country but was not labeled as such due to imperfections within the World Bank (2020) Official Boundaries dataset. 

This could lead to a higher lightning-ignited efficiency than what was reported.  

 

There was no distinct increase or decrease in fire count and size over the years, with both variables experiencing high year-to-

year variation. As mentioned, weather and other climatic factors play a significant role in lightning-ignited wildfire ignition; 555 

which could help explain the general variation between, and within, the total count and burned area in fire seasons. However, 

one of the most prevalent trends in the BoLtFire dataset shows that larger fires, despite the smaller overall fire count, are 

disproportionately responsible for the largest portion of the total burned area; whereas Small and Moderate fires represent 

90.61 % of the total fire count but account for just 27.22 % of the total burned area. Conversely, Large, XLarge, and Mega 

fires make up 9.39 % of the total fires but are responsible for 72.28 % of the total burned area. This trend is also observed in 560 

the agency reference dataset, Small and Moderate fires constitute 83.17 % of the total fire count but only contribute to 21.51 

% of the total burned area. In contrast, Large, XLarge, and Mega fires, although comprising only 16.83 % of the total fires, are 

responsible for 78.49 % of the total burned area. These results are in line with current literature (Grünig et al, 2022; Hanes et 

al., 2019; Stocks et al., 2002). Interestingly, when reviewing larger fire sizes (Large, XLarge, and Mega) between Eurasia and 

North America, Eurasian fires are on average 16.90 % larger than fires in North America. This seems to be due to the dominant 565 

land cover type underlying the fires. The overwhelming majority of the burned area occurred within either the Savannas or 

Woody Savanna (accounting for a combined 89.69 % of the total burned land cover). When only reviewing forest-specific 

land covers, while Eurasia still had a larger total burned area, North America had on average fire sizes that were 64.18 % 

bigger.   

4.3 Limitations 570 

While our overall results were promising, there are several uncertainties and limitations that need to be considered when 

working with our data. First, it is important to emphasize that the comparison between the MODIS-based dataset and the 

agency reference dataset should be viewed as an assessment rather than a validation. The production of similar values between 

the datasets enhanced our confidence in the reliability of our resulting BoLtFire datasets. However, interpreting discrepancies 

between the results is complex due to a multitude of influencing factors. Second, our current understanding of global fire 575 

regimes relies heavily on satellite-based products, MODIS active fire and burned area products are one of the most widely 

used (e.g., Crowley et al., 2023). The efficacy of MODIS products, along with other satellite-based fire products, is constrained 

by limitations in resolution and sensitivity, as demonstrated by comparative validation with higher-resolution sensors like 

Landsat. Within the U.S., Hawbaker et al. (2008) found that MODIS active fire product detected 82 % of all Landsat reference 

fires, but their detection efficacy decreased with fire size and just 50 % of fires were detected at 105 ha. The mean detected 580 
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fire sizes were 915 and 1,044 ha, which could heavily impact the frequency and size of fires found within BoLtFire datasets. 

When reviewing small (> 0.2 ha) sub-canopy fires in Canada, Johnston et al. (2018) found that coarser spatial resolution 

sensors would be incapable of early fire detection for 44 - 70 % of historic wildfires in boreal forests in Canada. Additionally, 

Loboda et al. (2011) found that MODIS burned area products can underestimate the extent of fires by 15 - 70 %. This could 

be an indication that the overall total count and fire size of the BoLtFire dataset are lower than expected. Furthermore, there 585 

are limitations within the agency reference datasets that affect the overall commission and omission errors. Some fires that 

were identified by MODIS might not be identified by an agency due to the remoteness of their location (Fusco et al., 2019), 

incomplete lightning data or incorrect occurrence date (Flannigan and Wotton, 1991), or misidentified as lightning-ignited due 

to a nearby thunderstorm activities (Müller et al., 2013). However, the former reason is unlikely due to the methods and 

experience of those investigating the fire (Schultz et al., 2019). Additionally, fires that are mapped later in the season could 590 

have fire scars that are insensitive to multiple fire events, making it difficult to distinguish between singular fire events and 

fire complexes. Yet, this is also an issue for agency databases as they can also fail to distinguish between the two (Benali et 

al., 2016). Third, since we used a lightning detection network, there is a possibility that not all lightning strikes were detected. 

As mentioned, in more remote areas, detection efficiency can be relatively low, and location errors are expected to be larger 

(up to 10 km for the ENTLN). Additionally, as the ENTLN currently has no sensors located in Russia, this could create larger 595 

spatial errors or possibly not detect some lightning strikes. Since our lightning matching methodology heavily depends on the 

detection of lightning strikes, these factors could influence not only the likelihood of a correct match but also the selection of 

the candidate lightning strike in the absence of the “correct” match. Finally, as the currently available reference datasets are 

limited to boreal forests, we were only able to assess the BoLtFire dataset with those resulting fires within Canada and Alaska. 

Fire records from other agencies, especially those in Siberia and Russia are difficult to obtain or might be inaccurate (Stocks 600 

et al., 2001). As tree canopies can obscure fires (Johnston et al., 2018; Kolden et al., 2012), and as surface fires are more 

prevalent in Eurasia than the crown fires dominant in North America, omission rates could be higher in Eurasia. Additionally, 

Talucci et al. (2022) found when comparing MODIS to Landsat fire detection in Siberia from 2001-2020, Landsat captured 

47.9 % more burn area, which could indicate that our datasets do not fully reflect the true burn area in Siberia, and thus, within 

Eurasia. 605 

4.4 Outlook 

The effectiveness of lightning in igniting wildfires is expected to be amplified by climate change; under the RCP8.5 scenario, 

Hessilt et al. (2022) predict that changes in fire weather and vegetation will increase the effectiveness of lightning ignition by 

31 ± 28 % in Canada’s Northwest Territories and 14 ± 9 % in Alaska per 1°C of warming. Understanding the characteristics 

of these fires is crucial for improving our knowledge of where, why, and how they ignite, which could enhance our ability to 610 

model and mitigate their occurrence in the future. Furthermore, research by Zhu et al. (2017) suggests that the effects of 

Eurasian boreal wildfire emissions on Arctic warming may be underestimated. Given that lightning is a predominant cause of 
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wildfires in boreal forests, improving the identification of lightning-ignited fires will enhance our understanding of their 

emissions and their contribution to global warming.  

5 Data availability 615 

All input data used in this dataset (Engle et al., 2024) was publicly available (with the exception of the lightning data, as this 

data was provided by Earth Networks, Inc., an AEM company) and can be found in Table A3. Data described in this manuscript 

can be accessed at Zenodo under data doi 10.5281/zenodo.13897163. 

6 Code availability 

The code used in this dataset is available at https://github.com/BrittanyEngle/BoLtFire_Code. 620 

7 Conclusion 

Challenges in identifying lightning-ignited wildfires, coupled with limitations in data availability, have hindered our 

understanding of the characteristics of these wildfires in boreal forests. In this paper, we introduced the Temporal Minimum 

Distance (TMin) methodology, a novel approach specifically developed to match lightning strikes without an ignition point. 

It outperformed current methods, allowing us to create the largest pan-boreal forest dataset. This groundbreaking dataset 625 

consists of 6,228 lightning-ignited wildfires located in forest and forest-like land covers from 2012-2022 that are at least 200 

ha. When benchmarked to the agency reference dataset, this new dataset performed reasonably well, with an overall 

commission error of 30.06  % and omission error of 53.63 %; though further fine-tuning of the TMin methodology and input 

parameters could lead to an even better performance. This dataset can be further used in conjunction with climate and additional 

environmental data to help better model lightning-ignited wildfire ignition characteristics and provide additional insights into 630 

lightning-ignited wildfires in boreal forests.  
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Appendix A 

Table A1: Descriptive list of which land cover types were either forest or forest-like and thus labeled “Forest”. Those labeled 640 
“Forest” were included within the dataset while those that were not, were removed. 

Forest Non-Forest 

• Evergreen Needleleaf Forests 

• Evergreen Broadleaf Forests 

• Deciduous Needleleaf Forests 

• Deciduous Broadleaf Forests 

• Mixed Forests 

• Closed Shrublands 

• Open Shrublands 

• Woody Savannas 

• Savannas 

• Grasslands 

• Permanent Wetlands 

• Permanent Snow and Ice 

• Urban and Built-up Lands 

• Cropland/Natural Vegetation Mosaics 

• Croplands 

• Water Bodies 

• Barren 

 

 Table A2: Description of the total burned area per fire size class. 

Fire Size Class Size in HA 

Small 200 ≤ 1,000 ha 

Moderate 1,000 ≤ 10,000 ha 

Large 10,000 ≤ 50,000 ha 

Extremely Large 50,000 ≤ 100,000 ha 

Mega Fires > 100,000 ha 

 

 645 
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Table A3: List of every dataset used to create the BoLtFire dataset, their spatial and temporal extent, citation, and link to their 

location. 

Dataset Spatial extent Temporal extent Citation Notes Link 

Alaska Fire 

Service Fire 

Perimeters 

Alaska, USA 1942-2023 (U.S. Department 

of the Interior, 

Bureau of Land 

Management, 

Alaska Fire 

Service, 2024b) 

Almost all of the 

fire perimeters 

had a matching 

fire point 

https://fire.ak.blm

.gov/ 

Alaska Fire 

Service All Fire 

Points 

Alaska, USA 1939-2022 (U.S. Department 

of the Interior, 

Bureau of Land 

Management, 

Alaska Fire 

Service, 2024a) 

Meaning of point 

locations unclear, 

no fire perimeters 

https://fire.ak.blm

.gov/ 

Canadian 

National Fire 

Database - 

National Fire 

Database fire 

polygon data 

Canada 1917-2020 (Canadian Forest 

Service, 2024) 

Fire perimeters do 

not always have a 

matching fire 

point 

https://cwfis.cfs.n

rcan.gc.ca/ha/nfd

b 

Canadian 

National Fire 

Database - 

National Fire 

Database fire 

point data 

Canada 1930-2022 (Canadian Forest 

Service, 2024) 

Meaning of point 

locations differs 

across provinces, 

no fire perimeters 

https://cwfis.cfs.n

rcan.gc.ca/ha/nfd

b 

Ecoregions 2017  Global 2017 (Olson et al., 

2001) 

global 

classification of 

https://ecoregions

.appspot.com/ 
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terrestrial 

ecoregions 

GlobFire Fire 

Perimeters 

Global, 500m 2002-2023 (Artés et al., 2019) Global, vectorized 

MODIS burned 

area product 

https://gwis.jrc.ec

.europa.eu/apps/c

ountry.profile/do

wnloads 

World Bank 

Official 

Boundaries: 

Admin 0, 10 

meter boundary 

Dataset 

Global, 10m 2020 (World Bank, 

2020) 

Boundaries are 10 

m, some 

imperfections 

along the borders 

found 

https://datacatalog

.worldbank.org/se

arch/dataset/0038

272/World-Bank-

Official-

Boundaries 

Moderate 

Resolution 

Imaging 

Spectroradiomete

r (MODIS) 

Collection 6 

MCD64A1 

burned area 

product 

Global, 500m 2000-11-01 - 

Present 

(Giglio et al., 

2018) 

Global fire 

dataset, raster 

https://lpdaac.usg

s.gov/products/m

cd64a1v061/ 

MODIS 

MCD12Q1v061 

Land Cover Type 

1 

Global, 500m 2001-01-01 - 

2022-12-31 

(Friedl and Sulla-

Menashe, 2022) 

Global land cover 

dataset, 

downloadable in 

small regions 

https://lpdaac.usg

s.gov/products/m

cd12q1v061/ 

Global LANd 

Cover mapping 

and Estimation 

(GLANCE) Grids 

Global - (Arevalo et al., 

2022) 

Global land cover 

that splits North 

America, Europe 

and Asia 

https://measures-

glance.github.io/g

lance-grids/ 
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- Version 01 

CRS  

Earth Networks 

Total Lightning 

Network 

(ENTLN) 

Global 2012-Current (Zhu et al., 2022) Global dataset of 

lightning 

locations 

https://www.earth

networks.com/ 

Worldwide 

Lightning 

Location Network 

(WWLLN) 

Global 15 August 2004 to 

the present 

(Rodger et al., 

2004) 

Global dataset of 

lightning 

locations 

https://wwlln.net/ 

Appendix B 

Table B1: Cumulative percentage values of the holdover time distribution for all three methodologies within the BoLtFire Dataset, 

TMin, MaxA and DMin. Holdover time is calculated as the difference between the start date of each lightning-ignited wildfire and 650 
the time of the occurrence of the candidate lightning. 

  Holdover time for BoLtFire dataset 

  TMin MaxA DMin 

Day Per 

Day 

Cumulative Cumulative 

Percent 

Per 

Day 

Cumulative Cumulative 

Percent 

Per 

Day 

Cumulative Cumulative 

Percent 

+1 
      

117 117 6.75 % 

0 503 503 27.77 % 449 449 27.78 % 546 663 38.26 % 

1 317 820 45.28 % 303 752 46.53 % 301 964 55.63 % 

2 181 1,001 55.27 % 177 929 57.49 % 159 1,123 64.80 % 

3 131 1,132 62.51 % 126 1,055 65.28 % 125 1,248 72.01 % 

4 103 1,235 68.19 % 99 1,154 71.41 % 98 1,346 77.67 % 
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5 103 1,338 73.88 % 95 1,249 77.29 % 73 1,419 81.88 % 

6 77 1,415 78.13 % 64 1,313 81.25 % 58 1,477 85.23 % 

7 69 1,484 81.94 % 58 1,371 84.84 % 49 1,526 88.06 % 

8 57 1,541 85.09 % 57 1,428 88.37 % 50 1,576 90.94 % 

9 66 1,607 88.74 % 48 1,476 91.34 % 35 1,611 92.96 % 

10 48 1,655 91.39 % 37 1,513 93.63 % 32 1,643 94.81 % 

11 41 1,696 93.65 % 30 1,543 95.48 % 22 1,665 96.08 % 

12 39 1,735 95.80 % 26 1,569 97.09 % 22 1,687 97.35 % 

13 45 1,780 98.29 % 35 1,604 99.26 % 34 1,721 99.31 % 

14 31 1,811 100.00 % 12 1,616 100.00 % 12 1,733 100.00 % 

 

Table B2: Median and mean holdover time, rounded to the second decimal for the TMin, MaxA and DMin lighting matching 

methodologies. Holdover time is calculated as the difference between the start date of each lightning-ignited wildfire and the time of 

the occurrence of the candidate lightning. Median and mean distance from the agency reference dataset ignition point locations to 655 
each of the TMin, MaxA, and DMin’s candidate lightning.  

Method Holdover time for North America BoLtFire 

dataset 

Distance from ignition point for the North America 

BoLtFire dataset 

Median Mean Median 

(meters) 

Mean 

(meters) 

TMin 2.20 3.97 4,592.00 6,110.32 

MaxA 2.12 3.64 3,155.20 3,771.49 

DMin 1.84 3.05 3,968.77 4,391.07 

 

Table B3: Comparison of ignition point location (inside or outside the perimeter) of the agency reference dataset with that predicted 

by the TMin, MaxA, and DMin methodologies.  
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 660 

Location of LIW Agency Reference Dataset North America BoLtFire dataset 

TMin MaxA DMin 

0 (Outside fire Perimeter) 246 
      

Incorrectly Matched 
 

126 51.22 % 31 12.60 % 24 9.76 % 

Correctly Matched 
 

63 25.61 % 139 56.50 % 154 62.60 % 

 Not Matched 
 

57 23.17 % 76 30.89 % 68 27.64 % 

1 (Inside fire Perimeter) 2,178 
      

Incorrectly Matched 
 

903 41.46 % 952 43.71 % 1115 51.19 % 

Correctly Matched 
 

719 33.01 % 494 22.68 % 440 20.20 % 

 Not Matched 
 

556 25.53 % 732 33.61 % 623 28.60 % 

Overall Accuracy 2,424 782 32.26 % 633 26.11 % 594 24.50 % 

 

 

Appendix C 

Table C1: The table shows the Confusion Matrix for the Agency Reference Dataset and the North America BoLtFire dataset. 

    Predicted   

    Positive Negative   

Actual 

Positive 1124 1300 0.4637 

Negative 483 NA NA 

    0.6994 NA 0.6304 
 665 
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Table C2: The table compares the total number of fires and total burned area in hectares from the agency reference dataset to the 670 
matched fires from 2012 to 2022, focusing on the percentage of fires and burned areas successfully matched to the BoLtFire dataset 

each year. 

  Agency Reference Dataset Matched LIW in the NA BoLtFire Dataset 

Year Total 

LIW 

Total Burned Area 

from ARD (Ha) 

Total 

LIW 

% of Total 

ARD LIW 

Total Burned Area 

from ARD (Ha) 

% of Total Burned 

Area of ARD LIW 

(Ha) 

2012 277 1,194,093.07 129 46.57 % 932,268.24 78.07 % 

2013 358 4,509,476.07 181 50.56 % 3,767,148.46 83.54 % 

2014 260 3,681,170.78 133 51.15 % 2,850,437.03 77.43 % 

2015 514 4,533,388.97 242 47.08 % 2,750,248.49 60.67 % 

2016 185 790,941.98 74 40.00 % 570,483.72 72.13 % 

2017 337 1,911,371.68 186 55.19 % 1,344,255.95 70.33 % 

2018 194 770,780.33 96 49.48 % 545,100.90 70.72 % 

2019 158 1,285,196.45 30 18.99 % 387,674.26 30.16 % 

2020 62 76,127.56 12 19.35 % 25,499.31 33.50 % 

2021 7 30,259.57 2 28.57 % 7,102.05 23.47 % 

2022 72 874,546.02 39 54.17 % 608,933.25 69.63 % 

Total 2,424 19,657,352.47 1,124 46.37 % 13,789,151.67 70.15 % 
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Appendix D 

Table D1: Distribution of holdover time across the BoLtFire dataset. Holdover time refers to the time difference between when the 675 
fire was ignited by the lightning-ignited candidate and when it was detected. The detection time used was the startdate.  

 

North America BoLtFire dataset 

Holdover Days Count per Day Cumulative Count Cumulative % Total 

0 711 711 11.42 % 

1 656 1,367 21.95 % 

2 596 1,963 31.52 % 

3 538 2,501 40.16 % 

4 476 2,977 47.80 % 

5 433 3,410 54.75 % 

6 422 3,832 61.53 % 

7 365 4,197 67.39 % 

8 374 4,571 73.39 % 

9 301 4,872 78.23 % 

10 304 5,176 83.11 % 

11 304 5,480 87.99 % 

12 257 5,737 92.12 % 

13 258 5,995 96.26 % 

14 233 6,228 100.00 % 

 

https://doi.org/10.5194/essd-2024-465
Preprint. Discussion started: 29 October 2024
c© Author(s) 2024. CC BY 4.0 License.



36 

 

Table D2: Distribution of candidate lightning ignition points relative to their corresponding fire perimeters, categorized by distance 

in kilometres. It shows the number of ignition points at each distance, along with their cumulative counts and cumulative 680 
percentages. 

North America BoLtFire dataset 

Distance Count per Day Cumulative Count Cumulative % Total 

1 km 957 957 20.22 % 

2 km 668 1,625 34.33 % 

3 km 523 2,148 45.38 % 

4 km 437 2,585 54.62 % 

5 km 458 3,043 64.29 % 

6 km 422 3,465 73.21 % 

7 km 365 3,830 80.92 % 

8 km 308 4,138 87.43 % 

9 km 288 4,426 93.51 % 

10 km 307 4,733 100.00 % 

 

Table D3: Total count of lightning-ignited wildfires and total count of ENTLN strokes per region. Lightning-ignition efficiency was 

calculated as the percent of total strokes that caused an ignition. 

  
BoLtFire dataset 

Type Total ENTLN Strokes Total LIW LIE 

North America 12,526,781 2,042 0.0163 

Eurasia 14,998,966 4,186 0.0279 

Total 27,525,747 6,228 0.0226 
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 685 

Table D4: Total count of lightning-ignited wildfires and total burned area per continent across the study period 

 
Total BoLtFire Dataset Eurasia BoLtFire Dataset North America BoLtFire Dataset 

Fire 

Year 

LIW 

Count 

Total Burned Area 

(Ha) 

LIW 

Count 

Total Burned Area 

(Ha) 

LIW 

Count 

Total Burned Area 

(Ha) 

2012 219 948,303.52 0 0 219 948,303.52 

2013 923 4,305,664.56 570 1,686,514.47 353 2,619,150.10 

2014 822 4,848,885.08 524 2,569,868.70 298 2,279,016.38 

2015 883 4,047,524.75 425 1,489,829.85 458 2,557,694.91 

2016 544 2,147,570.12 406 1,655,154.47 138 492,415.64 

2017 871 3,447,717.05 600 1,980,088.18 271 1,467,628.86 

2018 513 2,779,725.83 384 2,180,896.38 129 598,829.45 

2019 104 832,307.40 27 54,756.72 77 777,550.68 

2020 585 2,312,353.08 562 2,218,195.59 23 94,157.49 

2021 404 6,074,648.61 401 6,068,468.83 3 6,179.78 

2022 360 1,343,660.87 287 1,169,608.24 73 17,4052.63 

Total 6,228 33,088,360.88 4,186 21,073,381.44 2042 12,014,979.44 
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Table D5: Overall view of both the Eurasia and North America BoLtFire datasets by total lightning-ignited wildfire count, toral 695 
burned area, and average burned area, within the BoLtFire dataset by fire size.  

 
Total BoLtFire Dataset Eurasia BoLtFire Dataset North America BoLtFire Dataset 

Fire Size LIW 

Count 

Total 

Burned Area 

(Ha) 

Average 

Burned 

Area per 

Fire (Ha) 

LIW 

Count 

Total 

Burned Area 

(Ha) 

Average 

Burned 

Area per 

Fire (Ha) 

LIW 

Count 

Total 

Burned Area 

(Ha) 

Average 

Burned 

Area per 

Fire (Ha) 

Small 3,299 1,555,710.84 471.57 2,296 1,074,003.74 467.77 1,003 481,707.10 480.27 

Moderate 2,344 7,449,484.07 3,178.11 1,547 4,817,253.09 3,113.93 797 2,632,230.98 3,302.67 

Large 484 10,153,096.47 20,977.47 280 5,950,863.57 21,253.08 204 4,202,232.89 20,599.18 

Xlarge 52 3,562,089.32 68,501.72 31 2,176,788.45 70,218.98 21 1,385,300.87 65,966.71 

Mega 49 10,367,980.18 211,591.43 32 7,054,472.58 220,452.27 17 3,313,507.60 19,4912.21 

Total 6,228 33,088,360.88 5,312.84 4,186 21,073,381.44 5,034.25 2,042 12,014,979.44 5,883.93 

 

Table D6: Total count and average fire size of fires in evergreen needleleaf forests 

Fire Size LIW Count Total Burned Area (Ha) Average Burned Area Per Year 

Small 3,299 1,555,710.84 141,428.26 

Moderate 2,344 7,449,484.07 677,225.82 

Large 484 10,153,096.47 923,008.77 

Mega 49 10,367,980.18 942,543.65 

Xlarge 52 3,562,089.32 323,826.30 

Grand Total 6,228 33,088,360.88 3,008,032.81 
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Table D7: Total count and average fire size of fires in evergreen needleleaf forests 

BoLtFire Dataset 

Land Cover Type LIW Count Total Burned Area (Ha) Average Burned Area per Fire (Ha) 

Eurasia 4,186 21,073,381.44 5,034.25 

Deciduous Broadleaf Forests 4 3,578.54 894.63 

Deciduous Needleleaf Forests 71 90,233.37 1,270.89 

Evergreen Needleleaf Forests 259 551,094.26 2,127.78 

Grasslands 138 145,285.19 1,052.79 

Mixed Forests 245 463,583.91 1,892.18 

Open Shrublands 330 1,091,449.61 3,307.42 

Permanent Wetlands 8 2,763.93 345.49 

Savannas 1,306 9,583,546.13 7,338.09 

Woody Savannas 1,825 9,141,846.49 5,009.23 

North America 2,042 12,014,979.44 5,883.93 

Deciduous Broadleaf Forests 2 884.62 442.31 

Deciduous Needleleaf Forests 7 5288.50 755.50 

Evergreen Needleleaf Forests 159 920,338.84 5,788.29 

Grasslands 13 19,643.94 1,511.07 

Mixed Forests 8 14,261.98 1,782.75 

Open Shrublands 55 93,007.79 1,691.05 
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Permanent Wetlands 17 11,285.43 663.85 

Savannas 745 4,280,388.01 5,745.49 

Woody Savannas 1,036 6,669,880.33 6,438.11 

Total 6,228 33,088,360.88 5,312.84 
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