
This manuscript integrated ICESat-2 data and multispectral imagery from Sentinel-2 to construct a 
high-resolution, high-accuracy shallow water depth model namely HHU24SWDSCS. In 
geopolitically sensitive areas, such as the South China Sea, where the seafloor topography is 
complex, existing water depth data primarily rely on sparse multibeam sounding technology and 
satellite altimetry-derived depths. The HHU24SWDSCS model developed in this study successfully 
filled the gap in shallow water areas and offered an alternative that can be applied to similar regions 
globally. The comparisons with existing bathymetry models demonstrate that the computed model 
offers significant advantages in both accuracy and details for shallow areas, highlighting its potential 
for high-quality shallow water depth measurement. The manuscript demonstrates notable 
innovation and scientific significance. Publication is recommended following revisions. 
 
Q1: The English writing should be further polished. 
 
Response: The authors thank the reviewer for these beneficial comments. The authors have 
thoroughly reviewed the entire manuscript and made revisions to address grammatical errors and 
improve language expressions, resulting in more accurate and fluent expressions. The authors 
believe these improvements have significantly enhanced the readability and clarity of the work. 
Please refer to the revised manuscript. 
 
Q2: Line 19: What is the full name of HHU24SWDSCS? 
 
Response: The authors thank the reviewer for these beneficial comments. The full name of the 
shallow-water bathymetry model developed in this study is 'Shallow-Water Depth (SWD) Model 
for the South China Sea (SCS) developed by Hohai University in 2024,' which has been abbreviated 
as 'HHU24SWDSCS' (Hohai University 2024 Shallow-Water Depth Model of South China Sea). 
This nomenclature reflects the model's specific application to shallow-water bathymetry in the 
South China Sea, its development institution, and the year of creation. Based on the comment of the 
reviewer, the authors have added a detailed explanation of the model name in the revised manuscript. 
Please refer to lines 19-20 and lines 95-96 for more information. 
 
Q3: Line 31: How to define the shallow water in the study? 
 
Response: The authors thank the reviewer for these beneficial comments. This study focuses on 
Satellite-Derived Bathymetry (SDB) modeling in shallow waters around the South China Sea (SCS) 
islands, primarily based on two considerations: (1) these areas are challenging for shipborne or 
airborne bathymetric surveys due to political and cost constraints, and (2) the relatively better water 
quality surrounding these islands, which provides favorable conditions for high-precision 
bathymetry modeling. However, the prior water depth information is constrained by the penetration 
capability of ICESAT-2 and the reflectance attenuation characteristics of Sentinel-2. In the clear 
waters of the South China Sea, ICESAT-2 can achieve bathymetric measurements up to ~30 m. 
Furthermore, existing research indicates that the mapping function between ICESAT-2 depth 
information and Sentinel-2 reflectance maintains a favorable linear relationship within the 30-40 m 
depth range, which significantly enhances the accuracy of SDB. Therefore, the study defines the 
shallow water zone as the intersection of effective detection depths from both datasets, subsequently 



limiting the study area to nearshore waters within 30-40 m depth. Based on the comment of the 
reviewer, the authors have supplemented and refined the detailed description of the shallow water 
zone definition in the revised manuscript. Please refer to lines 124-126 for more information. 

Regarding the determination of the shallow water mask for the islands and reefs, the shallow water 
mask in this study is based on the intersection of NDWI and ICESat-2 data. The authors initially 
used Sentinel-2-derived NDWI for preliminary selection. However, there are two primary 
limitations when using NDWI alone to construct the shallow water mask. First, the relatively low 
spatial resolution of Sentinel-2 results in imprecise mask boundaries. More importantly, NDWI 
differentiates water bodies and land based on the reflectance differences between spectral bands. 
However, since this study mainly focuses on shallow water areas (with minimum depths < 10 m), 
the bottom variation significantly affect light scattering and absorption. This causes NDWI to 
perform poorly in shallow waters, leading to misclassification issues. Thanks to its high resolution 
and ability to capture both water surface and bottom signals, ICESat-2 data compensates for the 
limitations of NDWI, enabling the identification of shallow water areas in regions where NDWI is 
less effective or in more complex environments. Based on the comment of the reviewer, the authors 
have added a detailed explanation of the shallow water mask extraction. Please refer to lines 189-
196 for more information. 

 
Q4: Line 105: It is seen that the authors only retrieved water depths over island areas, is it possible 
to perform SDB modeling in nearshore areas (e.g., estuarine region), and what is the SDB quality 
there? 
 
Response: The authors thank the reviewer for these beneficial comments. Indeed, while SDB 
technology demonstrates feasibility for bathymetric mapping in nearshore areas (e.g., estuarine 
region), it presents significant technical challenges. The accuracy of SDB modeling in estuarine 
region is constrained by multiple factors, including the penetration depth limitations of ICESAT-2, 
reflectance attenuation characteristics of Sentinel-2, and water quality parameters such as 
chlorophyll concentration, bottom type, and turbidity. These constraints inevitably lead to reduced 
data quality and availability. In addition, previous studies, such as Xu et al. (2022), have 
successfully implemented SDB modeling in inter-tidal areas, demonstrating its potential for 
investigating sediment dynamics. However, this study has excluded these regions from its scope 
considering the complex influences of nearshore water quality and seafloor variations on SDB 
modeling accuracy. Based on the comment of the reviewer, the authors have expanded the research 
outlook in the conclusion section, highlighting the potential for future in-depth investigations into 
SDB applications in estuarine environments. Please refer to lines 594-596 for more information. 
 
Q5: Table 1: More information should be further shown, like max depth, min depth, mean depth, 
etc. 
Table 1 and Table 2: These tables should follow the three-line table format. 
 
Response: The authors thank the reviewer for these beneficial comments. Based on the comment of 
the reviewer, the table formatting issues have been corrected in the revised manuscript. Additionally, 
the SDB depth ranges for each region have been described in the context of Figure 8. Please refer 



to lines 402-411 for more information. 
 
Q6: Line 145: The explanation regarding the selection of training and validation data is not 
sufficiently clear. Why was an 8:2 rule used for training and validation? How about the data 
distribution? 

Response: The authors thank the reviewer for these beneficial comments. The authors realize that 
the criteria for selecting training and validation data, as well as their distribution, were not clearly 
explained. In this study, the entire tracks of ICESat-2 data were manually selected for use as training 
or validation data, with each track being used for only one purpose. This approach not only ensures 
the independence and uniform spatial distribution of the training and validation data but also allows 
for better data control and good spatial coverage of the validation data. Moreover, numerous studies 
have used this method to independently validate SDB modeling results (e.g., Ma et al, 2020; Wu et 
al., 2023). Although airborne laser or shipborne sonar bathymetric data can provide a better and 
more independent validation of SDB results, the authors also noted in the introduction that 
bathymetric data from airborne or shipborne measurements tend to be sparsely distributed due to 
the high costs and limited coverage of these techniques. Given that the SDB results presented in this 
study cover over 120 islands and reefs in the South China Sea, spanning more than 1000 km2, it is 
not feasible to conduct a global validation using airborne or shipborne data. On the other hand, the 
spatial distribution of ICESat-2 tracks makes it more convenient for performing global model 
validation. 

Furthermore, since the authors conducted individual SDB modeling for each island or reef, a 
detailed selection of training and validation data for each island was performed, resulting in a final 
data split of approximately 80% for training and 20% for validation. For example, for Huaguang 
Reef, a total of 96 valid ICESat water depth tracks were obtained, of which 72 tracks were used for 
training and the remaining 24 for validation, with their distribution illustrated in Fig. 1 below. Based 
on the reviewer's comments, the authors have added more explanations regarding the selection of 
training and validation data in the revised manuscript, please refer to page 5 line 147-150. 

 

Fig. 1 Training and validation data distribution in Huaguang Reef 
 
Q7: Figure 3: How did the authors perform water mask in the imagery? Since the study focuses on 



shallow water areas, it is easy to cause confusion between land and water in Sentinel-2 imagery. 

Response: The authors thank the reviewer for these beneficial comments. Regarding the 
determination of the shallow water mask for the islands and reefs, the shallow water mask in this 
study is based on the intersection of NDWI and ICESat-2 data. The authors initially used Sentinel-
2-derived NDWI for preliminary selection. However, there are two primary limitations to using 
NDWI alone to construct the shallow water mask. First, the relatively low spatial resolution of 
Sentinel-2 results in imprecise mask boundaries. More importantly, NDWI differentiates water 
bodies and land based on the reflectance differences between spectral bands. However, since this 
study mainly focuses on shallow water areas (with minimum depths < 10 m), the bottom 
significantly affect light scattering and absorption. This causes NDWI to perform poorly in shallow 
waters, leading to misclassification issues. Thanks to its high resolution and ability to capture both 
water surface and bottom signals, ICESat-2 data compensates for the limitations of NDWI, enabling 
the identification of shallow water areas in regions where NDWI is less effective or in more complex 
environments. Based on the comment of the reviewer, the authors have added a detailed explanation 
of the shallow water mask extraction. Please refer to lines 189-196 for more information. 

 
Q8: Section 3.1: What is the bounding depth detected by IceSat-2? What factors can affect the ability 
of IceSat-2-based depth detection? 
 
Response: The authors thank the reviewer for these beneficial comments. In the study area (i.e., 
SCS), the water clarity enables ICESat-2 to effectively penetrate water depths of approximately 30 
m. Its 532 nm laser wavelength demonstrates good penetration capability in clear waters; however, 
the laser signal undergoes attenuation due to the optical properties of water during propagation, 
leading to measurement failure in deeper regions beyond 30 m. 
 
More importantly, several environmental factors, such as water clarity, wave conditions, suspended 
matter concentration, and seabed reflectivity characteristics, also limit the detection depth range. 
Seabed characteristics play a crucial role in measurement accuracy. The flat sandy or rocky seabed 
can produce strong return signals, thereby enhancing measurement precision, while soft sediments 
(e.g., muddy bottoms) or complex topographies tend to cause laser signal scattering or absorption, 
resulting in weaker return signals and reduced measurement accuracy. Based on the comment of the 
reviewer, more explanation about the bounding depth of ICESAT-2 is added in the revised 
manuscript, please refer to lines 145-146 for more information. 
 
Q9: Section 3.2: What is the bounding depth detected by Sentinel-2? The description of the 
methodology may be improved. For instance, the choice of modeling region and the reasons for data 
segmentation and Pearson correlation analysis are not adequately explained. 
 
Response: The authors thank the reviewer for these beneficial comments. This study primarily 
utilizes the red, green, and blue (RGB) bands of Sentinel-2 multispectral imagery for SDB modeling. 
The detection depth range of these bands is influenced by factors such as water transparency, band-
specific attenuation characteristics, and seabed reflectance properties. Firstly, water transparency is 
a critical factor determining the depth-detection capability of the RGB bands. In clear water, light 



signals can penetrate deeper layers. However, in turbid waters, suspended particles (e.g., sediments, 
plankton) significantly increase light scattering and absorption, leading to rapid signal attenuation 
and limiting detection depth. Secondly, the attenuation rates of different bands vary. The red band 
attenuates the fastest and has the weakest penetration capability, while the blue and green bands 
exhibit stronger underwater detection capabilities. Additionally, the reflectance properties of the 
seabed significantly affect detection accuracy. Hard seafloor (e.g., sandy or rocky bottoms) reflect 
stronger signals than the soft sedimentary bottoms or complex seabed terrains. Based on the SDB 
modeling results for the SCS presented in this study, Sentinel-2 can achieve reasonable seabed 
topography delineation within a depth range of 30-40 m. This indicates that its effective detection 
depth in clear waters can reach up to 30-40 m. 
 
In this study, the shallow water areas surrounding the islands and reefs were chosen as the SDB 
modeling regions, as shown in Figs. 1 and 8 in the original manuscript. Due to limitations in image 
quality and water quality conditions, the authors restricted each SDB modeling region to either a 
single island or a group of nearby reefs. For example, in Fig. 3(a) and Table 2 of the original 
manuscript, typical island regions in the Xisha and Nansha areas are presented, along with the 
images and ICESat-2 data used for SDB modeling in each region. Taking the Yongle Atoll as an 
example (Fig. 2 below), it includes several small islands such as Ganquan Island and Jinyin Island. 
Due to the relatively concentrated spatial distribution of these islands, the authors assumed that the 
Sentinel-2 image quality, lighting conditions, and other factors would be similar across these regions. 
As such, a unified regression model was applied to the entire group of islands in the region. 
 
The authors realize that the explanation for the Pearson analysis may not be sufficiently clear and 
could potentially cause confusion for readers. In fact, the authors’ intention here is to segment the 
ICESat-2 depth point cloud data into specific intervals and then perform Pearson correlation analysis 
with the corresponding RGB reflectance information from Sentinel-2. This analysis helps to identify 
and remove outlier or noisy data, thereby improving the robustness and noise resistance of the SDB 
model. Due to the influences of water quality, bottom conditions, and other factors on ICESat-2 
point cloud data, as well as the effects of lighting and atmospheric conditions on Sentinel-2, 
significant anomalies may arise between the along-track water depth data from ICESat-2 and the 
corresponding reflectance data from Sentinel-2 pixels. Such anomalies can adversely affect the 
regression parameter estimation based on the linear band model (LBM) model. Consequently, the 
authors segmented the ICESat-2 depth data and correlated it with Sentinel-2 reflectance data to filter 
out low-quality data points. A correlation threshold of 0.4p =  was chosen. When the correlation 
coefficients for two or more bands were below this threshold, the data was considered of low quality 
and excluded from the SDB modeling. Based on the comments of reviewer 1, the authors have 
revised the description to specify that the correlation analysis was conducted with a step size of 500 
m. Based on the comment of the reviewer, more explanation about the method and choice of 
modeling region is added in the revised manuscript, please refer to lines 173-178, lines 189-196, 
and lines 364-367 for more information. 
 



 
Fig. 2 the Sentinel-2 imagery (background), ICESat-2 water depth (tracks), shallow water mask (white 
polygons) of the Yongle island region 

 
Q10: Line 310: How generalizable is the LBM model trained by the authors? Can it be applied to 
other marine areas with insufficient ICESat-2 data for SDB modeling? 
 
Response: The authors thank the reviewer for these beneficial comments. Indeed, the accuracy of 
SDB modeling based on ICESat-2 data and Sentinel-2 imagery is significantly influenced by factors 
such as water quality, seabed characteristics, and solar illumination in shallow waters. This is the 
primary reason why the SDB modeling regions have been restricted to individual islands and their 
adjacent areas in this study. Similarly, the generalization performance of the LBM is constrained by 
several factors, including the representativeness and quantity of the modeling data, as well as the 
quality of Sentinel-2 imagery. In general, LBM is a regression model, and its generalization 
performance improves significantly when more representative and higher-quality data are used for 
training. However, due to the limited parameter number of the LBM and the lack of consideration 
for environmental factors such as seabed characteristics and turbidity, as well as the absence of 
physical constraints, the modeling performance of LBM can vary greatly across different regions. 
To further enhance the model's generalization performance and enable its application in areas with 
sparse ICESat-2 data, the author suggests improvements in two key aspects: first, selecting a larger 
and more representative dataset (covering various depths, times, turbidity levels, and seabed types); 
second, incorporating machine learning or deep learning frameworks with physical constraints in 
SDB modeling. This would enable a more comprehensive consideration of influencing factors, 
optimize model parameter training, and ultimately improve the robustness and transferability of 
SDB modeling. The author sincerely appreciates the reviewer’s valuable suggestions, which have 
provided new directions for future research. Based on the reviewer's comments, the author has added 
more insights on the generalization capability of the model in the conclusion section and will explore 
this issue further in subsequent studies. Please refer to lines 589-591 for more information. 
 
 
Q11: Line 350: How deep of water depths can be detected from SDB (seems ~ 30 m in this study 
area), is it possible to apply SDB modeling over water areas with deeper depths than the one used 
in this study? 
 
Response: The authors thank the reviewer for these beneficial comments. The SDB technique is 
limited by its inability to detect seafloor topography in deep waters, where the SDB over the water 



areas with depths deeper than 30 m may become unreliable. This impedes the extensive applications 
of the SDB technique, and the acquirement of water depths over deep water areas largely relies on 
in situ data acquired from echo soundings, LiDAR data, and seismic depths. Please refer to L402-
411 and lines 556-557 for more information. 
 
Q12: Figure 8: The authors mentioned several islands and reefs in their model but omit other islands 
and reefs in the South China Sea, such as the ones in the Zhongsha Islands region. Please explain 
this issue. 
 
Response: The authors thank the reviewer for these beneficial comments. The authors have excluded 
the Zhongsha Islands from the SDB modeling scope primarily due to the challenges in acquiring 
high-quality ICESat-2 bathymetric data in this region. The detection capability of ICESat-2 is 
influenced by multiple factors, including water transparency, suspended sediment concentration, 
and seabed reflectivity characteristics. Although the Zhongsha Islands area maintains relatively 
clear waters, the sandy seabed and greater water depth compared to the coral reef regions of the 
Xisha and Nansha Islands present additional challenges. Furthermore, the geological characteristics 
of the seabed may cause scattering or absorption of the laser signal during transmission, resulting 
in weakened return signals and reduced data availability. Within the Zhongsha Islands region, only 
the Huangyan Island area has yielded relatively reliable ICESat-2 bathymetric data, while data 
availability remains poor in other areas such as the large atoll regions. As a result, the authors have 
excluded this region from the current study. Based on the comment of the reviewer, the authors have 
provided additional explanatory details in the revised manuscript to clarify this issue. Please refer 
to lines 119-121 for more information. 
 
Q13: Figures 9 and 10: The point cloud density was uneven, with most points concentrated in the 
1-3 meter depth range. While Figure 7 shows that the ICESat-2 data was predominantly 
concentrated in shallow water areas, this could lead to inconsistent fitting of the regression model 
across different depth ranges. I suggest the authors consider resampling the ICESat-2 data within 
the 1-3 meter range. 
 
Response: The authors thank the reviewer for these beneficial comments. The authors acknowledge 
the formatting inconsistencies in the regression analysis results presented in Figures 9 and 10. Based 
on the comment of the reviewer, the point cloud data from regression analysis have been resampled 
to achieve a more uniform depth distribution. Also, the statistics of these two figures are updated. 
Please refer to revised Figure 9 and 10. 
 
Q14: Figure 11: Similar to the previous figures, Figure 11 showed uneven point cloud density 
distribution. Additionally, the origin of the XY axes should be at 0 m, rather than -10 m. Please 
redraw these figures. 
 
Response: The authors thank the reviewer for these beneficial comments. The authors have 
thoroughly revised the modeling dataset by implementing depth-stratified resampling to achieve a 
uniform data distribution, thereby enhancing the reliability and validity of the regression analysis 
results. Based on the comment of the reviewer, Figure 11 has been completely redesigned, with 



particular attention paid to optimizing the axis scaling and presentation of the regression analysis 
plots. Please refer to revised Figure 11. 
 
Q15: Line 440: There was no introduction of the DTU18BAT, topo_27.1, GEBCO_2023, or SRTM 
models earlier in the manuscript. What data these models use for construction? What are their spatial 
resolutions and accuracies? More information can be included. 
 
Response: The authors thank the reviewer for these beneficial comments. In this study, several 
recently released global bathymetry models are considered, including DTU18BAT, topo_25.1, 
SRTM15+V2.5.5, and GEBCO_2023. DTU18BAT (1′×1′) is a latest version of series of models 
developed by the Technical University of Denmark (DTU) in 2019 
(https://ftp.space.dtu.dk/pub/DTU18/1_MIN/). DTU18BAT was constructed by a combination of 
the GEBCO model and satellite altimetric gravity anomalies; and this model included 3 years of 
Sentinel-3A and 7 years of Cryosat-2 data and used FES2014 for ocean tide correction. The 
topo_25.1 (1′×1′) is a recently released model developed by the Scripps Institution of Oceanography 
(SIO) (https://topex.ucsd.edu/pub/global_topo_1min/), and it was predicted from ship soundings 
and satellite altimetric gravity anomalies. SIO has developed several versions of bathymetry models, 
and the models have been consistently improved in terms of accuracy and resolution with the 
accumulation of satellite altimetry data. SRTM15+V2.5.5 (15″×15″) is an updated version of 
SRTM15+ series of models that were developed in SIO (https://topex.ucsd.edu/pub/srtm15_plus/). 
These models were computed by combining shipboard soundings and depths predicted from satellite 
altimetric gravity data. GEBCO_2023 was a recently released model developed by the GEBCO 
Bathymetric Compilation Group in 2023 
(https://www.gebco.net/data_and_products/gridded_bathymetry_data/). GEBCO_2023 was 
developed by using SRTM15+V2.5.5 as the base data, and included in-situ depths, such as echo 
soundings, seismic records, and lidar data. GEBCO_2023 was well constrained where in-situ data 
were available, whereas interpolation was implemented from satellite altimetry-predicted depths 
and bathymetric soundings at locations where in-situ records were missing. Based on the comment 
of the reviewer, the authors have provided additional introduction in the revised manuscript, please 
refer to lines 220-237 for more information. 
 
Q16: Line 495: The authors have used ICESat-2 data spanning over five years for SDB modeling. 
Have they considered the potential impact of temporal changes in seafloor topography due to human 
activities or ocean currents during this period? 
 
Response: The authors thank the reviewer for these beneficial comments. The local bathymetry is 
affected by the temporal changes caused by sediment deposition, erosion, ocean current, human 
activities and etc. The human induced influence is neglected, due to fact that the study area is a 
remote region and the effect of human activities here is relatively weak. However, other temporal 
factors may have potential influences on underwater topography. According to previous studies, we 
assume that the temporal changes of underwater topography have minor influences on water depth 
estimation over short periods in the study area. Moreover, we choose the Sentinel-2 images that fall 
within the time spans of the ICESat-2 data, which are close to the overpass time of the ICESat-2 
data (from 2018 to 2023) used in this study. In such a way, the effects of the temporal changes on 



local bathymetry estimation can be largely reduced. Please refer to lines 169-170 for more 
information. 
 
Q17: Line 520: The conclusion contained some repetitive expressions and redundant language. It 
can be streamlined for conciseness. 
 
Response: The authors thank the reviewer for these beneficial comments. The conclusion section 
has been substantially revised to enhance its precision and focus. The authors have carefully 
reviewed the entire manuscript to correct grammatical errors and improve language clarity. These 
revisions have significantly improved the overall quality and readability of the manuscript. Please 
refer to lines 572-596 for more information. 
 
Q18: Line 545: The appendix lists all the islands and reefs used for modeling, but does the author 
model each of these individually? How much data was used for each island or reef? 
 
Response: The authors thank the reviewer for these beneficial comments. In this study, the shallow 
water areas surrounding the islands and reefs were chosen as the SDB modeling regions, as shown 
in Figs. 1 and 8 in the original manuscript. Due to limitations in image quality and water quality 
conditions, the authors restricted each SDB modeling region to either a single island or a group of 
nearby reefs. For example, in Fig. 3(a) and Table 2 of the original manuscript, typical island regions 
in the Xisha and Nansha areas are presented, along with the images and ICESat-2 data used for SDB 
modeling in each region. Taking the Yongle Atoll as an example (Fig. 3 below), it includes several 
small islands such as Ganquan Island and Jinyin Island. Due to the relatively concentrated spatial 
distribution of these islands, the authors assumed that the Sentinel-2 image quality, lighting 
conditions, and other factors would be similar across these regions. As such, a unified regression 
model was applied to the entire group of islands in the region. The authors first selected the high-
quality Sentinel-2 L2A image (20210817T025549) and extracted the RGB band information within 
the shallow water mask region. Additionally, as confirmed in the study by Jia et al. (2023), applying 
deep-water reflectance correction to Sentinel-2 imagery significantly improves the accuracy of SDB 
modeling. Based on the GBCO empirical model, the authors identified regions with water depths 
exceeding 100 m in the modeling area. The RGB reflectance of these deep-water regions was 
extracted and used as correction information to eliminate sun glint and other surface effects in the 
RGB data. 

 
Fig. 3 the Sentinel-2 imagery (background), ICESat-2 water depth (tracks), shallow water mask (white 
polygons) of the Yongle island region 



Next, the authors used 19 ICESat-2 tracks containing sea floor information as prior water depth data, 
which underwent processing steps including water depth point cloud extraction, noise removal, 
refraction correction, and reference datum unification. Due to the presence of significant Gaussian 
noise in the depth point cloud, the authors applied piecewise linear fitting to identify the mid-line 
of the water depth point cloud, which was then used as the true water depth. The depth range was 
subsequently gridded, and the fitted water depth values were uniformly sampled within grids of 
different depths, ensuring an equal distribution of point cloud data across varying depth levels. 
Additionally, as the ICESat-2 data has a significantly higher along-track resolution (0.7 m) 
compared to the Sentinel-2 spatial resolution (10 m), the authors computed the average depth for 
the ICESat points located within each pixel and used this averaged value as the prior water depth 
for that pixel. This process ensures that the prior depth data is consistent with the spatial resolution 
of the Sentinel-2 imagery. 

Finally, the authors extracted the RGB reflectance information from each Sentinel-2 pixel along the 
ICESat-2 track and performed multiple linear regression fitting using the LBM model, relating this 
reflectance data to the ICESat-2 prior water depth. Through this process, the regression parameters 
were estimated. The trained model was then applied to the Sentinel-2 reflectance data, resulting in 
the SDB model for the shallow water region of the Yongle island. 

It is important to note that the islands and reefs mentioned in line 170 of the original manuscript 
were selected as typical examples from the Xisha and Nansha regions to facilitate the demonstration 
of the SDB modeling process and its details. The regression modeling areas for these islands are 
located within the shallow water mask regions shown in Fig. 3 of the original manuscript (inside 
the white shapes). For all other islands, the corresponding regression modeling areas can be found 
in the shallow water regions of Fig. 1 of the original manuscript (inside the gray shapes). 
Additionally, the content in lines 320-325 focuses on selecting the ICESat-2 water depth data and 
Sentinel-2 RGB reflectance information with the highest correlation based on Pearson correlation 
analysis. This step is critical to avoid including outliers or noise that could affect the SDB modeling. 
Based on the reviewer's comments, the authors have further clarified the issue of regression 
modeling areas in the revised manuscript and have expanded the explanations related to data 
selection and the modeling approach, making the manuscript clear and comprehensive, please refer 
to lines 173-177, line 189-196, Figure 3 and Table 2 for more information. 

Q18: The manuscript contains several expressions like "point clouds," where "point" should be 
replaced with "data". 
References: The format of literatures should be further normalized. 
 
Response: The authors thank the reviewer for these beneficial comments. The authors have carefully 
revised and corrected this expression throughout the entire manuscript. Additionally, the authors 
have conducted a thorough review of the manuscript to ensure all statements are precise and 
scientifically accurate. Please refer to the revised manuscript. 
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