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Abstract 8 

Coastal moorings allow scientists to collect long-term datasets valuable in understanding shelf dynamics, detecting 9 
climate variability and changes, and evaluating their impacts on marine ecosystems. However, we often cannot obtain 10 
continuous time series data from moorings due to mooring losses or instrument failures. Here, we present an updated version 11 
of the 14-year subsurface mooring dataset off the southwest coast of Western Australia (WA) during 2010-2023 12 
(https://doi.org/10.25919/myac-yx60, Bui and Feng, 2024). . This updated dataset offers continuous daily temperature and 13 
current data with a 5-meter vertical resolution, collected from six coastal Integrated Marine Observing System (IMOS) 14 
moorings at depths between 48 m and 500 m. Self-Organizing Map (SOM) machine learning technique is applied to fill in the 15 
data gaps in the previous version. The data captures the Leeuwin Current variability on the shelf from intraseasonal to 16 
interannual time scales. The data also capture the variability of the Capes Current, a wind-driven northward current on the 17 
middle shelf. The usage of the in-filled data product is demonstrated by detecting sub-surface marine heatwavesextreme 18 
temperature events on the Rottnest shelf. The data products can be used to characterise subsurface features of extreme events 19 
such as marine heatwaves, and marine cold-spells, influenced by the Leeuwin Current and the wind-driven Capes Current, and 20 
to detect long-termdecadal change signals along the WA coast. 21 

1 Introduction 22 

Oceanography moorings are underwater instruments anchored on the sea floor that collect ocean currents, temperature, 23 
salinity, and other environmental parameters. Typically, mooring deployment periods range from 4-6 months in shelf waters 24 
to up to 18 months in deep oceans (Sloyan et al., 2024). Sustained long-term mooring observations serve as invaluable 25 
resources for environmental and climate research and play a vital role in calibrating and validating numerical models (Bailey 26 
et al., 2019). 27 
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The southwest Western Australian mooring array is part of the Integrated Marine Observing System (IMOS) program 28 
operated by Commonwealth Scientific and Industrial Research Organisation (CSIRO) since 2009, designed to monitor the 29 
shelf influences of the southward-flowing Leeuwin Current (LC) on the continental shelf (Thompson, 1984; Chen and Feng, 30 
2021). The anomalous meridional pressure gradient, associated with warm, low-salinity waters from the tropical Pacific Ocean 31 
entering the Indian Ocean through the Indonesian Archipelago, is the main driver of the LC (Feng and Wijffels, 2002; Godfrey 32 
and Ridgway, 1985). The strength of the LC varies seasonally, most due to variations in the alongshore winds (Smith et al., 33 
1991). During austral summer, strong alongshore northward winds drive northward Capes Current in the mid-inner shelf (Fig. 34 

1). The interannual variability of the LC is often associated with remote signals from the Pacific,with the El Niño–Southern 35 
Oscillation (ENSO), the current being stronger during La Niña and weaker during El Niño (Feng et al., 2003).  36 

The southwest Western Australian mooring array has helped scientists identify the key role of the LC in the development 37 
of marine heatwaves (MHW) off the coast (Benthuysen et al., 2014; Feng et al., 2013). The mooring data has also been 38 
employed by Feng et al. (2021) to detect abnormal cooling events off the coast over 2016-2019 (defined as the marine cold 39 
spell, MCS) when the thermocline depth was elevated due to the weakening of the LC during the El Niño events. The sustained 40 
IMOS mooring array encompasses six coastal moorings on the Rottnest shelf during 2010-2023, ranging from 50m to 500m 41 

 

Figure 1. Bathymetry map and mooring locations (red circles) on the Rottnest Shelf. (a) Velocities estimated from 
measurements, with black arrows representing the mean state of vertically averaged velocities. The 0-200m average is used 
for the WATR50 mooring. The three dashed lines represent the 50m, 200m, and 500m contours. Black circles indicate the 
location of the Fremantle tide gauge station. Note that NRSROT consists of two separate moorings. (b) Schematic of shelf 
currents systems, with red arrows denoting the Leeuwin Current and blue arrows indicating the direction of the wind-
driven Capes CurrentBathymetry map and mooring locations (red circles) on the Rottnest Shelf. The red arrows denote 
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(Fig. 1 and Table 1). The first version of the gridded data from these moorings was published by Chen and Feng (2021) and an 42 
extension was published by Bui et al. (2023). Mooring time series are susceptible to missing values due to mooring loss and 43 
instrument failure. Strong currents can exert force on the mooring line, causing it to be pushed down in the water column, 44 
leaving data gaps near the surface (Sloyan et al., 2023). This paper introduces a new update of the mooring data, filling data 45 
gaps with a statistical method. 46 

 47 
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 69 

Table 11. Summary of coastal mooring stations. NRSROT: National Reference Station west of the Rottnest Island. WACA: Western 70 
Australia Perth Canyon. WATR: Western Australia Two Rocks.  71 

Station Latitude;  

Longitude 

Station  

depth 

(m) 

Temperature ADCP 

Instrument Interval 

(min) 

Mean 

sensor 

depths 

(m) 

Data 

span 

Instrument Interval 

(min) 

Bin 

numbers x 

bin size 

Data 

span 

NRSROT-

Temperature 

31.9900°S; 

115.3850°E 

61 SBE39a 

SBE37b 

5-15 27; 

33; 

43; 55 

1/2010-

5/2023 

    

NRSROT-

ADCP 

32.0000°S; 

115.4170°E; 

48     RDI 

Workhorse  

600 kHzc;  

Nortek 

Signature 500 

kHzdSignature 

500 

15 11x4m 8/2011-

5/2023 

WACA20 31.9830°S; 

115.2280°E 

200     Nortek 

Signature 250 

kHzd; Nortek 

Continental 

190 

kHzdSignature 

250 

15 41x5m 8/2011-

5/2023 

WATR10 31.6433°S; 
115.2033°E 
 

100 SBE39 

SBE37 

5-15 25; 

30; 

35; 

40; 

52; 

70; 90 

1/2010-

5/2023 

Nortek  

Aquadopp 

400 kHzd; 

Nortek  

Aquadopp 

400 kHz;  

15 17x5m 8/2011-

5/2023 

WATR20 31.7233°S; 
115.0333°E 
 

200 SBE39 

SBE37 

5-15 25; 

35; 

50; 

68; 

1/2010-

5/2023 

Nortek 

Continental 

190 kHzd;  

Nortek 

15 25x8m 8/2011-

5/2023 
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100; 

125; 

150; 

175 

Signature 250 

kHzdSignature 

250 

WATR50 31.7683°S; 
114.9567°E 
 

500     RDI Long 

Ranger 75 

kHzc; Nortek 

Signature 55 

kHzdSignature 

55 

15 26x20m 8/2011-

5/2023 

a. SBE39 (and SBE39 plus) is a self-contained, autonomous temperature logger . (SBE: Sea-Bird Electronics). 

b. SBE37 is a single-channel CTD (Conductivity, Temperature, Depth) sensor. 

c. RDI ADCPs (Acoustic Doppler Current Profiles) are manufactured by Teledyne RD Instruments and comprise Long Ranger 

75 kHz and Workhorse 600 kHz. (https://www.teledynemarine.com/rdi). 

d. Nortek ADCPs are produced by Nortek group, including Signature 55 kHz, Continental 190 kHz, Signature 250 kHz, 

Aquadopp 400 kHz and Signature 500 kHz. (https://www.nortekgroup.com). 

 72 

Various techniques have been employed to address gaps in mooring datasets. Sprintall et al. (2009) utilized a damped 73 
least square fitting method to fill substantial gaps in mooring current time series data, in estimating the Indonesian Throughflow 74 
transport. Wang et al. (2015) adopted a combination of data extrapolation, interpolation, and a least square regression model 75 
to fill in missing data recorded in the central equatorial Indian Ocean. Cao et al. (2015) employed harmonic analysis and modal 76 
decomposition to isolate the tidal currents for each mode and reconstruct the full-depth tidal currents in the northern South 77 
China Sea. More recently, Sloyan et al. (2023) experimented with a machine learning approach, the Self-Organizing Map 78 
(SOM), to fill data gaps in the East Australian Current mooring array. The choice of method depends on the characteristics of 79 
data loss, such as the duration of gaps or the depth range affected, as well as the intended analyses of the data. 80 

SOM is a technique that projects high-dimensional input data onto a two-dimensional output space while preserving 81 
the topological structure of the input data (Kohonen, 1982). In SOM, units are organized so that similar units are positioned 82 
close to each other, while dissimilar ones are separated in the output data space. This method has found extensive applications 83 
in meteorology and oceanography (Liu and Weisberg, 2011), and can perform a range of tasks including clustering, data 84 
analysis and visualization, feature extraction, and data interpolation (Lobo, 2009). 85 

Chapman and Charantonis (2017) utilized SOM to reconstruct deep current velocities in the Southern Ocean from sea 86 
surface observationsdata. They used densely observed surface velocities, sea surface height, sea surface temperature from 87 
satellites, and sparsely observed deep current velocities from Argo floats to train the SOM maps, then. Then, they derived 88 

https://www.teledynemarine.com/rdi).
https://www.nortekgroup.com).
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dense velocity fields at a depth of 1000m. Their method took advantage of local correlations in the data space to find the 89 
smallest EuclidianEuclidean distance, weighted by the local correlations, between a vector with missing components in the 90 
data space and the SOM units, which increased the accuracy of the filled deep velocities. 91 

This study employs the SOM method to fill in the data gaps in the southwest Western Australia mooring data, following 92 
the procedure in Chapman and Charantonis (2017), to generate a gap-free time series dataset. The use of the continuous dataset 93 
is demonstrated by examining several extreme temperature events that occurred in the region.  94 

2 Data and methods 95 

2.1 Moored instrument data  96 

2.1.1 Temperature 97 

The in situ temperature dataset is collected using Seabird Electronics instruments, including SBE37, SBE39, and SBE39 98 
plus, with sampling intervals varying between 5 and 15 minutes (Table 1).  To ensure data quality, the raw dataset underwent 99 
rigorous quality assurance (QA) and quality control (QC) procedures (Morello et al., 2014), utilizing the IMOS Mooring 100 
toolbox written in the MATLAB scientific programming language. Only data flagged as 1, indicating good quality, are retained 101 
for this analysis. The QC data are concatenated, and then linearly interpolated onto a grid of 5 m vertical resolution and 102 
averaged daily (Bui et al., 2023). The unfilled data are available in the CSIRO Data Access Portal 103 
(https://doi.org/10.25919/9gb1-ne81).  104 

For data completion, we use satellite sea surface temperature (SST) sourced from the Regional Australian Multi-Sensor 105 
SST Analysis (RAMSSA) version 1.0 (Beggs et al., 2011), to extend the temperature data at each mooring to the sea surface 106 
by linear interpolation. The RAMSSA system combines SST data from infrared and microwave sensors on polar-orbiting 107 
satellites with in situ measurements to generate daily foundational SST estimates. These estimates show significantly lower 108 
standard deviation compared to existing regional SST analyses. The absence of bias correction in the data input into RAMSSA 109 
has minimal impact nNorth of 40°S, where RAMSSA is on average within ±0.07 °C of other multi-sensor SST analyses. 110 
However, south of 40°S, RAMSSA is, on average, 0.09°C to 0.25°C warmer than the bias-corrected SST analyses studied 111 
(Beggs et al., 2011). These errors are much smaller than those estimated by SOM (Fig. 3). From conductivity-temperature-112 
depth (CTD) profiles in the study region, ocean temperatures vary mostly linearly in the near-surface layer (top 30 m, below 113 
the foundation SST depth), so linear interpolation is an acceptable approximation. 114 

When minor gaps occur near the bottom, we use two available data points at the bottom of the vertical temperature 115 
profile to extrapolate linearly to the sea bottom.  116 

These procedures produce resulting daily 5m-vertical resolution, gridded temperatures at NRSROT, WATR10, and 117 
WATR20 moorings, spanning from January 2010 to May 2023, are as presented in Figure. S1. 118 

https://doi.org/10.25919/9gb1-ne81).
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2.1.2 Velocity 119 

The velocity observations on the IMOS mooring array are recorded by various instruments, including RDI Workhorse 120 
300kHz/600kHz, RDI Long Ranger 75 kHz, Nortek Continental 190 kHz, Nortek Aquadopp 400 kHz, and Nortek Signature 121 
55/250/500 kHz. These instruments typically sample at a 15-minute interval and are mounted in an upward-looking 122 
configuration above the bottom (Table 1). 123 

The raw velocity data undergo quality control procedures similar to temperature, followed by concatenation and 124 
gridding interpolation into a daily grid with 5m-vertical resolution, as described by Bui et al. (2023). The velocity dataset 125 
comprises observations from five stations: NRSROT, WACA20, WATR10, WATR20, and WATR50. Initially, gaps in the time 126 
series are filled using linear interpolation if the temporal gap size is less than 3 days. Subsequently, for each velocity profile, 127 
gaps near the surface or bottom are filled using linear extrapolation, akin to the technique applied for temperature data. The 128 
meridional and zonal components of the velocity datasets, from August 2011 to May 2023, are presented in Figures. S2 and 129 
S3, respectively. 130 

For the 2010-2023 period, the percentage of missing mooring data varies from 2%  to 16% for temperature, and 12%-131 
33% for velocity at various moorings (Table 2). The largest percentage of missing data is at WATR20, situated in the core of 132 
the LC system. The percentages of missing data tend to have high values near the surface and bottom layers of a mooring, due 133 
to mooring movement and variations of deployment depth over time (Figs. S4 and S5). 134 

 135 

2.2 SOM method 136 

To produce a gap-filled data product, we follow the method described in Chapman and Charantonis (2017), the Iterative 137 
Completion by Self Organising Maps (ITCOMPSOM). As discussed briefly in the introduction, this method “completes” a 138 
gappy dataset by first using available data to train  a self-organising map (SOM), which effectively clusters the data into a set 139 

Table 2. Percentage (%) of missing temperature and velocity for each mooring for the time period of 2010-2023. Note that 
temperature profiles are not available at WACA20 and WATR50. 

 Temperature (%) Velocity (%) 

NRSROT 2 12 

WACA20  19 

WATR10 7 18 

WATR20 16 33 

WATR50  21 
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of  N discrete states. These states can be represented as a 2-dimensional map, where neighbouring clusters are more similar to 140 
each other than distant clusters. Associated with each cluster is a reference vector that approximates the mean of all data 141 
assigned to that cluster and a weighted mean of data assigned to neighbouring clusters. After the map is trained, new data can 142 
be assigned to existing clusters by comparing the EuclidianEuclidean distance in data space between that new data vector and 143 
the reference vector of each cluster. The cluster with the smallest EuclidianEuclidean distance is known as the Best Matching 144 
Unit (BMU). Once a SOM is available, data vectors with missing components are presented sequentially, the Best Matching 145 
UnitBMU is found, and the missing data is completed (in-filled) by replacing it with the relevant components of the reference 146 
vector of the BMU. For full details, see Chapman and Charantonis (2017). 147 

 A schematic of using the SOM method to fill gaps in the mooring dataset is shown in Figure. 2. We utilized the Vesanto 148 
et al. (2000) SOM toolbox for MATLABatlab 5 in this study. The temperature or velocity data for each station, along with 149 
ancillary data, are organized aggregated into data matrices. Ancillary data include day-of-year and daily Fremantle sea level 150 
(Fig. 1). Sea level data are obtained from the University of Hawaii Sea Level Center (https://uhslc.soest.hawaii.edu/). 151 
Fremantle sea level serves as a proxy for the annual and interannual variations of the Leeuwin Current (Feng et al., 2003). We 152 
have tested adding alongshore winds to the data matrices, however, there is no improvement to the results, so wind data is not 153 
used in the SOM calculation, as the wind information may have been integrated in the sea level data. The temperature input 154 
matrix comprises 4869 rows (representing the number of time-stepstime steps) and 77 columns (reflecting the number of 155 
different observations at each time step). Similarly, the velocity input matrix consists of 4292 rows and 361 columns. The 156 
temperature/velocity input matrix with missing values is indicated by square DDataset 1 in Figure. 25. Only fully available 157 
profiles in the input matrix are selected as the training data shown by Datasetsquare 2. Consequently, the number of rows in 158 
the training data is 3675 for temperature and 1146 for velocity.  159 

The number of units in the SOM must beis specified prior to the training process. According to the literature, a small 160 
number of SOM units is useful in capturinges the general dynamicsfeatures of the system (Liu and Weisberg, 2011), while a 161 
larger number provides more detailed information and is more suitable for data gap filling (Sloyan et al., 2023). In our case, 162 
where we aimed to capture detailed information from each SOM unit and the training data containedcontaining a large number 163 
of rowsprofiles, we opted for a larger number of units,. 1000 units forFor the temperature data and 500 units for the velocity 164 
data. , we tested three configurations: 500, 750, and 1000 units. However, the final results remained consistent across these 165 
tests, leading us to select 1000 units. Similarly, for the velocity data, we evaluated scenarios with 300, 400, and 500 units, 166 
ultimately choosing 500 units for velocity due to similar consistency in the results.(Liu and Weisberg, 2005)      Following 167 
several tests, we have chosen 1000 units for temperature, and 500 for temperature and velocity, respectively. This selection 168 
was based on the number of rows in the training data.  Using lower numbers of units only had minor effects on the results. We 169 
used a batch algorithm to train the SOM (Chapman and Charantonis, 2017). The training phase of SOM was done in two steps: 170 
the first rough phase, followed by a fine-tuning phase. In the first step, the neighbourhood radius and learning rate were set to 171 

https://uhslc.soest.hawaii.edu/).
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some high values to gain a general orientation of the map, while in the second step, they were set to smaller values to perform 172 
only fine adjustments on the SOM unit’s position. 173 

 174 

One of the important steps was the assignment of each input vector to a specific SOM unit, u, shown in on the right-175 
hand side of Figure. 2. Firstly, we estimated the local correlations in the data space, represented by a COR matrix.  176 

Where DAT_cor is a correlation matrix among each normalized input vectors within a SOM unit.  177 

 ඥ∑DAT_corଶ, (1)+1=ܴܱܥ

 
Figure 2. Schematic of the SOM method applied to fill gaps in the mooring temperature and velocity data. Square Dataset 1 
denotes an input data matrix in which rows are daily time vectors, columns are observational variables. In square Dataset 1, 
solid lines present full available profiles, while dashed lines show the profiles including missing values. In square Dataset 2, only 
full data profiles are selected for training in SOM. In SOM, we pre-define the number of units, for instance 1000 units for 
temperature, and 500 units for velocity. Each SOM unit contains a reference vector. On the right hand side, each daily input 
vector in the input data matrix is assigned to each SOM unit using a similarity function defined by Chapman and Charantonis, 
2016. Finally, we use the referent vector of each SOM to fill gaps in corresponding daily input vector, shown in square Dataset 
3. 
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Given with local correlations in the data space, we then calculated the minimum Euclidean distance between a 178 

normalized input vector X and the referent vector of the SOM unit, ݂݁ݎ௨   using a similarity function (Chapman and 179 

Charantonis, 2017). The similarity function is defined as: 180 

After determining the most appropriate SOM unit, the missing values in the input vector were extracted from the corresponding 181 
referent vector, providing the in-filled data,  shown in square Dataset 3 (Fig. 2).  182 

2.3 Validation of SOM-based infilling technique 183 

For mooring data, a failed mooring/instrument often results in a block of data being lost until the next deployment. To 184 
simulate this effect, we withhold temperature data at one site for 150 days from 1/1/2020 to 30/5/2020, which is roughly the 185 
length of one deployment cycle. We utilize temperature data at the other two sites to identify the best matching SOM units, to 186 
fill in the withholding data. At NRSROT, the R² and the root-mean-square-error (RMSE) between withheld and filled 187 
temperature data are 0.70 and 0.61°C, respectively; at WATR10, these values are 0.86 and 0.39°C, and at WATR20, they are 188 
0.91 and 0.58°C, as shown in Figure.  3. Furthermore, we evaluate the ability of the SOM to reconstruct extreme temperature 189 
patterns. As shown in Figure S6, a comparison of the observed and SOM-predictedSOM-derived temperatures at WATR20 190 
during the validation period (January 1 to May 30, 2020) highlights this capability. Black crosses in both panels denote days 191 
identified as marine cold spells (MCS), defined as periods where temperatures fall below the 10th percentile for at least five 192 
consecutive days (Hobday et al., 2016). Both the observed and SOM-predictedderived temperatures successfully captured 193 
three bottom-intensified MCS events as in observations occurring near the bottom, demonstrating the method's reliability in 194 
reconstructing extreme cold temperature patterns. 195 

To assess potential overfitting, the SOM was tested on a separate period, spanning January 10 to June 8, 2012, with 150 196 
days withheld from training. The resulting root mean square error (RMSE) values were 0.41°C at NRSROT, 0.36°C at 197 
WATR10, and 0.55°C at WATR20. If we repeat this process and validate the method against data included in training dataset, 198 
we obtain  RMSE figures similar to those obtained from withheld data, indicating that the SOM method is not overfitting the 199 
dataset. 200 

For a different period-spanning from 10/1/2012 to 8/6/2012, with 150 days withheld, the comparisons yield RMSE 201 
values of 0.41°C at NRSROT, 0.36°C at WATR10, and 0.55°C at WATR20. If we repeat this process and validate the method 202 
against data included in training dataset, we obtain  RMSE figures similar to those obtained from withheld data, indicating that 203 
the SOM method is not overfitting the dataset.To assess further the accuracy of the SOM method, we compare it with thea 204 
simple climatology method over the same validation period, as shown in Figure S7. Overall, the mean vertical temperature 205 
profiles from the SOM method are closer to the observed data than those from the climatology method (Fig. S7a-c). As a result, 206 

,ܺ)݉݅ݏ (௨݂݁ݎ = ෍ቂඥ(݂݁ݎ௨ − ܺ)ଶቃ, (2) 
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the residuals from the SOM method, calculated by subtracting the filled SOM values from the observed temperatures, are 207 
smaller than the climatological residuals. Additionally, the standard deviation of the observed temperatures is closer to that of 208 
the SOM data, while it differs significantly from the climatological values (Fig. S7d-f). These findings suggest that the SOM 209 
method is more reliable than the climatology method. 210 

 211 

Using the same approach, we examine the accuracy of velocity data gap filling. Specifically, we consider the period 212 
from 5/2020 to 8/2020, during which velocity data at WATR50 within the depth range of 70-450m are withheld for 90 days. 213 
For the meridional velocity, R² and RMSE values between withheld and infill data are 0.63 and 0.12 m s⁻¹, respectively (Fig. 214 
4a). For the zonal component, these values are 0.50 and 0.05 m s⁻¹, respectively (Fig. 4b). To determine if the SOM method 215 
overfits the data, we withheld velocity data from a different period spanning from 5/2012 to 8/2012. The resulting RMSE 216 
values for the meridional and zonal velocities are 0.13 and 0.06 m s⁻¹, respectively. These findings align with the RMSE from 217 
the validation data, indicating that the SOM method effectively avoids overfitting. 218 

 219 
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3 Data application 220 

Having confirmed the effectiveness of the SOM method for filling missing values in a mooring dataset, we now employ 221 
all non-missing daily data to train the SOM, and then fill the data gaps. The filled temperature data exhibit consistent temporal 222 
and spatial variability (Fig. 5). The gap-filled data capture cold temperature events at WATR20 during early 2010 and mid-223 

 

Figure 3. Scatter plots of oObserved and estimated SOM-derived temperatures at the three moorings between 1/1/2020 
and 30/5/2020, a period of 150 days. The red lines are the the line of best linear fits of the scatter plots.  

 

 

Figure 4. Scatter plots of oObserved and estimated SOM-derived (a) meridional and (b) zonal velocities at WATR50 
between 5/2020 and 8/2020, a period of 90 days, and a depth range of 70-450 m. The red lines are the line of best linear 
fits.  
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2016, coinciding with periods when the thermocline shoaled under the influence of El Niños, consistent with our understanding 224 
of the dynamics of the Leeuwin Current system (Feng et al., 2021).  225 

The preprocessing of the input data via interpolation/extrapolation has dual advantages: (1) enhancing the accuracy of 226 
reference vectors in the SOM by increasing the number of good data profiles, and (2) reducing the potential for errors near the 227 
bottom depth in the input data. For example, without extrapolating the temperature data to the bottom, there are blocks of 228 
anomalous warm biases near the bottom depth in the filled SOM-derived data (Fig. S4S8).  229 

Figure 6 compares the consistency between observed and gap-filled temperature time series at three specific depths. 230 
The filled temperatures (shown in red lines) exhibit temperature variance similar to those of the observed time series. For 231 
example, at a depth of 95m at WATR10 towards the end of 2011, the filled temperature is anomalously warm, reflecting the 232 
enhanced Leeuwin Current system during a La Niña period (indicated by the red line rising above the black dashed line) the 233 
filled temperature is anomalously warm, reflecting the strengthened Leeuwin Current system during a La Niña period (Feng 234 
et al., 2013), as shown by the red line rising above the black dashed line.. Another example, at a depth of 190m at WATR20, 235 
during the beginning of 2010 and in the winter of 2016, the filled temperature was cooler than normal (indicated by the red 236 
line below the black dashed line) due to the shoaling of the thermocline towards the surface during El Niño episodes. 237 

Continuous temperature time series are crucial for detecting subsurface marine heatwaves (MHWs) or marine cold 238 
spells (MCSs) that significantly affect marine ecosystems (Smale et al., 2019). Figure 7 shows the mean intensity of detected 239 
MHW or MCS events at WATR20 based on daily gap-filled temperatures.  The definition of each MHW or MCS event is based 240 
on Hobday et al. (2016).  An MHW (MCS) event is classified as a thermal event when its temperature exceeds the 90th 241 
percentile threshold (or falls below the 10th percentile threshold) for at least 5 days. Additionally, two consecutive events 242 
occurring within a temporal gap of less than two days are considered a single combined event. This plot is performed using 243 
MATLAB code for MHW/MCS detections (Zhao and Marin, 2019). Following the intense MHWs during 2011-2013 (Fig. 7a), 244 
MCSs occurred from 2016 to 2020, contributing to the recovery of impacted marine ecosystems (Fig. 7b). Many of the events 245 
are subsurface or bottom intensified, which are less detectable from ocean surface based on satellite data alone. 246 

To highlight the role of data products in detecting subsurface marine heatwaves (MHWs), we examine several 247 
representative cases at three specific depths of different moorings: NRSROT-40m, WATR10-80m, and WATR20-100m (Fig. 248 
8). We also analyze the meridional component of velocity at these depths to explore the role of ocean currents in contributing 249 
to MHWs. A MHW at  40m depth at NRSROT lasted for 9 days in September 2020, with a maximum intensity of 1.5°C, and 250 
was classified as moderate strength (Category I) MHW (Fig. 8a). During this period, the current was directed southward (Fig. 251 
8b). A MHW at 100m depth at  WATR10 lasted for a relatively longer duration of 20 days in September 2014, with a maximum 252 
intensity of 1.9°C, and was classified as strong (Category II) MHW. Although peak current occurred during the MHW event, 253 
it led to the peak temperature anomaly by 9 days (Fig. 8d). A MHW at 100m depth at WATR20 began on 13 August 2022, and 254 
lasted for 10 days with a maximum intensity of 1.4°C. Unlike the other events, the peak current led to the MHW timeframe, 255 
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specifically on 10 August  2022. These observations suggest that strong southward currents often coincide with or precede 256 
MHWs by several days. Further research is needed to clarify the impact of the Leeuwin Current in driving subsurface MHWs 257 
on the Rottnest Shelf.  In addition, we zoomed in on the we compared the observed and SOM-filled temperatures from January 258 
to July 2011 at three moorings to assess the role of datasets in identifying subsurface marine heatwaves (MHWs)when there 259 
was a two-month gap at the WATR10 mooring (Fig. S9). Despite these data gaps (Fig. S9c), theThe gap-filled temperatures at 260 
WATR10 (Fig. S9d) enabled us to detect the accurately reconstructed the MHW events across the water columnspanning the 261 
entire water column, highlighting the SOM's effectiveness in recovering extreme warm temperature patterns. 262 

 263 

 264 

 265 
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is needed to clarify the underlying mechanisms. 266 

 

Figure 5. Data matrix of daily gridded, 5m resolution gap-filled temperatures for NRSROT, WATR10 and WATR20. 
The x axis shows the depth ranges of each moorings, while y axis presents time period from Jan 2010 to May 2023. Note 
that 0m follows directly after preceding mooring. The SST data are derived from the Regional Australian Multi-Sensor 
SST Analysis (RAMSSA) version 1.0. White spaces indicate missing observations. 
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 267 

 268 

 269 

 270 

 271 

 

 

Figure 6. Comparison of observed and gap-filled temperature timeseries for a) NRSROT at 50m, b) WATR10 at 95m  and c) 
WATR20 at 190m. The black dashed lines show daily climatological timeseries at corresponding depths. The climatological 
values are estimated from gap-filled data. The bottom panel shows Fremantle sea level timeseries.  
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 272 

 273 

 274 

 275 

 276 

 277 

 278 

 279 

 280 

 281 

 

Figure 7. Mean intensity for individual (a) MHW and (b) MCS events at WATR20. Estimation is based on daily gap-filled 
temperature. The definition of each event follows Hobday et al. (2016).  This plot is performed using MatlabMATLAB code 
(Zhao and Marin, 2019). The threshold temperature indentifying a MHW or a MCS is set at the 90th and 10th percentile, 
respectively. Three arrows in (a) denote times of MHW events shown in Figure 8.  
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 282 

 283 

Overall, the gap-filled velocity data are consistent with temporal periods of data gaps both at the mooring location itself 284 
and atand the adjacent mooring sites (Figs. S5 S10 – S8S13). The observed mean vertical profiles agree well with those derived 285 
from the filled data (Fig. S127), indicating that the SOM method reconstructed accuratelyaccurately reconstructed the intricate 286 
vertical structure of the LC system.  287 

The LC flows along the shelf break, making velocities measured at WATR20 and WACA20 suitable for characterizing 288 
its primary features. From the v-component data, the maximum mean currents recorded at WATR20 and WACA20 are -0.25 289 

 
Figure 8. Left panels: Examples of  marine heatwaves at NRSROT-40m (a), WATR10-80m (c), and WATR20-100m (e). 
Categories are moderate (yellow – category I) and strong (red – category II), as defined by Hobday et. al., 2018. In (a), (c), (e), 
the dashed red lines are estimated as twice  the 90th percentile difference from the mean climatology value. Right panels: 
Meridional component of the current velocity at the same time and depth as MHWs shown in the corresponding left panels. In 
all panels, vertical blue lines indicate the time frame of each MHW event.  
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m s-1, and -0.12 m s-1, respectively (Fig. S7 S12d, b). Furthermore, the depths corresponding to these maximum values at the 290 
two stations are 80m, and 100m, respectively. It can be inferred that the LC decelerates and deepens as it flows from WATR20 291 
to WACA20. The irregular topography around the head of Perth Canyon may contribute to this disturbance (Fig. 1).    292 

4 Data availability 293 

The outcome of this research yields the in-filled data product, which is available at https://doi.org/10.25919/myac-yx60 294 
(Bui and Feng, 2024). The product comprises continuous daily-5m resolution temperature and current variables (Table 23). 295 
All data products are available as NetCDF files. In addition to main parameters such as temperature and current, we provide 296 
quality control flags that indicate the original data sources. Specifically, we use seven flags for SOM-filled temperatures and 297 
four flags for SOM-filled currents, as detailed in Table 23.  298 

We provide direct links to all datasets used in this study:  299 

https://doi.org/10.25919/myac-yx60
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- The unfilled gridded data- https://doi.org/10.25919/9gb1-ne81 (Bui et al., 2023); 300 

- Satellite sea surface temperature from the Regional Australian Multi-Sensor SST Analysis (RAMSSA)- 301 
https://portal.aodn.org.au (Beggs et al., 2011);  302 

- Fremantle sea level from the University of Hawaii Sea Level Center - https://uhslc.soest.hawaii.edu. 303 

Table 23. Variables incuded in the in-filled data product. 

Parameter Variable name Units Description 

Time TIME Days An array containing time information ( days since 1950-
01-01 00:00:00 UTC). 

Depth DEPTH Meters (m) An array containing depth levels. 

Longitude LONGITUDE 0E  

Latitude LATITUDE 0N  

Temperature TEMP 0C A matrix containing temperatures over the entire record 
for whole water column. 

Temperature_quality 
control 

TEMP_quality_control  A matrix containing flag values that indicate the original 
temperature data.  
1: Observed temperature 
2: SST 
3: Interpolated temperature near surface 
4: Extrapolated temperature near bottom 
5: SOM filled temperature near surface 
6: SOM filled temperature in sensor range 
7: SOM filled temperature near bottom 
 

U velocity UCUR m s-1 (true east) A matrix containing current data over the entire record 
for whole water column. 

V velocity VCUR m s-1 (true 
north) 

Current_quality_control UCUR_ 
quality_control 
VCUR_ 
quality_control 

 A matrix containing flag values that indicate the original 
current data.  
1: Observed current 
2: Extrapolated current near surface 
3: Extrapolated current near bottom 
4: SOM filled current 

 

https://doi.org/10.25919/9gb1-ne81
https://portal.aodn.org.au
https://uhslc.soest.hawaii.edu.
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5 Code availability  304 

We provide scripts in MATLAB to download and plot the data products. These scripts are available online (Bui and 305 
Feng, 2024), and are available under a Creative Commons Attribution 4.0 International license (CC BY 4.0).  306 

6 Summary and discussion 307 

In this research, we have employed a SOM-based method to fill significant temperature and velocity measurement gaps 308 
from a mooring array on the Rottnest shelf off southwest Western Australia that monitors the Leeuwin Current and associated 309 
shelf processes. We use daily temperature records from 3 moorings of approximately 134.5 years, and nearly 13 years of daily 310 
current velocity records from 5 moorings, in conjunction with daily SST and coastal sea level at Fremantle, to train SOM. 311 
Because this is a relatively small mooring array, we pre-process observational data using interpolation and extrapolation to 312 
have enough non-missing daily data profiles to train SOM. Evaluated with withholding data, the RMSE for temperature 313 
estimations at the 3 moorings are 0.61oC at NRSROT, 0.39oC at WATR10, and 0.58oC at WATR20, respectively. The RMSE 314 
for the meridional (alongshore) and zonal (cross-shore) velocities are 0.1 m s-1 and 0.05 m s-1. In addition, the data pre-315 
processing brings better consistency between the observed and gap-filled data.  316 

Since the strength of the LC is largelyalso influenced by local winds, it is necessary towe have evaluated the impact of 317 
including local winds during SOM training. Figure S14 presents the observed and reconstructed temperatures at the three 318 
moorings between January 1, 2020, and May 30, 2020, with local winds incorporated into the SOM training process. Compared 319 
to the case where local winds were excluded (Fig. 3), we found that including local winds resulted in a lower RMSE at 320 
NRSROT but a higher RMSE at WATR20. Overall, the differences were minimal. Local winds are important for the seasonal 321 
climatology of the Leeuwin Current, however, on interannual and intraseasonal time scales, the Leeuwin Current is more 322 
influenced by remotely forced coastal Kelvin waves, as reflected in coastal sea level variations (Feng et al. 2003; Marshall and 323 
Hendon, 2014). Therefore, we conclude that incorporatingThe effects of local winds may also have been integrated into the 324 
sea level variationsin SOM training has a negligible impact on the results. 325 

Does the SOM method capture the non-linear phenomena in the study area? SOM is an unsupervised learning method 326 
capable of capturing non-linear processes in the training data. However, as a statistical approach, it relies on enough realizations 327 
in the training dataset to properly capture the nonlinearity. Liu and Weisberg (2005) showed that the SOM method, unlike the 328 
linear empirical orthogonal functions (EOF), was able to reveal asymmetric features in the Florida Current system, such as 329 
variations in current strength and coastal jet location. However, as a statistical approach, it relies on enough realizations in the 330 
training dataset to properly capture the nonlinearity. In the Rottnest shelf region, several factors contribute to the non-linear 331 
variability in both temperature and velocity fields. Mesoscale eddies can stem from the instability of the Leeuwin Current. 332 
Intense land-sea breezes during summer amplify near-inertial currents (Mihanović et al., 2016). Additionally, the strong shear 333 
zone between the Capes Current and the Leeuwin Current in summer, as well as interactions between the strengthening of the 334 
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LC and the Perth Canyon in winter, can generate sub-mesoscale eddies (Cosoli et al., 2020). SOM may well capture the 335 
mesoscale processes in the LC. DueDue to their randomness, however, these non-linear submesoscale processes may not be 336 
fully captured in daily velocities compared to daily temperatures. This is reflected in the lower R-squared values for velocities 337 
compared to temperatures (Figs 3, 4).  338 

 339 

Our continuous daily data products reveal that numerous MHW and MCS events occur sub-surface, which are 340 
undetectable while using altimetry data (Fig. 7). We also find that intense MHW events are frequently related to strong 341 
southward currents at the same depth (Fig. 8). However, the role of advection temperature due to shelf/slope LC current or 342 
warm-core eddies remains unclear. Future mooring observations are needed to better understand the characteristics of MHWs 343 
and MCSs, as well as the factors driving extreme temperatures.  344 

Addressing small gaps in the mooring data appears to be a crucial step before training SOM. We have tried two other 345 
options: assigning missing values as zeros or replacing them with climatological values derived from the original data. We 346 
have experimented with these two options with an iterative approach (e.g. Sloyan et al. 2023) but found that the filled 347 
temperature time series exhibits some inconsistency, such as a block of constant values or temperature inversions. Our option 348 
of pre-processing the observational data by filling small gaps increases the number of good profiles for training, e.g., 75% of 349 
temperature profiles are gap-free. The method can be easily applied to fill data gaps in shelf mooring arrays with small gaps 350 
in the vertical so that little errors are introduced from linear extrapolation. For complex mooring systems with enough 351 
redundancy, the Iterative Completion Self-Organizing Maps (ITCOMPSOM) method outlined in Sloyan et al. (2023) could be 352 
more useful. 353 

We have provided examples that highlight the advantages of using filled mooring data for end-users. By utilizing this 354 
filled data, climatological products are free from noisy data, ensuring the information is of high quality. The continuous daily 355 
temperature time series are essential for characterizing sub-surface marine heatwaves and cold spells offon the Rottnest shelf, 356 
which can last from days to weeks. Furthermore, the gap-filledfilled velocity time series from the mooring array allowallows 357 
researchers to estimatecapture episodical cross-shore and along-shore processesvolume transport offon the Rottnest shelf, 358 
offering valuable insights into the volume transportdynamics of the Leeuwin Current and Capes Current. These mooring data 359 
products, when combined with other observational platforms such as the IMOS glider program and surface radar observations, 360 
can be integrated into ocean-climate models to improve the accuracy of climatemarine predictions for Western Australia. 361 

 362 

7 Supplement 363 

The supplement related to this article is available online at: https://doi.org/10.25919/myac-yx60. 364 

https://doi.org/10.25919/myac-yx60.
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