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Abstract. Accurate shallow-water depth information for island areas is crucial for maritime safety, resource 

exploration, ecological conservation, and offshore economic activity. Traditional approaches such as shipborne 

sounding and airborne bathymetric light detection and ranging (LiDAR) surveys are expensive, time-consuming, 15 

and are constrained in politically sensitive regions. Moreover, satellite altimetry-predicted depths exhibit large 

errors over shallow waters. In contrast, satellite-derived bathymetry (SDB), estimated from multispectral 

imagery, provides a rapid, open-source, and cost-effective technique to comprehensively characterize the 

bathymetry of a region. Given the scarcity of in-situ water-depth data for the South China Sea (SCS), a 

shallow-water depth model, HHU24SWDSCS (Hohai University 2024 Shallow-Water Depth Model of South 20 

China Sea), was developed by integrating 1298 Ice, Cloud, and land Elevation Satellite (ICESat-2) tracks with 

70 Sentinel-2 multispectral images. The model covers over 120 islands and reefs in the SCS region at a 

resolution of 10 m. Validation against independent ICESat-2 depth data yielded a root mean square error for the 

model of 0.53-1.24 m (<5% of the maximum depth). Further validation using independent airborne LiDAR 

bathymetry data in the Lingyang Reef demonstrated an accuracy of 1.01 m. Comparisons with existing 25 

bathymetry models revealed the superior performance of the developed model. While traditional bathymetry 

models exhibit errors up to tens of meters or larger over island regions, and should therefore be used with 

caution, the HHU24SWDSCS model demonstrated good accuracy in shallow waters across the SCS. This model 

thus provides a reference for mapping shallow-water depth close to islands and provides fundamental support for 

research in oceanography, geodesy, and other disciplines. The HHU24SWDSCS data are freely available at 30 

https://doi.org/10.5281/zenodo.13852568 (Wu et al., 2024a) 

Key Words. Shallow water depth, Satellite-derived bathymetry, ICESat-2 photon, Sentinel-2 multispectral 

image, South China Sea. 

Short summary. We developed a high-quality and cost-effective shallow-water depth model for >120 islands in 

the South China Sea, using ICESat-2 and Sentinel-2 satellite data. This model accurately maps water depths with 35 

an accuracy of ~1 m. Our findings highlight the limitations of existing global bathymetry models in shallow 

regions. Our model exhibited superior performance in capturing fine-scale bathymetric features with 

unprecedented spatial resolution, providing essential data for coastal construction, environmental protection, and 

marine activities. 
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1. Introduction 

Shallow-water bathymetry, which critically important for maritime safety, ecological conservation, and marine 

economic development (Cesbron et al., 2021; Mavraeidopoulos et al., 2017; Wölfl et al., 2019; Yen et al., 2004), 

has long been a core research focus in oceanography, geophysics, and coastal geomorphology, profoundly 

influencing studies on ocean currents, the Earth’s gravity field, and seafloor sedimentation processes (Babonneau 45 

et al., 2013; Tinto et al., 2019; Wang et al., 2018b; Wu et al., 2024b). Moreover, since most marine-related 

human activities are concentrated in coastal shallow-water areas, accurate bathymetry information plays a 

pivotal role in port construction, marine fisheries, cross-sea bridge construction, and other marine economic and 

engineering activities (Bergstad et al., 2019; Parker, 2002; Šiljeg et al., 2019).  

The South China Sea (SCS), one of the most active marine systems globally, is characterized by complex 50 

bathymetry (Hwang, 1999; Pitcher et al., 2000; Su et al., 2018). In the central basin of the SCS, the bathymetry 

is deeper than 4000 m, yet it contains numerous islands, shoals, and banks, with depths <100 m in the 

continental shelf region (Ruan et al., 2020). A thorough investigation of shallow-water bathymetry in the SCS is 

crucial for conserving biodiversity, coral reef ecosystems, and marine fisheries, for addressing coastal erosion, 

and for petroleum exploration; moreover, it is indispensable for achieving sustainable use of marine resources, 55 

promoting marine environmental protection, and fostering international cooperation (Folorunso and Li, 2015; 

Goodman et al., 2020; Misra and Ramakrishnan, 2020; Yen et al., 2004). 

Traditional methods for obtaining bathymetry data primarily include shipborne sonar sounding, airborne 

bathymetric light detection and ranging (LiDAR), and satellite altimetry (An et al., 2024; Guenther, 2007; Smith 

and Sandwell, 1994). Shipborne sounding, and particularly multibeam sounding, is one of the most accurate 60 

methods, capable of simultaneously emitting multiple pulses to expand the survey range and achieve 

centimeter-level accuracy in water-depth measurements (Costa et al., 2009; Ernstsen et al., 2006). However, 

shipborne surveys are limited in shallow and narrow waters, in which vessel-draft limitations, beam angles, and 

multipath effects significantly affect data quality and limit its availability (Costa et al., 2009; Hsu et al., 2021; 

Schneider von Deimling and Weinrebe, 2014). Airborne bathymetric LiDAR technology can rapidly obtain 65 

sub-meter-resolution bathymetric data; however it is costly and its measurement accuracy is influenced by water 

quality, making it unsuitable for large-scale surveys (Tysiac, 2020). Over deep waters, satellite 

altimetry-predicted depths play a dominant role in global bathymetry detection (Ge et al., 2025); however, this 

method faces challenges in coastal zones, and the predicted water depths exhibited large uncertainties in shallow 

waters (Ferreira et al., 2022). Furthermore, satellite altimetry predicted-depths lack short-wavelength information 70 

(i.e., for wavelengths shorter than several kilometers), owing to the limited resolution of altimetry data, thus 

preventing its use in detecting fine seafloor topography (Wu et al., 2023). 

Traditional satellite altimetry-predicted depth and in situ data have been used to develop global bathymetry 

models, including the SRTM15 series (15″ × 15″) (SRTM: Shuttle Radar Topography Mission) (Tozer et al., 

2019) and Topo series of models (1′ × 1′) (https://topex.ucsd.edu/pub/global_topo_1min/) provided by the 75 

Scripps Institution of Oceanography (SIO); the DTU series (1′ × 1′) 

(https://ftp.space.dtu.dk/pub/DTU18/1_MIN/), developed by the Department of Space Research and Technology 

at Denmark Technical University (DTU Space); and GEBCO (the General Bathymetric Chart of the Oceans) 

series (15″ × 15″) (https://www.gebco.net/data_and_products/gridded_bathymetry_data/), compiled by the 

GEBCO Bathymetric Compilation Group. With the accumulation of bathymetric data and advancements in 80 

modeling, these models have achieved significant improvements in terms of spatial resolution and accuracy. 

However, owing to the scarcity of in situ data over shallow waters in the SCS, these models are limited in the 

accuracy of the bathymetric information, exhibiting data gaps, low spatial resolution, and large uncertainty for 

shallow water areas (Wu et al., 2023). Consequently, the existing bathymetry models fail to deliver a unified, 
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high-accuracy representation of the bathymetry in these areas. 85 

In comparison, the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2), equipped with the Advanced 

Topographic Laser Altimeter System (ATLAS), provides worldwide open-source water depths with an accuracy 

of 0.43-0.6 m and along-track resolution of 0.7 m (Abdalati et al., 2010; Markus et al., 2017; Martino et al., 

2019). Moreover, satellite-derived bathymetry (SDB) technology, utilizing satellite multispectral/hyperspectral 

imagery, provides comprehensive bathymetric data coverage (Albright and Glennie, 2020; Ma et al., 2020). SDB 90 

establishes the relationship between reflectance and water depth, and by combining ICESat-2 data with satellite 

imagery, SDB can be used to map shallow water bathymetry with an accuracy of ~1 m and resolution of a few 

meters (Hodúl et al., 2018; Jia et al., 2023; Ma et al., 2020). SDB utilizes openly available data and provides a 

rapid, accurate, and cost-effective way to capture shallow-water depths with unparalleled accuracy and spatial 

resolution on a global scale, providing significant advantages over traditional approaches (Ferreira et al., 2022). 95 

Given the lack of accurate water depths near island areas in the SCS, we focused on developing a 

high-quality shallow-water depth model with a unified spatial resolution using SDB by integrating ICESat-2 data 

with Sentinel-2 multispectral imagery. The model called HHU24SWDSCS represents a high-quality 

shallow-water depth (SWD) model over the SCS developed by Hohai University in 2024. This model, which 

covers >120 islands and reefs in the SCS, is expected to serve as a potential substitute for existing bathymetry 100 

models in fields such as oceanography, geodesy, environmental sciences, and marine production activities in the 

shallow waters over the SCS. The rest of this study is organized as follows: In Section 2, we introduce the study 

area and data. Section 3 presents the principles for the preprocessing of the ICESat-2 data and for SDB 

estimation. Section 4 presents the modeling results and examines the model’s performance, with validation 

against independent ICESat-2 and airborne LiDAR data. The performance of the latest global bathymetry models 105 

(DTU18BAT, topo_27.1, SRTM15+ V2.6, and GEBCO_2023) is evaluated and analyzed. Section 5 presents the 

conclusions. 

2. Study area and data 

The study area was the SCS (Figure 1), with the latest high-resolution bathymetric model (GEBCO_2023, 15′ 

× 15′) providing the background bathymetry data. The SCS, a marginal sea in the western Pacific Ocean 110 

(3°-22°N, 105°-120°E), is one of the most important maritime passages globally. Located in Southeast Asia, it 

covers ~3.5 million square kilometers, making it one of the largest and deepest marginal seas (>5000 m deep in 

the Manila Trench) in the western Pacific Ocean (Wang et al., 2018a; Zhu et al., 2021). Over 100 islands and 

reefs are scattered across the SCS; these can be geographically divided into four archipelagos: the Xisha Islands, 

Zhongsha Islands, Dongsha Islands, and Nansha Islands, with the latter accounting for >70% of the islands 115 

(Huang et al., 1994). The water depth around these islands and reefs is generally <50 m, and their diameters 

range from 2 to 25 km (As depicted in Figure 1). Conventional techniques, such as shipborne and airborne 

surveys, encounter numerous challenges in acquiring shallow-water depths over these islands across the SCS; 

this is particularly true for the Nansha Islands, where political factors prohibit the use of in situ surveys for water 

depth meansurements. However, the wide range of the ICESat-2 data and Sentinel-2 imagery provides a solid 120 

database for employing SDB to develop a shallow-water depth model covering these islands and reefs (Hsu et al., 

2021; Ma et al., 2020). Since most of the Zhongsha Islands comprise submerged shoals for which the ICESat-2 

data do not provide valid seafloor topography information, this study focuses on SDB modeling over the Xisha, 

Dongsha, and Nansha Islands (The geographical locations are displayed in the red boxes in Figure 1(a)). As the 

Nansha Islands are larger than the other two archipelagos, the Nansha Islands were divided into five subareas for 125 

results presentation, resulting in seven subareas in total, as shown in Figure 1. Areas 1 and 2 cover the Xisha and 

Dongsha Islands (Figure 1(b) and (c), respectively), and areas 3-7 comprise the Nansha Islands (Figure 1(d)-(h)). 
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It is worth noting that the SDB modeling here is focused on shallow waters near islands and reefs, which is 

largely affected by the quality of ICESat-2 and Sentinel-2 multispectral data as well as water quality, water 

condtions and bottom types (Wu et al., 2023). Further information on the subareas is presented in Table 1.  130 

 
Figure 1. (a) Distribution of the islands and reefs over the South China Sea (SCS), and seven areas in the red boxes 

display the subareas. (b)~(h) represent Areas 1~7, respectively. The purple box in (b) displays the location of the 

airborne LiDAR data in the Lingyang Reef over Xisha Islands. The six green boxes in (b)~(g) show the representative 

islands. The GEBCO_2023 model is used as background. 135 

Table 1. Description of selected subareas in the South China Sea (SCS). 

Subarea Latitude (°N) Longitude (°E) Number of Islands or reefs 

Area 1 15.75–17.15 111.15–112.80 36 

Area 2 20.55–20.80 116.65–116.95 2 

Area 3 9.68–11.53 113.80–115.35 49 

Area 4 8.80–11.20 115.40–117.50 17 

Area 5 8.05–9.75 111.60–113.40 6 

Area 6 6.90–9.00 113.55–115.30 15 

Area 7 4.95–5.60 112.50–112.65 3 



 

5 
 

2.1. ICESat-2 data 

ICESat-2, launched by NASA in September 2018, has a revisit cycle of ca. 91 days and enables continuous 

monitoring of changes on the Earth’s surface. ICESat-2 is equipped with the latest ATLAS, which emits laser 

pulses at a 10 kHz pulse-repetition frequency in six beams, achieving an along-track resolution of ~0.7 m and a 140 

ranging accuracy better than 1 m (Markus et al., 2017; Martino et al., 2019). It is capable of penetrating water at 

depths >30 m below the sea surface in clean waters and can measure bathymetry in shallow waters (Guo et al., 

2022). For SDB modeling, we utilized the ICESat-2 L2A Global Geolocated Photon Data (ATL03) V006 

data-product (https://www.earthdata.nasa.gov/), in which each photon contains information such as latitude, 

longitude, along-track distance, off-nadir angle, data quality, elevation, and geophysical corrections for factors 145 

including solid Earth tides, ocean pole tides, and atmospheric delays (Neumann et al., 2021).  

We utilized ICESat-2 data for 2018-2024, encompassing 512 tracks for the Xisha Islands, 73 for the Dongsha 

Islands, and 1038 tracks for the Nansha Islands, totaling 1623 tracks, with a maximum depth of approximately 

30 m. Owing to the difficulty in obtaining in situ water depths around islands and reefs, the ICESat-2 data are 

used for both training and validating the SDB model. The training and validation sample sizes are selected by 150 

ensuring that the spatial distribution of both the training and validation data is uniform. This not only allows for 

better data control but also ensures good spatial coverage for the validation data. The ratios of ICESat-2 data 

used for the training and validation data are approximately 80% and 20%, respectively. The training (red tracks) 

and validation data (green tracks) over the seven subareas are illustrated in Figure 2. Notably, ICESat-2 data are 

acquired independently using individual beams, hence the tracks do not influence one another and are not 155 

correlated. This ensures that the training data remains entirely independent from the validation data, allowing for 

objective assessment of the quality of the computed SDB data.  
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Figure 2. Distribution of the ICESat-2 training tracks (red) and validation tracks (green) over the seven subareas (a-g, 

respectively). 160 

2.2. Sentinel-2 multispectral imagery 

High-resolution multispectral imagery from Sentinel-2A and Sentinel-2B Level-2A (L2A) product provided 

by the European Space Agency (ESA) was utilized for SDB modeling. Sentinel-2A and Sentinel-2B were 
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launched by the European Space Agency in June 2015 and March 2017, respectively (Drusch et al., 2012). Each 

carries a Multi-Spectral Instrument and can capture 13 different spectral bands at 443-2190 nm, including blue, 165 

green, red, near-infrared, red-edge, and shortwave infrared bands. Their spatial resolution is 10 m, with a swath 

width of 290 km and a revisit period of 5 days (Gatti and Bertolini, 2015). Owing to its high spatial resolution 

and short revisit interval, the Sentinel-2 imagery is suitable for SDB modeling. In addition, the L2A products 

have been atmospherically corrected, offering surface reflectance for SDB modeling. 

Here, the spectral information from the red, green, and blue bands was extracted from the Sentinel-2 170 

multiband imagery, based on our preliminary finding that using these three bands yielded better results than 

using other combinations (Wu et al., 2023). To reduce the effects of temporal changes on bathymetry estimation, 

only images within the time-span of the ICESat-2 data were selected (Wu et al., 2023, 2025). The AI EARTH 

platform (engine-aiearth.aliyun.com) was used to select images with minimal cloud cover and sun glint; 70 

images were chosen, including five for Xisha Islands, one for Dongsha Islands, and 64 for Nansha Islands. 175 

Given that Sentinel-2 multispectral imagery is subject to various environmental interferences, including sun glint, 

cloud cover, and image noise, coupled with substantial variations in water quality and seafloor composition 

across different island regions, this study performs separate modeling for each individual island or adjacent 

islands (e.g., Figure 3(a)). This choice is based on the premise that external influencing factors maintain relative 

consistency within smaller geographical units, consequently minimizing their potential impact on the accuracy of 180 

the SDB results.  

To assess the efficacy and applicability of the SDB modeling approach, six representative reefs with diverse 

geographical distributions, topographical features, and hydrological conditions were selected for presentation 

(Table 2). Figure 3 depicts the representative islands and reefs, highlighted in the green boxes in Figure 1, 

including the Yongle Group (Area 1), the Dongsha Group (Area 2), Meijiu Reef (Area 3), Renai Reef (Area 4), 185 

Yuniao Reef (Area 5), and Nanhua Reef (Area 6). Figure 3 presents multispectral images (synthesized from the 

blue, green, and red bands), ICESat-2 water depth, and shallow-water masks (white polygons), along with 

preselected deep-water areas (purple box). The SDB modeling is conducted within the shallow-water masks of 

each reef. Notably，GEBCO_2023 model is employed to identify and remove deep-water effects (>100 m) in 

SDB estimation, which helps eliminate sun glint interference and establish a more accurate relationship between 190 

seafloor reflection energy and water depth. 

To obtain a precise shallow-water mask for a specific island, we first use the normalized difference water 

index (NDWI) in Sentinel-2 imagery to extract a raw mask, where the green and near-infrared bands are utilized 

to compute NDWI (Gao, 1996). However, the performance of NDWI in water mask identification is affected by 

the bottom type and water turbidity, which may lead to misclassification issues (Kirby et al., 2024; Yang et al., 195 

2017b), and we further use the valid ICESat-2 seafloor topography information to correct and refine the initial 

water mask obtained from the NDWI. Sentinel-2 pixels exhibiting valid bathymetric signals from ICESat-2 were 

classified as shallow water areas. This refined classification was then incorporated into the water mask, allowing 

for subsequent data screening and quality control. 
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 200 
Figure 3. Representative islands in the research area. (a) Yongle Group, (b) Dongsha Group, (c) Meijiu Reef, (d) Renai 

Reef, (e) Yuniao Reef, and (f) Nanhua Reef. White polygon denotes the shallow water mask; the tracks indicate the 

ICESat-2 water-depth data; the purple boxes indicate the reference deep-water areas; and the cyan dotted boxes in (b) 

and (c) indicate typical nighttime and daytime ICESat-2 tracks, respectively. The background images are synthetized 

from the Sentinel-2 red, green and blue band. 205 

Table 2. Information of the representative islands 

Islands name Latitude (°N) Longitude (°E) ICESat-2 tracks Sentinel-2 image 

Yongle Group 16.43–16.60 111.48–111.79 19 20210817T025549 

Dongsha Group 20.55–20.80 116.65–116.95 73 20230207T023901 

Meijiu Reef 11.05–11.10 114.30–114.39 15 20240207T023859 

Renai Reef 9.65–9.8 115.83–115.90 10 20240323T023531 

Yuniao Reef 8.05–8.30 113.20–113.37 25 20200327T024541 

Nanhua Reef 8.66–8.76 114.15–114.21 26 20190228T023631 

2.3. Airborne LiDAR bathymetry  

We used airborne LiDAR bathymetric data, provided by the Shanghai Institute of Optics and Fine Mechanics 

(SIOFM), to independently validate the SDB modeling results (Li et al., 2022; Yang et al., 2022). The airborne 

LiDAR system (Mapper5000) features a dual-frequency design, including a 1064 nm near-infrared surface 210 

channel and a 532 nm green channel for shallow and deep-water detection, with a pulse repetition frequency of 5 

kHz. Operated at a flight altitude of 300 to 1100 m and flight speed of 150 to 220 km/h, this system ensures 

efficient and accurate data collection. The raw data were preprocessed by SIOFM, using procedures including 

waveform peak detection and range determination, overlapping waveform decomposition, and range-difference 

correction, based on proprietary algorithms (Yang et al., 2022). The accuracy of the airborne LiDAR water-depth 215 

data for Lingyang Reef is ~20 cm (Li et al., 2022). As illustrated in Figure 4(a), the LiDAR data cover the 

northwestern region of Lingyang Reef in the Yongle Group, with water depths of 0–5 m and an effective 

point-cloud size exceeding 440,000 points.  
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Figure 4. (a) The Sentinel-2 image of Lingyang Reef and the distribution of the airborne LiDAR data, and (b) the 220 

zoom-in view of airborne LiDAR water depth data. 

2.4. Global bathymetry models 

The recently released bathymetry models, including DTU18BAT (DTU Space, 

https://ftp.space.dtu.dk/pub/DTU18/1_MIN/), topo_27.1 (https://topex.ucsd.edu/pub/global_topo_1min/), 

SRTM15+ V2.6 (SIO, https://topex.ucsd.edu/pub/srtm15_plus/), and GEBCO_2023 (GEBCO Bathymetric 225 

Compilation Group, https://www.gebco.net/data_and_products/gridded_bathymetry_data/), were introduced for 

validation and analysis. DTU18BAT was developed by DTU Space in 2019, integrating the GEBCO dataset with 

satellite altimetric gravity anomalies (Andersen and Knudsen, 2008). It incorporates three years of Sentinel-3A 

data and seven years of Cryosat-2 observations, offering a spatial resolution of 1′. The topo_27.1 model, released 

by the SIO, also provides bathymetry at a spatial resolution of 1′ (Smith and Sandwell, 1997). Derived from ship 230 

soundings and satellite altimetric gravity anomalies, this model continues the tradition of progressively refined 

seabed topography representations. SRTM15+ V2.6, updated by the SIO, features a finer spatial resolution of 15″ 

(Tozer et al., 2019). This model combines shipboard soundings with satellite altimetric gravity data to provide an 

enhanced depiction of seafloor topography, reflecting a comprehensive analysis of available datasets. 

GEBCO_2023, the recent edition in the GEBCO series, builds upon SRTM15+V2.5.5 as its foundational dataset 235 

(Weatherall et al., 2015). Enhanced with in-situ measurements such as echo soundings, seismic records, and lidar, 

the GEBCO_2023 model offers interpolated satellite altimetry-predicted depths in areas lacking direct 

measurements. Representing the pinnacle of global seafloor terrain depiction, it embodies an advanced 

understanding of underwater topography. Notably, these models have been interpolated to align with the SDB 

models, facilitating accurate comparisons and analyses. 240 

3. Methodology 

To perform SDB modeling for shallow water regions of a specific island area, ICESat-2 data are first 

extracted using a shallow-water mask, followed by classification, denoising, refraction correction, and reference 

datum unification, to obtain high-precision shallow-water depth information. Then, the reflectance information 
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within the shallow-water mask is extracted from the optimal Sentinel-2 image, and a reference deep-water 245 

correction is applied to reduce the sun glint effect. Subsequently, the extracted reflectance information is 

matched with the processed ICESat-2 depth information, and a Pearson correlation analysis is performed to 

reduce anomalous data. Based on multivariate linear band model (LBM), regression training is performed using 

all ICESat-2 depth training data and their corresponding reflectance to solve for the regression parameters. 

Finally, the SDB estimation is derived based on the reflectance data of the shallow-water area and the LBM. 250 

3.1. ICESat-2 data preprocessing 

To obtain effective bathymetric data from the ICESat-2 point cloud, this study adopts a sea surface and seafloor 

identification method based on the point-cloud density distribution (Hsu et al., 2021). This involves noise 

removal, point-cloud density estimation, sea-surface identification, and water-depth point-cloud extraction. 

Refraction corrections and reference datum unification are then applied to derive accurate water-depth 255 

measurements. 

(1) Sea-surface identification 

We propose a method for sea-surface identification based on the anisotropic point-cloud density. First, 

considering the distribution characteristics of the sea surface and bathymetric point data, an elliptical sliding 

window is constructed to capture their geometric profiles. For each photon =( , ), 1, ,i i ip x y i N= , an elliptical 260 

window is established at ip , and the number of point data within the elliptical window is derived: 
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where =50 a m  and =2 b m  denote the major and minor axes of the elliptical window, respectively; ijd  

represents the distance of jp  relative to the ellipse; iD  is the number of points within the elliptical window 

centered at ip ; N  is the total number of point data; and ,i ix y  represent the along-track distance and 265 

point-cloud elevation, respectively. 

For each point, the number of point data within its elliptical neighborhood is computed, normalized, and used 

as the point-cloud density distribution: 
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where   denotes the point-cloud density map and D  represents the vector of the number of neighboring 270 

point data for each point. 

Subsequently, the statistical analysis based on the Scott’s rule is performed to estimate the noise threshold 

(Scott, 1979), as follows: 

 
3

3.5
noiseT

N


=  (3) 

where   represents the standard deviation of  . Point data exceeding the noise threshold are removed. 275 

Next, the point cloud density map is discretized into a grid with a cell resolution of 0.5 m in elevation and an 

along-track resolution of 30 m. This density grid is then stacked in the along-track direction to accumulate the 

density for each elevation cell. By calculating the gradient of the accumulated density, we identify the elevations 

corresponding to the maximum and minimum gradient values, thereby locating the boundary of the sea surface 

point cloud. Consequently, the point data within this boundary are extracted and fitted to estimate sea-surface 280 
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height (SSH); this is then used as the instantaneous SSH at the time of the ICESat-2 measurement. 

(2) Bathymetry point-cloud extraction 

After removing the detected sea-surface point cloud, the density grid of the remaining point cloud and the 

noise threshold are recalculated, and point data exceeding 0.5 times the noise threshold are removed. To more 

accurately extract the bathymetry information, the maximum density points are identified along the depth 285 

direction, and the point cloud within ±1 m of the maximum density point is marked as the bathymetry point 

cloud. Considering the measurement accuracy of ±1 m in the ICESat-2 bathymetry data, a local weighted least 

squares (LS) fitting algorithm is used to extract the bathymetry. 

(3) Refraction correction 

Refraction is one of the most significant factors influencing the accuracy of ICESat-2 laser bathymetry (Yang 290 

et al., 2017a), which is deduced by the different propagation speeds of light in different media (such as in air and 

seawater). In shallow-water areas, the refraction effect is more pronounced, owing to the influence of sea-surface 

waves and the resulting change in depth. We initially estimated shallow-water depths by computing the 

difference between the seafloor photon-derived depth and the corresponding sea surface height. However, 

considering the time difference between the acquired ICESat-2 and Sentinel-2 data used for modeling, a unified 295 

reference datum is required as the preliminary depth information. We therefore used the latest DTU22MSS 

model as the reference datum for bathymetric data correction (Wu et al., 2023). 

Based on the solar zenith angle information ( elevref ) in the ICESat-2 ATL03 product, the photon incidence 

angle ( 1 ) can be expressed as follows (Ma et al., 2020): 

 1
2

elevref


 = −  (4) 300 

Based on Snell’s law of refraction, the refraction angle ( 2 ) is derived: 

 
1 1 1
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where 1=1.00029n  and 2 =1.34116n  denote the refractive indices of air and water, respectively. 

Considering the change in their propagation path when photons travel through water, the path length can be 

expressed as follows: 305 
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where, 1S  and 2S  represent the underwater path lengths of a photon before and after considering the refractive 

effect, respectively, and 0Z  is the water depth before refraction correction.  

Therefore, the difference in photon position owing to refraction ( P ) can be obtained as follows: 
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Consequently, the difference in the along-track direction ( x ) and elevational direction ( d ) due to 

refraction can be expressed as follows: 
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The datum of water depth is then referenced to the DTU21MSS datum (Wu et al., 2023), as follows: 

 MSSH 0 Δsent ede lpth in bZ h Z Z d h h= − + +  − +  (9) 315 

where MSSHh  is the mean sea surface height (MSSH) obtained from the DTU21MSS model; sentinelZ  is the SSH 

at the Sentinel-2 imaging time; 0Z  is the ellipsoidal height of a sea-surface photon; bh  is the ellipsoidal height 

of an underwater photon; and h  is the difference between SSH at the Sentinel-2 imaging time and at the 

ICESat-2 data acquisition time. The ICESat-2 preprocessing algorithm is illustrated in Figure 5. 

Using this protocol, the raw ICESat-2 photons were preprocessed. Two representative samples, over the 320 

Dongsha Group and Meijiu Reef, represented by the cyan dotted boxes in Figure 3(b) and (c), respectively, are 

illustrated (Figure 6). The data acquisition time of the ICESat-2 track for the Dongsha Group was 22:41 pm 

(nighttime), 29 January, 2019. Photons representing sea-surface and bathymetry information can be clearly 

distinguished, as both are continuously distributed along the track direction. Notably, only photons with 

confidence levels of 3 and 4 were used in bathymetric-information extraction (Neumann et al., 2021). The sea 325 

surface is smooth over the study area, and the photons are distributed within ±1 m of the sea surface. In contrast, 

the distribution of the seafloor point-cloud is irregular. Figure 6(a) depicts the raw ICESat-2 photon data, and 

Figure 6(b) the results of denoising and identification of the sea-surface and seafloor point-clouds. Following 

noise-threshold estimation and point-cloud removal, the noise in the point-cloud data was effectively suppressed. 

The bar chart (Figure 6(b), right panel) displays the cumulative along-track density. The point-cloud density was 330 

higher at the sea surface than below the surface, and the cumulative along-track point-cloud density exhibits 

notable peaks. Based on the proposed approach, the sea-surface point data were accurately identified (yellow 

lines, Figure 6(b)). Moreover, the bathymetry point data (green points, Figure 6(b)) were identified by locating 

the areas with the highest elevational point density (red circles, Figure 6(b)). Finally, the sea floor was identified 

via local least-squares fitting. The red scatter points and the blue line in Figure 6(c) represent the 335 

refraction-correction results and the fitted seafloor, respectively. 

In comparison, the ICESat-2 track for Meijiu Reef (Figure 7) was acquired at 15:26 pm (daytime), March, 9, 

2020. Relative to the nighttime results (Figure 6(a)), the daytime results exhibit more noise in the raw ICESat-2 

photon data (Figure 7(a)), owing to the greater illumination effects during the day, which presents challenges for 

water-depth detection. For instance, as shown in Figure 7(b), a significant amount of noise-related point-cloud 340 

remained after denoising (e.g., at an along-track distance of ~500 m), although the proposed algorithm 

effectively identifies the along-track water-depth point-cloud (highlighted by the red circle in Figure 7(b)), and, 

via a function fitting, achieves robust extraction of the sea floor. The red scatter points and the blue line in Figure 

7(c) represent the refraction-correction results and the fitted water depth.  
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 345 

Figure 5. Flowchart for ICESat-2 water depth extraction. 
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Figure 6. (a) Raw ICESat-2 photons, (b) noise removal, sea surface identification, and water depth extraction, and (c) 

refraction correction for ICESat-2 track in Dongsha Group (nightime) shown as Figure 3(b). 350 

 
Figure 7. (a) Raw ICESat-2 photons, (b) noise removal, sea surface identification, and water depth extraction, and (c) 

refraction correction for ICESat-2 track in Meijiu Reef (daytime) shown as Figure 3(c). 

3.2. SDB modeling methodology 

SDB was modeled by combining the ICESat-2 training data and Sentinel-2 multispectral imagery using the LBM, 355 
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which achieves slightly better results than the band-ratio model (Lyzenga et al., 2006; Thomas et al., 2021; Wu 

et al., 2023). SDB is modeled as follows: 
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where SDBH  is the water depth derived from a multispectral image; ( )iR   represents the water surface 

reflectance of band i ; and ( )iR   is the average deep-water reflectance of band i . Parameters 0h  and ih  360 

are the coefficients estimated via multiple linear regression, as follows: 
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where ( ) ( )i i ix R R = − , iy  represents the depths obtained from the ICESat-2 training data and x  and y  

are the mean values of ix  and iy , respectively.  

Notably, to ensure robustness and generalizability, the ih  parameters are estimated by all ICESAT-2 water 365 

depth training data within the shallow-water area of the reef. 

The quality of ICESAT-2 data is affected by water quality, seabed conditions, and inherent noises, which 

inevitably affects the SDB modeling. Prior to modeling the SDB data, a data-screening scheme based on 

correlation analysis was applied to eliminate anomalous and noise data. The water depth data for each track was 

first divided into several segments based on the along-track distance (e.g., 500 m). For each segment, the 370 

Pearson correlation coefficient between the ICESat-2 depth and the reflectance of each specific band was 

calculated, as per (Benesty et al., 2009): 
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where   is the Pearson correlation coefficient; Z  is the ICESat-2 depth; R  is the reflectance; N  is the 

number of ICESat-2 data points in this segment; Z  and Z  represent the mean and standard deviation of Z , 375 

respectively; and R  and R  denote the mean and standard deviation of R , respectively. 

It is noted that the ICESat-2 data exhibit higher resolution (~0.7 m along-track) than the Sentinel-2 imagery 

(~10 m). Before correlation analysis, bilinear interpolation was used to estimate reflectance at the locations of 

ICESat-2 photons. Correlation analysis was conducted track-by-track, and Pearson correlation coefficients were 

computed for all three visible bands, producing three correlation coefficients for each ICESat-2 photon. An 380 

ICESat-2 photon was excluded from SDB training if two or more of its correlation coefficients were smaller than 

a predetermined threshold (e.g., 0.4).  

The deep-water radiative correction was implemented to effectively mitigate sun glint and water column 

reflectance interferences, resulting in improved performance in reflectance-depth relationship establishment (Jia 

et al., 2023; Wu et al., 2023). Additionally, the GEBCO_2023 model was used as a reference to select 385 

deep-water areas, where regions with depths exceeding 100 m are identified as the deep waters (see the purple 

rectangles in Fig. 3). For a specific region, the training ICESAT-2 data and corresponding Sentinel-2 imagery 

were combined to establish a linear relationship between water depth and surface reflectance. Then, multiple 

linear regression analysis was performed to estimate the ih  coefficients in the LBM. 

The Root Mean Square Error (RMSE) and coefficient of determination (R²) were used to evaluate the 390 

accuracy of the SDB data and the correlation between the predictions and validation values, as follows: 
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where n  denotes the total number of data points, iy  and ˆ
iy represent the i th estimated depth and the 

validation data, and y  denotes the mean.  

While R² is redundant with RMSE, it has additional characteristic of reflecting the correlation between the 395 

predictions and validation values. Therefore, RMSE was used as the accuracy metric for the SDB model, and R² 

values are also included. 

4. Results and discussion 

4.1. SDB estimation 

SDB modeling was performed using 1298 ICESat-2 shallow-water depth data tracks (2018–2024) and 70 400 

Sentinel-2 images. Functional mapping between the training data and multispectral information was established 

within the shallow-water mask based on the linear band model approach, where three visible bands (B2, blue; B3, 

green; and B4, red) were used to train the LBM. The derived SDB model (HHU24SWDSCS) covers 128 islands 

and reefs in the SCS (Table A1). 

Figure 8 illustrates the SDB results of HHU24SWDSCS, showing rich details of seafloor topography. The 405 

SDB depth ranges from 0 to 30 m, capturing the typical morphology of coral reefs and sandbanks. In Area 1 

(Xisha Islands), it shows water depths ranging from 0 to 15 m. This area contains numerous ring-shaped coral 

reefs (e.g., the Yongle Group and Huaguang Reef), and the seafloor topography is characterized by deeper 

central regions and shallower outer regions. In Area 2 (Dongsha Islands), it indicates water depths ranging from 

0 to 20 m. Around the outer coral ring reefs, the water depths range from 2 to 10 m, with a gradual deepening 410 

towards the west and shallowing towards the east. Within the inner waters, the average depth is ~10 m, with the 

deepest point reaching 19 m. Areas 3–7 (Nansha Islands) exhibit more diverse depth patterns. The islands and 

reefs in this region primarily comprise coral reefs and submerged shoals, which are typically small and scattered. 

The water depths are generally deeper than those in the Xisha Islands and Dongsha Islands, ranging from 0 to 30 

m. 415 
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Figure 8. The SDB results in (a) Area 1, (b) Area 2, (c) Area 3, (d) Area 4, (e) Area 5, (f) Area 6, and (g) Area 7, 

respectively. 

Figure 9 presents the SDB training results for the entire SCS (Figure 9(a)) and for the seven subareas (Figure 

9(b)-(h)). Each subfigure includes annotations for the number of point data, the regression linear equation, as 420 

well as R² and RMSE. It is evident that the SDB results are highly consistent with the training data. Regression 
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analysis of the training data for the entire SCS region yielded an RMSE of 0.89 m. The best performance was 

achieved for Area 1 (Figure 9 (b)), with an RMSE of 0.64 m. For all of the subareas, the RMSEs are below 1.1 m, 

i.e., <5% of the maximum detectable water depth in the respective regions. These results reflect the high 

accuracy of the SDB in fitting this shallow-water bathymetry, with good model stability and robustness.  425 

Figure 10 presents the SDB validation results for the entire SCS (Figure 10(a)) and for the seven subareas 

(Figure 10(b)-(h)). Noteworthy, the ICESat-2 validation data used here were not introduced in the SDB modeling 

process, making it suitable for independent validation. The validation results (Figure 10) reveal similar findings 

to the training results (Figure 9). The validation results for the entire SCS yield an RMSE of 0.82 m, and from 

0.53 to 1.24 m in the sub-regions. Comparison of Figure 9 and Figure 10 reveals that the training and validation 430 

RMSE are highly consistent. Therefore, this SDB algorithm produces reasonable estimates, exhibiting strong 

generalization capability and the potential for model transfer. 

 

Figure 9. Training results of HHU24SWDSCS for (a) entire SCS, (b) Area 1, (c) Area 2, (d) Area 3, (e) Area 4, (f) Area 

5, (g)Area 6, (h) Area 7, respectively. The red line represents the 1:1 line, and the black dashed line corresponds to the 435 

regression line. 

 

Figure 10. Validation results of HHU24SWDSCS for (a) entire SCS, (b) Area 1, (c) Area 2, (d) Area 3, (e) Area 4, (f) 
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Area 5, (g)Area 6, (h) Area 7, respectively. The red line represents the 1:1 line, and the black dashed line corresponds 

to the regression line. 440 

To illustrate the details of the SDB bathymetry model, six representative reefs shown in Figure 3 were selected 

for individual analysis. Figure 11 (Column 1) presents the SDB results of these representative islands and reefs, 

illustrating their geographical distributions, topographical features, and hydrological conditions. The Yongle 

Group, located in Area 1, comprises several reefs with diameters of ~5 km and average water depths ~5 m 

(Figure 11(a1)). In addition, Lingyang Reef, situated in the southwestern part of the Yongle Group, exhibits a 445 

typical central lagoon morphology, characterized by deeper waters in the center and shallower waters along the 

edges. The Dongsha Group is located in Area 2, with diameters of over 20 km (Figure 11(b1)). Known for its 

atoll structure, the Dongsha Islands exhibit a distinct lagoon morphology, and the SDB model accurately 

captures complex bathymetric patterns, including the central lagoon (~12 m) and the surrounding reef (~3 m). 

Meijiu Reef, located in Area 3, is a V-shaped reef spanning ~9 km (Figure 11(c1)), with coral reefs primarily in 450 

the northeastern and southwestern parts of the island (~3 to 5 m deep) and a central lagoon (up to 20 m deep). 

Additionally, the SDB model in Figure 11(c1) clearly reveals the complex underwater terrain, including water 

channels on the western and southwestern sides of the reef. Renai Reef, located in Area 4, is a narrow, elongated 

north–south reef (Figure 11(d1)); the SDB successfully reveals the narrow passages at the reef’s edge and the 

sharp transitions between the reef flats and the lagoon. Yuniao Reef, located in Area 5, is even narrower and 455 

more elongated in a northeast-to-southwest orientation, with its narrowest point being just 1.2 km, presenting a 

challenge for retrieving effective ICESat-2 water-depth data (Figure 11(e1)); nonetheless, the SDB model still 

yields reasonable results for this reef, revealing a central lagoon depth of ~8 m and an edge depth of ~4 m. 

Finally, for Nanhua Reef (located in Area 6), the SDB results (Figure 11(f1)) successfully reveal two water 

channels approximately 100 m wide in the southwestern and eastern parts of the reef.  460 

Based on the SDB validation results (Figure 11, column 2), most of the discrepancies between the SDB and 

the ICESat-2 validation data are within ±3 m, with larger discrepancies at the edges of the islands, such as 

around 20.77°N 116.8°E (Dongsha Group; Figure 11(B2)) and 8.14°N 113.3°E (Yuniao Reef; Figure 11(E2)). 

These discrepancies can be attributed to two main factors. First, the quality of the ICESat-2 data tends to degrade 

near boundaries, owing to the complex boundary topography and environmental conditions, thus affecting the 465 

accuracy of the depth measurements. Second, there is a significant edge effect in the SDB modeling: as the 

number of ICESat-2 data-points decreases, the constraints on the linear regression model are reduced and 

estimation accuracy declines. 

The SDB training and validation results are presented in Figure 11, columns 3 and 4, respectively. Based on 

the training results, for the six representative islands, RMSE from 0.54 to 1.20 m, and the regression slope from 470 

0.90 to 1.05; this reveals high consistency and robust performance using the training dataset. The high R² values 

demonstrate a strong correlation between the model predictions and the actual observations, while the low 

RMSE confirms the accuracy of the model in predicting water depths in shallow areas.  

For the six islands, the validation results reveal RMSE of 0.46-1.24 m, and regression slopes of 0.85-1.13. 

As with the training results, the validation results reveal strong correlation between the model predictions and 475 

actual observations. The regression slopes (which are close to unity) indicate that the model performs well not 

only on training data but also on unseen data, reflecting its robust generalization capability. Along with the 

results illustrated in Figure 9 and Figure 10, this reveals that the model maintains consistently high performance 

throughout both the training and validation phases, thus highlighting its stability and reliability.  

We next analyzed the SDB validation results for all 128 islands and reefs against the ICESat-2 data. Over 480 

90% of the SDB results exhibit a RMSE consistently below 5% of the maximum depth. The lower modeling 

accuracy for specific islands and reefs (such as Daxian Reef, Figure 8(c), and Banlu Reef, Figure 8(d)) can be 
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attributed to the scarcity and uneven distribution of effective water-depth data in the ICESat-2 dataset and to the 

high level of noise in the images. These results demonstrate that the SDB model effectively captured the 

fine-scale bathymetric features of shallow-water areas. Incorporating the control data (the ICESat-2 depth data) 485 

effectively constrained and enhanced the absolute accuracy of the SDB model. By leveraging the complementary 

advantages of multi-source remote-sensing data, the precision of the SDB results is ensured. 

 

Figure 11. The HHU24SWDSCS for the representative reefs (first column), the validation results using independent 

ICESat-2 water depth data (second column), the regression analysis between the SDB results and the training data 490 

(third column) and the validation data (fourth column), respectively. 

Using airborne bathymetry data (SIOFM) for the shallow waters near Lingyang Reef, the reef’s bathymetry 

was validated. The latest global bathymetry models, including DTU18BAT (DTU Space), topo_27.1 and 

SRTM15+ V2.6 (SIO), and GEBCO_2023 (GEBCO Bathymetric Compilation Group), were introduced for 

validation and analysis. We used nearest-neighbor interpolation to interpolate the bathymetry models to the 495 

airborne LiDAR bathymetry points. Based on the validation results (Figure 12), the SDB model achieves notably 

better estimates than the other models. As shown in Figure 12(a), the differences between the SDB-derived 

bathymetry and validation data are mostly within ±3 m, whereas the discrepancies exceed 10 m with respect to 
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the other models. Given that the water depth ranges from 0 to 10 m in the shallow-water areas of Lingyang Reef, 

this indicates that the existing bathymetry models exhibit relatively poor accuracy and low data reliability in 500 

these regions. The RMSE is 1.01 m for the SDB model, as opposed to 61.03 m for DTU18BAT, 25.03 m for 

topo_27.1, 4.3 m for SRTM15+ V2.6, and 22.65 m for GEBCO_2023 (Table 3). These validation results reveal 

that the SDB model can provide shallow-water bathymetry with ~1 m accuracy, consistent with the independent 

ICESat-2-based validation results (Figure 10). More importantly, the SDB model significantly outperforms other 

existing models for shallow water areas.  505 

 

Figure 12. Validation of (a) HHU24SWDSCS, (b) DTU18BAT, (c) topo_27.1, (d) SRTM15+ V2.6, and (e) 

GEBCO_2023 against the surveyed airborne LiDAR water depth in Lingyang Reef. 

Table 3. Statistics of the validation results between bathymetry models against airborne LiDAR water depth data (m) 

Models MAX MIN MEAN RMSE 

SDB 3.35 -4.14 -0.01 1.01 

DTU18BAT 105.76 28.68 59.25 61.03 

topo_27.1 66.67 -35.62 -14.01 25.03 

SRTM15+ V2.6 23.93 -7.52 2.38 4.30 

GEBCO_2023 74.27 2.96 18.54 22.65 

4.2. Discussion 510 

Given that most marine-related production and economic activities are concentrated in shallow-water areas, 

accurate shallow-water bathymetry has become essential in such activities. Therefore, it is necessary to further 

evaluate the accuracy of the existing bathymetry models for coastal shallow-water areas. Validation results for 

the existing bathymetry models for representative reef areas using ICESat-2 data are shown in Figure 13; each 

column represents the validation results for one model (SDB, DTU18BAT, topo_27.1, SRTM15+ V2.6, and 515 

GEBCO_2023 models), and each row, its performance for a specific reef. For all six reefs, the SDB-derived 

bathymetry results differ from the validation data by <5 m, whereas for the other models, these differences 

exceed 20 m. Specifically, as shown in Table 4, the SDB validation RMSEs are 0.77 m, 1.25 m, 1.02 m, 1.16 m, 

1.35 m and 1.54 m, respectively, whereas for DTU18BAT, topo_27.1, SRTM15+ V2.6, and GEBCO_2023, the 

RMSEs exceed 2 m, even reaching tens of meters (Table 4). Given that water depth in coastal shallow-water 520 

areas is generally <30 m, most of the existing bathymetry models exhibit large uncertainties and low data 

usability. In contrast, the SDB model achieves relatively robust meter-level accuracy in these regions, 

demonstrating its superiority in shallow-water bathymetry retrieval. Notably, the existing bathymetry models and 
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the validation data differ significantly for the Renai Reef area, with a maximum difference exceeding 700 m, 

while the difference between the SDB results and the validation data for this reef is reduced to the meter level. 525 

This discrepancy may because the existing models rely primarily on altimetry-derived gravity anomalies for 

water-depth data, owing to the scarcity of in situ measurements. However, the poor quality of altimetry data near 

the coast leads to significant errors in the bathymetry models. Based on the validation results presented in Figure 

12 and Figure 13, the SDB bathymetry model achieves high accuracy and robustness in coastal shallow-water 

areas. 530 

 
Figure 13. Validation of the HHU24SWDSCS (first column, a1-f1), DTU18BAT(second column, a2-f2), topo_27.1 

(third column, a3-f3), SRTM15+ V2.6 (fourth column, a4-f4), and GEBCO_2023 (fifth column, a5-f5) against 

independent ICESat-2 water depth data, respectively. The six rows represent the results in the Yongle Island, Dongsha 

Island, Meijiu Island, Renai Island, Yuniao Island, and Nanhua Island, respectively. 535 

Table 4. Statistics on the misfits between different bathymetry models and ICESat-2 validation data over six 

representative reefs (m) 

Research areas Models Max Min Mean RMSE 

Yongle Group 

SDB 3.49 -1.31 0.65 0.77 

DTU18BAT 2.26 -91.81 -48.09 56.93 

topo_27.1 7.78 -12.85 -5.26 7.12 

SRTM15+ V2.6 8.69 -5.39 -0.62 2.43 

GEBCO_2023 1.32 -142.86 -19.77 24.04 

Dongsha Group SDB 8.26 -7.95 -0.50 1.25 
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DTU18BAT 13.00 -92.41 -5.64 12.66 

topo_27.1 16.48 -5.86 0.07 2.52 

SRTM15+ V2.6 16.54 -7.10 0.80 2.68 

GEBCO_2023 15.20 -43.11 -3.72 8.77 

Meijiu Reef 

SDB 5.05 -3.46 -0.12 1.02 

DTU18BAT 9.39 -18.80 -4.28 7.43 

topo_27.1 9.25 -21.54 -4.65 8.64 

SRTM15+ V2.6 10.28 -2.82 1.18 2.89 

GEBCO_2023 10.05 -84.25 -13.47 22.94 

Renai Reef 

SDB 6.52 -3.23 0.38 1.16 

DTU18BAT -271.25 -1.129.47 -682.67 727.91 

topo_27.1 -8.38 -901.05 -548.55 599.55 

SRTM15+ V2.6 -42.11 -888.34 -526.29 573.64 

GEBCO_2023 -36.45 -554.07 -335.30 357.98 

Yuniao Reef 

SDB 6.98 -2.68 0.39 1.35 

DTU18BAT 9.85 -103.13 -22.44 36.34 

topo_27.1 12.14 -20.22 -2.38 6.88 

SRTM15+ V2.6 11.42 -14.52 -1.09 5.25 

GEBCO_2023 8.58 -54.64 -16.04 20.17 

Nanhua Reef 

SDB 9.47 -4.1 0.33 1.54 

DTU18BAT -45.36 -212.57 -116.03 123.41 

topo_27.1 20.89 -141.41 -12.95 32.25 

SRTM15+ V2.6 17.26 -6.02 1.86 5.57 

GEBCO_2023 14.47 -663.29 -58.60 136.95 

Furthermore, benefitting from the rich spatial information of the SDB model, the spatial detail and accuracy 

of existing bathymetry models are analyzed. The differences between the SDB results and those of the 

DTU18BAT, topo_27.1, SRTM15+ V2.6, and GEBCO_2023 models were calculated for the representative reefs 540 

(Figure 14). This revealed relatively large differences, with maximum discrepancies exceeding 50 m. Statistically, 

the RMSE of the differences between the DTU18BAT, topo_27.1, SRTM15+ V2.6, and GEBCO_2023 models 

against the SDB results reach tens of meters across the six typical island regions, particularly for the Renai Reef 

area, for which the RMSE exceeds 100 m.  

These results reveal that the existing bathymetry models are significantly deficient in spatial resolution, 545 

modeling accuracy, and detailed signal depiction for coastal shallow-water areas, making it difficult to meet the 

current demands of navigation, nearshore economic activities, port construction, and other production activities. 

The SDB model, which achieves 10 m spatial resolution, meter-level modeling accuracy, detailed bathymetry 

signals, as well as being efficient and low-cost, therefore constitutes an improvement for coastal shallow-water 

areas and provides fundamental data support for research in oceanography, geodesy, and other disciplines. 550 

Nonetheless, the sources of error in the SDB results cannot be ignored. First, its accuracy is substantially 

influenced by water conditions, including turbidity and water type, which directly affect the underwater light 

penetration and reflectance measurements of remote-sensing images (Caballero and Stumpf, 2020, 2023). 

Additionally, although the Sentinel-2 images used in this study have undergone correction for atmospheric 

effects, residual errors from atmospheric effects, image noise, and the influence of sun glint may still reduce the 555 

quality of the SDB results (Warren et al., 2019). The quality of the ICESat-2 data is another key factor in SDB 

modeling, as its signal-to-noise ratio and limited deep-water penetration capabilities may lead to insufficient 
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underwater topographic-information retrieval. Regarding the selection of the SDB-estimation methods, the 

empirical methods rely on a priori depth data to establish the relationship between reflectance and water depth. 

However, this relationship becomes non-linear in deeper waters, making SDB estimates unreliable in deep-water 560 

areas (Ashphaq et al., 2021; Wu et al., 2024b). Furthermore, the impact of changes over time on underwater 

topography should not be overlooked, as sedimentation, erosion, ocean currents, and human activities can all 

alter shallow-water bathymetry over time (Caballero and Stumpf, 2021; Niroumand-Jadidi et al., 2020).  

 

Figure 14. The comparison of the representative reefs between the SDB results and DTU18BAT (first column), 565 

topo_27.1 (second column), SRTM15+ V2.6 (third column), and GEBOCO_2023 (fourth column), respectively. 

 

Table 5. Statistics on the misfits between different bathymetry models and SDB results over six representative reefs 

(m) 

Research areas Models Max Min Mean RMSE 
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Yongle Group 

DTU18BAT 137.99 1.08 22.42 30.26 

topo_27.1 111.27 -35.58 2.14 14.08 

SRTM15+ V2.6 89.47 -16.86 5.73 8.52 

GEBCO_2023 244.79 -53.69 13.85 34.47 

Dongsha Group 

DTU18BAT 126.39 1.06 17.64 22.34 

topo_27.1 27.67 -7.89 10.60 11.75 

SRTM15+ V2.6 32.65 -4.03 10.35 11.26 

GEBCO_2023 64.41 -13.56 14.11 17.75 

Meijiu Reef 

DTU18BAT 43.15 2.85 14.91 16.12 

topo_27.1 39.08 -23.78 8.28 12.58 

SRTM15+ V2.6 36.16 -25.36 5.91 9.48 

GEBCO_2023 118.16 -26.21 8.52 21.55 

Renai Reef 

DTU18BAT 1172.07 189.36 398.25 447.78 

topo_27.1 946.65 -10.01 273.63 355.63 

SRTM15+ V2.6 935.88 2.44 255.41 332.35 

GEBCO_2023 586.39 -12.75 124.32 190.20 

Yuniao Reef 

DTU18BAT 113.06 1.57 11.09 17.66 

topo_27.1 35.70 -29.71 5.60 8.79 

SRTM15+ V2.6 41.13 -117.54 5.95 7.35 

GEBCO_2023 69.80 -163.48 11.76 26.28 

Nanhua Reef 

DTU18BAT 306.60 59.61 130.26 135.83 

topo_27.1 176.34 -141.35 -2.99 36.47 

SRTM15+ V2.6 31.42 -13.06 8.67 11.27 

GEBCO_2023 927.36 -23.57 110.54 205.26 

5. Data availability 570 

The HHU24SWDSCS model is openly accessible at https://doi.org/10.5281/zenodo.13852568 (Wu et al., 

2024a). The dataset file (HHU24SWDSCS.nc) includes geospatial information (latitude and longitude), 

shallow-water depth, and the distribution of the reefs. 

6. Conclusions 

Accurate shallow-water bathymetric data are essential for maritime safety, resource exploration, ecological 575 

conservation, and oceanic economic development. To address these requirements, we developed the 

HHU24SWDSCS model using ICESat-2 data and Sentinel-2 high-resolution multispectral imagery to construct 

detailed bathymetric maps over 120 islands and reefs in the SCS region. A comprehensive framework was 

developed for integrating the ICESat-2 data and Sentinel-2 imagery for shallow-water bathymetry modeling.  

The accuracy and consistency of the SDB model were evaluated using independent ICESat-2 bathymetry 580 

data, which demonstrated robust performance with an RMSE of 0.82 m, underscoring its reliability across the 

SCS region. Further validation in the Lingyang Reef using the airborne LiDAR bathymetry data revealed that the 

SDB model achieved superior accuracy (1.01 m) compared to traditional models. Comprehensive validation of 

the latest bathymetric models (i.e., DTU18BAT, topo27.1, SRTM15+ V2.6, and GEBCO_2023) was conducted 

against the ICESat-2, airborne LiDAR, and SDB data for the shallow-water regions of representative reefs. This 585 

assessment highlighted significant uncertainties, low spatial resolution, and a lack of details in these existing 
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models in coastal regions and shallow waters. Overall, the SDB model represents a significant advancement in 

shallow-water bathymetry, offering enhanced accuracy, spatial resolution, and coverage, making it a viable 

alternative to existing bathymetry models and a powerful tool for marine applications, including coastal 

construction, ecological conservation, petroleum exploration, and scientific research. 590 

In future, we aim to leverage ICESat-2 and Sentinel-2 data for feature extraction and labeling, utilizing deep 

learning techniques to construct detailed bathymetric maps of global shallow-water regions. Critical 

environmental factors such as water quality, seafloor characteristics, and illumination conditions should be 

considered during model training to enhance generalization capabilities across diverse marine environments. By 

integrating multiple data sources, including ICESat-2 water-depth data, SDB data, satellite altimetry data, and 595 

multibeam sonar sounding, we aim to develop a high-precision, seamless bathymetry model for both shallow and 

deep waters. Furthermore, the developed SDB technology holds significant potential for coastal and estuarine 

applications, particularly in monitoring sediment dynamics and investigating temporal variations in intertidal 

regions. 

Appendix A 600 

Table A2 Information of the research areas and distribution of islands 

Research 

areas 

Island 

groups 

Island 

name 

Latitude 

(°N) 

Longitud

e (°E) 

Research 

areas 

Island 

groups 
sea 

Latitude 

(°N) 

Longitud

e (°E) 

Area 1 

Xuande 

Group 

Yongxing 

Island 
16.83  112.33  

Area 3 
Jiuzhang 

Group 

Jinghong 

Island 
9.88  114.32  

Shi Island 16.85  112.35  
Nanmen 

Reef 
9.90  114.40  

Xi Sand 16.97  112.20  
Ximen 

Reef 
9.90  114.47  

Zhaoshu 

Island 
16.97  112.27  

Dongmen 

Reef 
9.92  114.50  

Bei Island 16.97  112.30  Anle Reef 9.93  114.52  

Zhong 

Island 
16.95  112.32  

Changxian 

Reef 
9.93  114.55  

Nan Island 16.93  112.33  
Zhuquan 

Reef 
9.95  114.57  

Bei Reef 16.93  112.33  Niue Reef 9.97  114.62  

Zhong Reef 16.93  112.33  
Ranqing 

Reef 
9.88  114.60  

Nan Reef 16.92  112.33  
Ranqing 

Sand 
9.90  114.57  

Dongxin 

Reef 
16.92  112.35  

Longxia 

Reef 
9.88  114.53  

Xixin Reef 16.92  112.35  
Bianshen 

Reef 
9.87  114.52  

Dongdao 

Atoll 

Dong 

Island 
16.67  112.73  

Zhangxi 

Reef 
9.83  114.47  

Gaojian 16.57  112.63  Quyuan 9.80  114.40  
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Reef Reef 

Beibian 

Reef 
16.53  112.55  

Qiong 

Reef 
9.75  114.35  

Zhanhan 

Band 
16.42  112.62  

Chigua 

Reef 
9.70  114.28  

Langhua Reef 16.05  112.55  
Guihan 

Reef 
9.77  114.25  

Yongle 

Group 

Ganquan 

Island 
16.50  111.58  Hua Reef 9.85  114.27  

Shanhu 

Island 
16.53  111.60  

Jiyang 

Reef 
9.87  114.28  

Jinyin 

Island 
16.43  111.50  Huoai Reef 10.88  114.93  

Zhenhang 

Island 
16.45  111.70  Xiyue Island 11.07  115.02  

Guangjin 

Island 
16.45  111.70  Daxian Reef 10.07  113.87  

Jinqing 

Island 
16.45  111.73  Sanjiao Reef 10.17  115.32  

Lingyang 

Reef 
16.45  111.58  

Area 4 

Antang Reef 10.88  116.43  

Quanfu 

Island 
16.57  111.67  Donghua Reef 10.55  116.93  

Yagong 

Island 
16.57  111.68  

Wufang 

Group 

Wufang 

Reef 
10.48  115.75  

Yin Reef 16.58  111.70  
Wufangna

n Reef 
10.45  115.77  

Yinyuzi 

Island 
16.58  111.70  

Wufangwe

i Reef 
10.47  115.72  

Xianshe 

Reef 
16.55  111.72  

Wufangxi 

Reef 
10.50  115.70  

Kuangzi 

Sand 
16.45  111.63  

Wufangbei 

Reef 
10.53  115.72  

Shi Reef 16.55  111.75  
Wufangtou 

Reef 
10.53  115.78  

Huaguang Reef 16.20  111.67  Banlu Reef 10.13  116.13  

Yuzhuo Reef 16.33  112.02  Yongshi Bank 11.08  117.47  

Panshi Reef 16.05  111.77  Xiane Reef 9.35  115.43  

Bei Reef 17.08  111.50  Xinyi Reef 9.33  115.95  

Zhongjian Reef 15.78  111.20  Haikou Shoal 9.18  116.45  

Area 2 
Dongsha 

Group 

Dongsha 

Island 
20.72  116.70  Banyue Shoal 8.87  116.27  

Dongsha 

Reef 
20.67  116.90  Yenai Reef 9.72  115.88  
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Area 3 

Shuangzi 

Reefs 

Gongshi 

Reef 
11.47  114.40  Xianbin Reef 9.73  116.57  

Beizi 

Island 
11.45  114.35  Niuche Reef 9.60  116.17  

Beiwai 

Reef 
11.45  114.35  

Area 5 

Yongshu Reef 9.58  112.97  

Nanzi 

Island 
11.43  114.33  

Yinqing 

Group 

Xi Reef 8.87  112.23  

Nailuo 

Reef 
11.38  114.30  Dong Reef 8.83  112.58  

Dongnan 

Shoal 
11.40  114.37  

Huayang 

Reef 
8.88  112.85  

Dongbei 

Shoal 
11.43  114.40  

Yuniao 

Reef 
8.27  113.37  

Beizi Shoal 11.43  114.38  Riji Reef 8.67  111.67  

Zhongye 

Group 

Zhongye 

Island 
11.05  114.28  

Area 6 

Wunie Reef 8.87  114.65  

Tiezhi Reef 11.08  114.38  Nanhua Reef 8.75  114.18  

Meijiu 

Reef 
11.05  114.32  Liumen Reef 8.83  113.98  

Tiexian 

Reef 
11.07  114.23  Bisheng Reef 8.97  113.67  

Daoming 

Group 

Shuanghua

ng Reef 
10.70  114.32  Erjiao Reef 8.20  114.70  

Nanyue 

Island 
10.67  114.42  

Yuya 

Group 

Langkou 

Reef 
8.13  114.55  

Yangxin 

Cay 
10.70  114.52  

Xiantou 

Reef 
8.13  114.80  

Kugui Reef 10.77  114.58  
Guangxing

zi Reef 
7.62  113.93  

Zhenghe 

Group 

Taiping 

Island 
10.38  114.37  Siling Reef 8.37  115.23  

Zhong 

Bank 
10.37  114.38  Boji Reef 8.10  114.13  

Zhongzhou 

Reef 
10.38  114.42  Guangxing Reef 7.63  113.80  

Chunqian 

Sand 
10.38  114.47  Nanhai Reef 7.98  113.88  

Bolan Reef 10.42  114.58  Danwan Reef 7.37  113.83  

Anda Reef 10.35  114.70  Huanglu Reef 6.95  113.58  

Hongxiu 

Island 
10.18  114.37  Nantong Reef 6.33  113.23  

Nanxun 

Reef 
10.20  114.23  Area 7 Nanan Reef 5.53  112.58  
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Yongdeng Shoal 11.40  114.67  Nanping Reef 5.37  112.63  

Lesi Shoal 11.33  114.62  Haining Reef 4.95  112.62  
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