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Abstract 8 

Coastal moorings allow scientists to collect long-term datasets valuable in understanding shelf dynamics, detecting 9 
climate variability and changes, and evaluating their impacts on marine ecosystems. However, we often cannot obtain 10 
continuous time series data from moorings due to mooring losses or instrument failures. Here, we present an updated version 11 
of the 14-year subsurface mooring dataset off the southwest coast of Western Australia (WA) during 2010-2023 12 
(https://doi.org/10.25919/myac-yx60, Bui and Feng, 2024). This updated dataset offers continuous daily temperature and 13 
current data with a 5-meter vertical resolution, collected from six coastal Integrated Marine Observing System (IMOS) 14 
moorings at depths between 48 m and 500 m. Self-Organizing Map (SOM) machine learning technique is applied to fill in the 15 
data gaps in the previous version. The data captures the Leeuwin Current variability on the shelf from intraseasonal to 16 
interannual time scales. The data also capture the variability of the Capes Current, a wind-driven northward current on the 17 
middle shelf. The usage of the in-filled data product is demonstrated by detecting extreme temperature events on the Rottnest 18 
shelf. The data products can be used to characterise subsurface features of extreme events such as marine heatwaves, and 19 
marine cold-spells, influenced by the Leeuwin Current and the wind-driven Capes Current, and to detect decadal change signals 20 
along the WA coast. 21 

1 Introduction 22 

Oceanography moorings are underwater instruments anchored on the sea floor that collect ocean currents, temperature, 23 
salinity, and other environmental parameters. Typically, mooring deployment periods range from 4-6 months in shelf waters 24 
to up to 18 months in deep oceans (Sloyan et al., 2024). Sustained long-term mooring observations serve as invaluable 25 
resources for environmental and climate research and play a vital role in calibrating and validating numerical models (Bailey 26 
et al., 2019). 27 
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The southwest Western Australian mooring array is part of the Integrated Marine Observing System (IMOS) program 28 
operated by Commonwealth Scientific and Industrial Research Organisation (CSIRO) since 2009, designed to monitor the 29 
influences of the southward-flowing Leeuwin Current (LC) on the continental shelf (Thompson, 1984; Chen and Feng, 2021). 30 
The anomalous meridional pressure gradient, associated with warm, low-salinity waters from the tropical Pacific Ocean 31 
entering the Indian Ocean through the Indonesian Archipelago, is the main driver of the LC (Feng and Wijffels, 2002; Godfrey 32 
and Ridgway, 1985). The strength of the LC varies seasonally, most due to variations in the alongshore winds (Smith et al., 33 
1991). During austral summer, strong alongshore northward winds drive northward Capes Current in the mid-inner shelf (Fig. 34 

1). The interannual variability of the LC is often associated with remote signals from the Pacific, the El Niño–Southern 35 
Oscillation (ENSO), the current being stronger during La Niña and weaker during El Niño (Feng et al., 2003).  36 

The southwest Western Australian mooring array has helped scientists identify the key role of the LC in the development 37 
of marine heatwaves (MHW) off the coast (Benthuysen et al., 2014; Feng et al., 2013). The mooring data has also been 38 
employed by Feng et al. (2021) to detect abnormal cooling events off the coast over 2016-2019 (defined as the marine cold 39 
spell, MCS) when the thermocline depth was elevated due to the weakening of the LC during the El Niño events. The sustained 40 
IMOS mooring array encompasses six coastal moorings on the Rottnest shelf during 2010-2023, ranging from 50m to 500m 41 

 

Figure 1. Bathymetry map and mooring locations (red circles) on the Rottnest Shelf. (a) Velocities estimated from 
measurements, with black arrows representing the mean state of vertically averaged velocities. The 0-200m average is used 
for the WATR50 mooring. The three dashed lines represent the 50m, 200m, and 500m contours. Black circles indicate the 
location of the Fremantle tide gauge station. Note that NRSROT consists of two separate moorings. (b) Schematic of shelf 
currents, with red arrows denoting the Leeuwin Current and blue arrows indicating the direction of the wind-driven Capes 
Current. 
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(Fig. 1 and Table 1). The first version of the gridded data from these moorings was published by Chen and Feng (2021) and an 42 
extension was published by Bui et al. (2023). Mooring time series are susceptible to missing values due to mooring loss and 43 
instrument failure. Strong currents can exert force on the mooring line, causing it to be pushed down in the water column, 44 
leaving data gaps near the surface (Sloyan et al., 2023). This paper introduces a new update of the mooring data, filling data 45 
gaps with a statistical method. 46 
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 68 

Table 1. Summary of coastal mooring stations. NRSROT: National Reference Station west of the Rottnest Island. WACA: Western 69 
Australia Perth Canyon. WATR: Western Australia Two Rocks.  70 

Station Latitude;  

Longitude 

Station  

depth 

(m) 

Temperature ADCP 

Instrument Interval 

(min) 

Mean 

sensor 

depths 

(m) 

Data 

span 

Instrument Interval 

(min) 

Bin 

numbers x 

bin size 

Data 

span 

NRSROT-

Temperature 

31.9900°S; 

115.3850°E 

61 SBE39a 

SBE37b 

5-15 27; 

33; 

43; 55 

1/2010-

5/2023 

    

NRSROT-

ADCP 

32.0000°S; 

115.4170°E; 

48     RDI 

Workhorse  

600 kHzc;  

Nortek 

Signature 500 

kHzd 

15 11x4m 8/2011-

5/2023 

WACA20 31.9830°S; 

115.2280°E 

200     Nortek 

Signature 250 

kHzd; Nortek 

Continental 

190 kHzd 

15 41x5m 8/2011-

5/2023 

WATR10 31.6433°S; 
115.2033°E 
 

100 SBE39 

SBE37 

5-15 25; 

30; 

35; 

40; 

52; 

70; 90 

1/2010-

5/2023 

Nortek  

Aquadopp 

400 kHzd;  

15 17x5m 8/2011-

5/2023 

WATR20 31.7233°S; 
115.0333°E 
 

200 SBE39 

SBE37 

5-15 25; 

35; 

50; 

68; 

100; 

125; 

150; 

175 

1/2010-

5/2023 

Nortek 

Continental 

190 kHzd;  

Nortek 

Signature 250 

kHzd 

15 25x8m 8/2011-

5/2023 
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WATR50 31.7683°S; 
114.9567°E 
 

500     RDI Long 

Ranger 75 

kHzc; Nortek 

Signature 55 

kHzd 

15 26x20m 8/2011-

5/2023 

a. SBE39 (and SBE39 plus) is a self-contained, autonomous temperature logger. (SBE: Sea-Bird Electronics). 

b. SBE37 is a single-channel CTD (Conductivity, Temperature, Depth) sensor. 

c. RDI ADCPs (Acoustic Doppler Current Profiles) are manufactured by Teledyne RD Instruments and comprise Long Ranger 

75 kHz and Workhorse 600 kHz. (https://www.teledynemarine.com/rdi). 

d. Nortek ADCPs are produced by Nortek group, including Signature 55 kHz, Continental 190 kHz, Signature 250 kHz, 

Aquadopp 400 kHz and Signature 500 kHz. (https://www.nortekgroup.com). 

Various techniques have been employed to address gaps in mooring datasets. Sprintall et al. (2009) utilized a damped 71 
least square fitting method to fill substantial gaps in mooring current time series data, in estimating the Indonesian Throughflow 72 
transport. Wang et al. (2015) adopted a combination of data extrapolation, interpolation, and a least square regression model 73 
to fill in missing data recorded in the central equatorial Indian Ocean. Cao et al. (2015) employed harmonic analysis and modal 74 
decomposition to isolate the tidal currents for each mode and reconstruct the full-depth tidal currents in the northern South 75 
China Sea. More recently, Sloyan et al. (2023) experimented with a machine learning approach, the Self-Organizing Map 76 
(SOM), to fill data gaps in the East Australian Current mooring array. The choice of method depends on the characteristics of 77 
data loss, such as the duration of gaps or the depth range affected, as well as the intended analyses of the data. 78 

SOM is a technique that projects high-dimensional input data onto a two-dimensional output space while preserving 79 
the topological structure of the input data (Kohonen, 1982). In SOM, units are organized so that similar units are positioned 80 
close to each other, while dissimilar ones are separated in the output data space. This method has found extensive applications 81 
in meteorology and oceanography (Liu and Weisberg, 2011), and can perform a range of tasks including clustering, data 82 
analysis and visualization, feature extraction, and data interpolation (Lobo, 2009). 83 

Chapman and Charantonis (2017) utilized SOM to reconstruct deep current velocities in the Southern Ocean from sea 84 
surface observations. They used densely observed surface velocities, sea surface height, sea surface temperature from satellites, 85 
and sparsely observed deep current velocities from Argo floats to train the SOM maps. Then, they derived dense velocity fields 86 
at a depth of 1000m. Their method took advantage of local correlations in the data space to find the smallest Euclidean distance, 87 
weighted by the local correlations, between a vector with missing components in the data space and the SOM units, which 88 
increased the accuracy of the filled deep velocities. 89 

This study employs the SOM method to fill in the data gaps in the southwest Western Australia mooring data, following 90 
the procedure in Chapman and Charantonis (2017), to generate a gap-free time series dataset. The use of the continuous dataset 91 
is demonstrated by examining several extreme temperature events that occurred in the region.  92 



   
 

6 
 

2 Data and methods 93 

2.1 Moored instrument data  94 

2.1.1 Temperature 95 

The in situ temperature dataset is collected using Seabird Electronics instruments, including SBE37, SBE39, and SBE39 96 
plus, with sampling intervals varying between 5 and 15 minutes (Table 1).  To ensure data quality, the raw dataset underwent 97 
rigorous quality assurance (QA) and quality control (QC) procedures (Morello et al., 2014), utilizing the IMOS Mooring 98 
toolbox written in the MATLAB scientific programming language. Only data flagged as 1, indicating good quality, are retained 99 
for this analysis. The QC data are concatenated, and then linearly interpolated onto a grid of 5 m vertical resolution and 100 
averaged daily (Bui et al., 2023). The unfilled data are available in the CSIRO Data Access Portal 101 
(https://doi.org/10.25919/9gb1-ne81).  102 

For data completion, we use satellite sea surface temperature (SST) sourced from the Regional Australian Multi-Sensor 103 
SST Analysis (RAMSSA) version 1.0 (Beggs et al., 2011), to extend the temperature data at each mooring to the sea surface 104 
by linear interpolation. The RAMSSA system combines SST data from infrared and microwave sensors on polar-orbiting 105 
satellites with in situ measurements to generate daily foundation SST. North of 40°S, RAMSSA is on average within ±0.07 °C 106 
of other multi-sensor SST analyses (Beggs et al., 2011). From conductivity-temperature-depth (CTD) profiles in the study 107 
region, ocean temperatures vary mostly linearly in the near-surface layer (top 30 m, below the foundation SST depth), so linear 108 
interpolation is an acceptable approximation. 109 

When minor gaps occur near the bottom, we use two available data points at the bottom of the vertical temperature 110 
profile to extrapolate linearly to the sea bottom.  111 

These procedures produce daily 5m-vertical resolution, gridded temperatures at NRSROT, WATR10, and WATR20 112 
moorings, spanning from January 2010 to May 2023, as presented in Figure S1. 113 

2.1.2 Velocity 114 

The velocity observations on the IMOS mooring array are recorded by various instruments, including RDI Workhorse 115 
300kHz/600kHz, RDI Long Ranger 75 kHz, Nortek Continental 190 kHz, Nortek Aquadopp 400 kHz, and Nortek Signature 116 
55/250/500 kHz. These instruments typically sample at a 15-minute interval and are mounted in an upward-looking 117 
configuration above the bottom (Table 1). 118 

The raw velocity data undergo quality control procedures similar to temperature, followed by concatenation and 119 
interpolation into a daily grid with 5m-vertical resolution, as described by Bui et al. (2023). The velocity dataset comprises 120 
observations from five stations: NRSROT, WACA20, WATR10, WATR20, and WATR50. Initially, gaps in the time series are 121 
filled using linear interpolation if the temporal gap size is less than 3 days. Subsequently, for each velocity profile, gaps near 122 

https://doi.org/10.25919/9gb1-ne81
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the surface or bottom are filled using linear extrapolation, akin to the technique applied for temperature data. The meridional 123 
and zonal components of the velocity datasets, from August 2011 to May 2023, are presented in Figures. S2 and S3, respectively. 124 

For the 2010-2023 period, the percentage of missing mooring data varies from 2%  to 16% for temperature, and 12%-125 
33% for velocity at various moorings (Table 2). The largest percentage of missing data is at WATR20, situated in the core of 126 
the LC system. The percentages of missing data tend to have high values near the surface and bottom layers of a mooring, due 127 
to mooring movement and variations of deployment depth over time (Figs. S4 and S5). 128 

 129 

2.2 SOM method 130 

To produce a gap-filled data product, we follow the method described in Chapman and Charantonis (2017). As discussed 131 
briefly in the introduction, this method “completes” a gappy dataset by first using available data to train SOM, which 132 
effectively clusters the data into a set of discrete states. These states can be represented as a 2-dimensional map, where 133 
neighbouring clusters are more similar to each other than distant clusters. Associated with each cluster is a reference vector 134 
that approximates the mean of all data assigned to that cluster and a weighted mean of data assigned to neighbouring clusters. 135 
After the map is trained, new data can be assigned to existing clusters by comparing the Euclidean distance in data space 136 
between that new data vector and the reference vector of each cluster. The cluster with the smallest Euclidean distance is 137 
known as the Best Matching Unit (BMU). Once a SOM is available, data vectors with missing components are presented 138 
sequentially, the BMU is found, and the missing data is completed (in-filled) by replacing it with the relevant components of 139 
the reference vector of the BMU. For full details, see Chapman and Charantonis (2017). 140 

 A schematic of using the SOM method to fill gaps in the mooring dataset is shown in Figure 2. We utilized the Vesanto 141 
et al. (2000) SOM toolbox for MATLAB 5 in this study. The temperature or velocity data for each station, along with ancillary 142 
data, are aggregated into data matrices. Ancillary data include day-of-year and daily Fremantle sea level (Fig. 1). Sea level 143 
data are obtained from the University of Hawaii Sea Level Center (https://uhslc.soest.hawaii.edu/). Fremantle sea level serves 144 

Table 2. Percentage (%) of missing temperature and velocity for each mooring for the time period of 2010-2023. Note that 
temperature profiles are not available at WACA20 and WATR50. 

 Temperature (%) Velocity (%) 

NRSROT 2 12 

WACA20  19 

WATR10 7 18 

WATR20 16 33 

WATR50  21 

 

https://uhslc.soest.hawaii.edu/
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as a proxy for the annual and interannual variations of the Leeuwin Current (Feng et al., 2003). We have tested adding 145 
alongshore winds to the data matrices, however, there is no improvement to the results, so wind data is not used in the SOM 146 
calculation, as the wind information may have been integrated in the sea level data. The temperature input matrix comprises 147 
4869 rows (representing the number of time steps) and 77 columns (reflecting the number of different observations at each 148 
time step). Similarly, the velocity input matrix consists of 4292 rows and 361 columns. The temperature/velocity input matrix 149 
with missing values is indicated by Dataset 1 in Figure 2. Only fully available profiles in the input matrix are selected as the 150 
training data shown by Dataset 2. Consequently, the number of rows in the training data is 3675 for temperature and 1146 for 151 
velocity.  152 

The number of units in the SOM is specified prior to the training process. According to the literature, a small number 153 
of SOM units is useful in capturing the general features of the system (Liu and Weisberg, 2011), while a larger number provides 154 
more detailed information and is more suitable for data gap filling (Sloyan et al., 2023). In our case, where we aimed to capture 155 
detailed information from the training data containing a large number of profiles, we opted for a larger number of units, 1000 156 
units for the temperature data and 500 units for the velocity data.  Using lower numbers of units only had minor effects on the 157 
results. We used a batch algorithm to train the SOM (Chapman and Charantonis, 2017). The training phase of SOM was done 158 
in two steps: the first rough phase, followed by a fine-tuning phase. In the first step, the neighbourhood radius and learning 159 
rate were set to some high values to gain a general orientation of the map, while in the second step, they were set to smaller 160 
values to perform only fine adjustments on the SOM unit’s position. 161 



   
 

9 
 

 162 

One of the important steps was the assignment of each input vector to a specific SOM unit, u, shown on the right-hand 163 
side of Figure 2. Firstly, we estimated the local correlations in the data space, represented by a COR matrix.  164 

Where DAT_cor is a correlation matrix among each normalized input vectors within a SOM unit.  165 

𝐶𝐶𝑂𝑂𝑂𝑂=1+�∑DAT_cor2, (1) 

 

Figure 2. Schematic of the SOM method applied to fill gaps in the mooring temperature and velocity data. Dataset 1 denotes an 
input data matrix in which rows are daily time vectors, columns are observational variables. In Dataset 1, solid lines present 
full available profiles, while dashed lines show the profiles including missing values. In Dataset 2, only full data profiles are 
selected for training in SOM. In SOM, we pre-define the number of units, for instance 1000 units for temperature, and 500 units 
for velocity. Each SOM unit contains a reference vector. On the right hand side, each daily input vector in the input data matrix 
is assigned to each SOM unit using a similarity function defined by Chapman and Charantonis, 2016. Finally, we use the referent 
vector of each SOM to fill gaps in corresponding daily input vector, shown in Dataset 3. 

 

 

 

 

 

 



   
 

10 
 

Given with local correlations in the data space, we then calculated the minimum Euclidean distance between a 166 

normalized input vector X and the referent vector of the SOM unit, 𝑟𝑟𝑟𝑟𝑟𝑟𝑢𝑢   using a similarity function (Chapman and 167 

Charantonis, 2017). The similarity function is defined as: 168 

After determining the most appropriate SOM unit, the missing values in the input vector were extracted from the corresponding 169 
referent vector, providing the in-filled data, Dataset 3 (Fig. 2).  170 

2.3 Validation of SOM-based infilling technique 171 

For mooring data, a failed mooring/instrument often results in a block of data being lost until the next deployment. To 172 
simulate this effect, we withhold temperature data at one site for 150 days from 1/1/2020 to 30/5/2020, which is roughly the 173 
length of one deployment cycle. We utilize temperature data at the other two sites to identify the best matching SOM units, to 174 
fill in the withholding data. At NRSROT, the R² and the root-mean-square-error (RMSE) between withheld and filled 175 
temperature data are 0.70 and 0.61°C, respectively; at WATR10, these values are 0.86 and 0.39°C, and at WATR20, they are 176 
0.91 and 0.58°C, as shown in Figure 3. Furthermore, we evaluate the ability of the SOM to reconstruct extreme temperature 177 
patterns. As shown in Figure S6, a comparison of the observed and SOM-derived temperatures at WATR20 during the 178 
validation period (January 1 to May 30, 2020) highlights this capability. Black crosses in both panels denote days identified as 179 
marine cold spells (MCS), defined as periods where temperatures fall below the 10th percentile for at least five consecutive 180 
days (Hobday et al., 2016). SOM-derived temperatures successfully captured three bottom-intensified MCS events as in 181 
observations, demonstrating the method's reliability in reconstructing extreme cold temperature patterns. 182 

To assess potential overfitting, the SOM was tested on a separate period, spanning January 10 to June 8, 2012, with 150 183 
days withheld from training. The resulting root mean square error (RMSE) values were 0.41°C at NRSROT, 0.36°C at 184 
WATR10, and 0.55°C at WATR20. If we repeat this process and validate the method against data included in training dataset, 185 
we obtain  RMSE figures similar to those obtained from withheld data, indicating that the SOM method is not overfitting the 186 
dataset. 187 

To assess further the accuracy of the SOM method, we compare it with a simple climatology method over the same 188 
validation period, as shown in Figure S7. Overall, the mean vertical temperature profiles from the SOM method are closer to 189 
the observed data than those from the climatology method (Fig. S7a-c). As a result, the residuals from the SOM method, 190 
calculated by subtracting the filled SOM values from the observed temperatures, are smaller than the climatological residuals. 191 
Additionally, the standard deviation of the observed temperatures is closer to that of the SOM data, while it differs significantly 192 
from the climatological values (Fig. S7d-f). These findings suggest that the SOM method is more reliable than the climatology 193 
method. 194 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋, 𝑟𝑟𝑟𝑟𝑟𝑟𝑢𝑢) = ���(𝑟𝑟𝑟𝑟𝑟𝑟𝑢𝑢 − 𝑋𝑋)2�, (2) 
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Using the same approach, we examine the accuracy of velocity data gap filling. Specifically, we consider the period 195 
from 5/2020 to 8/2020, during which velocity data at WATR50 within the depth range of 70-450m are withheld for 90 days. 196 
For the meridional velocity, R² and RMSE values between withheld and infill data are 0.63 and 0.12 m s⁻¹, respectively (Fig. 197 
4a). For the zonal component, these values are 0.50 and 0.05 m s⁻¹, respectively (Fig. 4b). To determine if the SOM method 198 
overfits the data, we withheld velocity data from a different period spanning from 5/2012 to 8/2012. The resulting RMSE 199 
values for the meridional and zonal velocities are 0.13 and 0.06 m s⁻¹, respectively. These findings align with the RMSE from 200 
the validation data, indicating that the SOM method effectively avoids overfitting. 201 

 202 
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3 Data application 203 

Having confirmed the effectiveness of the SOM method for filling missing values in a mooring dataset, we now employ 204 
all non-missing daily data to train the SOM, and then fill the data gaps. The filled temperature data exhibit consistent temporal 205 
and spatial variability (Fig. 5). The gap-filled data capture cold temperature events at WATR20 during early 2010 and mid-206 

 

Figure 3. Scatter plots of observed and SOM-derived temperatures at the three moorings between 1/1/2020 and 
30/5/2020, a period of 150 days. The red lines are the linear fits of the scatter plots.  

 

 

 

 

 

 

Figure 4. Scatter plots of observed and SOM-derived (a) meridional and (b) zonal velocities at WATR50 between 5/2020 
and 8/2020, a period of 90 days, and a depth range of 70-450 m. The red lines are the linear fits.  
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2016, coinciding with periods when the thermocline shoaled under the influence of El Niños, consistent with our understanding 207 
of the dynamics of the Leeuwin Current system (Feng et al., 2021).  208 

The preprocessing of the input data via interpolation/extrapolation has dual advantages: (1) enhancing the accuracy of 209 
reference vectors in the SOM by increasing the number of good data profiles, and (2) reducing the potential for errors near the 210 
bottom depth. For example, without extrapolating the temperature data to the bottom, there are blocks of anomalous warm 211 
biases near the bottom depth in the SOM-derived data (Fig. S8).  212 

Figure 6 compares the consistency between observed and gap-filled temperature time series at three specific depths. 213 
The filled temperatures (shown in red lines) exhibit temperature variance similar to those of the observed time series. For 214 
example, at a depth of 95m at WATR10 towards the end of 2011, the filled temperature is anomalously warm, reflecting the 215 
strengthened Leeuwin Current system during a La Niña period (Feng et al., 2013), as shown by the red line rising above the 216 
black dashed line. Another example, at a depth of 190m at WATR20, during the beginning of 2010 and in the winter of 2016, 217 
the filled temperature was cooler than normal (indicated by the red line below the black dashed line) due to the shoaling of the 218 
thermocline towards the surface during El Niño episodes. 219 

Continuous temperature time series are crucial for detecting subsurface marine heatwaves (MHWs) or marine cold 220 
spells (MCSs) that significantly affect marine ecosystems (Smale et al., 2019). Figure 7 shows the mean intensity of detected 221 
MHW or MCS events at WATR20 based on daily gap-filled temperatures. The definition of each MHW or MCS event is based 222 
on Hobday et al. (2016).  An MHW (MCS) event is classified as a thermal event when its temperature exceeds the 90th 223 
percentile threshold (or falls below the 10th percentile threshold) for at least 5 days. Additionally, two consecutive events 224 
occurring within a temporal gap of less than two days are considered a single combined event. This plot is performed using 225 
MATLAB code for MHW/MCS detections (Zhao and Marin, 2019). Following the intense MHWs during 2011-2013 (Fig. 7a), 226 
MCSs occurred from 2016 to 2020, contributing to the recovery of impacted marine ecosystems (Fig. 7b). Many of the events 227 
are subsurface or bottom intensified, which are less detectable from ocean surface based on satellite data alone. 228 

To highlight the role of data products in detecting subsurface marine heatwaves (MHWs), we examine several 229 
representative cases at three specific depths of different moorings: NRSROT-40m, WATR10-80m, and WATR20-100m (Fig. 230 
8). We also analyze the meridional component of velocity at these depths to explore the role of ocean currents in contributing 231 
to MHWs. A MHW at 40m depth at NRSROT lasted for 9 days in September 2020, with a maximum intensity of 1.5°C, and 232 
was classified as moderate strength (Category I) MHW (Fig. 8a). During this period, the current was directed southward (Fig. 233 
8b). A MHW at 100m depth at WATR10 lasted for a relatively longer duration of 20 days in September 2014, with a maximum 234 
intensity of 1.9°C, and was classified as strong (Category II) MHW. Although peak current occurred during the MHW event, 235 
it led to the peak temperature anomaly by 9 days (Fig. 8d). A MHW at 100m depth at WATR20 began on 13 August 2022, and 236 
lasted for 10 days with a maximum intensity of 1.4°C. Unlike the other events, the peak current led to the MHW timeframe, 237 
specifically on 10 August 2022. These observations suggest that strong southward currents often coincide with or precede 238 
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MHWs by several days. Further research is needed to clarify the impact of the Leeuwin Current in driving subsurface MHWs 239 
on the Rottnest Shelf. In addition, we zoomed in on the SOM-filled temperatures from January to July 2011 when there was a 240 
two-month gap at the WATR10 mooring (Fig. S9). The gap-filled temperatures at WATR10 (Fig. S9d) enabled us to detect the 241 
MHW events across the water column. 242 

 243 

 244 

 245 
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 246 

 

Figure 5. Data matrix of daily gridded, 5m resolution gap-filled temperatures for NRSROT, WATR10 and WATR20. 
The x axis shows the depth ranges of each moorings, while y axis presents time period from Jan 2010 to May 2023. Note 
that 0m follows directly after preceding mooring. The SST data are derived from the Regional Australian Multi-Sensor 
SST Analysis (RAMSSA) version 1.0.  
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 247 

 248 

 249 

 250 

 251 

 

Figure 6. Comparison of observed and gap-filled temperature timeseries for a) NRSROT at 50m, b) WATR10 at 95m  and c) 
WATR20 at 190m. The black dashed lines show daily climatological timeseries at corresponding depths. The climatological 
values are estimated from gap-filled data. The bottom panel shows Fremantle sea level timeseries.  
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 252 

 253 

 254 

 255 

 256 

 257 

 258 

 259 

 

Figure 7. Mean intensity for individual (a) MHW and (b) MCS events at WATR20. Estimation is based on daily gap-filled 
temperature. The definition of each event follows Hobday et al. (2016).  This plot is performed using MATLAB code (Zhao and 
Marin, 2019). The threshold temperature identifying a MHW or a MCS is set at the 90th and 10th percentile, respectively. Three 
arrows in (a) denote times of MHW events shown in Figure 8.  
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Overall, the gap-filled velocity data are consistent with temporal periods of data gaps both at the mooring location and 260 
the adjacent mooring sites (Figs. S10 – S13). The observed mean vertical profiles agree well with those derived from the filled 261 
data (Fig. S12), indicating that the SOM method accurately reconstructed the intricate vertical structure of the LC system.  262 

The LC flows along the shelf break, making velocities measured at WATR20 and WACA20 suitable for characterizing 263 
its primary features. From the v-component data, the maximum mean currents recorded at WATR20 and WACA20 are -0.25 264 
m s-1, and -0.12 m s-1, respectively (Fig. S12d, b). Furthermore, the depths corresponding to these maximum values at the two 265 
stations are 80m, and 100m, respectively. It can be inferred that the LC decelerates and deepens as it flows from WATR20 to 266 
WACA20. The irregular topography around the head of Perth Canyon may contribute to this disturbance (Fig. 1).    267 

 
Figure 8. Left panels: Examples of marine heatwaves at NRSROT-40m (a), WATR10-80m (c), and WATR20-100m (e). 
Categories are moderate (yellow – category I) and strong (red – category II), as defined by Hobday et. al., 2018. In (a), (c), (e), 
the dashed red lines are estimated as twice the 90th percentile difference from the mean climatology value. Right panels: 
Meridional component of the current velocity at the same time and depth as MHWs shown in the corresponding left panels. In 
all panels, vertical blue lines indicate the time frame of each MHW event.  
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4 Data availability 268 

The outcome of this research yields the in-filled data product, which is available at https://doi.org/10.25919/myac-yx60 269 
(Bui and Feng, 2024). The product comprises continuous daily-5m resolution temperature and current variables (Table 3). All 270 
data products are available as NetCDF files. In addition to main parameters such as temperature and current, we provide quality 271 
control flags that indicate the original data sources. Specifically, we use seven flags for SOM-filled temperatures and four flags 272 
for SOM-filled currents, as detailed in Table 3.  273 

We provide direct links to all datasets used in this study:  274 

- The unfilled gridded data- https://doi.org/10.25919/9gb1-ne81 (Bui et al., 2023); 275 

Table 3. Variables incuded in the in-filled data product. 

Parameter Variable name Units Description 

Time TIME Days An array containing time information (days since 1950-
01-01 00:00:00 UTC). 

Depth DEPTH Meters (m) An array containing depth levels. 

Longitude LONGITUDE 0E  

Latitude LATITUDE 0N  

Temperature TEMP 0C A matrix containing temperatures over the entire record 
for whole water column. 

Temperature_quality 
control 

TEMP_quality_control  A matrix containing flag values that indicate the original 
temperature data.  
1: Observed temperature 
2: SST 
3: Interpolated temperature near surface 
4: Extrapolated temperature near bottom 
5: SOM filled temperature near surface 
6: SOM filled temperature in sensor range 
7: SOM filled temperature near bottom 
 

U velocity UCUR m s-1 (true east) A matrix containing current data over the entire record 
for whole water column. 

V velocity VCUR m s-1 (true 
north) 

Current_quality_control UCUR_ 
quality_control 
VCUR_ 
quality_control 

 A matrix containing flag values that indicate the original 
current data.  
1: Observed current 
2: Extrapolated current near surface 
3: Extrapolated current near bottom 
4: SOM filled current 

 

 

 

 

https://doi.org/10.25919/myac-yx60
https://doi.org/10.25919/9gb1-ne81
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- Satellite sea surface temperature from the Regional Australian Multi-Sensor SST Analysis (RAMSSA)- 276 
https://portal.aodn.org.au (Beggs et al., 2011);  277 

- Fremantle sea level from the University of Hawaii Sea Level Center - https://uhslc.soest.hawaii.edu. 278 

5 Code availability  279 

We provide scripts in MATLAB to download and plot the data products. These scripts are available online (Bui and 280 
Feng, 2024), and are available under a Creative Commons Attribution 4.0 International license (CC BY 4.0).  281 

6 Summary and discussion 282 

In this research, we have employed a SOM-based method to fill significant temperature and velocity measurement gaps 283 
from a mooring array on the Rottnest shelf off southwest Western Australia that monitors the Leeuwin Current and associated 284 
shelf processes. We use daily temperature records from 3 moorings of approximately 13.5 years, and nearly 13 years of daily 285 
current velocity records from 5 moorings, in conjunction with daily SST and coastal sea level at Fremantle, to train SOM. 286 
Because this is a relatively small mooring array, we pre-process observational data using interpolation and extrapolation to 287 
have enough non-missing daily data profiles to train SOM. Evaluated with withholding data, the RMSE for temperature 288 
estimations at the 3 moorings are 0.61oC at NRSROT, 0.39oC at WATR10, and 0.58oC at WATR20, respectively. The RMSE 289 
for the meridional (alongshore) and zonal (cross-shore) velocities are 0.1 m s-1 and 0.05 m s-1. In addition, the data pre-290 
processing brings better consistency between the observed and gap-filled data.  291 

Since the strength of the LC is also influenced by local winds, we have evaluated the impact of including local winds 292 
during SOM training. Figure S14 presents the observed and reconstructed temperatures at the three moorings between January 293 
1, 2020, and May 30, 2020, with local winds incorporated into the SOM training process. Compared to the case where local 294 
winds were excluded (Fig. 3), we found that including local winds resulted in a lower RMSE at NRSROT but a higher RMSE 295 
at WATR20. Overall, the differences were minimal. Local winds are important for the seasonal climatology of the Leeuwin 296 
Current, however, on interannual and intraseasonal time scales, the Leeuwin Current is more influenced by remotely forced 297 
coastal Kelvin waves, as reflected in coastal sea level variations (Feng et al. 2003; Marshall and Hendon, 2014). The effects 298 
of local winds may also have been integrated into the sea level variations. 299 

SOM is an unsupervised learning method capable of capturing non-linear processes in the training data.  Liu and 300 
Weisberg (2005) showed that the SOM method, unlike the linear empirical orthogonal functions (EOF), was able to reveal 301 
asymmetric features in the Florida Current system, such as variations in current strength and coastal jet location. However, as 302 
a statistical approach, it relies on enough realizations in the training dataset to properly capture the nonlinearity. In the Rottnest 303 
shelf region, several factors contribute to the non-linear variability in both temperature and velocity fields. Mesoscale eddies 304 

https://uhslc.soest.hawaii.edu/
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can stem from the instability of the Leeuwin Current. Intense land-sea breezes during summer amplify near-inertial currents 305 
(Mihanović et al., 2016). Additionally, the strong shear zone between the Capes Current and the Leeuwin Current in summer, 306 
as well as interactions between the strengthening of the LC and the Perth Canyon in winter, can generate sub-mesoscale eddies 307 
(Cosoli et al., 2020). SOM may well capture the mesoscale processes in the LC. Due to their randomness, however, 308 
submesoscale processes may not be fully captured in daily velocities. This is reflected in the lower R-squared values for 309 
velocities compared to temperatures (Figs 3, 4).  310 

Our continuous daily data products reveal that numerous MHW and MCS events occur sub-surface, which are 311 
undetectable while using altimetry data (Fig. 7). We also find that intense MHW events are frequently related to strong 312 
southward currents at the same depth (Fig. 8). However, the role of advection temperature due to shelf/slope LC current or 313 
warm-core eddies remains unclear. Future mooring observations are needed to better understand the characteristics of MHWs 314 
and MCSs, as well as the factors driving extreme temperatures.  315 

Addressing small gaps in the mooring data appears to be a crucial step before training SOM. We have tried two other 316 
options: assigning missing values as zeros or replacing them with climatological values derived from the original data. We 317 
have experimented with these two options with an iterative approach (e.g. Sloyan et al. 2023) but found that the filled 318 
temperature time series exhibits some inconsistency, such as a block of constant values or temperature inversions. Our option 319 
of pre-processing the observational data by filling small gaps increases the number of good profiles for training, e.g., 75% of 320 
temperature profiles are gap-free. The method can be easily applied to fill data gaps in shelf mooring arrays with small gaps 321 
in the vertical so that little errors are introduced from linear extrapolation. For complex mooring systems with enough 322 
redundancy, the Iterative Completion Self-Organizing Maps (ITCOMPSOM) method outlined in Sloyan et al. (2023) could be 323 
more useful. 324 

We have provided examples that highlight the advantages of using filled mooring data for end-users.  The continuous 325 
daily temperature time series are essential for characterizing sub-surface marine heatwaves and cold spells on the Rottnest 326 
shelf, which can last from days to weeks. Furthermore, the gap-filled velocity time series from the mooring array allows 327 
researchers to capture episodical cross-shore and along-shore processes on the Rottnest shelf, offering valuable insights into 328 
the dynamics of the Leeuwin Current and Capes Current. These mooring data products, when combined with other 329 
observational platforms such as the IMOS glider program and surface radar observations, can be integrated into ocean-climate 330 
models to improve the accuracy of marine predictions for Western Australia. 331 

7 Supplement 332 

The supplement related to this article is available online at: https://doi.org/10.25919/myac-yx60. 333 



   
 

22 
 

8 Author contributions 334 

MF conceptualized and designed the study. TB and MF performed the study, with SOM source codes provided by CC. 335 
TB processed the data, produced the figures and first draft of the manuscript and associated data products; and MF and CC 336 
reviewed and edited the manuscript.  337 

9 Competing interests 338 

The contact author has declared that none of the authors has competing interests. 339 

10 Disclaimer 340 

Publisher’s note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, 341 
published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications 342 
makes every effort to include appropriate place names, the final responsibility lies with the authors. 343 

11 Acknowledgements 344 

CSIRO collected mooring data under the Integrated Marine Observing System (IMOS) program. IMOS is enabled by 345 
the National Collaborative Research Infrastructure Strategy (NCRIS). Satellite SST sourced from the Regional Australian 346 
Multi-Sensor SST Analysis (RAMSSA) version 1.0. Daily Fremantle sea level was downloaded from the University of Hawaii 347 
Sea Level Center. We thank Ryan Crossing, Ian Darby, Mark Snell, Beau De Groot, and many others in the deployment and 348 
recovery of the moorings, and Mark Snell and Miaoju Chen for quality control of the mooring data.  We thank Bernadette 349 
Sloyan for constructive discussion and for sharing the code employed by Sloyan et al. (2023). We appreciate the feedback from 350 
the three reviewers, which has helped enhance the quality of the manuscript. 351 

12 References 352 

Bailey, K., Steinberg, C., Davies, C., Galibert, G., Hidas, M., McManus, M. A., Murphy, T., Newton, J., Roughan, M., and 353 
Schaeffer, A.: Coastal mooring observing networks and their data products: recommendations for the next decade, Frontiers 354 
in Marine Science, 6, 180, https://doi.org/10.3389/fmars.2019.00180, 2019. 355 

Beggs, H., Zhong, A., Warren, G., Alves, O., Brassington, G., and Pugh, T.: RAMSSA—An operational, high-resolution, 356 
regional Australian multi-sensor sea surface temperature analysis over the Australian region, Australian Meteorological 357 
and Oceanographic Journal, 61, 1, 2011. 358 

Benthuysen, J., Feng, M., and Zhong, L.: Spatial patterns of warming off Western Australia during the 2011 Ningaloo Niño: 359 
Quantifying impacts of remote and local forcing, Continental Shelf Research, 91, 232-246, 360 
https://doi.org/10.1016/j.csr.2014.09.014, 2014. 361 

Bui, T. and Feng, M.: Gap-filled, gridded subsurface physical oceanography time series dataset derived from selected mooring 362 
measurements off the Western Australia coast during 2009-2023, https://doi.org/10.25919/myac-yx60,  2024. 363 

https://doi.org/10.3389/fmars.2019.00180
https://doi.org/10.1016/j.csr.2014.09.014
https://doi.org/10.25919/myac-yx60


   
 

23 
 

Bui, T., Feng, M., and Snell, M.: An updated dataset for "A long-term, gridded, subsurface physical oceanography dataset and 364 
average annual cycles derived from in situ measurements off the Western Australia coast during 2009-2020", 365 
https://doi.org/10.25919/9gb1-ne81,  2023. 366 

Cao, A.-Z., Li, B.-T., and Lv, X.-Q.: Extraction of internal tidal currents and reconstruction of full-depth tidal currents from 367 
mooring observations, Journal of Atmospheric and Oceanic Technology, 32, 1414-1424, 2015. 368 

Chapman, C. and Charantonis, A. A.: Reconstruction of subsurface velocities from satellite observations using iterative self-organizing maps, 369 
IEEE Geoscience and Remote Sensing Letters, 14, 617-620, https://doi.org/10.1109/Lgrs.2017.2665603, 2017. 370 

Chen, M. and Feng, M.: A long-term, gridded, subsurface physical oceanography dataset and average annual cycles derived 371 
from in situ measurements off the Western Australia coast during 2009–2020, Data in Brief, 35, 106812, 372 
https://doi.org/10.1016/j.dib.2021.106812, 2021. 373 

Cosoli, S., Pattiaratchi, C., and Hetzel, Y.: High-frequency radar observations of surface circulation features along the south-374 
western australian coast, Journal of Marine Science and Engineering, 8, 97, ARTN 97 375 

10.3390/jmse8020097, 2020. 376 
Feng, M. and Wijffels, S.: Intraseasonal variability in the South Equatorial Current of the east Indian Ocean, Journal of physical 377 

oceanography, 32, 265-277, https://doi.org/10.1175/1520-0485(2002)032<0265:Ivitse>2.0.Co;2, 2002. 378 
Feng, M., McPhaden, M. J., Xie, S.-P., and Hafner, J.: La Niña forces unprecedented Leeuwin Current warming in 2011, 379 

Scientific Reports, 3, 1277, https://doi.org/10.1038/srep01277, 2013. 380 
Feng, M., Meyers, G., Pearce, A., and Wijffels, S.: Annual and interannual variations of the Leeuwin Current at 32°S, J. 381 

Geophys. Res, 108, https://doi.org/10.1029/2002JC001763, 2003. 382 
Feng, M., Caputi, N., Chandrapavan, A., Chen, M., Hart, A., and Kangas, M.: Multi-year marine cold-spells off the west coast 383 

of Australia and effects on fisheries, Journal of Marine Systems, 214, 103473, 384 
https://doi.org/10.1016/j.jmarsys.2020.103473, 2021. 385 

Godfrey, J. and Ridgway, K.: The large-scale environment of the poleward-flowing Leeuwin Current, Western Australia: 386 
longshore steric height gradients, wind stresses and geostrophic flow, Journal of Physical Oceanography, 15, 481-495, 387 
https://doi.org/10.1175/1520-0485(1985)015<0481:Tlseot>2.0.Co;2, 1985. 388 

Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale, D. A., Straub, S. C., Oliver, E. C., Benthuysen, J. A., Burrows, M. T., 389 
Donat, M. G., and Feng, M.: A hierarchical approach to defining marine heatwaves, Progress in oceanography, 141, 227-390 
238, https://doi.org/10.1016/j.pocean.2015.12.014, 2016. 391 

Kohonen, T.: Self-Organized Formation of Topologically Correct Feature Maps, Bio. Cyber., 43, 59-69, 392 
https://doi.org/10.1007/Bf00337288, 1982. 393 

Liu, Y. and Weisberg, R. H.: Patterns of ocean current variability on the West Florida Shelf using the self-organizing map, 394 
Journal of Geophysical Research: Oceans, 110, Artn C06003, 10.1029/2004jc002786, 2005. 395 

Liu, Y. and Weisberg, R. H.: A review of self-organizing map applications in meteorology and oceanography, Self-organizing 396 
maps: applications and novel algorithm design, 1, 253-272, https://doi.org/10.5772/566, 2011. 397 

Lobo, V. J.: Application of self-organizing maps to the maritime environment, Information Fusion and Geographic Information 398 
Systems: Proceedings of the Fourth International Workshop, 17-20 May 2009, 19-36,  399 

Marshall, A. G. and Hendon, H. H.: Impacts of the MJO in the Indian Ocean and on the Western Australian coast, Climate 400 
Dynamics, 42, 579-595, 10.1007/s00382-012-1643-2, 2014. 401 

Mihanović, H., Pattiaratchi, C., and Verspecht, F.: Diurnal sea breezes force near-inertial waves along Rottnest continental 402 
shelf, southwestern Australia, Journal of physical oceanography, 46, 3487-3508, 2016. 403 

Morello, E. B., Galibert, G., Smith, D., Ridgway, K. R., Howell, B., Slawinski, D., Timms, G. P., Evans, K., and Lynch, T. P.: 404 
Quality Control (QC) procedures for Australia’s National Reference Station’s sensor data—Comparing semi-autonomous 405 
systems to an expert oceanographer, Methods in Oceanography, 9, 17-33, https://doi.org/10.1016/j.mio.2014.09.001, 2014. 406 

Sloyan, B. M., Cowley, R., and Chapman, C. C.: East Australian Current velocity, temperature and salinity data products, 407 
Scientific Data, 11, 10, https://doi.org/10.1038/s41597-023-02857-x, 2024. 408 

Sloyan, B. M., Chapman, C. C., Cowley, R., and Charantonis, A. A.: Application of Machine Learning Techniques to Ocean 409 
Mooring Time Series Data, Journal of Atmospheric and Oceanic Technology, 40, 241-260, https://doi.org/10.1175/Jtech-410 
D-21-0183.1, 2023. 411 

https://doi.org/10.25919/9gb1-ne81
https://doi.org/10.1109/Lgrs.2017.2665603
https://doi.org/10.1016/j.dib.2021.106812
https://doi.org/10.1175/1520-0485(2002)032
https://doi.org/10.1038/srep01277
https://doi.org/10.1029/2002JC001763
https://doi.org/10.1016/j.jmarsys.2020.103473
https://doi.org/10.1175/1520-0485(1985)015
https://doi.org/10.1016/j.pocean.2015.12.014
https://doi.org/10.1007/Bf00337288
https://doi.org/10.5772/566
https://doi.org/10.1016/j.mio.2014.09.001
https://doi.org/10.1038/s41597-023-02857-x
https://doi.org/10.1175/Jtech-D-21-0183.1
https://doi.org/10.1175/Jtech-D-21-0183.1


   
 

24 
 

Smale, D. A., Wernberg, T., Oliver, E. C., Thomsen, M., Harvey, B. P., Straub, S. C., Burrows, M. T., Alexander, L. V., 412 
Benthuysen, J. A., and Donat, M. G.: Marine heatwaves threaten global biodiversity and the provision of ecosystem services, 413 
Nature Climate Change, 9, 306-312, 2019. 414 

Smith, R. L., Huyer, A., Godfrey, J. S., and Church, J. A.: The Leeuwin current off western Australia, 1986–1987, Journal of 415 
Physical Oceanography, 21, 323-345, https://doi.org/10.1175/1520-0485(1991)021<0323:Tlcowa>2.0.Co;2, 1991. 416 

Sprintall, J., Wijffels, S. E., Molcard, R., and Jaya, I.: Direct estimates of the Indonesian Throughflow entering the Indian 417 
Ocean: 2004–2006, Journal of Geophysical Research: Oceans, 114, https://doi.org/10.1029/2008jc005257, 2009. 418 

Thompson, R. O.: Observations of the Leeuwin current off Western Australia, Journal of physical oceanography, 14, 623-628, 419 
https://doi.org/10.1175/1520-0485(1984)014<0623:Ootlco>2.0.Co;2, 1984. 420 

Wang, Y., McPhaden, M. J., Freitag, H. P., and Fey, C.: Moored acoustic Doppler current profiler time series in the central 421 
equatorial Indian Ocean, http://doi.org/10.7289/V5HX19NP, 2015. 422 

Zhao, Z. and Marin, M.: A MATLAB toolbox to detect and analyze marine heatwaves, J. Open Source Softw., 4, 1124, 423 
https://joss.theoj.org/papers/10.21105/joss.01124,  2019. 424 

 425 

https://doi.org/10.1175/1520-0485(1991)021
https://doi.org/10.1029/2008jc005257
https://doi.org/10.1175/1520-0485(1984)014
http://doi.org/10.7289/V5HX19NP
https://joss.theoj.org/papers/10.21105/joss.01124

	Abstract
	1 Introduction
	2 Data and methods
	2.1 Moored instrument data
	2.1.1 Temperature
	2.1.2 Velocity

	2.2 SOM method
	2.3 Validation of SOM-based infilling technique

	3 Data application
	4 Data availability
	5 Code availability
	6 Summary and discussion
	7 Supplement
	8 Author contributions
	9 Competing interests
	10 Disclaimer
	11 Acknowledgements
	12 References

