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Abstract. Accurate shallow-water depth information for island areas is crucial for maritime safety, resource 
exploration, ecological conservation, and offshore economic activity. Traditional approaches like shipborne 
sounding and airborne bathymetric light detection and ranging (LiDAR) surveys are expensive, time-consuming, 
and are limited in politically sensitive regions. Moreover, satellite altimetry-predicted depths exhibit large errors 15 
over shallow waters. In contrast, satellite-derived bathymetry (SDB), estimated from multispectral imagery, 
provides a rapid, open source, and cost-effective technique to fully characterize the bathymetry of a region. 
Given the scarcity of in-situ water-depth data for the South China Sea (SCS), a shallow-water depth model, 
HHU24SWDSCS, was developed by integrating 1298 Ice, Cloud, and land Elevation Satellite (ICESat-2) tracks 
with 70 Sentinel-2 multispectral images. The model covers >120 islands and reefs in the SCS, with a resolution 20 
of 10 m. Validation against independent ICESat-2 depth data produced a root mean square error for the model of 
0.81-1.35 m (<5% of the maximum depth), with an average coefficient of determination of 0.91. Validation 
against independent airborne LiDAR bathymetry data revealed an accuracy of 1.01 m for the Lingyang Reef. 
Further comparisons with existing bathymetry models revealed the superior performance of the model. While the 
existing bathymetry models exhibit errors up to tens of meters or larger for island regions, and should therefore 25 
be used with caution, the HHU24SWDSCS model exhibited good accuracy in shallow waters across the SCS. 
This model thus provides a reference for mapping shallow-water depth close to islands and provides fundamental 
support for research in oceanography, geodesy, and other disciplines. 
Key Words. Shallow water depth, Satellite-derived bathymetry, ICESat-2 photon, Sentinel-2 multispectral 
image, South China Sea. 30 
Short summary. We developed a high-quality and cost-effective shallow-water depth model for >120 islands in 
the South China Sea, using ICESat-2 and Sentinel-2 satellite data. This model accurately maps water depths with 
an accuracy of ~1 m. Our findings highlight the limitations of existing global bathymetry models in shallow 
regions. Our model exhibited superior performance in capturing fine-scale bathymetric features with 
unprecedented spatial resolution, providing essential data for coastal construction, environmental protection, and 35 
marine activities. 
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1. Introduction 

Shallow-water bathymetry, which critically important for maritime safety, ecological conservation, and marine 
economic development (Cesbron et al., 2021; Mavraeidopoulos et al., 2017; Wölfl et al., 2019; Yen et al., 2004), 40 
has long been a core research focus in oceanography, geophysics, and coastal geomorphology, profoundly 
influencing studies on ocean currents, the Earth’s gravity field, and seafloor sedimentation processes (Babonneau 
et al., 2013; Tinto et al., 2019; Wang et al., 2018b; Wu et al., 2024a). Moreover, since most marine-related 
human activities are concentrated in coastal shallow-water areas, accurate bathymetry information plays a 
pivotal role in port construction, marine fisheries, cross-sea bridge construction, and other marine economic and 45 
engineering activities (Bergstad et al., 2019; Parker, 2002; Šiljeg et al., 2019).  

The South China Sea (SCS), one of the most active marine systems globally, is characterized by complex 
bathymetry (Hwang, 1999; Pitcher et al., 2000; Su et al., 2018). In the central basin of the SCS, the bathymetry 
is deeper than 4000 m, yet it contains numerous islands, shoals, and banks, with depths <100 m in the 
continental shelf region (Ruan et al., 2020). A thorough investigation of shallow-water bathymetry in the SCS is 50 
crucial for conserving biodiversity, coral reef ecosystems, and marine fisheries, for addressing coastal erosion, 
and for petroleum exploration; moreover, it is indispensable for achieving sustainable use of marine resources, 
promoting marine environmental protection, and fostering international cooperation (Folorunso and Li, 2015; 
Goodman et al., 2020; Misra and Ramakrishnan, 2020; Yen et al., 2004). 

Traditional methods for obtaining bathymetry data primarily include shipborne sonar sounding, airborne 55 
bathymetric light detection and ranging (LiDAR), and satellite altimetry (Guenther, 2007; Smith and Sandwell, 
1994). Shipborne sounding, and particularly multibeam sounding, is one of the most accurate methods, capable 
of simultaneously emitting multiple pulses to expand the survey range and achieve centimeter-level accuracy in 
water-depth measurements (Costa et al., 2009; Ernstsen et al., 2006). However, shipborne surveys are limited in 
shallow and narrow waters, in which vessel-draft limitations, beam angles, and multipath effects significantly 60 
affect data quality and limit its availability (Costa et al., 2009; Hsu et al., 2021; Schneider von Deimling and 
Weinrebe, 2014). Airborne bathymetric LiDAR technology can rapidly obtain sub-meter-resolution bathymetric 
data; however it is costly and its measurement accuracy is influenced by water quality, making it unsuitable for 
large-scale surveys (Tysiac, 2020). Over deep waters, satellite altimetry-predicted depths play a dominant role in 
global bathymetry detection; however, this method faces challenges in coastal zones, and the predicted water 65 
depths exhibited large uncertainties in shallow waters (Ferreira et al., 2022). Furthermore, satellite altimetry 
predicted-depths lack short-wavelength information (i.e., for wavelengths shorter than several kilometers), owing 
to the limited resolution of altimetry data, thus preventing its use in detecting fine seafloor topography (Wu et al., 
2023). 

Traditional satellite altimetry-predicted depth and in situ data have been used to develop global bathymetry 70 
models, including the SRTM15 series (15″ × 15″) (SRTM: Shuttle Radar Topography Mission) (Tozer et al., 
2019) and Topo series of models (1′ × 1′) (https://topex.ucsd.edu/pub/global_topo_1min/) provided by the 
Scripps Institution of Oceanography (SIO); the DTU series (1′ × 1′) 
(https://ftp.space.dtu.dk/pub/DTU18/1_MIN/), developed by the Department of Space Research and Technology 
at Denmark Technical University (DTU Space); and GEBCO (the General Bathymetric Chart of the Oceans) 75 
series (15″ × 15″) (https://www.gebco.net/data_and_products/gridded_bathymetry_data/), compiled by the 
GEBCO Bathymetric Compilation Group. With the accumulation of bathymetric data and advancements in 
modeling, these models have achieved significant improvements in terms of spatial resolution and accuracy. 
However, owing to the scarcity of in situ data over shallow waters in the SCS, these models are limited in the 
accuracy of the bathymetric information, exhibiting data gaps, low spatial resolution, and large uncertainty for 80 
shallow water areas (Wu et al., 2023). Consequently, the existing bathymetry models fail to deliver a unified, 
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high-accuracy representation of the bathymetry in these areas. 
In comparison, the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2), equipped with the Advanced 

Topographic Laser Altimeter System (ATLAS), provides worldwide open-source water depths with an accuracy 
of 0.43-0.6 m and along-track resolution of 0.7 m (Abdalati et al., 2010; Markus et al., 2017; Martino et al., 85 
2019). Moreover, satellite-derived bathymetry (SDB) technology, utilizing satellite multispectral/hyperspectral 
imagery, provides comprehensive bathymetric data coverage (Albright and Glennie, 2020; Ma et al., 2020). SDB 
establishes the relationship between reflectance and water depth, and by combining ICESat-2 data with satellite 
imagery, SDB can be used to map shallow water bathymetry with an accuracy of ~1 m and resolution of a few 
meters (Hodúl et al., 2018; Jia et al., 2023; Ma et al., 2020). SDB utilizes openly available data and provides a 90 
rapid, accurate, and cost-effective way to capture shallow-water depths with unparalleled accuracy and spatial 
resolution on a global scale, providing significant advantages over traditional approaches (Ferreira et al., 2022). 

Given the lack of accurate water depths near island areas in the SCS, we focused on developing a 
high-quality shallow-water depth model with a unified spatial resolution using SDB. By integrating ICESat-2 
data with Sentinel-2 multispectral imagery, a high-quality shallow-water depth (SWD) model for the SCS was 95 
developed by Hohai University in 2024 (resulting in the composite model name ‘HHU24SWDSCS’). This model, 
which covers >120 islands and reefs in the SCS, is expected to serve as a potential substitute for existing 
bathymetry models in fields such as oceanography, geodesy, environmental sciences, and marine production 
activities in the shallow waters over the SCS. The rest of this study is organized as follows: In Section 2, we 
introduce the study area and data. Section 3 presents the principles for the preprocessing of the ICESat-2 data 100 
and for SDB estimation. Section 4 presents the modeling results and examines the model’s performance, with 
validation against independent ICESat-2 and airborne LiDAR data. The performance of the latest global 
bathymetry models (DTU18BAT, topo_27.1, SRTM15+ V2.6, and GEBCO_2023) is evaluated and analyzed. 
Section 5 presents the conclusions. 

2. Study area and data 105 

The study area was the SCS (Fig. 1), with the latest high-resolution bathymetric model (GEBCO_2023, 15′ × 
15′) providing the background bathymetry data. The SCS, a marginal sea in the western Pacific Ocean (3°-22°N, 
105°-120°E), is one of the most important maritime passages globally. Located in Southeast Asia, it covers ~3.5 
million square kilometers, making it one of the largest and deepest marginal seas (>5000 m deep in the Manila 
Trench) in the western Pacific Ocean (Wang et al., 2018a; Zhu et al., 2021). Over 100 islands and reefs are 110 
scattered across the SCS; these can be geographically divided into four archipelagos: the Xisha Islands, 
Zhongsha Islands, Dongsha Islands, and Nansha Islands, with the latter accounting for >70% of the islands 
(Huang et al., 1994). The water depth around these islands and reefs is generally <50 m, and their diameters 
range from 2 to 25 km (As depicted in Fig. 1). Conventional techniques, such as shipborne and airborne surveys, 
encounter numerous challenges in acquiring shallow-water depths over these islands across the SCS; this is 115 
particularly true for the Nansha Islands, where political factors prohibit the use of in situ surveys for water depth 
meansurements. However, the wide range of the ICESat-2 data and Sentinel-2 imagery provides a solid database 
for employing SDB to develop a shallow-water depth model covering these islands and reefs (Hsu et al., 2021; 
Ma et al., 2020). Since most of the Zhongsha Islands comprise submerged shoals for which the ICESat-2 data do 
not provide valid seafloor topography information, this study focuses on SDB modeling of the Xisha, Dongsha, 120 
and Nansha Islands (The geographical locations are displayed in the red boxes in Fig. 1(a)). As the Nansha 
Islands are larger than the other two archipelagos, the Nansha Islands were divided into five subareas for results 
presentation, resulting in seven subareas in total, as shown in Fig. 1. Areas 1 and 2 cover the Xisha and Dongsha 
Islands (Fig. 1(b) and (c), respectively), and areas 3-7 comprise the Nansha Islands (Fig. 1(d)-(h)). Further 
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information on the subareas is presented in Table 1.  125 

 
Figure 1. (a) Distribution of the islands and reefs over the South China Sea (SCS), and seven areas in the red boxes 

display the subareas. (b)~(h) represent Areas 1~7, respectively. The purple box in (b) displays the location of the 

airborne LiDAR data in the Lingyang Reef over Xisha Islands. The six green boxes in (b)~(g) show the representative 

islands. The GEBCO_2023 model is used as background. 130 

Table 1. Description of selected subareas in the South China Sea (SCS). 

Subarea Latitude (°N) Longitude (°E) Number of Islands or reefs 

Area 1 15.75–17.15 111.15–112.80 36 

Area 2 20.55–20.80 116.65–116.95 2 

Area 3 9.68–11.53 113.80–115.35 49 

Area 4 8.80–11.20 115.40–117.50 17 

Area 5 8.05–9.75 111.60–113.40 6 

Area 6 6.90–9.00 113.55–115.30 15 

Area 7 4.95–5.60 112.50–112.65 3 

2.1. ICESat-2 data 

ICESat-2, launched by NASA in September 2018, has a revisit cycle of ca. 91 days and enables continuous 
monitoring of changes on the Earth’s surface. ICESat-2 is equipped with the latest ATLAS, which emits laser 
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pulses at a 10 kHz pulse-repetition frequency in six beams, achieving an along-track resolution of ~0.7 m and a 135 
ranging accuracy better than 1 m (Markus et al., 2017; Martino et al., 2019). It is capable of penetrating water at 
depths >30 m below the sea surface in clean waters and can measure bathymetry in shallow waters (Guo et al., 
2022). For SDB modeling, we utilized the ICESat-2 L2A Global Geolocated Photon Data (ATL03) V006 
data-product (https://www.earthdata.nasa.gov/), in which each photon contains information such as latitude, 
longitude, along-track distance, off-nadir angle, data quality, elevation, and geophysical corrections for factors 140 
including solid Earth tides, ocean pole tides, and atmospheric delays (Neumann et al., 2021).  

We utilized ICESat-2 data for 2018-2024, encompassing 512 tracks for the Xisha Islands, 73 for the Dongsha 
Islands, and 1038 tracks for the Nansha Islands, totaling 1623 tracks. Owing to the difficulty in obtaining in situ 
water depths around islands and reefs, the ICESat-2 data are used for both training and validating the SDB model, 
with 80% used for training and the remaining 20% for validation. The training (red tracks) and validation data 145 
(green tracks) over the seven subareas are illustrated in Fig. 2. Notably, ICESat-2 data are acquired 
independently using individual beams, hence the tracks do not influence one another and are not correlated. This 
ensures that the training data remains entirely independent from the validation data, allowing for objective 
assessment of the quality of the computed SDB data.  
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 150 
Figure 2. Distribution of the ICESat-2 training tracks (red) and validation tracks (green) over the seven subareas (a-g, 

respectively). 

2.2. Sentinel-2 multispectral imagery 

High-resolution multispectral imagery from Sentinel-2A and Sentinel-2B was utilized for SDB modeling. 
Sentinel-2A and Sentinel-2B were launched by the European Space Agency in June 2015 and March 2017, 155 
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respectively (Drusch et al., 2012). Each carries a Multi-Spectral Instrument and can capture 13 different spectral 
bands at 443-2190 nm, including blue, green, red, near-infrared, red-edge, and shortwave infrared bands. Their 
spatial resolution is 10 m, with a swath width of 290 km and a revisit period of 5 days (Gatti and Bertolini, 2015). 
Owing to its high spatial resolution and short revisit interval, the Sentinel-2 imagery is suitable for SDB 
modeling. 160 

Here, the spectral information from the red, green, and blue bands was extracted from the Sentinel-2 
multiband imagery, based on our preliminary finding that using these three bands yielded better results than 
using other combinations (Wu et al., 2023). To reduce the effects of temporal changes on bathymetry estimation, 
only images within the time-span of the ICESat-2 data were selected. The AI EARTH platform 
(engine-aiearth.aliyun.com) was used to select images with minimal cloud cover and sun glint; 70 images were 165 
chosen, including five for Xisha Islands, one for Dongsha Islands, and 64 for Nansha Islands.  

To assess the efficacy and applicability of the SDB modeling approach, six representative reefs with diverse 
geographical distributions, topographical features, and hydrological conditions were selected for presentation 
(Table 2). Figure 3 depicts the representative islands and reefs, highlighted in the green boxes in Fig. 1, including 
the Yongle Group (Area 1), the Dongsha Group (Area 2), Meijiu Reef (Area 3), Renai Reef (Area 4), Yuniao 170 
Reef (Area 5), and Nanhua Reef (Area 6). Figure 3 presents multispectral images (synthesized from the blue, 
green, and red bands), ICESat-2 water depth, and shallow-water masks (white polygons), along with preselected 
deep-water areas (purple box). We used the GEBCO_2023 model to identify and remove deep-water effects 
(>100 m) in SDB estimation. 

This study employed the normalized difference water index (NDWI) derived from Sentinel-2 imagery, 175 
combined with ICESat-2 bathymetric data, to construct a precise shallow-water mask (Gao, 1996). First, the 
green and near-infrared bands from the Sentinel-2 imagery were used to compute NDWI, providing the initial 
identification of potential shallow-water regions. Next, the ICESat-2-derived water depth was used to exclude 
deep-water areas. The bathymetric data and multispectral imagery information were then screened within the 
mask, facilitating the subsequent reconstruction of the SDB model. 180 

 
Figure 3. Representative islands in the research area. (a) Yongle Group, (b) Dongsha Group, (c) Meijiu Reef, (d) Renai 

Reef, (e) Yuniao Reef, and (f) Nanhua Reef. White polygon denotes the shallow water mask; the tracks indicate the 

ICESat-2 water-depth data; the purple boxes indicate the reference deep-water areas; and the cyan dotted boxes in (b) 

and (c) indicate typical nighttime and daytime ICESat-2 tracks, respectively. The background images are synthetized 185 
from the Sentinel-2 red, green and blue band. 
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Table 2. Information of the representative islands 

Islands name Latitude (°N) Longitude (°E) ICESat-2 tracks Sentinel-2 image 

Yongle Group 16.43–16.60 111.48–111.79 19 20210817T025549 

Dongsha Group 20.55–20.80 116.65–116.95 73 20230207T023901 

Meijiu Reef 11.05–11.10 114.30–114.39 15 20240207T023859 

Renai Reef 9.65–9.8 115.83–115.90 10 20240323T023531 

Yuniao Reef 8.05–8.30 113.20–113.37 25 20200327T024541 

Nanhua Reef 8.66–8.76 114.15–114.21 26 20190228T023631 

2.3. Airborne LiDAR bathymetry  

We used airborne LiDAR bathymetric data, provided by the Shanghai Institute of Optics and Fine Mechanics 
(SIOFM), to independently validate the SDB modeling results (Li et al., 2022; Yang et al., 2022). The airborne 190 
LiDAR system (Mapper5000) features a dual-frequency design, including a 1064 nm near-infrared surface 
channel and a 532 nm green channel for shallow and deep-water detection, with a pulse repetition frequency of 5 
kHz. Operated at a flight altitude of 300 to 1100 m and flight speed of 150 to 220 km/h, this system ensures 
efficient and accurate data collection. The raw data were preprocessed by SIOFM, using procedures including 
waveform peak detection and range determination, overlapping waveform decomposition, and range-difference 195 
correction, based on proprietary algorithms (Yang et al., 2022). The accuracy of the airborne LiDAR water-depth 
data for Lingyang Reef is ~20 cm (Li et al., 2022). As illustrated in Fig. 4(a), the LiDAR data cover the 
northwestern region of Lingyang Reef in the Yongle Group, with water depths of 0–5 m and an effective 
point-cloud size exceeding 440,000 points.  

 200 
Figure 4. (a) The Sentinel-2 image of Lingyang Reef and the distribution of the airborne LiDAR data, and (b) the 

zoom-in view of airborne LiDAR water depth data 
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3. Methodology 

3.1. ICESat-2 data preprocessing 

To obtain effective bathymetric data from the ICESat-2 point cloud, this study adopts a sea surface and seafloor 205 
identification method based on the point-cloud density distribution (Hsu et al., 2021). This involves noise 
removal, point-cloud density estimation, sea-surface identification, and water-depth point-cloud extraction. 
Refraction corrections and reference datum unification are then applied to derive accurate water-depth 
measurements. 
(1) Sea-surface identification 210 

We propose a method for sea-surface identification based on the anisotropic point-cloud density. First, 
considering the distribution characteristics of the sea surface and bathymetric point clouds, an elliptical sliding 

window is constructed to capture their geometric profiles. For each photon =( , ), 1, ,i i ip x y i N=  , an elliptical 

window is established at ip , and the number of point clouds within the elliptical window is derived: 

 

2 2
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j i j i
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= +   

   
= ≤ = ≠

 (1) 215 

where =50 a m  and =2 b m  denote the major and minor axes of the elliptical window, respectively; ijd  

represents the distance of jp  relative to the ellipse; iD  is the number of points within the elliptical window 

centered at ip ; N  is the total number of point clouds; and ,i ix y  represent the along-track distance and 

point-cloud elevation, respectively. 
For each point, the number of point clouds within its elliptical neighborhood is computed, normalized, and 220 

used as the point-cloud density distribution: 
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max( ) min( )
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i

Dxρ
−
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−
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where ρ  denotes the point-cloud density map and D  represents the vector of the number of neighboring 

point clouds for each point. 
Subsequently, the statistical analysis based on the Scott’s rule is performed to estimate the noise threshold 225 

(Scott, 1979), as follows: 

 
3

3.5
noiseT

N
σ⋅

=  (3) 

where σ  represents the standard deviation of ρ . Point clouds exceeding the noise threshold are removed. 

Next, the point cloud density map is discretized into a grid with a cell resolution of 0.5 m in elevation and an 
along-track resolution of 30 m. This density grid is then stacked in the along-track direction to accumulate the 230 
density for each elevation cell. By calculating the gradient of the accumulated density, we identify the elevations 
corresponding to the maximum and minimum gradient values, thereby locating the boundary of the sea surface 
point cloud. Consequently, the point clouds within this boundary are extracted and fitted to estimate sea-surface 
height (SSH); this is then used as the instantaneous SSH at the time of the ICESat-2 measurement. 
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(2) Bathymetry point-cloud extraction 235 
After removing the detected sea-surface point cloud, the density grid of the remaining point cloud and the 

noise threshold are recalculated, and point clouds exceeding 0.5 times the noise threshold are removed. To more 
accurately extract the bathymetry information, the maximum density points are identified along the depth 
direction, and the point cloud within ±1 m of the maximum density point is marked as the bathymetry point 
cloud. Considering the measurement accuracy of ±1 m in the ICESat-2 bathymetry data, a local weighted least 240 
squares (LS) fitting algorithm is used to extract the bathymetry. 
(3) Refraction correction 

Refraction is one of the most significant factors influencing the accuracy of ICESat-2 laser bathymetry (Yang 
et al., 2017), which is deduced by the different propagation speeds of light in different media (such as in air and 
seawater). In shallow-water areas, the refraction effect is more pronounced, owing to the influence of sea-surface 245 
waves and the resulting change in depth. We initially estimated shallow-water depths by computing the 
difference between the seafloor photon-derived depth and the corresponding sea surface height. However, 
considering the time difference between the acquired ICESat-2 and Sentinel-2 data used for modeling, a unified 
reference datum is required as the preliminary depth information. We therefore used the latest DTU22MSS 
model as the reference datum for bathymetric data correction (Wu et al., 2023). 250 

Based on the solar zenith angle information ( elevref ) in the ICESat-2 ATL03 product, the photon incidence 

angle ( 1θ ) can be expressed as follows (Ma et al., 2020): 

 1 2 elevrefπθ = −  (4) 

Based on Snell’s law of refraction, the refraction angle ( 2θ ) is derived: 

 1 1 1
2

2

sinsin n
n
θθ −  

=  
 

 (5) 255 

where 1=1.00029n  and 2 =1.34116n  denote the refractive indices of air and water, respectively. 

Considering the change in their propagation path when photons travel through water, the path length can be 
expressed as follows: 

 
1

1
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2

2

0
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where, 1S  and 2S  represent the underwater path lengths of a photon before and after considering the 260 

refractive effect, respectively, and 0Z  is the water depth before refraction correction.  

Therefore, the difference in photon position owing to refraction ( P ) can be obtained as follows: 

 
2 2
2 1 2 1
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Consequently, the difference in the along-track direction ( x∆ ) and elevational direction ( d∆ ) due to 
refraction can be expressed as follows: 265 

 1

1 2

cos
sin

2
sinsin

x P
d P

S
P

β
β

πβ θ α

ϕα −

∆ =
∆ =


= − −

  =  

 

 (8) 

The datum of water depth is then referenced to the DTU21MSS datum (Wu et al., 2023), as follows: 

 MSSH 0 Δsent ede lpth in bZ h Z Z d h h= − + + ∆ − +  (9) 

where MSSHh  is the mean sea surface height (MSSH) obtained from the DTU21MSS model; sentinelZ  is the 

SSH at the Sentinel-2 imaging time; 0Z  is the ellipsoidal height of a sea-surface photon; bh  is the ellipsoidal 270 

height of an underwater photon; and h∆  is the difference between SSH at the Sentinel-2 imaging time and at 
the ICESat-2 data acquisition time. The ICESat-2 preprocessing algorithm is illustrated in Fig. 5. 

Using this protocol, the raw ICESat-2 photons were preprocessed. Two representative samples, over the 
Dongsha Group and Meijiu Reef, represented by the cyan dotted boxes in Fig. 3(b) and (c), respectively, are 
illustrated (Fig. 6). The data acquisition time of the ICESat-2 track for the Dongsha Group was 22:41 pm 275 
(nighttime), 29 January, 2019. Photons representing sea-surface and bathymetry information can be clearly 
distinguished, as both are continuously distributed along the track direction. Notably, only photon-point clouds 
with confidence levels of 3 and 4 were used in bathymetric-information extraction (Neumann et al., 2021). The 
sea surface is smooth over the study area, and the photons are distributed within ±1 m of the sea surface. In 
contrast, the distribution of the seafloor point-cloud is irregular. Figure 6(a) depicts the raw ICESat-2 photon 280 
data, and Fig. 6(b) the results of denoising and identification of the sea-surface and seafloor point-clouds. 
Following noise-threshold estimation and point-cloud removal, the noise in the point-cloud data was effectively 
suppressed. The bar chart (Fig. 6(b), right panel) displays the cumulative along-track density. The point-cloud 
density was higher at the sea surface than below the surface, and the cumulative along-track point-cloud density 
exhibits notable peaks. Based on the proposed approach, the sea-surface point clouds were accurately identified 285 
(yellow lines, Fig. 6(b)). Moreover, the bathymetry point clouds (green points, Fig. 6(b)) were identified by 
locating the areas with the highest elevational point density (red circles, Fig. 6(b)). Finally, the sea floor was 
identified via local least-squares fitting. The red scatter points and the blue line in Fig. 6(c) represent the 
refraction-correction results and the fitted seafloor, respectively. 

In comparison, the ICESat-2 track for Meijiu Reef (Fig. 7) was acquired at 15:26 pm (daytime), March, 9, 290 
2020. Relative to the nighttime results (Fig. 6(a)), the daytime results exhibit more noise in the raw ICESat-2 
photon data (Fig. 7(a)), owing to the greater illumination effects during the day, which presents challenges for 
water-depth detection. For instance, as shown in Fig. 7(b), a significant amount of noise-related point-cloud 
remained after denoising (e.g., at an along-track distance of ~500 m), although the proposed algorithm 
effectively identifies the along-track water-depth point-cloud (highlighted by the red circle in Fig. 7(b)), and, via 295 
a function fitting, achieves robust extraction of the sea floor. The red scatter points and the blue line in Fig. 7(c) 
represent the refraction-correction results and the fitted water depth.  
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Figure 5. Flowchart for ICESat-2 water depth extraction 

 300 
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Figure 6. (a) Raw ICESat-2 photons, (b) noise removal, sea surface identification, and water depth extraction, and (c) 

refraction correction for ICESat-2 track in Dongsha Group (nightime) shown as Fig. 3(b). 

 
Figure 7. (a) Raw ICESat-2 photons, (b) noise removal, sea surface identification, and water depth extraction, and (c) 305 
refraction correction for ICESat-2 track in Meijiu Reef (daytime) shown as Fig. 3(c). 

3.2. SDB modeling methodology 

SDB was modeled by combining the ICESat-2 training data and Sentinel-2 multispectral imagery using the 
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linear band model, which achieves slightly better results than the band-ratio model (Lyzenga et al., 2006; 
Thomas et al., 2021; Wu et al., 2023). SDB is modeled as follows: 310 

  SDB 0
1
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= + −∑  (10) 

where SDBH  is the water depth derived from a multispectral image; ( )iR λ represents the water surface 

reflectance of band i ; and ( )iR λ∞  is the average deep-water reflectance of band i . Parameters 0h  and ih  

are the coefficients estimated via multiple linear regression, as follows: 
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where ( ) ( )i i ix R Rλ λ∞= − , iy  represents the depths obtained from the ICESat-2 training data and x  and 

y  are the mean values of ix  and iy , respectively.  

Three visible bands (B2, blue; B3, green; and B4, red) were used to train the linear band model. Before 
modeling the SDB data, a data-screening scheme based on correlation analysis was applied to ensure robust SDB 
estimation. For each ICESat-2 track, the entire dataset was first divided into several segments based on water 320 
depth variation trend (from ascend to descend). For each segment, the Pearson correlation coefficient between 
the ICESat-2 depth and the reflectance of each specific band was calculated, as per Cohen et al. (2009): 
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where ρ  is the Pearson correlation coefficient; Z  is the ICESat-2 depth; R  is the reflectance; N  is the 

number of ICESat-2 data points in this segment; Zµ  and Zσ  represent the mean and standard deviation of Z , 325 

respectively; and Rµ  and Rσ  denote the mean and standard deviation of R , respectively. 

Notably, the ICESat-2 data exhibit higher resolution (~0.7 m along-track) than the Sentinel-2 imagery (~10 
m). Before correlation analysis, bilinear interpolation was used to estimate reflectance at the locations of 
ICESat-2 photons. Correlation analysis was conducted track-by-track, and Pearson correlation coefficients were 
computed for all three visible bands, producing three correlation coefficients for each ICESat-2 photon. An 330 
ICESat-2 photon was excluded from SDB training if two or more of its correlation coefficients were smaller than 
a predetermined threshold (e.g., 0.4).  

Additionally, the GEBCO_2023 model was used as a reference to select deep-water areas, where regions 
with depths exceeding 100 m are identified as the deep waters (see the purple rectangles in Fig. 3). The effects of 
deep-water areas were then removed to minimize the influence of bottom reflection on SDB estimation, as 335 
described by Jia et al. (2023). The Root Mean Square Error (RMSE) and coefficient of determination (R²) were 
used to evaluate SDB data accuracy, as follows: 
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where n  denotes the total number of data points, iy  and ˆiy represent the i th estimated depth and the 

validation data, and y  denotes the mean.  340 

4. Results and discussion 

4.1. SDB estimation 

SDB modeling was performed using 1298 ICESat-2 shallow-water depth data tracks (2018–2024) and 70 
Sentinel-2 images. Functional mapping between the training data and multispectral information was established 
within the shallow-water mask based on the linear band model approach. The derived SDB model 345 
(HHU24SWDSCS) covers 128 islands and reefs in the SCS (Table A1).  

Figure 8 illustrates the SDB results of HHU24SWDSCS, showing rich details of seafloor topography. The 
SDB depth ranges from 0 to 30 m, capturing the typical morphology of coral reefs and sandbanks. In Area 1 
(Xisha Islands), it shows water depths ranging from 0 to 15 m. This area contains numerous ring-shaped coral 
reefs (e.g., the Yongle Group and Huaguang Reef), and the seafloor topography is characterized by deeper 350 
central regions and shallower outer regions. In Area 2 (Dongsha Islands), it indicates water depths ranging from 
0 to 20 m. Around the outer coral ring reefs, the water depths range from 2 to 10 m, with a gradual deepening 
towards the west and shallowing towards the east. Within the inner waters, the average depth is ~10 m, with the 
deepest point reaching 19 m. Areas 3–7 (Nansha Islands) exhibit more diverse depth patterns. The islands and 
reefs in this region primarily comprise coral reefs and submerged shoals, which are typically small and scattered. 355 
The water depths are generally deeper than those in the Xisha Islands and Dongsha Islands, ranging from 0 to 30 
m. 
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Figure 8. The SDB results in (a) Area 1, (b) Area 2, (c) Area 3, (d) Area 4, (e) Area 5, (f) Area 6, and (g) Area 7, 

respectively 360 
Figure 9 presents the SDB training results for the entire SCS (Fig. 9(a)) and for the seven subareas (Fig. 

9(b)-(h)). It is evident that the SDB results are highly consistent with the training data. Regression analysis of the 
training data for the entire SCS region yielded an R2 of 0.92 and RMSE of 1.09 m. The highest R2 (0.94) was 
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achieved for Area 4 (Fig. 9 (e)), with an RMSE of 1.63 m. For all of the subareas, R2 exceeds 0.85, with RMSEs 
<1.6 m, i.e., <5% of the maximum detectable water depth in the respective regions. These results reflect the high 365 
accuracy of the SDB in fitting this shallow-water bathymetry, with good model stability and robustness.  

Figure 10 presents the SDB validation results for the entire SCS (Fig. 10(a)) and for the seven subareas (Fig. 
10(b)-(h)). Notably, the ICESat-2 validation data used here were not introduced in the SDB modeling process, 
making it suitable for independent validation. The validation results (Fig. 10) reveal similar findings to the 
training results (Fig. 9). The validation results for the entire SCS yields an R² of 0.91 and an RMSE of 1.12 m, 370 
with R² range from 0.80 to 0.95, the RMSE from 0.81 to 1.35 m in the sub-regions. Comparison of Fig. 9 and Fig. 
10 reveals that the training and validation R2 and RMSE are highly consistent. Therefore, this SDB algorithm 
produces reasonable estimates, exhibiting strong generalization capability and the potential for model transfer. 

 

Figure 9. Training results of SDB for (a) entire SCS, (b) Area 1, (c) Area 2, (d) Area 3, (e) Area 4, (f) Area 5, (g)Area 6, 375 
(h) Area 7, respectively. The red line represents the 1:1 line, and the black dashed line corresponds to the regression 

line 

 
Figure 10. Validation results of SDB for (a) entire SCS, (b) Area 1, (c) Area 2, (d) Area 3, (e) Area 4, (f) Area 5, (g)Area 

6, (h) Area 7, respectively. The red line represents the 1:1 line, and the black dashed line corresponds to the regression 380 
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line 

To illustrate the details of the SDB bathymetry model, six representative reefs shown in Fig. 3 were selected 
for individual analysis. Figure 11 (Column 1) presents the SDB results of these representative islands and reefs, 
illustrating their geographical distributions, topographical features, and hydrological conditions. The Yongle 
Group, located in Area 1, comprises several reefs with diameters of ~5 km and average water depths ~5 m (Fig. 385 
11(a1)). In addition, Lingyang Reef, situated in the southwestern part of the Yongle Group, exhibits a typical 
central lagoon morphology, characterized by deeper waters in the center and shallower waters along the edges. 
The Dongsha Group is located in Area 2, with diameters of over 20 km (Fig. 11(b1)). Known for its atoll 
structure, the Dongsha Islands exhibit a distinct lagoon morphology, and the SDB model accurately captures 
complex bathymetric patterns, including the central lagoon (~12 m) and the surrounding reef (~3 m). Meijiu 390 
Reef, located in Area 3, is a V-shaped reef spanning ~9 km (Fig. 11(c1)), with coral reefs primarily in the 
northeastern and southwestern parts of the island (~3 to 5 m deep) and a central lagoon (up to 20 m deep). 
Additionally, the SDB model in Fig. 11(c1) clearly reveals the complex underwater terrain, including water 
channels on the western and southwestern sides of the reef. Renai Reef, located in Area 4, is a narrow, elongated 
north–south reef (Fig. 11(d1)); the SDB successfully reveals the narrow passages at the reef’s edge and the sharp 395 
transitions between the reef flats and the lagoon. Yuniao Reef, located in Area 5, is even narrower and more 
elongated in a northeast-to-southwest orientation, with its narrowest point being just 1.2 km, presenting a 
challenge for retrieving effective ICESat-2 water-depth data (Fig. 11(e1)); nonetheless, the SDB model still 
yields reasonable results for this reef, revealing a central lagoon depth of ~8 m and an edge depth of ~4 m. 
Finally, for Nanhua Reef (located in Area 6), the SDB results (Fig. 11(f1)) successfully reveal two water 400 
channels approximately 100 m wide in the southwestern and eastern parts of the reef.  

Based on the SDB validation results (Fig. 11, column 2), most of the discrepancies between the SDB and 
the ICESat-2 validation data are within ±3 m, with larger discrepancies at the edges of the islands, such as 
around 20.77°N 116.8°E (Dongsha Group; Fig. 11(B2)) and 8.14°N 113.3°E (Yuniao Reef; Fig. 11(E2)). These 
discrepancies can be attributed to two main factors. First, the quality of the ICESat-2 data tends to degrade near 405 
boundaries, owing to the complex boundary topography and environmental conditions, thus affecting the 
accuracy of the depth measurements. Second, there is a significant edge effect in the SDB modeling: as the 
number of ICESat-2 data-points decreases, the constraints on the linear regression model are reduced and 
estimation accuracy declines. 

The SDB training and validation results are presented in Fig. 11, columns 3 and 4, respectively. Based on 410 
the training results, for the six representative islands, R² ranges from 0.87 to 0.97, RMSE from 0.43 to 1.05 m, 
and the regression slope from 0.92 to 0.99; this reveals high consistency and robust performance using the 
training dataset. The high R² values demonstrate a strong correlation between the model predictions and the 
actual observations, while the low RMSE confirms the accuracy of the model in predicting water depths in 
shallow areas.  415 

For the six islands, the validation results reveal R² values of 0.80-0.99, RMSE of 0.49-0.99 m, and 
regression slopes of 0.90-1.14. As with the training results, the validation results reveal strong correlation 
between the model predictions and actual observations. The regression slopes (which are close to unity) indicate 
that the model performs well not only on training data but also on unseen data, reflecting its robust 
generalization capability. Along with the results illustrated in Fig. 9 and Fig. 10, this reveals that the model 420 
maintains consistently high performance throughout both the training and validation phases, thus highlighting its 
stability and reliability.  

We next analyzed the SDB validation results for all 128 islands and reefs against the ICESat-2 data. This 
generated R² values of 0.69-0.99, with a mean of 0.90. Over 90% of the SDB results exhibit R² values >0.85, 
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with RMSE consistently <5% of the maximum depth. The lower modeling accuracy for specific islands and reefs 425 
(such as Daxian Reef, Fig. 8(c), and Banlu Reef, Fig. 8(d)) can be attributed to the scarcity and uneven 
distribution of effective water-depth data in the ICESat-2 dataset and to the high level of noise in the images. 
These results demonstrate that the SDB model effectively captured the fine-scale bathymetric features of 
shallow-water areas. Incorporating the control data (the ICESat-2 depth data) effectively constrained and 
enhanced the absolute accuracy of the SDB model. By leveraging the complementary advantages of multi-source 430 
remote-sensing data, the precision of the SDB results is ensured. 

 
Figure 11. The SDB results for the representative reefs (first column), the validation results using independent 

ICESat-2 water depth data (second column), the regression analysis between the SDB results and the training data 

(third column) and the validation data (fourth column), respectively 435 

Using airborne bathymetry data (SIOFM) for the shallow waters near Lingyang Reef, the reef’s bathymetry 
was validated. The latest global bathymetry models, including DTU18BAT (DTU Space), topo_27.1 and 
SRTM15+ V2.6 (SIO), and GEBCO_2023 (GEBCO Bathymetric Compilation Group), were introduced for 
validation and analysis. We used nearest-neighbor interpolation to interpolate the bathymetry models to the 
airborne LiDAR bathymetry points. Based on the validation results (Fig. 12), the SDB model achieves notably 440 
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better estimates than the other models. As shown in Fig. 12(a), the differences between the SDB-derived 
bathymetry and validation data are mostly within ±3 m, whereas the discrepancies exceed 10 m with respect to 
the other models. Given that the water depth ranges from 0 to 10 m in the shallow-water areas of Lingyang Reef, 
this indicates that the existing bathymetry models exhibit relatively poor accuracy and low data reliability in 
these regions. The RMSE is 1.01 m for the SDB model, as opposed to 61.03 m for DTU18BAT, 25.03 m for 445 
topo_27.1, 4.3 m for SRTM15+ V2.6, and 22.65 m for GEBCO_2023 (Table 3). These validation results reveal 
that the SDB model can provide shallow-water bathymetry with ~1 m accuracy, consistent with the independent 
ICESat-2-based validation results (Fig. 10). More importantly, the SDB model significantly outperforms other 
existing models for shallow water areas.  

 450 

Figure 12. Validation of bathymetry models between SDB, topo_27.1, SRTM15+ V2.6, and GEBCO_2023 against 

airborne LiDAR water depth data in Lingyang Reef 

Table 3. Statistics of the validation results between bathymetry models against airborne LiDAR water depth data (m) 

Models MAX MIN MEAN RMSE 

SDB 3.35 -4.14 -0.01 1.01 

DTU18BAT 105.76 28.68 59.25 61.03 

topo_27.1 66.67 -35.62 -14.01 25.03 

SRTM15+ V2.6 23.93 -7.52 2.38 4.30 

GEBCO_2023 74.27 2.96 18.54 22.65 

4.2. Discussion 

Given that most marine-related production and economic activities are concentrated in shallow-water areas, 455 
accurate shallow-water bathymetry has become essential in such activities. Therefore, it is necessary to further 
evaluate the accuracy of the existing bathymetry models for coastal shallow-water areas. Validation results for 
the existing bathymetry models for representative reef areas using ICESat-2 data are shown in Fig. 13; each 
column represents the validation results for one model (SDB, DTU18BAT, topo_27.1, SRTM15+ V2.6, and 
GEBCO_2023 models), and each row, its performance for a specific reef. For all six reefs, the SDB-derived 460 
bathymetry results differ from the validation data by <5 m, whereas for the other models, these differences 
exceed 20 m. Specifically, as shown in Table 4, the SDB validation RMSEs are 0.77 m, 1.25 m, 1.02 m, 1.16 m, 
1.35 m and 1.54 m, respectively, whereas for DTU18BAT, topo_27.1, SRTM15+ V2.6, and GEBCO_2023, the 
RMSEs exceed 2 m, even reaching tens of meters (Table 4). Given that water depth in coastal shallow-water 
areas is generally <30 m, most of the existing bathymetry models exhibit large uncertainties and low data 465 
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usability. In contrast, the SDB model achieves relatively robust meter-level accuracy in these regions, 
demonstrating its superiority in shallow-water bathymetry retrieval. Notably, the existing bathymetry models and 
the validation data differ significantly for the Renai Reef area, with a maximum difference exceeding 700 m, 
while the difference between the SDB results and the validation data for this reef is reduced to the meter level. 
This discrepancy may because the existing models rely primarily on altimetry-derived gravity anomalies for 470 
water-depth data, owing to the scarcity of in situ measurements. However, the poor quality of altimetry data near 
the coast leads to significant errors in the bathymetry models. Based on the validation results presented in Fig. 12 
and Fig. 13, the SDB bathymetry model achieves high accuracy and robustness in coastal shallow-water areas. 

 
Figure 13. Validation of the bathymetry models between (first column) SDB, (second column) DTU18BAT, (third 475 
column) topo_27.1, (fourth column) SRTM15+ V2.6, and (fifth column) GEBCO_2023, against independent ICESat-2 

water depth data, respectively 

Table 4. Statistics on the misfits between different bathymetry models and ICESat-2 validation data over six 

representative reefs (m) 

Research areas Models Max Min Mean RMSE 

Yongle Group 

SDB 3.49 -1.31 0.65 0.77 

DTU18BAT 2.26 -91.81 -48.09 56.93 

topo_27.1 7.78 -12.85 -5.26 7.12 

SRTM15+ V2.6 8.69 -5.39 -0.62 2.43 

GEBCO_2023 1.32 -142.86 -19.77 24.04 

Dongsha Group SDB 8.26 -7.95 -0.50 1.25 
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DTU18BAT 13.00 -92.41 -5.64 12.66 

topo_27.1 16.48 -5.86 0.07 2.52 

SRTM15+ V2.6 16.54 -7.10 0.80 2.68 

GEBCO_2023 15.20 -43.11 -3.72 8.77 

Meijiu Reef 

SDB 5.05 -3.46 -0.12 1.02 

DTU18BAT 9.39 -18.80 -4.28 7.43 

topo_27.1 9.25 -21.54 -4.65 8.64 

SRTM15+ V2.6 10.28 -2.82 1.18 2.89 

GEBCO_2023 10.05 -84.25 -13.47 22.94 

Renai Reef 

SDB 6.52 -3.23 0.38 1.16 

DTU18BAT -271.25 -1.129.47 -682.67 727.91 

topo_27.1 -8.38 -901.05 -548.55 599.55 

SRTM15+ V2.6 -42.11 -888.34 -526.29 573.64 

GEBCO_2023 -36.45 -554.07 -335.30 357.98 

Yuniao Reef 

SDB 6.98 -2.68 0.39 1.35 

DTU18BAT 9.85 -103.13 -22.44 36.34 

topo_27.1 12.14 -20.22 -2.38 6.88 

SRTM15+ V2.6 11.42 -14.52 -1.09 5.25 

GEBCO_2023 8.58 -54.64 -16.04 20.17 

Nanhua Reef 

SDB 9.47 -4.1 0.33 1.54 

DTU18BAT -45.36 -212.57 -116.03 123.41 

topo_27.1 20.89 -141.41 -12.95 32.25 

SRTM15+ V2.6 17.26 -6.02 1.86 5.57 

GEBCO_2023 14.47 -663.29 -58.60 136.95 

Furthermore, benefitting from the rich spatial information of the SDB model, the spatial detail and accuracy 480 
of existing bathymetry models are analyzed. The differences between the SDB results and those of the 
DTU18BAT, topo_27.1, SRTM15+ V2.6, and GEBCO_2023 models were calculated for the representative reefs 
(Fig. 14). This revealed relatively large differences, with maximum discrepancies exceeding 50 m. Statistically, 
the RMSE of the differences between the DTU18BAT, topo_27.1, SRTM15+ V2.6, and GEBCO_2023 models 
against the SDB results reach tens of meters across the six typical island regions, particularly for the Renai Reef 485 
area, for which the RMSE exceeds 100 m.  

These results reveal that the existing bathymetry models are significantly deficient in spatial resolution, 
modeling accuracy, and detailed signal depiction for coastal shallow-water areas, making it difficult to meet the 
current demands of navigation, nearshore economic activities, port construction, and other production activities. 
The SDB model, which achieves 10 m spatial resolution, meter-level modeling accuracy, detailed bathymetry 490 
signals, as well as being efficient and low-cost, therefore constitutes an improvement for coastal shallow-water 
areas and provides fundamental data support for research in oceanography, geodesy, and other disciplines. 

Nonetheless, the sources of error in the SDB results cannot be ignored. First, its accuracy is substantially 
influenced by water conditions, including turbidity and water type, which directly affect the underwater light 
penetration and reflectance measurements of remote-sensing images (Caballero and Stumpf, 2020, 2023). 495 
Additionally, although the Sentinel-2 images used in this study have undergone correction for atmospheric 
effects, residual errors from atmospheric effects, image noise, and the influence of sun glint may still reduce the 
quality of the SDB results (Warren et al., 2019). The quality of the ICESat-2 data is another key factor in SDB 
modeling, as its signal-to-noise ratio and limited deep-water penetration capabilities may lead to insufficient 
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underwater topographic-information retrieval. Regarding the selection of the SDB-estimation methods, the 500 
empirical methods rely on a priori depth data to establish the relationship between reflectance and water depth. 
However, this relationship becomes non-linear in deeper waters, making SDB estimates unreliable in deep-water 
areas (Ashphaq et al., 2021; Wu et al., 2024a). Furthermore, the impact of changes over time on underwater 
topography should not be overlooked, as sedimentation, erosion, ocean currents, and human activities can all 
alter shallow-water bathymetry over time (Caballero and Stumpf, 2021; Niroumand-Jadidi et al., 2020).  505 

 

Figure 14. The comparison of the representative reefs between the SDB results and DTU18BAT (first column), 

topo_27.1 (second column), SRTM15+ V2.6 (third column), and GEBOCO_2023 (fourth column), respectively 

 

 510 
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Table 5. Statistics on the misfits between different bathymetry models and SDB results over six representative reefs 

(m) 515 
Research areas Models Max Min Mean RMSE 

Yongle Group 

DTU18BAT 137.99 1.08 22.42 30.26 

topo_27.1 111.27 -35.58 2.14 14.08 

SRTM15+ V2.6 89.47 -16.86 5.73 8.52 

GEBCO_2023 244.79 -53.69 13.85 34.47 

Dongsha Group 

DTU18BAT 126.39 1.06 17.64 22.34 

topo_27.1 27.67 -7.89 10.60 11.75 

SRTM15+ V2.6 32.65 -4.03 10.35 11.26 

GEBCO_2023 64.41 -13.56 14.11 17.75 

Meijiu Reef 

DTU18BAT 43.15 2.85 14.91 16.12 

topo_27.1 39.08 -23.78 8.28 12.58 

SRTM15+ V2.6 36.16 -25.36 5.91 9.48 

GEBCO_2023 118.16 -26.21 8.52 21.55 

Renai Reef 

DTU18BAT 1172.07 189.36 398.25 447.78 

topo_27.1 946.65 -10.01 273.63 355.63 

SRTM15+ V2.6 935.88 2.44 255.41 332.35 

GEBCO_2023 586.39 -12.75 124.32 190.20 

Yuniao Reef 

DTU18BAT 113.06 1.57 11.09 17.66 

topo_27.1 35.70 -29.71 5.60 8.79 

SRTM15+ V2.6 41.13 -117.54 5.95 7.35 

GEBCO_2023 69.80 -163.48 11.76 26.28 

Nanhua Reef 

DTU18BAT 306.60 59.61 130.26 135.83 

topo_27.1 176.34 -141.35 -2.99 36.47 

SRTM15+ V2.6 31.42 -13.06 8.67 11.27 

GEBCO_2023 927.36 -23.57 110.54 205.26 

5. Data availability 

The HHU24SWDSCS model is openly accessible at https://doi.org/10.5281/zenodo.13852568 (Wu et al., 
2024b). The dataset file (HHU24SWDSCS.nc) includes geospatial information (latitude and longitude), 
shallow-water depth, and the distribution of the reefs. 

6. Conclusions 520 

Accurate shallow-water bathymetry data is crucial for maritime safety, resource exploration, ecological 
conservation, and oceanic economic development. Utilizing ICESat-2 data and Sentinel-2 high-resolution 
multispectral imagery, we constructed a shallow-water bathymetry model, HHU24SWDSCS, for >120 islands 
and reefs in the SCS, using SDB modeling. ICESat-2 water-depth extraction, SDB modeling, and model 
validation were examined in detail, and a comprehensive framework was developed for integrating the ICESat-2 525 
data and Sentinel-2 multispectral imagery for shallow-water bathymetry modeling.  

The accuracy and consistency of the SDB model were evaluated using independent ICESat-2 bathymetry 
data; this revealed its robust performance (with an RMSE of 1.21 m and an R² value of 0.91), indicating the 
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model’s reliability across the SCS. Further validation was conducted for Lingyang Reef using airborne LiDAR 
bathymetry data; this revealed that the SDB model achieved significantly higher accuracy (RMSE of 1.01 m) 530 
than traditional models. Comprehensive validation of the latest bathymetric models (i.e., DTU18BAT, topo27.1, 
SRTM15+ V2.6, and GEBCO_2023) was conducted against the ICESat-2, airborne LiDAR, and SDB data for 
the shallow-water regions of representative reefs; this revealed that the existing bathymetry models exhibit 
significant uncertainty, low spatial resolution, and a lack of detail in coastal shallow-water regions. Overall, the 
SDB model represents a significant advancement in shallow-water bathymetry, offering improved accuracy, 535 
spatial resolution, and coverage, making it a viable alternative to existing bathymetry models and a powerful tool 
for marine applications such as coastal construction, ecological conservation, petroleum exploration, and 
scientific research. 

In future, we aim to leverage ICESat-2 and Sentinel-2 data for feature extraction and labeling, utilizing deep 
learning techniques to construct detailed bathymetric maps of global shallow-water regions. By integrating 540 
multiple data sources, including ICESat-2 water-depth data, SDB data, satellite altimetry data, and multibeam 
sonar sounding, we aim to develop a high-precision, seamless, and integrated bathymetry model for both shallow 
and deep waters.  

Appendix A 

Table A2 Information of the research areas and distribution of islands 545 
Research 

areas 

Island 

groups 

Island 

name 

Latitude 

(°N) 

Longitud

e (°E) 

Research 

areas 

Island 

groups 

Island 

name 

Latitude 

(°N) 

Longitud

e (°E) 

Area 1 

Xuande 

Group 

Yongxing 

Island 
16.83  112.33  

Area 3 
Jiuzhang 

Group 

Jinghong 

Island 
9.88  114.32  

Shi Island 16.85  112.35  
Nanmen 

Reef 
9.90  114.40  

Xi Sand 16.97  112.20  
Ximen 

Reef 
9.90  114.47  

Zhaoshu 

Island 
16.97  112.27  

Dongmen 

Reef 
9.92  114.50  

Bei Island 16.97  112.30  Anle Reef 9.93  114.52  

Zhong 

Island 
16.95  112.32  

Changxian 

Reef 
9.93  114.55  

Nan Island 16.93  112.33  
Zhuquan 

Reef 
9.95  114.57  

Bei Reef 16.93  112.33  Niue Reef 9.97  114.62  

Zhong Reef 16.93  112.33  
Ranqing 

Reef 
9.88  114.60  

Nan Reef 16.92  112.33  
Ranqing 

Sand 
9.90  114.57  

Dongxin 

Reef 
16.92  112.35  

Longxia 

Reef 
9.88  114.53  

Xixin Reef 16.92  112.35  
Bianshen 

Reef 
9.87  114.52  

Dongdao Dong 16.67  112.73  Zhangxi 9.83  114.47  

https://doi.org/10.5194/essd-2024-443
Preprint. Discussion started: 23 October 2024
c© Author(s) 2024. CC BY 4.0 License.



 

26 
 

Atoll Island Reef 

Gaojian 

Reef 
16.57  112.63  

Quyuan 

Reef 
9.80  114.40  

Beibian 

Reef 
16.53  112.55  

Qiong 

Reef 
9.75  114.35  

Zhanhan 

Band 
16.42  112.62  

Chigua 

Reef 
9.70  114.28  

Langhua Reef 16.05  112.55  
Guihan 

Reef 
9.77  114.25  

Yongle 

Group 

Ganquan 

Island 
16.50  111.58  Hua Reef 9.85  114.27  

Shanhu 

Island 
16.53  111.60  

Jiyang 

Reef 
9.87  114.28  

Jinyin 

Island 
16.43  111.50  Huoai Reef 10.88  114.93  

Zhenhang 

Island 
16.45  111.70  Xiyue Island 11.07  115.02  

Guangjin 

Island 
16.45  111.70  Daxian Reef 10.07  113.87  

Jinqing 

Island 
16.45  111.73  Sanjiao Reef 10.17  115.32  

Lingyang 

Reef 
16.45  111.58  

Area 4 

Antang Reef 10.88  116.43  

Quanfu 

Island 
16.57  111.67  Donghua Reef 10.55  116.93  

Yagong 

Island 
16.57  111.68  

Wufang 

Group 

Wufang 

Reef 
10.48  115.75  

Yin Reef 16.58  111.70  
Wufangna

n Reef 
10.45  115.77  

Yinyuzi 

Island 
16.58  111.70  

Wufangwe

i Reef 
10.47  115.72  

Xianshe 

Reef 
16.55  111.72  

Wufangxi 

Reef 
10.50  115.70  

Kuangzi 

Sand 
16.45  111.63  

Wufangbei 

Reef 
10.53  115.72  

Shi Reef 16.55  111.75  
Wufangtou 

Reef 
10.53  115.78  

Huaguang Reef 16.20  111.67  Banlu Reef 10.13  116.13  

Yuzhuo Reef 16.33  112.02  Yongshi Bank 11.08  117.47  

Panshi Reef 16.05  111.77  Xiane Reef 9.35  115.43  

Bei Reef 17.08  111.50  Xinyi Reef 9.33  115.95  

Zhongjian Reef 15.78  111.20  Haikou Shoal 9.18  116.45  

Area 2 
Dongsha 

Group 

Dongsha 

Island 
20.72  116.70  Banyue Shoal 8.87  116.27  
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Dongsha 

Reef 
20.67  116.90  Yenai Reef 9.72  115.88  

Area 3 

Shuangzi 

Reefs 

Gongshi 

Reef 
11.47  114.40  Xianbin Reef 9.73  116.57  

Beizi 

Island 
11.45  114.35  Niuche Reef 9.60  116.17  

Beiwai 

Reef 
11.45  114.35  

Area 5 

Yongshu Reef 9.58  112.97  

Nanzi 

Island 
11.43  114.33  

Yinqing 

Group 

Xi Reef 8.87  112.23  

Nailuo 

Reef 
11.38  114.30  Dong Reef 8.83  112.58  

Dongnan 

Shoal 
11.40  114.37  

Huayang 

Reef 
8.88  112.85  

Dongbei 

Shoal 
11.43  114.40  

Yuniao 

Reef 
8.27  113.37  

Beizi Shoal 11.43  114.38  Riji Reef 8.67  111.67  

Zhongye 

Group 

Zhongye 

Island 
11.05  114.28  

Area 6 

Wunie Reef 8.87  114.65  

Tiezhi Reef 11.08  114.38  Nanhua Reef 8.75  114.18  

Meijiu 

Reef 
11.05  114.32  Liumen Reef 8.83  113.98  

Tiexian 

Reef 
11.07  114.23  Bisheng Reef 8.97  113.67  

Daoming 

Group 

Shuanghua

ng Reef 
10.70  114.32  Erjiao Reef 8.20  114.70  

Nanyue 

Island 
10.67  114.42  

Yuya 

Group 

Langkou 

Reef 
8.13  114.55  

Yangxin 

Cay 
10.70  114.52  

Xiantou 

Reef 
8.13  114.80  

Kugui Reef 10.77  114.58  
Guangxing

zi Reef 
7.62  113.93  

Zhenghe 

Group 

Taiping 

Island 
10.38  114.37  Siling Reef 8.37  115.23  

Zhong 

Bank 
10.37  114.38  Boji Reef 8.10  114.13  

Zhongzhou 

Reef 
10.38  114.42  Guangxing Reef 7.63  113.80  

Chunqian 

Sand 
10.38  114.47  Nanhai Reef 7.98  113.88  

Bolan Reef 10.42  114.58  Danwan Reef 7.37  113.83  

Anda Reef 10.35  114.70  Huanglu Reef 6.95  113.58  

Hongxiu 

Island 
10.18  114.37  Nantong Reef 6.33  113.23  
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Nanxun 

Reef 
10.20  114.23  

Area 7 

Nanan Reef 5.53  112.58  

Yongdeng Shoal 11.40  114.67  Nanping Reef 5.37  112.63  

Lesi Shoal 11.33  114.62  Haining Reef 4.95  112.62  
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