
1 

 

Distribution and Characteristics of Lightning-Ignited Wildfires in 

Boreal Forests - the BoLtFire database 

Brittany Engle1, Ivan Bratoev2, Morgan A. Crowley3, Yanan Zhu4, Cornelius Senf1 

1 Technical University of Munich, School of Life Sciences, Earth Observation for Ecosystem Management, Freising, Germany 
2 Technical University of Munich, School of Engineering and Design, Architectural Informatics, Munich, Germany 5 
3 Canadian Forest Service (Great Lakes Forestry Centre), Natural Resources Canada, Sault Sainte Marie, Ontario, Canada 
4 Advanced Environmental Monitoring (AEM), Germantown, Maryland, USA 

 

Correspondence to: Brittany Engle (Brittany.Engle@tum.de) 

Abstract. The frequency and severity of fire weather has been projected to increase under climate change, particularly in high-10 

latitude boreal forests. Lightning, a key ignition source globally, is also expected to become more frequent with climate change 

and could significantly increase burn area. Current research on lightning-ignited wildfires (LIW) has a long history in boreal 

ecosystems but has typically focused on North America due to better data availability, while the lack of publicly available data 

for Eurasia has hindered our comprehensive understanding of important characteristics of LIW, such as holdover time, 

lightning-ignition efficiency, frequency, and spatial distribution of lightning-ignited wildfires in boreal forests. This study 15 

introduces the Temporal Minimum Distance (TMin) method, a novel approach to matching lightning strikes with wildfires 

without requiring ignition location, that outperformed current methodologies. As a result, we developed a comprehensive 

dataset of lightning-ignited wildfires across the entire boreal forest from 2012 to 2022, encompassing 6,902 fires — 4,201 in 

Eurasia and 2,701 in North America — each over 200 hectares in size. This dataset provides new opportunities to model 

ignition and spread dynamics of boreal wildfires and offers deeper insights into lightning-driven fire activity globally. 20 

1. Introduction 

Forest fires are the primary disturbance agent in global boreal forests, burning an estimated 10-15 million ha each year on 

average across Siberia, Canada, and Alaska (Flannigan et al., 2009). Boreal fires play a crucial role in shaping boreal forest 

composition and structure (Podur et al., 2003), and they also have a significant impact on the global carbon cycle (Stocks et 

al., 2001). The global boreal forests house roughly 32 % of terrestrial carbon stocks (Pan et al., 2011) and are considered to be 25 

globally important carbon sinks. However, due to the observed and predicted increases in temperatures in high latitudes 

(Melillo et al., 2014; Natali et al., 2019; Post et al., 2019; Soja et al., 2007), thawing of the permafrost, increase in vegetation 

stress due to drought, and an increase in fire frequency and burned area (Gillett et al., 2004; Flannigan et al., 2009), there is 

concern that boreal forests could be pushed to be a net positive carbon source (Watts et al., 2023 and references therein). Since 

at least 2000, carbon dioxide emissions from boreal forest fires have been on the rise, reaching a record high in 2021, where 30 
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they contributed to 23 % of global wildfire carbon dioxide emissions, a significant increase from the historical average of 10 

% (Zheng et al., 2023). Additionally, Black carbon from boreal forest fires contributes to increased pollution levels in the 

Arctic (Bond et al., 2013; Lavoué et al., 2000; Stohl, 2006) and could accelerate losses of snow and ice (Hansen and Nazarenko, 

2004). Kim et al.'s (2005) findings indicate, for example, that black carbon aerosols (soot) are rapidly transported from central 

Alaska to the Arctic Ocean, as well as to glaciers in southern Alaska, where up to 20 % of these aerosols may be deposited, 35 

changing the albedo and possibly increase the melting of the arctic. All in all, increasing forest fires will challenge the boreal 

carbon sink and it is thus essential to understand global distribution and trends in boreal forest fires.  

 

One of the major processes underlying the observed increase in forest fires in boreal regions is a notable rise in the frequency 

and intensity of fire weather, a trend that is projected to worsen with global warming (Hessilt et al., 2022; Jones et al., 2022). 40 

This trend in fire weather frequency has already led to approximately 50 % increases in burned area between 2001–2019 in 

certain extratropical forest ecoregions, such as the Pacific US and high-latitude forests, with an expected increase in forest fire 

activity and severity in some higher-latitude regions (De Groot et al., 2013; Descals et al., 2022; Flannigan et al., 2000; Stocks 

et al., 1998; Zheng et al., 2023). Yet, for a forest to burn there needs to be a source of ignition, with lightning being a key 

source of wildfire ignition in boreal forests (Gao et al., 2024; Moris et al., 2020; Pérez‐Invernón et al., 2023; Sofronov et al., 45 

1998; Veraverbeke et al., 2017). Lightning-ignited wildfires are a significant cause of burn area in boreal forests (Hanes et al., 

2019; Kasischke et al., 2002; Nash and Johnson, 1996; Veraverbeke et al., 2017), and they are more difficult to detect, suppress 

and extinguish than human-caused fires (Flannigan and Wotton, 1991; Kourtz and Todd, 1991; Podur et al., 2003; Wotton and 

Martell, 2005). Under the influence of climate change, the scale and occurrence of lightning-ignited wildfires in boreal forests 

are projected to increase significantly. Janssen et al. (2023), for instance, estimated that 77 % of the burned areas in 50 

extratropical intact forests are attributable to lightning, with lightning occurrences projected to increase by 11 % to 31 % for 

each degree of warming. Additionally, Krause et al. (2014) suggest a potential 21.3 % rise in cloud-to-ground lightning activity 

by the end of the century under the RCP8.5 scenario, potentially doubling the burned area in high-latitude regions.  That said, 

the lightning-ignition efficiency, i.e. the number of fires ignited per lightning, can differ significantly by region and land cover 

(Podur et al., 2003). Lightning storms can also result in concentrated clusters of large numbers of fires (Flannigan and Wotton, 55 

1991; Kourtz and Todd, 1991; Podur et al., 2003; Woolford et al., 2021) and lightning-ignited wildfires can smoulder for long 

periods of time before igniting fully, in what is referred to as the holdover time (time between fire ignition and detection; 

Flannigan and Wotton, 1991; Wotton and Martell, 2005). Holdover time presents a true challenge for real-time lightning-

ignited wildfire detection in boreal forests. They are still not fully understood and likely depend heavily on initial detection 

and ignition characteristics. Their duration can vary heavily, with some literature suggesting up to around a week (Anderson, 60 

2002; Flannigan and Wotton, 1991; Moris et al., 2023), while others suggest they can last up to a few weeks in boreal forests 

(Moris et al., 2023; Nash and Johnson, 1996; Scholten et al., 2021; Wotton and Martell, 2005). From an Eurasian perspective, 

when reviewing lightning ignition in the boreal forests of northeast China, Gao et al. (2024) found that close to 80% of LIW 

occurred within 1km of the igniting lightning and within 24 hours; while Moris et al’s (2023) analysis of Xu et al.’s (2022) 
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LIW data in eastern Siberia shows a maximum holdover time of 8 days, with most occurring in 24-48 hours. Conversely, from 65 

a North American perspective, Scholten et al. (2021) reported that fire managers in Alaska and Canada have started reporting 

extreme holdover times, where fires “hibernate” over winter (up to seven or eight months) only to re-emerge the following fire 

season as “overwintering fires.” The spatial distribution, characteristics and potentially complex interactions of lightning-

ignited wildfires in boreal forests are thus not fully understood, partly due to a lack of global data on lightning-ignited fires. 

 70 

Recent advancements in remote sensing and lightning location systems have significantly enhanced our understanding of 

lightning-ignited wildfires. More specifically, the precise geolocation of lightning paired with spatially explicit information on 

wildfires allows us to better distinguish lightning from human-caused ignitions by matching wildfire and lightning location 

data (Larjavaara et al., 2005; Nash and Johnson, 1996; Wotton and Martell, 2005). Current methods search for the most likely 

individual lightning event based on its temporal and spatial distance to the fire’s ignition point. These methods use a buffer 75 

area around the ignition point and a backward temporal window to account for location and holdover time and typically stem 

from Larjavaara et al.'s (2005) proximity index: a spatio-temporal index to match candidate lightning to fires using holdover 

time (t) and spatial distance (S). Unfortunately, it is currently not possible to use these methodologies to definitively identify 

- with absolute certainty - that a fire was ignited by lightning. Testing the effectiveness of some of these variations, Moris et 

al. (2020) found that the Maximum Index A (MaxA; Pineda et al., 2014) and the Daily Minimum Distance (DMin; Schultz et 80 

al., 2019) produced a high match between candidate lightning (lightning that was most likely to start the ignition) and the 

ignition, as well as the lowest values of distance and holdover time (ex: MaxA within a 10 km radius and a 14-day holdover 

time to be highly effective, with 80 % of fires detected within 3 days). However, these existing methodologies rely on the 

availability of ignition point locations, which are often absent in datasets produced without input from local fire and forest 

authorities. Most research on lightning-ignited wildfires has thus been conducted in North America, where fire point and 85 

polygon datasets are available from the Canadian National Fire Database (Canadian Forest Service, 2024) and the Bureau of 

Land Management’s Alaska Fire Service (U.S. Department of the Interior, Bureau of Land Management, Alaska Fire Service, 

2024a and b). Both datasets include key information such as fire start and end date and ignition cause and location (Table 3A). 

Unfortunately, at this time, there are no other publicly available agency datasets within the boreal biome that provide this 

crucial information. Both existing products are built upon local context and knowledge provided by forest authorities and 90 

personnel, which is not reproducible on a global scale. Although global remote sensing-based burned pixel datasets do exist - 

such as Collection 6 MCD64A1 burned area (Giglio et al., 2018) and FIRECCI5 (Lizundia-Loiola et al., 2020) - as well as 

global remote-sensing based fire patch datasets - such as FRY (Laurent et al., 2018) - they lack ignition location and cause. 

Consequently, a comprehensive pan-boreal forest lighting-ignited wildfire dataset does not currently exist.  

 95 

Here, we introduce the pan-boreal forest lightning-ignited wildfire dataset (BoLtFire), an Earth-observation-based database on 

lightning-ignited wildfire across global boreal forests. Our database overcomes challenges with existing methods by 
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introducing a new methodology specifically designed for detecting lightning-ignited wildfires in boreal forests and without 

exact ignition location. More specifically, the objectives of our study were to: 

1. Develop and implement a new approach to identify lightning-ignited wildfires that do not rely on pre-existing ignition 100 

locations and benchmark this new approach with a regional test case using the Canadian National Fire Database and 

Alaska Fire Service datasets 

2. Apply the new approach globally across the boreal forest biome to create a pan-boreal dataset of lightning-ignited 

wildfires across the global boreal forest, leveraging lightning location data from the Earth Networks Total Lightning 

Network (ENTLN) and fire location data from the GlobFire Fire Perimeters dataset (Artés et al., 2019) 105 

3. Enhance understanding of holdover time, distance to fire perimeter, lightning-ignition efficiency, frequency of fires, 

total burned area, and spatial distribution of lightning-ignited wildfires in boreal forests 

2. Data and methods 

2.1 Study area 

The boreal zone, a vast circumpolar vegetation region situated between latitudes 45˚N and 70˚N, represents one of the world's 110 

largest biogeoclimatic zones. It plays a critical role in providing renewable resources, supporting diverse habitats, regulating 

global climate, sequestering carbon, and is recognized as one of the fastest-warming biomes (Brandt, 2009; Brandt et al., 2013; 

Zheng et al., 2023). Spanning 1.89 billion hectares, the boreal zone encompasses 1,133 million hectares in Russia, 552 million 

hectares in Canada, and 73.7 million hectares in the United States, with additional areas across Finland, Sweden, China, 

Norway, Mongolia, Iceland, Kazakhstan, Greenland, and Saint Pierre and Miquelon (Brandt, 2009; Brandt et al., 2013). 115 

2.2 Boreal forest fire regimes 

A lightning-ignited fire progresses through three primary phases: (1) ignition, (2) survival (or smouldering), and (3) arrival 

(Anderson, 2002; Kourtz and Todd, 1991; Martell and Sun, 2008; Pérez‐Invernón et al., 2023). The survival and arrival phases 

of ignition depend heavily on the fuel availability and composition, weather conditions and topography (Anderson, 2002; 

Flannigan and Wotton, 1991; Kourtz and Todd, 1991; Martell and Sun, 2008; Pérez‐Invernón et al., 2023). During the ignition 120 

phase, lightning triggers an ignition which can then smoulder within the duff layers. Certain duff layers, such as the needle-

covered ground beneath conifers, are particularly susceptible to ignition and prolonged smouldering (Flannigan and Wotton, 

1991). The ignition will either “self-extinguish” or if the conditions are conducive to fire, the fire will enter the survival and 

arrival phase (Anderson, 2002; Flannigan and Wotton, 1991; Martell and Sun, 2008; Pérez‐Invernón et al., 2023). 

 125 

Wildfires are a natural process and important drivers of forest dynamics (Latham and Williams, 2001; Podur et al., 2003; Seidl 

et al., 2020; Vajda et al., 2013). Over long-time scales, fires will create a mosaic of burned, recovering and unburned patches, 

with patch characteristics (i.e. size and shape), fire frequency and recovery dynamics largely determining the resulting 
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landscape mosaic (Turner, 2010). Fire-adapted forests can typically be classified into two distinct categories; (1) forests with 

species that can regenerate independent of their species members and (2) forests that require species members to regenerate 130 

(Rogers et al., 2015). The first category includes species such as conifers which store their seeds in insulated serotinous cones 

that only open to heat or hardwoods which regenerate from the root layer after a fire (Stocks et al., 2001). The second type are 

conifers that release their seeds yearly as the cones mature (Stocks et al., 2001). North American boreal forests, for example, 

contain Pinus banksiana (jack pine) and Picea mariana (black spruce), which both require fire to regenerate (Rogers et al., 

2015; Stocks et al., 2001; Van Wagner, 1983). In contrast, Eurasian boreal forests are dominated by non-serotinous conifers 135 

and other species that release seeds annually, resulting in heterogeneous, uneven-aged forests (Stocks et al., 2001). Due to the 

predominant tree species, Rogers et al. (2015) suggest that North American boreal forests are more prone to high-intensity 

crown fires, which consume large amounts of vegetation and detritus, whereas Eurasian forests typically experience lower-

intensity surface fires that burn less vegetation and fewer trees (De Groot et al., 2013; Rogers et al., 2015).  

2.3 Summary of datasets 140 

2.3.1 Lightning data 

The Earth Networks Total Lightning Network is a global network of 1800 sensors across more than 100 countries (Zhu et al., 

2022). Their network is further enhanced by an integration with the World Wide Lightning Location Network (Rodger et al., 

2004). The ENTLN detects wideband electric field signals (1 Hz to 12 MHz) that are emitted by cloud-to-ground and intracloud 

lightning. Only cloud-to-ground flash data from 2012-2022 are used in this study. Each cloud-to-ground flash has at least one 145 

return stroke (Liu and Heckman, 2011).  Intracloud pulses occur within the cloud and do not strike the ground as a return 

stroke, making them irrelevant for wildfire ignition. Using the time-of-arrival technique, they report the time in UTC, location 

(latitude and longitude), type of discharge, peak current, and polarity (positive or negative), of each lightning event. Individual 

strokes are clustered into a flash if they are located within 10 kilometres and within 0.7s of each other (Liu and Heckman, 

2011). For each flash, multiplicity, start time, end time, and duration are reported. 150 

 

Detection efficiency refers to the percentage of flashes or strokes detected by the network and can vary depending on the 

location and the distance between the sensors and the lightning event. Relative detection efficiency assumes a uniform 

detection efficiency across the network. The ENTLN's cloud-to-ground stroke detection efficiency across the CONUS is 

reported to be greater than 90 % (Lapierre et al., 2020), with relative detection efficiency values ranging from 85 % to 100 % 155 

across the Americas and similar levels in Europe and Australia (Bui et al., 2015). Significant improvements have been observed 

over the years due to advancements in processor technology (Mallick et al., 2013; Mallick et al., 2015; Zhu et al., 2017; Zhu 

et al., 2022). The most recent processor has achieved a stroke classification accuracy of 94 % and has reduced the median 

location error from 215 meters to 92 meters when compared to ground truth data in Florida (Zhu et al., 2022). Globally, this 

upgrade has resulted in a 149 % increase in the overall global detection of pulses, with North America showing a 145 % gain, 160 
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Asia a 142 % gain, and Europe a 152 % gain. However, in more remote areas, detection efficiency tends to be lower, and 

location errors can extend up to several kilometres. Due to both geopolitical limitations and the mid-range nature of the 

ENTLN, flash level detection in Russia is low. However, storm level detection remains around 50%. As there are no sensors 

located in Russia, all lightning is detected by sensors in neighbouring countries.  

2.3.2 Wildfire data 165 

The MODIS Collection 6 MCD64A1 burned area product (Giglio et al., 2018) utilizes daily 500-meter resolution MODIS 

surface reflectance data in conjunction with 1-kilometer resolution MODIS active fire observations (Giglio et al., 2020). The 

GlobFire algorithm was applied to the MCD64A1 product to create the GlobFire Fire Perimeters [2002-2023] dataset (Artés 

et al., 2019). Each yearly fire shapefile has a unique fire id, an initial date, a final date, the geometry and the final area in 

hectares for each fire within. Within their algorithm, a fire event is a set of burned areas that are intersecting or touching. Each 170 

fire event comprises interconnected burned areas that are only treated as separate fires if there is a temporal distance of more 

than five days between each event. If there is no new burned area after 16 days, the fire is no longer considered active. 

2.3.3 Agency reference fire occurrence records 

We used the Canadian National Fire Database Fire Point and Polygon datasets along with the Alaska Fire History Location 

Points and Perimeter Polygons datasets to assess our BoLtFire dataset (Table A3). The Canadian National Fire Database fire 175 

points and polygons are compiled from various jurisdictions, including provinces, territories, and Parks Canada; and represent 

a collaborative effort by all Canadian fire agencies. This database is the most comprehensive resource for fire points and 

perimeters in Canada. The point data includes critical fire information such as fire ID, fire report date, out date, cause, and 

ignition point. Hanes et al. (2019) states that these points are just the presumed points of ignition. The polygon data includes 

similar information, with fire ID, fire report date, out date, cause, and map source, available until December 2020. All report 180 

dates did not contain an exact discovery time and were reported in local time. Fire perimeters are typically derived through the 

interpretation of Landsat (30m) or other satellite imagery and are sometimes derived from aerial or field surveys by fire 

management agencies.  

 

The Bureau of Land Management’s Alaska Fire Service maintains a detailed record of all detected natural or human-caused 185 

wildfire events in Alaska from 1940 to 2023 (Table 3A). The Alaska Fire History Location Points dataset provides fire-specific 

information, including fire ID, discovery date and exact discovery time in UTC, out date, estimated fire size, and cause. The 

perimeters in the Alaska Fire History Perimeter dataset were mapped using ground and airborne surveys, as well as aerial 

photography and Sentinel-2 satellite imagery (10m). This dataset includes details such as fire ID, estimated burned area size, 

map source, geographical coordinates, and fire out date, but does not include the fire start date or cause. 190 
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2.4 Processing of the lightning and wildfire datasets 

Both the lightning and wildfire location datasets utilized in this study are global products and were initially filtered to only 

include those points which fell within the Boreal Forests/Taiga biome as defined by Ecoregions 2017 (Olson et al., 2001). Due 

to detection efficiency and location errors of lightning, the ENTLN was only filtered to the Biome location, while the GlobFire 

dataset went through additional filtering. Given MODIS burned area product’s inability to adequately detect smaller fires, 195 

those less than 200 ha were excluded from the analysis (Giglio et al., 2009). This should not significantly influence the overall 

outcome of this dataset, as typically within boreal forests, large fires account for 85 % of the burned area (Macias Fauria and 

Johnson, 2007). Fires were then filtered based on the majority land cover class using the MODIS MCD12Q1v061 Land Cover 

Type 1: Annual IGBP classification datasets from 2012-2022, with a 500 m spatial resolution (Friedl and Sulla-Menashe, 

2022). Non-forest land covers (land covers that clearly have no dominance of trees; Table A1) were excluded from the analysis. 200 

Fire class size was then added based on Talucci et al. (2022) (Table A2). Each fire was then assigned a country using the same 

methodology along with the World Bank Official Boundaries dataset (World Bank, 2020). We removed three fires as they did 

not fall within a country boundary of the World Bank Official Boundaries dataset. A complete list of input datasets used can 

be found in Table 1. After the initial filtering, all fire start dates were set to 12:00 noon local time and then converted to UTC 

for the lightning matching process. Noon was selected as the start time for every fire, as this information is not available within 205 

the GlobFire dataset and 12:00 noon local time is when wildfire conditions are most favourable (Van Wagner, 1987; Vitolo et 

al., 2020). 

 

Both the lightning and wildfire location datasets were then converted from their original coordinate system to their respective 

Global LANd Cover mapping and Estimation (GLANCE) Grids - Version 01 CRS (North American, Europe, and Asia) for 210 

the matching process (Arevalo et al., 2022). Though the ENTLN dataset was only filtered by its biome, it did receive land 

cover and country labels for additional analysis. The filtering process identified a total of 27,525,747 lightning flashes within 

the boreal forest biome, with 12,526,781 occurring in North America and 14,998,966 in Eurasia. Data for 4 November 2014, 

9 May 2016, and 19 May 2019 were unavailable. Additionally, the process identified 21,019 total GlobFire events, comprising 

3,659 in North America and 17,360 in Eurasia. 215 

 

Table 1: Description of variables provided for each lightning-ignited wildfire within the BoLtFire dataset.  

Column Name Description 

FireID Unique fire identification number 

StartDate Start date of the fire 

EndDate End date of the fire 
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FireYear Year fire was discovered 

AreaHa Total burned area of the fire in hectares 

(“AreaHa” denotes Area in Hectares) 

ClassSize Fire class size; Small ≤ 1,000 ha, Moderate 1,000 ≤ 10,000 ha, Large 10,000 ≤ 50,000 ha, Extremely 

Large 50,000 ≤ 100,000 ha, Mega Fires > 100,000 ha 

(“ClassSize” denotes Fire Class Size) 

BiomeName Biome name based on Olson et al. (2001) 

EcoBiome Ecoregion Biome number based on Olson et al. (2001) 

EcoName Ecoregion name based on Olson et al. (2001) 

EcoID Ecoregion ID based on Olson et al. (2001) 

Realm  Realm based on Olson et al. (2001) 

LCDN Land cover type number based on Friedl and Sulla-Menashe (2022) 

(“LCDN” denotes Land Cover Digital Number) 

LCName Land cover type name based on Friedl and Sulla-Menashe (2022) 

Country Country where fire is located based on World Bank (2020) 

Continent Continent on which the fire was located 

HoldoverD Holdover in days 

(“HoldoverD” denotes holdover in days, as a float.) 

HoldoverRD Holdover in days, rounded to the day 

("HoldoverRD" denotes the holdover values Rounded to Days, rounded to the nearest whole integer) 

IgnLat Latitude location of the candidate lightning 

(“IgnLat” denotes the Ignition, Latitude position of the candidate lightning) 

IgnLong Longitude location of the candidate lightning  

(“IgnLong” denotes the Ignition, Longitude position of the candidate lightning) 

DisPol Distance to polygon if ignition point is outside polygon 

(“DisPol” denotes the Distance of the ignition point to the fire Polygon, when the ignition point is 

outside the polygon) 

PerCheck True(1)/False(0) if the candidate lightning is within the fire perimeter 

(“PerCheck” denotes the result of the Perimeter Check, if it is inside or outside the fire perimeter) 
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2.5 Processing of the agency reference datasets 

To ensure a consistent assessment between the agency reference dataset and the BoLtFire dataset, the agency reference datasets 

were filtered by size, start date, and ignition cause. The Alaska Fire History Location Points dataset include the discovery time 220 

of each fire, to the second. Fire start times are not available within either of the Canadian agency reference datasets. The fire 

start times were also set to 12:00 noon local time then converted to UTC for the lightning matching process. Prescribed burns 

were removed. The fire perimeters and points from the agency references were initially joined based on their respective fire 

ID keys (Canadian National Fire Database: NFDBFIREID and CFS_REF_ID; Alaska Fire Service: ID and FIREID). Polygons 

without points were removed from the dataset. Points without corresponding perimeter IDs were categorized into two groups: 225 

those located within an existing fire perimeter and occurring within seven days of the fire start date and those that do not. For 

the latter (as not all fire parameters have been mapped yet; Canadian Forest Service, 2024), the fire area was used to determine 

the fire radius, which was then used to generate a fire buffer perimeter. For perimeters without corresponding point IDs, if 

there was an unmatched point within the perimeter within seven days of the fire start date, that became the fire's ignition point. 

If there were no points located within the perimeter, the fire was left without an ignition point and was removed from the 230 

dataset. Both datasets were then merged and filtered based on the majority land cover class. The filtering process yielded an 

agency reference dataset consisting of 2,424 fires across Alaska and Canada. 

2.6 BoLtFire dataset creation method 

Existing methodologies for fire ignition detection require an ignition point for each fire, which is not provided by the original 

MCD64A1 nor the GlobFire dataset. To address this, a Temporal Minimum Distance (TMin) methodology is proposed. Based 235 

on previous methodologies (Larjavaara et al., 2005, Nash and Johnson, 1996; Pineda et al., 2022, Wotton and Martell, 2005), 

this approach searches for a candidate lightning first within the fire's perimeter starting from its ignition date and searches until 

a candidate lightning is found or a 14-day window has been reached. If only one flash is found within the perimeter, it is 

designated as the candidate lightning and the ignition point. If multiple potential candidate lightnings are found, the one closest 

in time to the ignition date (12:00 noon local time, converted to UTC) is chosen. If no candidate lightning is found within the 240 

perimeter, the search extends to a 10 km radius outside the perimeter, following the same temporal process. If multiple potential 

candidate lightnings are found outside the perimeter, the stroke closest both spatially to the perimeter and temporally to the 

start date is selected as the ignition point. A visualization of the process can be seen in Fig. 1. The proposed TMin methodology 

was then applied to the filtered ENTLN and GlobFire datasets to create the BoLtFire dataset.  

 245 
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Figure 1: Visualization of the temporal minimum distance process, where lightning candidates are first searched for within the fire 

perimeter before then searching the buffered area if one is not found. The grey polygon depicts the fire and its associated perimeter, 

while the dotted line represents the 10km buffer. 

2.7 Agency reference comparison and analysis 250 

We conducted three different comparison assessments using the proposed TMin approach: (1) a candidate lightning 

methodology comparison, (2) a spatial and temporal accuracy comparison, and (3) fire count and size comparison. The 

matching lightning methodology comparison was implemented to gauge the performance of the proposed (TMin) methodology 

to currently established methodologies; MaxA and DMin. Max A, proposed by Pineda et al. (2014), selects the stroke with the 

maximum index A while setting the tmax to 7 days and the Smax to 14 days. The DMin, introduced by Schultz et al. (2019), 255 

searches backwards day-by-day from the reported start date until either a matching flash within a 15-day window (tmax) and 

10km (Smax) is found or this temporal window is exhausted. If multiple flashes are found, then the one closest to the ignition 

point is selected. To compensate for possible misreporting of start dates, if no flash was found within the temporal window, 

then a day after the reported start date was searched. To align our methodologies to the current literature, all three 

methodologies were implemented using input parameters of tmax of 14 days and a Smax of 10 km. The methodologies were 260 

applied to the agency reference dataset as both datasets provide a start date and an ignition point, allowing for a more precise 

comparison of the candidate lightning’s distance to ignition location and holdover time across the methodologies. As the 

Canadian agency reference dataset does not contain fires after 2020, these fires were also removed from the NA BoLtFire 
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dataset (allowing for a total of 2,072 fires; here after referred to as the North American BoLtFire Agency Reference Dataset 

Version, or NA BoLtFire ARD dataset) to conduct the comparisons; but are contained within the complete set. The following 265 

variables were analysed: candidate lightning agreement, fire count, fire size, holdover time, and distance to the ignition point. 

The mean, median, and histograms of distance and holdover time were also produced. Additionally, a detailed analysis of the 

location of the candidate lightning in or outside (and distance there-from) the fire perimeter was conducted, to gauge the 

approach’s ability to accurately locate the ignition point. We conducted a secondary benchmark comparison, where we 

compared the temporal and spatial locations of the fire perimeters to determine the overlap and difference between both 270 

datasets (agency vs NA BoLtFire ARD Version). The NA BoLtFire ARD Version dataset successfully located a fire if it was 

within seven days (before or after the start date) and 10 km of the agency’s fire perimeter. A large spatial and temporal window 

was used to encompass reporting errors by both the agencies and errors from MODIS. Multiple NA BoLtFire ARD Version 

fires could be matched to one agency fire. If a NA BoLtFire ARD Version fire was not within this spatial and temporal window, 

then it was unsuccessful. A confusion matrix was used to evaluate the performance of the dataset. A third and final comparison 275 

was conducted in line with that by Artés et al. (2019), where the total fire count and fire size between the NA BoLtFire ARD 

Version and the agency reference datasets were compared.  

3 Results 

3.1 Matching lightning methodology comparison 

3.1.1 Candidate lightning agreement 280 

The TMin method slightly outperformed the MaxA and DMin methods, matching 77.68 % of the total agency reference dataset 

fires while DMin matched 71.91 %, and MaxA matched 70.13 % (Table 2). Each methodology selected different candidate 

lightnings, with general agreement between all three methodologies at 36.01 %. DMin and MaxA selected 55.07 % of the same 

overlapping lightning. There was a general decreasing trend in identical candidate lightnings as fire size increased. For 20.79 

% of the fires, all three methodologies failed to find a matching lightning candidate; and 43.19 % of the matched fires had 285 

different or no candidate lightning. Breaking down candidate lightning agreement by fire size, the TMin method shows the 

highest matching for all fire sizes, with improvement as fire size grows, achieving its highest matching for Mega fires at 92.00 

%. The DMin method shows the second highest candidate lightning matching for Small, Moderate, and Large fires (74.25 %, 

72.32 %, and 65.40 % respectively), but its performance declines significantly for larger fires, particularly for XLarge and 

Mega fires, where it drops to 57.14 % and 64.00 %, respectively. MaxA, while less accurate overall, shows a similar trend to 290 

DMin with a decreasing accuracy to increasing fire size, particularly for XLarge fires where it also drops to 57.14 %.  

 

The average number of possible candidate lightning flashes per LIW was highest for MaxA and DMin for Small, Moderate, 

and Large fires (Table B1). Though for XLarge and Mega fires, TMin found more possible candidate lightning flashes. Though 
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this makes sense, as the TMin first searches within the fire perimeter, and if no flashes are found, then it searches a 10km 295 

buffer outside the perimeter; while the MaxA and DMin search inside a 10km buffer around the ignition point. If the fire is 

within a smaller perimeter, the TMin would only find flashes within that smaller perimeter as opposed to the MaxA’s and 

DMin’s 10km buffer.  
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Table 2: Total count and total burned area in hectares of the candidate lightnings found by the three methodologies: TMin, MaxA and DMin. The total 300 
count and burned area as percentages of the total count and total burned ha of the agency reference dataset are also included for all methodologies. 

Significant results are in bold. 

Agency Reference Dataset Matched Agency Reference Dataset Fires by Methodology 

Fire Size 
LIW 

Count 
Total Ha 

TMin MaxA DMin 

LIW 

Count 

% 

Total 

Total 

Burned Area 

(Ha) 

% Ha 

Total 

LIW 

Count 

% 

Total 

Total 

Burned Area 

(Ha) 

% Ha 

Total 

LIW 

Count 

% 

Total 

Total 

Burned Area 

(Ha) 

% Ha 

Total 

Small 932 460,119.82 707 75.86% 346,713.52 75.35% 673 72.21% 328,122.85 71.31% 696 74.68% 337,984.75 73.46% 

Moderate 1,084 3,768,131.15 843 77.77% 2,936,153.39 77.92% 767 70.76% 2,627,792.38 69.74% 784 72.32% 2,682,544.86 71.19% 

Large 341 7,096,947.69 276 80.94% 5,624,753.31 79.26% 220 64.52% 4,391,928.17 61.88% 223 65.40% 4,487,389.33 63.23% 

XLarge 42 2,972,699.20 34 80.95% 2,408,474.91 81.02% 24 57.14% 1,681,481.77 56.56% 24 57.14% 1,681,481.77 56.56% 

Mega 25 5,359,454.62 23 92.00% 5,002,774.83 93.34% 16 64.00% 3,309,407.70 61.75% 16 64.00% 3,309,407.70 61.75% 

Total 2,424 19,657,352.47 1,883 77.68% 16,318,869.96 83.02% 1,700 70.13% 12,338,732.88 62.77% 1,743 71.91% 12,498,808.41 63.58% 



14 

 

 

3.1.2 Fire size (ha) 305 

For Small fires, the TMin method matches more lightning candidates (75.35 % by total burned area) in the agency reference 

dataset compared to MaxA (71.31 % by ha) and slightly outperforms DMin (73.46%; Table 2). For Moderate and Large fires, 

TMin continues to perform better (77.92 %; 79.26 %) than MaxA (69.74 % ; 61.88 %) and DMin (71.19 % ; 63.23 %), showing 

a significant drop in accuracy for MaxA in regard to Large fires. XLarge fires exhibit a consistent pattern with TMin at 81.02 

%, ahead of MaxA (56.56 %) and DMin (56.56 %), demonstrating the lowest accuracy for both MaxA and DMin. Mega fires 310 

also see the highest accuracy for TMin (93.34 %), outperforming both MaxA (61.75 %) and DMin (61.75 %). 

3.1.3 Holdover times 

In all three methods, the holdover time showed an exponential decrease over the observed period (Figure 2; Table B2). After 

being applied to the agency reference dataset, the holdover for over 50 % of candidate lightnings among the three 

methodologies (TMin: 57.51 %, MaxA: 58.88 %, and DMin: 65.75 %) were found within the first 3 days (Day +1/0-2); over 315 

88 % within the first 10 days (TMin: 90.23 %, MaxA: 92.00 %, and DMin: 93.80 %). The largest frequencies for the TMin, 

MaxA, and DMin were found on Day 0 (469, 429, and 576 respectively). These results align with the overall trend that most 

wildfires occur within the first few days following a lightning event, with the majority occurring within two weeks. The TMin 

method shows the highest median and mean holdover times (2.65 and 4.01 days, respectively; Table B3), with overlapping 

confidence intervals for both medians and means when compared to MaxA, which has slightly lower values (2.6 and 3.81 320 

days). The DMin method, while showing the shortest median and mean holdover times (1.88 and 3.22 days). 

 

 

Figure 2: Distribution of lightning candidates by holdover time and distance to the agency reference dataset ignition point. Holdover 

time is calculated as the difference between the start date of each lightning-ignited wildfire and the time of the occurrence of the 325 
candidate lightning. Distance is calculated as the distance of the lightning candidate from the ignition point of each lightning-ignited 

wildfire.  
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3.1.4 Distance to the ignition point 

The median distance of the selected candidate lightnings from the agency reference dataset ignition point varied greatly for all 

three methodologies. Both the MaxA and DMin methods identify candidate lightnings with shorter distances from the ignition 330 

point compared to the TMin method (Table B3). The TMin has a median of 4,560 meters and a mean of 6,065. MaxA identified 

the lightning candidates closest to the ignition point with a median distance of 3,128 meters and a mean distance of 3,749 

meters. DMin also identifies candidate lightnings with a shorter distance than TMin, with a median of 3,991 meters and a mean 

of 4,431 meters. These results were expected as both the MaxA and the DMin approaches rely on the ignition point in order 

to select the candidate lightning while the TMin looks to select the lightning candidate first within the fire perimeter, 335 

prioritizing candidates that are only closer temporally to the start date, before then checking outside the perimeter.  

 

To better understand the capacity of the methodologies to locate the igniting flash within the perimeter, a review of the agency 

reference dataset was conducted as the dataset includes the ignition location. Within the agency reference dataset, 246 of the 

fires had ignition points located outside of the fire perimeter, and 2,178 are located within the fire perimeter (where the ignition 340 

of the fire should most likely occur). To determine the accuracy, the candidate lightnings of all three methodologies were 

compared to the actual ignition point location (inside vs outside the perimeter). All three methodologies show varying levels 

of effectiveness in selecting a lightning candidate point inside or outside the ignition perimeter. The TMin methodology offers 

the best overall performance with an overall accuracy of 36.26 % as is most accurate at selecting ignition points inside the fire 

perimeter (Table B4). While both the MaxA and DMin methodologies did the best locating points outside the fire perimeter 345 

(57.72 % and 61.79 % respectively), but both struggled to locate them inside the fire perimeter leading to an overall accuracy 

of 24.52 % and 20.11 % respectively. Overall, while all three struggle to accurately determine if the ignition point is inside or 

outside the perimeter, TMin appears to be the most consistent with a higher overall accuracy. 

 

 350 

 

 

 

 

 355 
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3.2 Evaluation of TMin and the BoLtFire dataset 

3.2.1 Confusion matrix results  360 

 

Figure 3: Lightning-Ignited Wildfires that occurred at the Alaskan Canadian border in the summer of 2017. (A) One LIW the 

Canadian side; Fire ID 2017OC010 ignited on 22 June and burned 97,102.29 ha. (B) Two LIW in Alaska: White Mountain Creek 

(fire #39800) ignited on 26 June and burned 37,846.33 ha and Campbell River (fire #3983), which began on 03 July and burned 

31,912.67 ha. (C) Five NA BoLtFires with their ignition dates and burned areas: 19933837 (19 July; 2,053.58 ha), 19856818 (22 June; 365 
1,448.33 ha), 19856822 (22 June; 972.65), 19933815 (01 July; 1,297.02 ha), 19856819 (29 July; 64,932.06 ha); totalling 70,704.23 ha. 

Orange fire icons indicate the official fire start locations from the agency reference dataset, the small gold lightings are lightning 

flashes, while the larger yellow lightnings are the matched candidate lightning flashes. Base imagery is Landsat 8 ©USGS. 

 

The overall accuracy was 63.39 %, commission error was 30.07 % and the omission error was 53.16 %, indicating that approx. 370 

70% of the fires detected in NA BoLtFire ARD Version were correctly classified, but that approx. 53 % of all occurring fires 

were missed (Table C1). The BoLtFire database is thus conservative in comparison to the agency datasets. Within the agency 
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reference dataset, of the 2,424 lightning-ignited wildfires, 1,136 wildfires had a NA BoLtFire ARD Version match while 1,288 

remained unmatched. Of the 2,072 lightning-ignited wildfires in the NA BoLtFire ARD Version dataset, 1,568 lightning-

ignited wildfires were matched while 504 remained unmatched. Overall, the matched fires accounted for 46.86 % of the total 375 

fires in the agency reference dataset but covered only 68.81% of the total burned area from the agency reference dataset. An 

example of agency fires and its matched NA BoLtFire ARD Version can be seen in Fig. 3. Within the agency reference dataset, 

fire count and size fluctuated drastically across the years, with a recorded total of 2,424 fires, burning approximately 19.66 

million ha (Table C2). The year 2015 recorded the highest number of fires, with 514 incidents burning approximately 4.53 

million ha, while 2021 witnessed the lowest number of fires, with only seven incidents, burning only around 30,259.57 ha 380 

(most likely due to the fact that the Canadian agency reference dataset only includes fires until 2020). In terms of matched 

fires, 2017 had the highest match rate at 187 fires (55.49 % of the 2017 agency reference dataset total lightning-ignited wildfire 

count), and 2020 had the lowest, with just 11 of the 62 agency reference dataset lightning-ignited wildfires, representing 17.74 

% of the total lightning-ignited wildfire count for that year.  

 385 

One noticeable trend was that as fire size increased, both the number of total fires as well as total burned area generally 

improved. Small fires have the lowest matching success, as only 24.68 % of the total Small fires successfully matched the 

agency reference dataset (Table 3), with a delta of -71.03 % of the total burned area matched. Moderate and Large fires show 

moderate success, with about 57-69 % of fires and burned areas matched, while XLarge and Mega fires exhibit a strong 

matching performance, with 76.19 % of XLarge fires matched with 73.76 % of the total burned area and 80.00 % of the Mega 390 

fires matched with 77.35 % of the total burned area. The 10 unmatched XLarge and 5 unmatched Mega fires accounted for 

approximately 1.99 million unmatched hectares, representing 32.52 % of the total unmatched burned area. When Small and 

Moderate fires were removed, 286 of the remaining 408 fires were matched, increasing the overall matching from 46.86 % to 

70.10 % of total fires, and increasing the matched total burn area from 68.81 % to 72.01 %. Overall, we found that the matching 

process is more effective for larger fires, both in terms of the number of fires and the total burned area matched. 395 

 

Table 3: Compares the total number of fires and the total burned area by fire size category between the agency reference dataset 

(ARD) and matched fires in the North American BoLtFire dataset, using the total burned area for both from the agenda reference 

dataset.  

 
Agency Reference 

Dataset 

Matched Fires in the NA BoLtFire ARD Version 

Dataset 

Delta (Agency Reference Dataset to NA BoLtFire 

ARD Version) 

Fire Size Total 

LIW 

Total Burned 

Area (Ha) 

Total 

LIW 

Percent of 

Total 

LIW 

Total Burned 

Area from 

ARD (Ha) 

Percent of Total 

Burned Area 

from ARD (Ha) 

Total 

LIW 

Percent 

Total 

LIW 

Total Burned 

Area from 

ARD (Ha) 

Percent Total 

Burned Area 

(Ha) 

Small 932 460,119.82 230 24.68% 133,071.64 28.92% -702 -75.32% -327,048.18 -71.08% 
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Moderate 1,084 3,768,131.15 620 57.20% 2,282,327.67 60.57% -464 -42.80% -1,485,803.48 -39.43% 

Large 341 7,096,947.69 234 68.62% 4,772,466.21 67.25% -107 -31.38% -2,324,481.48 -32.75% 

XLarge 42 2,972,699.20 32 76.19% 2,192,740.13 73.76% -10 -23.81% -779,959.07 -26.24% 

Mega 25 5,359,454.62 20 80.00% 4,145,337.40 77.35% -5 -20.00% -1,214,117.22 -22.65% 

Total 2,424 19,657,352.47 1,136 46.86% 13,525,943.04 68.81% -1,288 -53.14% -6,131,409.43 -31.19% 

 400 

3.2.2 Fire count and fire size comparison 

The agency reference dataset reports 2,424 fires, burning approximately 19.66 million ha, while the NA BoLtFire ARD Version 

dataset records 2,072 lightning-ignited wildfires with a total burned area of approximately 12.32 million ha (Table 4). Small 

fires were more frequently recorded in the NA BoLtFire ARD Version dataset (1,012 fires) compared to the agency reference 

dataset (932 fires), though the difference in the burned area for Small fires was relatively small. However, the agency reference 405 

dataset records a higher number of Moderate (delta of 272), Large fires (delta of 132), XLarge (delta of 21) and Mega (delta 

of 7) fires, burning significantly more hectares than in the NA BoLtFire ARD Version dataset. Moderate fires also show a 

significant difference, with the agency reference dataset reporting 272 more incidents and a 25.09 % larger total burned area. 

The most notable differences between the two datasets can be seen in the larger fire categories, with the agency reference 

dataset showing significantly more Large, XLarge, and Mega fires, resulting in a 35 % to 53 % larger burned area (39.03 %, 410 

53.40 %, 35.54 % respectively). Overall, the NA BoLtFire ARD Version dataset reflects a higher total count while the agency 

reference dataset reflects a larger burned area. Though when looking at fire size categories, the NA BoLtFire ARD Version 

dataset is slightly higher in small fires but substantially lower across all other fire sizes in regard to both count and total burned 

area. 

 415 

Table 4: Total count and total burned area of both the agency reference dataset and the NA BoLtFire ARD Version from 2012-2022 

organized by fire size. The delta was calculated between the Agency Reference Dataset and the NA BoLtFire ARD Version Dataset. 

  Agency Reference 

Dataset 

NA BoLtFire ARD 

Version Dataset 

Delta 

(Agency Reference Dataset to NA BoLtFire ARD Version) 

  LIW 

Count 

Total 

Burned 

Area (Ha) 

LIW 

Count 

Total Burned 

Area (Ha) 

LIW 

Count 

Percent 

LIW Count 

Total 

Burned 

Area (Ha) 

Percent Total 

Burned Area (Ha) 
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Small 932 460,119.81 1,012 484,427.69 -80 -8.58% -24,307.88 -5.28% 

Moderate 1,084 3,768,131.15 812 2,672,305.40 272 25.09% 1,095,825.75 29.08% 

Large 341 7,096,947.69 209 4,327,318.49 132 38.71% 2,769,629.20 39.03% 

XLarge 42 2,972,699.20 21 1,385,300.87 21 50.00% 1,587,398.33 53.40% 

Mega 25 5,359,454.62 18 3,454,711.36 7 28.00% 1,904,743.25 35.54% 

Total 2,424 19,657,352.47 2,072 12,324,063.81 352 14.52% 7,333,288.66 37.31% 

 

3.3 BoLtFire dataset overview  

 420 

Figure 5: Visual depiction of all located in forest and forest-like land covers in boreal forests from 2012-2022 that are equal to or 

greater than 200 ha. 
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Of the original 21,816 total filtered GlobFire events, 6,902 were identified through the TMin methodology (within 14 days 

and 10 km of the GlobFire event) to be lightning ignited (31.63 %). The BoLtFire dataset encompasses lightning-ignited 

wildfires located in forest and forest-like land covers in boreal forests from 2012-2022 that are at least 200 ha in size. Of the 425 

6,902 fires, 4,201 were located in Eurasia and 2,701 were located in North America (Figure 5). Within those 4,201 fires 

identified as lightning-ignited wildfires within Eurasia, 4,151 are located in Russia, 41 are in Mongolia, 8 are in Sweden and 

1 is located in Finland. Of the 2,701 in North America BoLtFire, 2,421 are located in Canada and 280 are located in Alaska, 

United States. The BoLtFire dataset encompasses a total of approximately 36.65 million ha of burned area (21.09 million ha 

in Eurasia and 15.57 million ha in North America) with an overall average burned area per fire of 5,310.74 ha. The information 430 

included for each fire within the dataset can be found in Table 1. 

3.4 Characterization of lightning-ignited wildfires 

We summarized the following metrics for each continent: holdover time, distance to fire perimeter, lightning-ignition 

efficiency, frequency of fires per year and total burned area, area burned by fire size class, and total burned area per land cover. 

3.4.1 Holdover  435 

Similar to the agency reference dataset, the holdover time within the BoLtFire dataset exhibited an exponential decline, with 

the highest frequency occurring within the first 24 hours (Figure 4). Specifically, 734 lightning-ignited wildfires (10.63 %) 

were identified on the first day, and 2,137 lightning-ignited wildfires (30.96 %) ignited within the first three days (Day 0 to 

Day 2; Table D1). The cumulative number of lightning-ignited wildfires increased quickly, with over half of all fires recorded 

within 5 days (Day 0 to Day 4) and 79.24 % occurring within the first 10 days. 440 
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Figure 4: Top graph compares the holdover time for the total number of fires over a 15-day period between the Eurasia and North 

America BoLtFire dataset continents. Bottom graph compares the distance of the candidate lightning from the fire perimeter for all 

of the fires whose candidate lighting was located outside the fire perimeter within the Eurasia and North America BoLtFire dataset 

continents. 445 

3.4.2 Distance to fire perimeter 

The analysis of the distance of the ignition point from the perimeter of the fire revealed a pattern similar to that of the holdover, 

a decrease in total fires as the distance from the perimeter increases (Figure 4). A total of 1,799 of the ignition points were 

located within the perimeter of the fire. The remaining 5,103 ignition points were located outside of the perimeter, 208 were 

within 100 m of the fire perimeter, 1,101 (21.58 %) were within 1 km and over half (2,841, 55.67 %) were within 4 km (Table 450 

D2). This trend was mirrored in both Eurasia and North America. 

3.4.3 Lightning-ignition efficiency 

The BoLtFire dataset reveals variations in the incidence of lightning ignition efficiency (LIE) across both continents for fire 

sizes of at least 200 ha (Table D3). Eurasia recorded a higher number of total flashes (approximately 15 million) and a greater 

number of lightning-ignited wildfires (4,201), compared to North America's 12.53 million flashes and 2,701 lightning-ignited 455 
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wildfires. Approximately 0.000280 of lightning flashes resulted in ignition in Eurasia, while 0.000216 of flashes led to an 

ignition in North America. Overall, the combined data across both continents shows a total of nearly 27.53 million flashes, 

resulting in 6,902 lightning-ignited wildfires, with an overall lightning-ignition efficiency of 0.000251. To better understand 

the lightning-ignition efficiency at a more regional level, it was calculated by country: The United States (Alaska) has the 

highest lightning-ignition efficiency at 0.005025.  Mongolia has the next highest efficiency at 0.000769 with Russia following 460 

with 0.000291. Canada has a much lower lightning-ignition efficiency of 0.000194, while Sweden and Finland have the lowest 

lightning-ignition efficiencies at 0.000037 and 0.000003, respectively. This data suggests that the likelihood of lightning 

igniting wildfires varies considerably across these countries for larger fires.  

3.4.4 Frequency of fires per year and total burned area  

Understanding the number of fires per year is critical for assessing the frequency and trends of wildfire occurrences. The total 465 

frequency of lightning-ignited wildfires exhibited substantial year-to-year variability across both continents, with the most 

amount of lightning-ignited wildfires found in 2013 (942) and the least found in 2019 (105) (Table D4). From a total burned 

area perspective, even though 2013 had the most lightning-ignited wildfires, it burned only the third most amount of area at 

close to 4.53 million ha; while 2021 had the most burned area at 8.54 million ha and 2019 had the least at 840,774.68 total ha 

burned. In 2012, the dataset shows that Eurasia had no lightning-ignited wildfires, while North America had 223. This 470 

discrepancy is most likely due to the ENTLN having fewer sensors available at the time, as only 244 total lightning flashes 

were found in that year in Eurasia (the average amount is approximately 1,363,542 per year). In 2013, despite Eurasia having 

more lightning-ignited wildfires, North America experienced a significantly larger burned area (2.81 million ha compared to 

1.73 million ha in Eurasia).  

3.4.5 Area burned by fire size class  475 

Within the BoLtFire dataset, Small fires are the most common, with 3,623 LIW, burning a total of approximately 1.71 million 

ha, resulting in an average of 155,516.33 ha per year and 472.17 ha per fire (Table D5 and D6). Moderate fires follow with 

2,614 lightning-ignited wildfires, contributing to a total burned area of about 8.46 million ha, and an average of 769,264.20 ha 

per year and 3,237.15 ha per fire. Although Large fires are less frequent, with 555 incidents, they account for a significant 

burned area of approximately 11.6 million ha, averaging 1,054,329.48 ha per year and 20,896.62 ha per fire. XLarge and Mega 480 

fires are the least common (58 and 52 incidents respectively), but they contribute disproportionately to the total burned area. 

XLarge fires burned 3.96 million ha, with an average of 360,420.93 ha per year and 68,355.69 ha per fire, while Mega fires 

had the largest average burned area at 992,715.94 ha per year and 209,997.60 ha per fire, totalling approximately 10.92 million 

ha. When reviewing all fire sizes, North America has an average burned area of 5,762.97 ha per fire, which is relatively close 

to Eurasia’s 5,019.98 ha per fire. When averaging the smaller fire sizes (Small and Moderate fires), North America has a higher 485 

average burned area of 1,765.82 ha per fire, compared to Eurasia’s 1,547.53 ha per fire. When looking at just the larger fire 

sizes (Large, XLarge, and Mega), Eurasia has a significantly larger average burned area of 43,346.26 ha compared to North 
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America’s 35,931.28 ha burned area. Overall, North American Small and Moderate fires tend to be larger than Eurasia’s, but 

Eurasia tends to have larger Large, XLarge, and Mega fires. 

3.4.6 Total burned area per land cover 490 

Within the BoLtFire dataset, Woody Savannas and Savannas are the most affected forest or forest-like land cover types, with 

3,280 and 2,239 fires respectively, contributing to the largest total burned areas of approximately 18.66 million ha and 14.3 

million ha; 89.89 % of the total burned area (Table D7). Evergreen Needleleaf Forests also had an impact, with 483 fires 

burning approximately 1.69 million ha, accounting for 4.6 % of the total burn area. Open Shrublands and Mixed Forests 

experienced moderate impacts, accounting for 3.31 % and 1.42 % of the total burn area, respectively. Unsurprisingly, Savannas 495 

had the largest average burn area per fire at 6,383 ha, followed closely by Woody Savannas at 5,687.98 ha, Evergreen 

Needleleaf Forests at 3,493.94 ha, and Open Shrublands at 3,067.32 ha. Deciduous Broadleaf Forests, Permanent Wetlands, 

and Deciduous Needleleaf Forests had the fewest total burned ha, and some of the smallest average burned area per ha. The 

total burned area was driven strongly by the Savannas and Woody Savannas land covers and this trend was also mirrored in 

both Eurasia and North America.  500 

 

When all other land covers besides forest-specific ones (Deciduous Broadleaf Forests, Deciduous Needleleaf Forests, 

Evergreen Needleleaf Forests, and Mixed Forests) were removed, Eurasia, contained a total of 570 fires, contributing to a 

combined fire area of 1,110,743.72 ha, with an overall average fire size of 1,948.67 ha. In North America, there were 244 fires, 

with a total area burned of 1,192,083.51 ha and an overall average fire size of 4,885.59 ha. North America had on average 505 

larger Small (492.81 ha vs 459.92 ha, respectively), Moderate (3,671.42 ha vs 2,968.27 ha), and Large (20,704.42 ha vs 

17,680.42 ha). Eurasia did not contain any forest-specific XLarge fires while North America had five XLarge totalling 

517,610.42 ha with an average fire size of 20,704.42 ha. Neither Eurasia nor North America had forest-specific land cover 

based Mega fires. While Eurasia experienced a significantly higher number of fires, North America had fewer but larger fires 

on average. This suggests potential differences in fire management or environmental conditions influencing fire behaviour 510 

between the two continents. 

4 Discussion 

4.1 Agency reference dataset and NA BoLtFire ARD Version dataset comparison 

The candidate lightning agreement highlighted the important methodological choices when matching lightning candidates 

(Moris et al., 2020). Although all three methods performed relatively well, finding candidate lightnings for at least 71 % of the 515 

agency reference dataset, they had difficulty agreeing on the “correct” lightning candidate, with only 36.01 % agreement across 

all three methodologies. This discrepancy is likely due to the differences in methodological approaches, as MaxA and DMin, 

who have similar methodologies, agreed on 55.07 % of candidates, while TMin agreed with MaxA on only 44.31 % and DMin 
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on 37.33 %. Overall, the TMin matched the most lightning candidates (77.68 %); while DMin and MaxA matched slightly 

fewer at 71.91 % and 70.13 %, respectively. However, significant differences became clear in the total burned area matched: 520 

out of approximately 19.66 million ha in the agency reference dataset, TMin identified candidate lightning for approximately 

16.32 million ha, whereas DMin identified only 12.50 million ha (3.82 million ha less than TMin) and MaxA identified only 

12.34 million ha (3.98 million ha less than TMin). 

 

While TMin matched more large fire sizes, MaxA identified the lightning candidates closest to the ignition point but correctly 525 

located only 24.52 % within the fire perimeter. While the agency reference dataset did have 246 ignition locations outside the 

fire perimeter, 89.85 % of ignitions occurred within the fire perimeter. Of the 2,178 ignitions inside the fire perimeter, TMin 

had the highest accuracy, correctly identifying 754 of those ignitions within the perimeter (34.62 % accuracy). This low 

accuracy could be attributed to several factors, one of which could be due to the TMin methodology, though it originally looks 

for only candidate lightnings within the perimeter; if one is not found within a certain window (14 days), then it starts to look 530 

outside the perimeter. The holdover for these fires could be longer than 14 days, as holdovers in boreal forests can last for a 

significant period of time before flaming (Scholten et al., 2021). Additionally, it could be due to location error of the lightning 

locations, as quite a large portion of the boreal forest is remotely located. Furthermore, as noted by Hanes et al. (2019), the 

Canadian National Fire Database points are just the presumed points of ignition, which may also explain why 246 of the 

ignition locations were not within their corresponding fire polygons. Furthermore, as Crowley et al. (2023) highlighted, both 535 

points and perimeter polygons in the Canadian National Fire Database are compiled and submitted by different provinces, 

potentially adding additional discrepancies and leading to variations in definitions across the datasets.  

The results of the confusion matrix comparing the temporal and spatial overlap of the agency reference dataset and the NA 

BoLtFire ARD Version dataset indicated that our proposed TMin methodology was promising; with low commission and 

moderate omission errors of 30.07 % and 53.16 %, respectively. Interestingly, Small and Moderate fires matched the fewest 540 

fires, and when they were removed, the overall matching increased from 46.86 % to 70.10 % of total fires; indicating that fires 

that are less than 10,000 ha are more difficult to match than larger fires. This may be due to the difficulty MODIS has in 

detecting smaller wildfires (discussed further in Sect. 4.3, Limitations). Another possible explanation could be the size of the 

matching temporal window. In their study, Fusco et al. (2019) used a seven-day window when spatially matching their MODIS 

fires, which is what we also implemented. After applying this window, we had five unmatched Mega fires which we then 545 

reviewed visually to better understand why they were unmatched. We noticed that three of the five had fire perimeters within 

the agency reference dataset that matched well visually, but all had start dates outside of seven days, but within 30 days of the 

agency reference fire. Due to the remoteness of some of these fires and possible fire recognition issues with the underlying 

MODIS data, an increase in the window size could include more fires. This increase in window size could also cause fires to 

be incorrectly associated with neighbouring fires due to the increase in window size. Overall errors of omission are likely due 550 

to the detailed limitations mentioned below, as well as differences in pixel resolution, satellite overpass time, and cloud and 

smoke cover (Giglio et al., 2009; Hantson et al., 2013; Hawbaker et al., 2008; Johnston et al., 2018; Roy et al., 2005). Errors 
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of commission are likely due to fire-free surfaces that are highly reflective (Cardoso et al., 2005; Giglio et al., 2009; Hantson 

et al., 2013); though less likely in this study as both urban and agricultural land uses were removed. As we removed fires that 

were smaller than 200 ha, our errors of omission and commission are likely to be lower than expected.  555 

4.2 BoLtFire dataset  

From a global perspective, the BoLtFire dataset provided interesting insights that could help enhance our understanding of 

holdover time, lightning-ignition efficiency, primary characteristics, frequency, and spatial distribution of lightning-ignited 

wildfires in boreal forests. The holdover phenomenon poses a significant challenge to the real-time detection of lightning-

ignited wildfires. While our results generally align with current literature, as the frequency of the holdover decreased over 560 

time, it differs in its initial detection, as the majority of lightning-ignited wildfires are typically detected within the first 24 

hours (Gao et al., 2024; Moris et al., 2023). Our lightning-ignited wildfire holdovers resulted in just 10.63 % occurring within 

the first 24 hours, with 47.71 % within a five-day window (Day 0 to Day 4) days. This could be due to a variety of factors, 

including the global scale of our results (most studies are done at a local or more regional level). Additionally, lightning-ignited 

wildfire ignition is strongly influenced by fuel type, weather, and topography; holdover times could reflect this dependency.  565 

 

The analysis of the distance of the ignition point from the perimeter of the fire also revealed a decrease in total fires as the 

distance from the perimeter increased. While the agency reference dataset did have ignition points outside the fire perimeter, 

these accounted for 10.15 % of the total dataset. Within the BoLtFire dataset, 73.94 % of fires have an ignition point outside 

the fire perimeter. This could be due to a couple of different reasons, either the ignition point was associated with the wrong 570 

fire perimeter (i.e., the correct fire perimeter was not identified by MODIS, or was removed in the filtering process), the correct 

lightning candidate within the fire perimeter was not within the ENTLN dataset, or possibly, it could be due to spatial location 

errors from either, or both, the underlying MODIS dataset or the ENTLN dataset. Benali et al. (2016) found that there could 

be up to a 12-hr temporal and 2 km spatial lag between data reported by agencies and data that was derived by a satellite. We 

think it is most likely both, as within the 5,103 ignition points located outside the perimeter, 21.58 % were located within 1 575 

km of the perimeter, 35.65 % were within 2 km, and over half were within 4 km.  

 

While thunderstorms generate thousands of strikes a year, the likelihood of ignition occurring from a lightning strike is low, 

as only a few manage to persist long enough to enter a flaming stage (Wotton and Martell, 2005; Pineda and Rodríguez, 2023; 

Podur et al., 2003). Latham and Williams (2001) found that within much of North America, 0.01 to 0.04 actually ignites a fire; 580 

on average about 0.00167 caused an ignition in Alaska (Wendler et al., 2010), 0.001329 in Alberta and Saskatchewan (Nash 

and Johnson, 1996), 0.02 in British Columbia and 0.00071 in Alberta (Wierzchowski et al., 2002). Our lightning-ignition 

efficiency across North America and Eurasia varies from that found in the literature, though likely due to the regionality of the 

other studies and to our filtering process. When reviewed more closely, the lightning-ignition efficiency of our lightning-

ignited wildfires in Canada were roughly 0.000194 and Alaska’s lightning-ignition efficiency was roughly 0.005025, or 3/595. 585 
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Though Canada’s lightning-ignition efficiency rate is not in line with the literature, Alaska’s is. This could be due to the 200-

ha filter, which would have removed a significant amount of smaller fires. Additionally, this could be due to the filtering but 

could also indicate that lightning-ignition efficiency needs to be conducted at a more local and regional level. Furthermore, 

upon visual inspection, some lightning data was located within a country but was not labelled as such due to imperfections 

within the World Bank (2020) Official Boundaries dataset. This could lead to a higher lightning-ignited efficiency than what 590 

was reported.  

 

There was no distinct increase or decrease in fire count and size over the years, with both variables experiencing high year-to-

year variation. As mentioned, weather and other climatic factors play a significant role in lightning-ignited wildfire ignition; 

which could help explain the general variation between, and within, the total count and burned area in fire seasons. However, 595 

one of the most prevalent trends in the BoLtFire dataset shows that larger fires, despite the smaller overall fire count, are 

disproportionately responsible for the largest portion of the total burned area, whereas Small and Moderate fires represent 

90.37 % of the total fire count but account for just 27.75 % of the total burned area. Conversely, Large, XLarge, and Mega 

fires make up 9.63 % of the total fires but are responsible for 72.25 % of the total burned area. This trend is also observed in 

the agency reference dataset, Small and Moderate fires constitute 83.17 % of the total fire count but only contribute to 21.51 600 

% of the total burned area. In contrast, Large, XLarge, and Mega fires, although comprising only 16.83 % of the total fires, are 

responsible for 78.49 % of the total burned area. These results are in line with current literature (Grünig et al, 2022; Hanes et 

al., 2019; Stocks et al., 2002). Interestingly, when reviewing larger fire sizes (Large, XLarge, and Mega) between Eurasia and 

North America, Eurasian fires are on average 20.64 % larger than fires in North America. This seems to be due to the dominant 

land cover type underlying the fires. The overwhelming majority of the burned area occurred within either the Savannas or 605 

Woody Savanna (accounting for a combined 89.89 % of the total burned land cover). When only reviewing forest-specific 

land covers, while Eurasia still had a larger total burned area, North America had on average fire sizes that were 250.71 % 

bigger.   

4.3 Limitations 

While our overall results were promising, there are several uncertainties and limitations that need to be considered when 610 

working with our data. First, it is important to emphasize that the comparison between the MODIS-based dataset and the 

agency reference dataset should be viewed as an assessment rather than a validation. The production of similar values between 

the datasets enhanced our confidence in the reliability of our resulting BoLtFire datasets. However, interpreting discrepancies 

between the results is complex due to a multitude of influencing factors. Second, our current understanding of global fire 

regimes relies heavily on satellite-based products, MODIS active fire and burned area products are one of the most widely 615 

used (e.g., Crowley et al., 2023). The efficacy of MODIS products, along with other satellite-based fire products, is constrained 

by limitations in resolution and sensitivity, as demonstrated by comparative validation with higher-resolution sensors like 

Landsat. Within the U.S., Hawbaker et al. (2008) found that MODIS active fire product detected 82 % of all Landsat reference 
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fires, but their detection efficacy decreased with fire size and just 50 % of fires were detected at 105 ha. The mean detected 

fire sizes were 915 and 1,044 ha, which could heavily impact the frequency and size of fires found within BoLtFire datasets. 620 

When reviewing small (> 0.2 ha) sub-canopy fires in Canada, Johnston et al. (2018) found that coarser spatial resolution 

sensors would be incapable of early fire detection for 44 - 70 % of historic wildfires in boreal forests in Canada. Additionally, 

Loboda et al. (2011) found that MODIS burned area products can underestimate the extent of fires by 15 - 70 %. This could 

be an indication that the overall total count and fire size of the BoLtFire dataset are lower than expected. Furthermore, there 

are limitations within the agency reference datasets that affect the overall commission and omission errors. Some fires that 625 

were identified by MODIS might not be identified by an agency due to the remoteness of their location (Fusco et al., 2019), 

incomplete lightning data or incorrect occurrence date (Flannigan and Wotton, 1991), or misidentified as lightning-ignited due 

to a nearby thunderstorm activities (Müller et al., 2013). However, the former reason is unlikely due to the methods and 

experience of those investigating the fire (Schultz et al., 2019). Additionally, fires that are mapped later in the season could 

have fire scars that are insensitive to multiple fire events, making it difficult to distinguish between singular fire events and 630 

fire complexes. Yet, this is also an issue for agency databases as they can also fail to distinguish between the two (Benali et 

al., 2016). Third, since we used a lightning detection network, there is a possibility that not all lightning strikes were detected. 

As mentioned, in more remote areas, detection efficiency can be relatively low, and location errors are expected to be larger 

(up to several kilometers for the ENTLN). Additionally, as the ENTLN currently has no sensors located in Russia, this could 

create larger spatial errors or possibly not detect some lightning strikes. Since our lightning matching methodology heavily 635 

depends on the detection of lightning strikes, these factors could influence not only the likelihood of a correct match but also 

the selection of the candidate lightning strike in the absence of the “correct” match. Moreover, as there is currently not a 

foolproof method for identifying lightning ignited wildfires using these methodologies, there is a chance that some of our 

BoLtFire dataset fires have been misclassified. Based on the spatial and temporal window that was selected, we assume – but 

cannot definitively confirm (especially in Eurasia) – that these fires were ignited by lightning. To minimize the possibility of 640 

these false positives, we deliberately selected a 14-day temporal window and a 10 km spatial window based on previous 

research, and our own observations of our data. Had we increased the size of either of these windows, we could have 

inadvertently matched a lightning candidate to a fire that may not have been ignited by lightning. Finally, as the currently 

available reference datasets are limited to boreal forests, we were only able to assess the BoLtFire dataset with those resulting 

fires within Canada and Alaska. Fire records from other agencies, especially those in Siberia and Russia are difficult to obtain 645 

or might be inaccurate (Stocks et al., 2001). As tree canopies can obscure fires (Johnston et al., 2018; Kolden et al., 2012), and 

as surface fires are more prevalent in Eurasia than the crown fires dominant in North America, omission rates could be higher 

in Eurasia. Additionally, Talucci et al. (2022) found when comparing MODIS to Landsat fire detection in Siberia from 2001-

2020, Landsat captured 47.9 % more burn area, which could indicate that our dataset does not fully reflect the true burn area 

in Siberia, and thus, within Eurasia. 650 
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4.4 Outlook 

The effectiveness of lightning in igniting wildfires is expected to be amplified by climate change; under the RCP8.5 scenario, 

Hessilt et al. (2022) predict that changes in fire weather and vegetation will increase the effectiveness of lightning ignition by 

31 ± 28 % in Canada’s Northwest Territories and 14 ± 9 % in Alaska per 1°C of warming. Understanding the characteristics 

of these fires is crucial for improving our knowledge of where, why, and how they ignite, which could enhance our ability to 655 

model and mitigate their occurrence in the future. Furthermore, research by Zhu et al. (2017) suggests that the effects of 

Eurasian boreal wildfire emissions on Arctic warming may be underestimated. Given that lightning is a predominant cause of 

wildfires in boreal forests, improving the identification of lightning-ignited fires will enhance our understanding of their 

emissions and their contribution to global warming.  

5 Data availability 660 

All input data used in this dataset (Engle et al., 2024) was publicly available (with the exception of the lightning data, as this 

data was provided by Earth Networks, Inc., an AEM company) and can be found in Table A3. Data described in this manuscript 

can be accessed at Zenodo under data doi10.5281/zenodo.14940326. 

6 Code availability 

The code used in this dataset is available at https://github.com/BrittanyEngle/BoLtFire_Code. 665 

7 Conclusion 

Challenges in identifying lightning-ignited wildfires, coupled with limitations in data availability, have hindered our 

understanding of the characteristics of these wildfires in boreal forests. In this paper, we introduced the Temporal Minimum 

Distance (TMin) methodology, a novel approach specifically developed to match lightning strikes without an ignition point. 

It outperformed current methods, allowing us to create the largest pan-boreal forest dataset. This groundbreaking dataset 670 

consists of 6,902 lightning-ignited wildfires located in forest and forest-like land covers from 2012-2022 that are at least 200 

ha. When benchmarked to the agency reference dataset, this new dataset performed reasonably well, with an overall 

commission error was 30.07 % and the omission error was 53.16 %, though further fine-tuning of the TMin methodology and 

input parameters could lead to an even better performance. This dataset can be further used in conjunction with climate and 

additional environmental data to help better model lightning-ignited wildfire ignition characteristics and provide additional 675 

insights into lightning-ignited wildfires in boreal forests.  
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Appendix A 

Table A1: Descriptive list of which land cover types were either forest or forest-like and thus labelled “Forest”. Those labelled 680 
“Forest” were included within the dataset while those that were not, were removed. 

Dominant Forest Land Covers Non-Forest Land Covers 

• Evergreen Needleleaf Forests 

• Evergreen Broadleaf Forests 

• Deciduous Needleleaf Forests 

• Deciduous Broadleaf Forests 

• Mixed Forests 

• Closed Shrublands 

• Open Shrublands 

• Woody Savannas 

• Savannas 

• Grasslands 

• Permanent Wetlands 

• Urban and Built-up Lands 

• Cropland/Natural Vegetation Mosaics 

• Croplands 

• Water Bodies 

• Barren 

• Permanent Snow and Ice 

 

 Table A2: Description of the total burned area per fire size class. 

Fire Size Class Size in HA 

Small 200 ≤ 1,000 ha 

Moderate 1,000 ≤ 10,000 ha 

Large 10,000 ≤ 50,000 ha 

Extremely Large 50,000 ≤ 100,000 ha 

Mega Fires > 100,000 ha 



30 

 

 

Table A3: List of every dataset used to create the BoLtFire dataset, their spatial and temporal extent, citation, and link to their 685 
location. 

Dataset Spatial extent Temporal extent Citation Notes Link 

Alaska Fire Service 

Fire Perimeters 

Alaska, USA 1942-2023 (U.S. Department 

of the Interior, 

Bureau of Land 

Management, 

Alaska Fire 

Service, 2024b) 

Almost all of the 

fire perimeters 

had a matching 

fire point 

https://fire.ak.blm

.gov/ 

Alaska Fire Service 

All Fire Points 

Alaska, USA 1939-2022 (U.S. Department 

of the Interior, 

Bureau of Land 

Management, 

Alaska Fire 

Service, 2024a) 

Meaning of point 

locations unclear, 

no fire perimeters 

https://fire.ak.blm

.gov/ 

Canadian National 

Fire Database - 

National Fire 

Database fire 

polygon data 

Canada 1917-2020 (Canadian Forest 

Service, 2024) 

Fire perimeters do 

not always have a 

matching fire 

point 

https://cwfis.cfs.n

rcan.gc.ca/ha/nfd

b 

Canadian National 

Fire Database - 

National Fire 

Database fire point 

data 

Canada 1930-2022 (Canadian Forest 

Service, 2024) 

Meaning of point 

locations differs 

across provinces, 

no fire perimeters 

https://cwfis.cfs.n

rcan.gc.ca/ha/nfd

b 

Ecoregions 2017  Global 2017 (Olson et al., 

2001) 

global 

classification of 

terrestrial 

ecoregions 

https://ecoregions

.appspot.com/ 

https://fire.ak.blm.gov/
https://fire.ak.blm.gov/
https://fire.ak.blm.gov/
https://fire.ak.blm.gov/
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GlobFire Fire 

Perimeters 

Global, 500m 2002-2023 (Artés et al., 2019) Global, vectorized 

MODIS burned 

area product 

https://gwis.jrc.ec

.europa.eu/apps/c

ountry.profile/do

wnloads 

World Bank 

Official 

Boundaries: Admin 

0, 10 meter 

boundary Dataset 

Global, 10m 2020 (World Bank, 

2020) 

Boundaries are 10 

m, some 

imperfections 

along the borders 

found 

https://datacatalog

.worldbank.org/se

arch/dataset/0038

272/World-Bank-

Official-

Boundaries 

Moderate 

Resolution Imaging 

Spectroradiometer 

(MODIS) 

Collection 6 

MCD64A1 burned 

area product 

Global, 500m 2000-11-01 - 

Present 

(Giglio et al., 

2018) 

Global fire 

dataset, raster 

https://lpdaac.usg

s.gov/products/m

cd64a1v061/ 

MODIS 

MCD12Q1v061 

Land Cover Type 1 

Global, 500m 2001-01-01 - 

2022-12-31 

(Friedl and Sulla-

Menashe, 2022) 

Global land cover 

dataset, 

downloadable in 

small regions 

https://lpdaac.usg

s.gov/products/m

cd12q1v061/ 

Global LANd 

Cover mapping and 

Estimation 

(GLANCE) Grids - 

Version 01 CRS  

Global - (Arevalo et al., 

2022) 

Global land cover 

that splits North 

America, Europe 

and Asia 

https://measures-

glance.github.io/g

lance-grids/ 

Earth Networks 

Total Lightning 

Network (ENTLN) 

Global 2012-2022 (Zhu et al., 2022) Global dataset of 

lightning 

locations 

https://www.earth

networks.com/ 
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Worldwide 

Lightning Location 

Network 

(WWLLN) 

Global 15 August 2004 to 

the present 

(Rodger et al., 

2004) 

Global dataset of 

lightning 

locations 

https://wwlln.net/ 

Appendix B 

Table B1: Cumulative count of the amount of candidate lighting flashes per LIW by fire class.  

Matched Agency Reference Dataset Fires by Methodology 

Fire Size 

TMin MaxA DMin 

LIW 

Count 

Total 

Flashes 

for 

Matching 

Average 

Flash per 

Fire 

LIW 

Count 

Total 

Flashes 

for 

Matching 

Average 

Flash per 

Fire 

LIW 

Count 

Total 

Flashes 

for 

Matching 

Average 

Flash per 

Fire 

Small 707 9,013 12.75 673 12,963 19.26 696 13,793 19.82 

Moderate 843 6,046 7.17 767 12,820 16.71 784 13,627 17.38 

Large 276 2,182 7.91 220 2,907 13.21 223 3,102 13.91 

XLarge 34 745 21.91 24 326 13.58 24 339 14.13 

Mega 23 814 35.39 16 264 16.50 16 287 17.94 

Total 1,883 18,800 9.98 1,700 29,280 17.22 1,743 31,148 17.87 

 

Table B2: Cumulative percentage values of the holdover time distribution for all three methodologies within the NA BoLtFire ARD 690 
Version Dataset, TMin, MaxA and DMin. Holdover time is calculated as the difference between the start date of each lightning-

ignited wildfire and the time of the occurrence of the candidate lightning. 

Agency Reference Dataset After Applied Methodologies 

  TMin MaxA DMin 

Day Per 

Day 

Cumulative Cumulative 

Percent 

Per 

Day 

Cumulative Cumulative 

Percent 

Per 

Day 

Cumulative Cumulative 

Percent 

+1 - - - - - - 116 116 6.66% 

0 469 469 24.91% 429 429 25.24% 460 576 33.05% 

1 380 849 45.09% 354 783 46.06% 360 936 53.70% 

2 234 1083 57.51% 218 1001 58.88% 210 1146 65.75% 
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3 144 1227 65.16% 137 1138 66.94% 125 1271 72.92% 

4 103 1330 70.63% 101 1239 72.88% 93 1364 78.26% 

5 105 1435 76.21% 99 1338 78.71% 86 1450 83.19% 

6 80 1515 80.46% 73 1411 83.00% 57 1507 86.46% 

7 66 1581 83.96% 52 1463 86.06% 43 1550 88.93% 

8 58 1639 87.04% 50 1513 89.00% 42 1592 91.34% 

9 60 1699 90.23% 51 1564 92.00% 43 1635 93.80% 

10 44 1743 92.57% 35 1599 94.06% 29 1664 95.47% 

11 39 1782 94.64% 24 1623 95.47% 17 1681 96.44% 

12 45 1827 97.03% 37 1660 97.65% 29 1710 98.11% 

13 30 1857 98.62% 25 1685 99.12% 22 1732 99.37% 

14 26 1883 100.00% 15 1700 100.00% 11 1743 100.00% 

 

Table B3: Median and mean holdover time, rounded to the second decimal for the TMin, MaxA and DMin lighting matching 

methodologies. Holdover time is calculated as the difference between the start date of each lightning-ignited wildfire and the time of 695 
the occurrence of the candidate lightning. Median and mean distance from the agency reference dataset ignition point locations to 

each of the TMin, MaxA, and DMin’s candidate lightning.  

Method Holdover Time for the Agency Reference 

Dataset After Applied Methodologies 

Distance from Ignition Point for the Agency Reference 

Dataset After Applied Methodologies 

Median 

(days) 

Mean 

(days) 

Median 

(meters) 

Mean 

(meters) 

TMin 2.65 4.01 4,560 6,065 

MaxA 2.60 3.81 3,128 3,749 

DMin 1.88 3.22 3,991 4,431 
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Table B4: Comparison of ignition point location (inside or outside the perimeter) of the agency reference dataset with that predicted 

by the TMin, MaxA, and DMin methodologies.  700 

Location of LIW 

Agency 

Reference 

Dataset 

Agency Reference Dataset After Applied Methodologies 

TMin MaxA DMin 

0 (Outside fire Perimeter) 246 
            

Ignition Point Inside Perimeter (1) 
  

67 27.24% 32 13.01% 25 10.16% 

Ignition Point Outside Perimeter (0) 
  

125 50.81% 142 57.72% 152 61.79% 

No Matched Ignition Point 
  

54 21.95% 72 29.27% 69 28.05% 

1 (Inside fire Perimeter) 2,178 
            

Ignition Point Inside Perimeter (1) 
  

754 34.62% 534 24.52% 438 20.11% 

Ignition Point Outside Perimeter (0) 
  

937 43.02% 992 45.55% 1,128 51.79% 

No Matched Ignition Point 
  

487 22.36% 652 29.94% 612 28.10% 

Overall Accuracy 2,424 879 36.26% 676 27.89% 590 24.34% 

Appendix C 

Table C1: The table shows the Confusion Matrix for the Agency Reference Dataset and the NA BoLtFire ARD Version Dataset. 

    Predicted   

    Positive Negative   

Actual 

Positive 1,139 1,288 0.4686 

Negative 504 NA NA 

    0.6927 NA 0.6339 
 

Table C2: The table compares the total number of fires and total burned area in hectares from the agency reference dataset to the 

matched fires from 2012 to 2022, focusing on the percentage of fires and burned areas successfully matched to the NA BoLtFire 705 
ARD Version Dataset each year. 

  Agency Reference Dataset Matched LIW in the NA BoLtFire ARD Version Dataset 
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Year Total 

LIW 

Total Burned Area 

from ARD (Ha) 

Total 

LIW 

% of Total 

ARD LIW 

Total Burned Area 

from ARD (Ha) 

% of Total Burned 

Area of ARD LIW 

(Ha) 

2012 277 1,194,093.07 133 48.01% 948,029.28 79.39% 

2013 358 4,509,476.07 179 50.00% 3,438,868.40 76.26% 

2014 260 3,681,170.78 136 52.31% 2,879,498.12 78.22% 

2015 514 4,533,388.97 242 47.08% 2,770,759.59 61.12% 

2016 185 790,941.98 74 40.00% 569,064.61 71.95% 

2017 337 1,911,371.68 187 55.49% 1,327,237.94 69.44% 

2018 194 770,780.33 99 51.03% 555,415.70 72.06% 

2019 158 1,285,196.45 34 21.52% 397,548.86 30.93% 

2020 62 76,127.56 11 17.74% 23,485.25 30.85% 

2021 7 30,259.57 2 28.57% 7,102.05 23.47% 

2022 72 874,546.02 39 54.17% 608,933.25 69.63% 

Total 2,424 19,657,352.47 1,136 46.86% 13,525,943.04 68.81% 

Appendix D 

Table D1: Distribution of holdover time across the BoLtFire dataset. Holdover time refers to the time difference between when the 

fire was ignited by the lightning-ignited candidate and when it was detected. The detection time used was the start date.  

BoLtFire Dataset Holdover 

Holdover Days Count per Day Cumulative Count Cumulative % Total 

0 734 734 10.63% 

1 712 1,446 20.95% 
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2 691 2,137 30.96% 

3 629 2,766 40.08% 

4 527 3,293 47.71% 

5 518 3,811 55.22% 

6 446 4,257 61.68% 

7 443 4,700 68.10% 

8 396 5,096 73.83% 

9 373 5,469 79.24% 

10 327 5,796 83.98% 

11 323 6,119 88.66% 

12 286 6,405 92.80% 

13 257 6,662 96.52% 

14 240 6,902 100.00% 

 710 

Table D2: Distribution of candidate lightning ignition points relative to their corresponding fire perimeters, categorized by distance 

in kilometres. It shows the number of ignition points at each distance, along with their cumulative counts and cumulative 

percentages. 

BoLtFire Dataset Distance to Perimeter 

Distance Count Cumulative Count Cumulative % Total 

100m 208 208 4.08% 

1 km 893 1,101 21.58% 

2 km 718 1,819 35.65% 

3 km 556 2,375 46.54% 
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4 km 466 2,841 55.67% 

5 km 497 3,338 65.41% 

6 km 450 3,788 74.23% 

7 km 380 4,168 81.68% 

8 km 322 4,490 87.99% 

9 km 293 4,783 93.73% 

10 km 320 5,103 100.00% 

 

Table D3: Total count of lightning-ignited wildfires and total count of ENTLN flashes per country and per region. Lightning-ignition 715 
efficiency was calculated as the percent of total flashes that caused an ignition. 

  
BoLtFire dataset 

Type Total ENTLN Flashes Total LIW LIE 

North America 12,526,781 2,701 0.000216 

Eurasia 14,998,966 4,201 0.000280 

Total 27,525,747 6,902 0.000251 

 

Table D4: Total count of lightning-ignited wildfires and total burned area per continent across the study period 

 
Total BoLtFire Dataset Eurasia BoLtFire Dataset North America BoLtFire Dataset 

Fire 

Year 

LIW 

Count 

Total Burned Area 

(Ha) 

LIW 

Count 

Total Burned Area 

(Ha) 

LIW 

Count 

Total Burned Area 

(Ha) 

2012 223 954,154.31   223 954,154.31 

2013 942 4,534,309.14 581 1,729,146.95 361 2,805,162.20 

2014 830 5,003,677.03 527 2,683,327.39 303 2,320,349.63 
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2015 892 4,094,200.67 430 1,515,978.53 462 2,578,222.13 

2016 543 2,258,237.46 402 1,720,427.95 141 537,809.52 

2017 879 3,552,703.22 610 2,087,621.79 269 1,465,081.42 

2018 516 2,426,169.38 383 1,822,294.47 133 603,874.91 

2019 105 840,774.68 22 4,557.63 83 791,217.05 

2020 592 2,379,378.51 570 2,285,868.70 22 93,509.81 

2021 398 6,013,560.34 395 6,007,380.56 377 2,530,215.39 

2022 353 1,355,845.06 281 1,187,342.01 327 886,173.28 

Total 6,273 33,413,009.79 4,201 21,088,945.98 2,701 15,565,769.66 

 

Table D5: Overall view of both the Eurasia and North America BoLtFire datasets by total lightning-ignited wildfire count, total 720 
burned area, and average burned area, within the BoLtFire dataset by fire size.  

 
Total BoLtFire Dataset Eurasia BoLtFire Dataset North America BoLtFire Dataset 

Fire Size LIW 

Count 

Total Burned 

Area (Ha) 

Average 

Burned 

Area per 

Fire (Ha) 

LIW 

Count 

Total Burned 

Area (Ha) 

Average 

Burned 

Area per 

Fire (Ha) 

LIW 

Count 

Total Burned 

Area (Ha) 

Average 

Burned 

Area per 

Fire (Ha) 

Small 3,623 1,710,679.63 472.17  2,295 1,072,913.25 467.50  1,328 637,766.38 480.25 

Moderate 2,614 8,461,906.15  3,237.15  1,557 4,888,188.71 3,139.49  1,057 3,573,717.44 3,381.00 

Large 555 11,597,624.25 20,896.62  285 6,074,228.95 21,313.08  270 5,523,395.30 20,457.02 

XLarge 58 3,964,630.27 68,355.69  33 2,356,649.39 71,413.62  25 1,607,980.87 64,319.23 

Mega 52 10,919,875.34 209,997.60  31 6,696,965.67 216,031.15  21 4,222,909.68 201,090.94 

Total 6,902 36,654,715.64 5,310.74  4,201 21,088,945.98 5,019.98  2,701 15,565,769.66 5,762.97 
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Table D6: Total BoLtFire dataset count and average fire size by year. 

Fire Size LIW Count Total Burned Area (Ha) Average Burned Area Per Year 

Small 3,623 1,710,679.63 155,516.33 

Moderate 2,614 8,461,906.15 769,264.20 

Large 555 11,597,624.25 1,054,329.48 

XLarge 58 3,964,630.27 360,420.93 

Mega 52 10,919,875.34 992,715.94 

Grand Total 6,902 36,654,715.64 3,332,246.88 

 

Table D7: Total count and average fire size of fires in the BoLtFire dataset. 725 

BoLtFire Dataset 

Land Cover Type LIW Count Total Burned Area (Ha) Average Burned Area per Fire (Ha) 

Eurasia 4,201 21,088,945.98 5,019.98 

Deciduous Broadleaf Forests 4 3,578.54 894.63 

Deciduous Needleleaf Forests 68 85,986.17 1,264.50 

Evergreen Needleleaf Forests 260 561,001.33 2,157.70 

Grasslands 135 154,205.71 1,142.26 

Mixed Forests 238 460,177.69 1,933.52 

Open Shrublands 338 1,117,567.66 3,306.41 

Permanent Wetlands 8 2,763.93 345.49 
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Savannas 1,326 9,335,106.72 7,040.05 

Woody Savannas 1,824 9,368,558.23 5,136.27 

North America 2,701 15,565,769.66 5,762.97 

Deciduous Broadleaf Forests 3 1,208.39 402.80 

Deciduous Needleleaf Forests 7 5,288.50 755.50 

Evergreen Needleleaf Forests 223 1,126,573.76 5,051.90 

Grasslands 13 23,630.80 1,817.75 

Mixed Forests 11 59,012.85 5,364.80 

Open Shrublands 57 94,023.41 1,649.53 

Permanent Wetlands 18 11,587.16 643.73 

Savannas 913 4,956,426.85 5,428.73 

Woody Savannas 1,456 9,288,017.93 6,379.13 

Total 6,902 36,654,715.64 10,782.95 
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