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Abstract 

The recent surge in reservoir construction has increased global surface water storage, with Mainland Southeast Asia (MSEA) 

being a significant hotspot. Such infrastructural evolution demands updates in water management strategies and hydrological 

models. However, information on actual reservoir storage is hard to acquire, especially for transboundary river basins. To date, 10 

no high spatio-temporal dataset on absolute storage time series is available for reservoirs in MSEA. To address this gap, we 

present (1) a comprehensive, open-access database of absolute storage time series (sub-monthly) for 185 reservoirs (larger 

than 0.1 km3) in MSEA spanning the period 1985-2023, and (2) an analysis of the reservoir storage dynamics. The MSEA-

Res database includes static (Area-Elevation-Storage curves, water frequency, reservoir extent) and dynamic (area, water level, 

and absolute storage time series) components for each reservoir. The 185 reservoirs collectively store around 175 km³ (140 15 

km³ – 210 km³) of water, covering an aggregated area of 8,700 km² (6,500 km² – 10,000 km²). We show that the combined 

average reservoir storage has increased from 70 km³ to 160 km³ (+130%) from 2008 to 2017, primarily contributed by dams 

in the Irrawaddy, Red, Upper Mekong, and Lower Mekong basins. Our in-situ validation provides a good match between 

estimated storage and in-situ observations, with 60% of the validation sites (12 out of 20) showing an R² > 0.65 and an average 

nRMSE < 15%. The indirect validation (based on altimetry-converted storage) shows even better results, with an R² > 0.7 and 20 

an average nRMSE < 12% for 70% (14 out of 20) of the reservoirs. Furthermore, the analysis of the 2019-2020 drought event 

reveals that nearly 30-40% of the MSEA region experienced more than five months of drought, with the most significant 

impact on reservoirs in Cambodia and Thailand. As a result, storage departures ranged up to -40% in some reservoirs, 

highlighting significant impacts on water availability. Overall, this analysis demonstrates the potential of the inferred storage 

time series for assessing real-life water-related problems in Mainland Southeast Asia, with the possibility of applications in 25 

other parts of the world. The MSEA-Res database and associated Python code are publicly available on Zenodo at 

https://doi.org/10.5281/zenodo.12787699 (Mahto et al., 2024). 
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1 Introduction 

Water reservoirs cause some of the most significant human-induced alterations of the hydrological cycle, influencing the re-

distribution of water in space and time (Chao et al., 2008; Cooley et al., 2021; Haddeland et al., 2014; Lehner et al., 2011). 30 

The construction of reservoirs can also lead to significant environmental and socio-economic impacts, including biodiversity 

loss, alterations of geochemical cycles, and changes in land use patterns (Degu et al., 2011; Kirchherr et al., 2016; Maavara et 

al., 2020; Vörösmarty et al., 2010; Winemiller et al., 2016). Despite these impacts, reservoirs remain pivotal in generating 

renewable energy and supporting water management, thus driving the demand for new dams (Chao et al., 2008; Wada et al., 

2017), especially in the Global South. Accurate information on reservoir operations is thus crucial for practitioners, 35 

policymakers, and scientists to estimate water budgets, assess hydrological and nutrient fluxes, project water availability for 

hydropower generation, and mitigate flood and drought risks (Bakken et al., 2014; Chao et al., 2008). Information on the 

temporal evolution of absolute reservoir storage, or level, is particularly useful, since it provides a direct measurement of the 

total volume of water stored in a reservoir at any given time – this contrast against relative storage time series, which only 

track changes in storage across a given time interval. 40 

 

Currently, information on long-term absolute reservoir storage is limited across most of the globe, with consolidated datasets 

available only for a handful of countries (Steyaert et al., 2022; Li et al., 2023; Steyaert and Condon, 2024). Such type of 

information is particularly needed in regions – like Mainland Southeast Asia – that are experiencing rapid hydropower 

development. Laos, for instance, is realising its vision of becoming the “Battery of Asia” by constructing new hydropower 45 

dams and exporting electricity to neighbouring countries; it is expected, moreover, that several additional dams will become 

operational in the years to come (Ang et al., 2024). Similarly, other Southeast Asian countries, such as Vietnam and Cambodia,  

have also built most of their reservoirs in the past two decades (Ang et al., 2024; Zhang and Gu, 2023), altering the flow of 

transboundary rivers and raising tensions between countries. With this concern in mind, we focus on the reservoirs of Mainland 

Southeast Asia, thus comprising Myanmar, Thailand, Laos, Vietnam, Cambodia, Malaysia, Singapore, and part of southern 50 

China – where a few large rivers flowing in the region originate. 

 

The problem of inferring reservoir storage time series can only be partially addressed with the aid of hydrological models, 

since some basic information on operational strategies – typically not available – is needed to setup and validate models (Zhang 

et al., 2014; Dang et al., 2020; Galelli et al., 2022; Nazemi and Wheater, 2015a, b; Vu et al., 2022; Wada et al., 2017). 55 

Fortunately, advances in remote sensing offer a viable opportunity to estimate storage by relating information on reservoir 

surface area and elevation (Busker et al., 2019; Gao et al., 2012; Tortini et al., 2020; Vu et al., 2022). For this task, information 

on reservoir bathymetry – synthesized by Area-Elevation-Storage (A-E-S) curves – becomes crucial. It is indeed common 

practice to derive the A-E-S curves from remotely-sensed digital elevation models (DEMs) (Zhang and Gao, 2020); their time 

of acquisition, however, may limit the available information. When the DEM captures the reservoir's topography before its 60 
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filling begins, absolute storage estimation is possible using these remotely sensed data (Li et al., 2023).  For reservoirs 

constructed before the DEM was made available, the problem lies in the fact that satellite-based DEMs do not provide 

information below the reservoir water surface, leading to a partially unknown bathymetry. However, even in such cases, 

remotely sensed water surface area from sensors like Landsat, Sentinel, and MODIS, or water level data from satellite 

altimeters such as JASON, Sentinel-6, and SARAL-Altika, can still be used to estimate storage changes (Das et al., 2022; 65 

Minocha et al., 2024; Zhang et al., 2014).  Therefore, while recent studies have quantified long-term surface area and storage 

changes of reservoirs at global (Busker et al., 2019; Hou et al., 2024; Tortini et al., 2020) and regional scales (Shen et al., 2023; 

Song et al., 2022), absolute storage estimations – especially for those reservoirs built before 2000 (acquisition year of SRTM 

DEM) – are still uncertain in space and time because of the lack of detailed bathymetry information (Hao et al., 2024; Li et al., 

2023; Zhang and Gao, 2020). 70 

 

How to improve such estimates? Radar altimetry has proven useful for measuring water levels in lakes and reservoirs (Markert 

et al., 2019; Schwatke et al., 2015; Vu et al., 2022). Yet, limited coverage is a major limitation in popular altimetry-based 

datasets, such as Hydroweb (Crétaux et al., 2011), G-REALM (Birkett et al., 2011), and DAHITI (Schwatke et al., 2015). For 

Mainland Southeast Asia, altimetry-based water level data are available for only a few (20-30) reservoir overpasses. On top of 75 

that, the available water level datasets are not continuous in time. Although time series datasets are available for reservoir 

storage anomaly (Shen et al., 2022, 2023), none of them provide long-term time series for absolute reservoir storage. Some 

studies modelled total storage – only for a few reservoirs –  using LiDAR data (Bacalhau et al., 2022; Chen et al., 2022; Li et 

al., 2020), surrounding topographical information (Fang et al., 2023; Liu et al., 2020; Liu and Song, 2022), or through 

simplified modelling approaches (Khazaei et al., 2022; Yigzaw et al., 2018). However, they show inaccuracies in storage 80 

estimates for reservoirs that were built before 2000, because of the (necessary) assumptions on reservoir bathymetry (Hao et 

al., 2024; Li et al., 2023; Zhang and Gao, 2020). Other studies relied on field surveys to create three-dimensional (3D) 

bathymetry maps to estimate absolute storage, but these are limited to very few reservoirs (Busker et al., 2019; Weekley and 

Li, 2019).  

 85 

Recently, the GloLakes database was produced by Hou et al., (2024), providing absolute water storage dynamics for lakes 

from 1984 to 2020 - for 27,000 global lakes and reservoirs using the geostatistical model described in Messager et al., (2016). 

Although it covers the entire globe by providing a comprehensive dataset for large-scale assessments, it has a few limitations 

for the reservoirs located in Mainland Southeast Asia. First, the model parameters (used in the storage estimation) strongly 

depend on mean depth (extrapolating the surrounding topographical slope towards the centre of the lake to estimate lake depth), 90 

the surface area of the lake (derived from Landsat satellite images), and average slope (derived from DEM). Therefore, 

uncertainties in the estimates of reservoir storage may be generated by the estimation of depth, slope, and through other model 

coefficients. Second, GloLakes does not include some of the largest reservoirs in MSEA, including Nuozhadu (22 km3), 
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Xiaowan (15 km3), Xe Kaman 1 (4 km3), and Lower Seasan 2 (6 km3), which play a significant role in water redistribution 

and hydropower generation (Ang et al., 2024; Galelli et al., 2022; Vu et al., 2022). 95 

 

Here, we address these gaps by presenting a robust and comprehensive sub-monthly time series dataset of absolute reservoir 

storage for Mainland Southeast Asia (hereafter, “MSEA-Res database”), whose reservoir network is described in Section 2. 

Specifically, our open-access database includes sub-monthly time series data of absolute storage for 185 reservoirs (larger than 

0.1 km3) in mainland Southeast Asia (MSEA), covering the period from 1985 to 2023. The creation of this database is 100 

facilitated by two technical advances (Section 3), namely (1) the concomitant use of Landsat and Sentinel-2 images, and (2) 

the creation of hypsometric curves based on the new database introduced by Hao et al., (2024), which provides bathymetry 

information for all dams in the GRanD database. The first advancement is aimed to increase the temporal resolution of our 

time series, while the latter allows us to address the (aforementioned) challenges concerning the estimation of hypsometric 

curves for dams that were not recently built. To demonstrate the usefulness of MSEA-Res, we conduct a multi-basin analysis 105 

of the dynamics and trends of reservoir (absolute) storage, offering insights into how storage patterns have evolved over the 

years and across different basins (Section 4). Finally, we analyse the impact of the 2019-2020 drought on surface water storage, 

highlighting the significant effects of extreme dry weather events on water resources in Mainland Southeast Asia. Through 

these examples, we show that MSEA-Res can be used for a variety of applications, such as hydrological modelling, drought 

analyses, and regional water resources planning. 110 

2 Water reservoirs in Mainland Southeast Asia 

2.1 Dam design attributes  

We first analysed global and regional dam databases to compile a list of reservoirs (with storage larger than 0.1 km3) built in 

Mainland Southeast Asia until 2023. As shown in Table 1, we used two global databases [GRanD Version-1.3 (Lehner et al., 

2011) and GDAT (Zhang and Gu, 2023)] and one regional database for the Mekong (Ang et al., 2024). The most popular 115 

global dam database – GRanD –  was used to get the list of georeferenced dams that were built until 2016. Unfortunately, the 

GRanD database has not been updated for post-2017 dams in our study region. Therefore, we collected the list of georeferenced 

dams built between 2017 and 2023 from more recent databases. For the Mekong basin, we used the dam database prepared by 

Ang et al., (2024), whereas the GDAT database was used for the other basins (i.e., Chao Phraya, Red, Salween, Irrawaddy, 

and remaining smaller river basins). Information on each reservoir in the final list of 185 elements was verified and validated 120 

against high-resolution Google Earth images. Among the reservoir attributes, we collected four main ones: name of the 

reservoir, spatial coordinates of the dam (i.e., longitude and latitude), storage capacity, and year of commission. 

 

Table 1. List of global and regional dam databases used to collect the dam design attributes. 
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Category Database Region Number of 

dams 

Period Source 

Global GRanD v1.3  

(https://ln.sync.com/dl/bd47eb6b0/anhxaikr-

62pmrgtq-k44xf84f-

pyz4atkm/view/default/447819520013/) 

Mainland 

Southeast Asia 

125 Until 2016 Lehner et al., 2011 

 Global Dam Tracker (GDAT) 

(https://zenodo.org/records/7616852/) 

Mainland 

Southeast Asia, 

except the 

Mekong 

22 2017-2023 Zhang and Gu, 2023 

Regional Dams in the Mekong 

(https://doi.org/10.21979/N9/ACZIJN/) 

Mekong basin 38 2017-2023 Ang et al., 2024 

2.2 Distribution and evolution of reservoirs 125 

Based on the acquired information, we first present the distribution and temporal evolution of reservoirs in Mainland Southeast 

Asia (Fig. 1). Among the 185 large reservoirs in MSEA, 125 (~68 %) were built in the twenty-first century. As a result, a dense 

network of newly constructed reservoirs spreads across all basins, with the exception of the Chao Phraya, western Lower 

Mekong, and southern coastal basins (Fig. 1a). The first big reservoirs (mainly, Srinagarind - 18 km3, Kenyi - 13.6 km3, 

Bhumibol - 13.5 km3, Sirikit - 9.5 km3, Khao Laem - 8.8 km3, and Nam Ngum - 7.0 km3) were built between 1964 and 1985, 130 

increasing the aggregated storage capacity from 0 to ~75 km3 in about twenty years (Fig. 1c). During the following 15 years 

(1986-2000), mostly small reservoirs were constructed, except for Rajjaprabha (5.6 km3), which started to operate in 1987. 

Until 2000, the cumulative storage from 60 reservoirs in Mainland Southeast Asia was thus ~85 km3. The construction of 125 

new reservoirs in the post-2000 period sharply increased the aggregated water storage by more than two-fold, reaching a 

storage capacity of ~180 km3 at the end of 2023 (Fig. 1c). During this time, a few mega reservoirs were built, such as Xiaowan 135 

(~15 km3) and Nuozhadu (~22 km3) in the Upper Mekong basin, contributing significantly to the aggregated storage capacity 

of Mainland Southeast Asia. At present, the largest number of reservoirs is in the Lower Mekong River basin (54), followed 

by the Irrawaddy (29), Red River (21), Upper Mekong (20), Chao Phraya (7), and Salween (3) [Fig. 1b, d]. 51 dams are located 

in the remaining river basins (Indicated as “Others” in Fig. 1b, d). Although, based on the design specifications, we know how 

much water the reservoirs can hold, when full, we need a database containing time series of reservoir storage to better support 140 

hydrological studies and water resources management. Our MSEA-Res fills this gap.  
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Figure 1: Spatial distribution and evolution of reservoirs in Mainland Southeast Asia. (a) Map showing reservoir storage volume 

(million m3), where the size of the circle is proportional to the reservoir capacity while the colour represents the year of commission 145 
of the dams. (b) Basin-wise distribution of dam location (red dots), stream network, and order. (c) Number of dams built per year 

and their corresponding cumulative storage capacity. (d) Basin-wise total number of reservoirs built until 2023. 

3 Methodological framework   

The procedure adopted to produce the MSEA-Res database is illustrated in Fig. 2 and can be divided into three main steps. For 

each reservoir, we first derive the Area-Elevation-Storage relationship (i.e., A-E curve, E-S curve, and A-S curve), then we 150 

calculate the time series of water surface area, and finally, we derive the absolute reservoir storage by combining information 

on the reservoir surface area (or water level, if available) with the hypsometric curves. Although water levels from satellite 

altimetry observations can also be used to estimate the storage volume (Zhang et al., 2014), they are only available for a few 

reservoirs, and they are neither consistent nor continuous in time, thus creating missing data issues (Birkett et al., 2011; Busker 
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et al., 2019; Schwatke et al., 2015). Therefore, we worked with satellite-based water surface area, which can be produced at 155 

higher frequency (e.g., sub-monthly) from the Earth Observation Satellites, such as Landsat and Sentinel-2, to retrieve the 

reservoir's area time series. In the following sub-sections, we discuss each step-in detail, namely acquiring the raw satellite 

data, obtaining the hypsometric curves for different reservoirs, estimating water surface area, improving the area estimates,  

and finally inferring the storage time series. All steps are implemented in a Python package called InfeRes (publicly available 

on GitHub, https://github.com/Critical-Infrastructure-Systems-Lab/InfeRes/).  160 

 

 

 

Figure 2: Flowchart showing the methodological framework and steps taken to estimate reservoir storage from time series satellite 

images. DEM is the 30m digital elevation model from the SRTM, acquired in February 2000. Normalized Difference Water Index 165 

(NDWI) is the normalized ratio between reflectance in Green and NIR bands, given by (Green-NIR)/(Green+NIR), which is 

generally used to classify water and non-water pixels. 
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3.1 Acquiring input data 

The process starts by acquiring the input datasets, mainly the Digital Elevation Model (DEM), Normalized Difference Water 

Index (NDWI) images, Water Frequency raster (FREQ), and Maximum Water Extent raster (EXT). We used the Google Earth 170 

Engine (GEE) coding platform to acquire the necessary input dataset. For each reservoir, rectangular bounding boxes are used 

to fix the dimension of the dataset in the GEE. As for the digital elevation model, we used the Shuttle Radar Topography 

Mission (SRTM, Farr et al., 2007) DEM-Version3, an international research effort that obtained digital elevation models on a 

near-global scale. NASA JPL provides the SRTM V3 product at a resolution of 1 arc-second (~30m). Unlike the DEM, the 

other maps (NDWI, FREQ, and EXT) were estimated from the Landsat-5 TM, Landsat-7 ETM+, Landsat-8 OLI/TIRS, 175 

Landsat-9 OLI-2/TIRS-2, and Sentilel-2 images (see Table 2 for details).  

 

Table 2. List of input satellite data and their specifications. 

Category Database Availability Resolution Earth Engine Snippet 

DEM SRTM DEM V3 2000 30m ee.Image("USGS/SRTMGL1_003") 

Landsat Landsat-5 TM 

 

1984-2012 30m USGS Landsat 5 Level 2, Collection 2, Tier 1 

ee.ImageCollection("LANDSAT/LT05/C02/T1_L2") 

 Landsat-7 ETM+ 

 

1999-Present 30m USGS Landsat 7 Level 2, Collection 2, Tier 1 

ee.ImageCollection("LANDSAT/LE07/C02/T1_L2") 

 Landsat-8 

OLI/TIRS 

 

2013-Present 30m USGS Landsat 8 Level 2, Collection 2, Tier 1 

ee.ImageCollection("LANDSAT/LC08/C02/T1_L2") 

 Landsat-9  

OLI-2/TIRS-2 

 

2021-Present 30m USGS Landsat 9 Level 2, Collection 2, Tier 1 

ee.ImageCollection("LANDSAT/LC09/C02/T1_L2") 

Sentinel Sentinel-2 

 

2016-Present 30m 

(resampled) 

Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-1C 

ee.ImageCollection("COPERNICUS/S2_HARMONIZED") 

 

The Green (G) and Near-infrared (NIR) bands from the satellite sensors (Landsat and Sentinel) are used to calculate NDWI 180 

[i.e. (G-NIR)/(G+NIR)] – as proposed by McFeeters, (1996) – for the available scenes, collectively covering the study period 

1985-2023. Optical images (G and NIR) can be affected by the presence of clouds – especially on rainy days – and so, NDWI. 

Therefore, getting a complete view of reservoir extent from a cloud-affected NDWI image becomes significantly challenging 

(Hou et al., 2024; Vu et al., 2022). To address this issue, we first filtered the Earth Engine Image Collection based on cloud 

threshold (Band Quality, BQ) and selected only those images that have less than 80% cloud coverage. We also made NDWI 185 

composites from available Landsat (1985-2023) and Sentinel (2016-2023) images at 10-day intervals. Therefore, one month 

can have a maximum of three images (i.e., only from Landsat) during the period 1985-2015. On the other hand, it can have a 

maximum of six images per month (three from Landsat and three from Sentinel) in 2016-2023. Making a composite of NDWI 

images maximizes the chances of getting more cloud-free pixels than individual NDWI images.  
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To obtain the water frequency (FREQ) and maximum water extent (EXT) raster maps, we first create the binary NDWI images 190 

available between 2013 and 2023 from the Landsat and Sentinel image collection in the GEE environment. Positive NDWI 

values are considered an approximation for water pixels (with a value of 1), while negative NDWI values are non-water pixels 

(with a value of 0). The FREQ layer is created by making a composite of all binary NDWI images whose cloud percentage is 

less than 20% (i.e., clear sky condition) and by dividing it by the total number of selected images (cloud percentage <20%). 

We multiply the FREQ layer by 100 to get the percentage of water present at each pixel. Subsequently, the EXT layer is created 195 

by simply taking the largest extent of ones in all binary NDWI images available between 2013 and 2023. Overall, we assemble 

three raster layers (DEM, FREQ, and EXT) and scene-based NDWI images for each of the 185 reservoirs, which we process 

further to estimate the absolute reservoir storage time series.  

3.2 Area-Elevation-Storage curves  

Deriving the relationship between the area, elevation (or water level), and storage (A-E-S relationship) of a reservoir is crucial. 200 

This step relies on the bathymetry information, which further depends on the time of acquisition of the DEM. Considering that 

the SRTM-DEM was acquired in February 2000, reservoirs built after 2000 have complete bathymetry information; thus, the 

A-E-S relationship for the year 2000 can easily be derived. Since the majority of the reservoirs (~70%) in Mainland Southeast 

Asia were built after 2000, we obtained the Area-Elevation-Storage (A-E-S) curves from the DEM. For each reservoir, the 

elevation range for the A-E-S curves was defined by the minimum and maximum DEM values within the reservoir's extent. 205 

The area at each elevation level was determined by contouring, while the corresponding absolute storage was estimated by 

cumulatively summing the areas across the elevation range. For the remaining 30% of the reservoirs built before 2000, the 

DEM cannot be applied directly to estimate E-A-S curves. This is a common problem in the existing studies for estimating 

absolute storage for reservoirs built before 2000 (Busker et al., 2019; Gao et al., 2012; Hou et al., 2024; Khazaei et al., 2022; 

Yigzaw et al., 2018). Although previous studies have used various modeling approaches based on simplified geometric 210 

assumptions to overcome this limitation (Fang et al., 2023; Hou et al., 2024; Khazaei et al., 2022; Yigzaw et al., 2018), results 

often do not meet the level of accuracy required for basin-scale water management modeling and decision-making. To address 

this problem, we banked on a recently-released database of global reservoir area-storage-depth derived through deep learning-

based bathymetry reconstruction (GRDL; Hao et al., (2024)), which provides reliable bathymetry information for the 7,250 

GRanD reservoirs across the globe. We thus utilized the GRDL database to obtain A-E-S curves for the remaining 60 reservoirs 215 

(Fig 2). 

3.3 Water surface area estimation 

We used the Landsat and Sentinel-based NDWI images downloaded from the Google Earth Engine platform (see section 3.1 

for details) to estimate the reservoir water surface area. A locally-adjusted Contrast Limited Adaptive Histogram Equalization 

(CLAHE) was applied to enhance the NDWI images before classification. CLAHE (Reza, 2004) is a variant of Adaptive 220 

histogram equalization (AHE), which takes care of over-amplification of the contrast in an image. CLAHE operates on small 
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regions in the image (8 x 8 pixels window in our case) rather than the entire image. We then applied the k-means clustering-

based algorithm to classify the water pixels. We assigned a number of clusters (k) equal to three to classify each NDWI image 

to represent three different classes, i.e., water, non-water, and no data. Because of the presence of clouds and other disturbances, 

using the same NDWI threshold (equal to 0) in all satellite images may lead to overestimation or underestimation errors of the 225 

water surface area (Vu et al., 2022). Thus, to find NDWI thresholds for each satellite image, we resort to k-means clustering. 

Eventually, the preliminary water pixels were identified by selecting the cluster corresponding to the maximum centroid value 

of NDWI.   

 

We further improved the water surface area estimates by filling the cloud-contaminated pixels, which were assigned a "No 230 

Data" value in the previous steps. To this purpose, we used the algorithm for water surface area estimation developed by Vu 

et al., (2022), which was initially introduced by Gao et al., (2012) and Zhang et al., (2014) to extract water surface area. The 

algorithm uses a water frequency raster (FREQ) to fill the cloud-affected pixels over the reservoir area. Finally, we add the 

clear water pixels (k-means clustering) and cloud-filled water pixels (Vu et al., 2022) to get a complete picture of the reservoir 

water surface area for each NDWI image.     235 

3.4 Absolute storage estimation and post-processing  

Once estimated the water surface area, we subsequently used the hypsometric curves to derive the corresponding absolute 

reservoir storage volume. Based on different processing stages, we post-processed the storage time series into three levels 

(Level-0, Level-1, and Level-2). For each reservoir, Level-0 corresponds to the scene-based (instantaneous) raw outputs of 

absolute reservoir storage, which have been derived from the available satellite images. We then performed a simple box plot 240 

analysis on Level-0 data to remove the outliers, creating the so-called Level-1 data. Note that these data are created using a 

generalized box-plot framework for quality control that is not specifically designed for each reservoir; therefore, on a case-to-

case basis, some values in the storage time series may still be considered outliers—which can be removed manually or with 

the aid of other data analysis algorithms. Considering the demand for ready-to-use data for several applications (e.g., 

hydrological modelling), we further processed the Level-1 data to create continuous daily time series of absolute reservoir 245 

storage (called Level-2 data) using a trend-preserving interpolation technique, followed by data smoothening (moving mean 

method). It is important to note that the interpolation technique incorporates all available data points, including a few outliers, 

which introduces a higher level of uncertainty in the Level-2 data. Despite this, we undertook validation of the storage time 

series to strengthen confidence in our estimations. 

3.5 Validation of reservoir storage  250 

We adopted two validation approaches. The first approach is direct validation, where we compare and validate our estimated 

storage volume against observed reservoir storage. The second is indirect validation, where we use altimetry-converted storage 

to validate our time series of reservoir storage. Acquiring observed reservoir storage is challenging in MSEA because of the 
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institutional and organizational data-sharing policies and restrictions, leading to a poor network of public data repositories for 

reservoir data. The only exception is the Thailand National Hydroinformatics Data Centre, which releases daily reservoir 255 

storage information to the public domain (National Water Database (NWD) - https://www.thaiwater.net/). We took the 

opportunity to download observed storage data from the NWD portal for 20 reservoirs in Thailand, and then compared these 

data with our storage estimates.  

 

For indirect validation, we used reservoir water level data measured by satellite-based altimeters such as TOPEX/Poseidon; 260 

Jason-1, Jason-2, and Jason-3; ENVISAT; ERS-1 and ERS-2; and Sentinel-3 and Sentinel-6, which have proven useful in 

measuring water levels in lakes and reservoirs (Birkett, 1998; Frappart et al., 2006; Santos da Silva et al., 2010). Specifically, 

we acquired the compiled time series of radar-altimetry-derived surface water elevation from the Database for Hydrological 

Time Series of Inland Waters (DAHITI- https://dahiti.dgfi.tum.de/) (Schwatke et al., 2015), and the Global Reservoirs and 

Lakes Monitor (GREALM- https://ipad.fas.usda.gov/cropexplorer/global_reservoir/) (Birkett et al., 2011). We took 20 265 

reservoirs across Mainland Southeast Asia – for which altimetry observations are available – to indirectly validate our 

estimated storage time series. Before carrying out the comparison, the altimetry-derived surface water levels were first 

converted to their corresponding storage time series based on the Elevation-Storage relationship.     

4 Results 

4.1 Structure of the MSEA-Res database 270 

The reservoir's information in the database is divided into static and dynamic components (Figure 3 and Table 3). For each 

reservoir, static information is further divided into four categories: i) Area-Level-Storage relationship (hypsometric curves), 

(ii) reservoir extent, iii) water frequency (mean inundation frequency for each pixel), and iv) reservoir’s characteristics such 

as location (longitude and latitude), year of commission, area (km2), water level (m), and storage (million m3). Note that for 

area, level, and storage, static information includes minimum, mean, and maximum. On the other hand, dynamic information 275 

consists primarily of the sub-monthly time series of absolute reservoir storage. We did not separately provide the water-level 

and surface area time series, as they can easily be derived from the Area-Level-Storage curve for any given storage volume. 

In the subsequent sections, we use Level-1 and Level-2 data to analyze and validate the storage time series. Note that, for each 

reservoir, the data are processed within the period 1985-2023. If the year of commission of a reservoir is 2015, then the storage 

time series is estimated between the years 2010 and 2023, assuming a maximum of five years as the filling period. All storage 280 

time series and other related information are publicly available in the MSEA-Res database at 

https://doi.org/10.5281/zenodo.12787699 (Mahto et al., 2024). 
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Figure 3: Catalogue of the MSEA-Res database. Please note that the dynamic components (storage time series) are available from 

five years before the year of commission.  285 

 

Table 3. Reservoir attributes in the MSEA-Res database. 

Category Datatype Attributes Description 

Static components Area-Level-Storage 

relationship 

Level_m_ Water level 

  Area_sq_km_ Water surface area (empty reservoir) 

  Storage_mcm_ Absolute storage (empty reservoir) 

 Reservoir extent  Georeferenced image (.TIFF) 

 Water frequency  Georeferenced image (.TIFF) 

 Reservoir’s 

characteristics 

Sl_No Serial number as per MSEA-Res database 

  GRAND_ID Identification number in the GRanD database (Lehner et 

al., 2011). For a non-GRandD reservoir, the value is 9999.  

  Longitude  Longitude in degrees decimal 

  Latitude  Latitude in degrees decimal 

  Year_of_commission Year of commission of the reservoir 

  Area_min_sqkm Minimum water surface area (km2) 

  Area_avg_sqkm Average water surface area (km2) 

  Area_max_sqkm Maximum water surface area (km2) 

  WL_min_m Minimum surface water level (m) 

  WL_min_m Average surface water level (m) 
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  WL_min_m Maximum surface water level (m) 

  Storage_min_mcm Minimum water storage (million m3) 

  Storage_min_mcm Average water storage in (million m3) 

  Storage_min_mcm Maximum water storage in (million m3) 

Dynamic components 

(Storage time series) 

Level-0 ID Satellite data identification number (L0= Landsat and S2= 

Sentinel) 

  Date Image collection data 

  Cloud_percentage Percentage of cloud cover over the reservoir  

  Quality Quality control indicator (1= Good, 0= Bad) 

  Before_area Instantaneous water surface area before improvement 

(km2) 

  After_area Instantaneous water surface area after improvement (km2) 

  Final_area Instantaneous water surface area after final check (km2) 

  dem_value_m Instantaneous surface water level (m) 

  Tot_res_volume_mcm Instantaneous water storage after a final check (million m3) 

 Level-1 Same as Level-0 Same as Level-0 

 Level-2 Date  Daily dates 

    Storage_mcm Interpolated instantaneous water storage (million m3) 

 

4.2 Hypsometric curves and storage time series  

In this section, we illustrate one of the static components of the MSEA-Res database, i.e., the Area-Elevation-Storage 290 

relationship (see Table 3 for details), where elevation corresponds to the reservoir’s water level relative to mean seal level in 

meters (m a.s.l). In our database, we provide the hypsometric curves for each of the 185 reservoirs. Here, we further illustrate 

seven curves (Fig. 4); one reservoir for each major river basin. The seven selected reservoirs (basin) are Longjiang (Irrawaddy), 

Nuozhadu (Upper Mekong), Son La (Red), Mobye (Salween), Sirikit (Chao Phraya), Sringarind (Other basins), and Xe 

Kaman1 (Lower Mekong). The Area-Elevation (A-E curve) and Storage-Elevation (S-E curve) relationships are shown (Fig. 295 

4). These hypsometric curves represent the variability in reservoir’s storage and area, which results primarily from the diverse 

topography characterising the basins and dam locations.  

 

For the same seven reservoirs, we then illustrate the dynamic components of the MSEA-Res database – time series of reservoir 

storage at different processing levels, i.e., Level-0 (raw outputs), Level-1 (removal of outliers from Level-0), and Level-2 300 

(smooth interpolation of Level-1) (Fig. 5). The storage time series data can be used to infer meaningful information on the 

storage dynamics, including filling patterns, fluctuations, and response to wet and dry years. Looking at the filling patterns, 

for instance, Xe Kaman1 (2016) took almost four years to store more than 3 km3 of water and reach its normal operating 
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conditions (Fig. 5g). The Longjing (2010) reservoir was filled in roughly one year (Fig. 5a). By combining this information 

with inflow data, one could easily estimate the impact of reservoir filling strategies on downstream water availability—a rather 305 

contentious matter in transboundary river basins (Vu et al., 2022; Wheeler et al., 2016; Zaniolo et al., 2021). The time series 

also reveal the ‘typical’ behaviour of reservoir storage in Southeast Asia, with seasonal fluctuations between minimum and 

maximum operating levels driven by the drastic changes in the intra-annual water availability characterizing this region (i.e., 

a wet season between June and November followed by a drier period between December and May) (Nguyen et al., 2020). 

Importantly, the time series also reveal inter-annual changes in water storage, which are largely caused by hydrological-regime 310 

variability – a point further discussed in Section 4.5. 

 

 

 

Figure 4: Illustration of the static components of MSEA-Res database (Area-Elevation-Storage relationship) for seven reservoirs, 315 

one in each of the major river basins, based on their maximum storage capacity. In each panel, Elevation-Area (E-A) and Elevation-

Storage (E-S) curves are shown in green and blue, respectively. The dates refer to years of completion of the reservoirs.  
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 320 

Figure 5: Illustration of reservoir storage time series – i.e., the dynamic components of the MSEA-Res database, for the seven 

selected reservoirs. Each panel (a-g) corresponds to a reservoir. For each panel, we report the scene-based reservoir storage (km3) 
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time series at Level-0, and the storage time series at Level-1 (after removing the outliers) overlapped with Level-2 (after 

interpolation and smoothening).  

 325 

4.3 Basin-wise reservoir storage analysis  

We used all Level-1 data to analyse the basin-wise evolution and dynamics of reservoir storage in Mainland Southeast Asia. 

Specifically, we calculated the total volume of water (km3) stored in all reservoirs for each of the main seven river basins, 

namely Irrawaddy, Upper Mekong, Red, Salween, Chao Phraya, Lower Mekong and “other basins” lumped together (Fig. 6). 

We found that the aggregated storage of all reservoirs in the Upper Mekong basin has increased by more than eight times 330 

(800% increase) in just five years (between 2010 and 2015) (Fig. 6b). Nuozhadu (22 km3) and Xiaowan (15 km3) are the main 

contributors to such increase, as they account approximately for 95% of the basin-total storage, whereas the remaining 18 

reservoirs contribute just 5% (Fig. 6b). Since the construction of Nuozhadu and Xiaowan, more dams have been built in the 

Upper Mekong; yet, their capacity is smaller than the one of these two mega dams (e.g., Miaowei, 0.66 km3). A seasonal 

fluctuation of storage is common across all basins, as the monsoon season has a similar precipitation pattern across the MSEA 335 

region (Ha et al., 2023; Skliris et al., 2022).  

 

Results further illustrate the spatio-temporal variability in reservoir construction across Mainland Southeast Asia. After 2017, 

all basins – except for the Lower Mekong – reached a plateau, with no significantly increasing trends in their aggregated 

reservoir storage (Fig. 6). For instance, 1998-2015 was the period in which a series of reservoirs were constructed in the 340 

Irrawaddy basin, increasing the aggregated storage volume form ~2 km3 to 10 km3 (500% increase). Similarly, it was in 2005-

2015 and 2010-2017, respectively, that the largest reservoirs were built in Red river (300% increase) and in the other-coastal 

basins (35% increase) (Fig. 6c, f). The aggregated reservoir storage in the Lower Mekong basin has instead increased since 

2009 (Fig. 6g). Two river basins – Salwaeen and Chao Phraya – show no significant change in the aggregated reservoir storage 

in last four decades (Fig. 6d, e). In fact, the storage volume in Chao Phraya has slightly decreased (~15%) in the post-2010 345 

period (Fig. 6e). Putting all 185 reservoirs all together, we find that the aggregated average reservoir storage in Mainland 

Southeast Asia has increased significantly, from 70 to 160 km3 (130% increase), during the period 2008-2017. Presently, it is 

approximately 175 km3 (Fig. 6h). Additional details regarding the temporal evolution of reservoir storage in MSEA are 

reported in Fig. S1. 

 350 
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Figure 6: (a-g) Aggregated storage time series in Irrawaddy, Upper Mekong, Red, Salween, Chao Phraya, Lower Mekong and 

other minor river basins, during the 1985-2023 period. (h) Aggregated storage time series of all the 185 reservoirs in Mainland 

Southeast Asia. The color gradient in each panel represents the average storage with a 5-year interval. Please note that the 355 

aggregated storage is the total volume of water (km3) stored in all reservoirs at a given time in each river basin. 

4.4 Validation  

We validated the generated storage time series – Level-1 data – with the observed reservoir storage (direct validation) and 

altimetry-converted storage (indirect validation). As explained in Section 3.4, we first collected observed storage for 20 

reservoirs in Thailand from the National Water Database, the only publicly available storage database in the MSEA region. 360 

We then compared the estimated and observed storage based on two metrics – coefficient of determination (R2) and normalized 

(by reservoir’s total storage) root-mean-square-error (nRMSE).  

 

Despite the lack of actual bathymetry for most reservoirs in Thailand (since they were built before 2000), we found a good 

agreement between estimated and directly observed storage in most reservoirs (Fig. 7a, b). Sirikit and Shringarind showed 365 
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very good agreement, with R2 > 0.8 and nRMSE < 9.5% for both reservoirs (Fig. 7c, d). Notably, 10 out of 20 reservoirs show 

an R2 greater than 0.7 (average R2 = 0.77 and average nRMSE = 14.2%) (Fig. 7a, b; Table S1). Excluding three reservoirs with 

lower performances (Bang Lang, Rajjaprabha, and Bhumibol), the average R2 and nRMSE of the remaining 17 reservoirs is 

0.68 and 17%, respectively (Table S1), suggesting that the framework works well for reservoirs characterized by different A-

E-S curves and sizes. For instance, the validation shows a considerably good agreement for both Khao Laem (~8 km3) and 370 

Lamphraphloeng (~0.1 km3), with R2 > 0.77 and nRMSE < 18% for both reservoirs (Fig. S3, Table S1). 

 

To make the evaluation more robust, we indirectly validated our storage time series using altimeter observations collected 

from the DAHITI and G-REALM databases. The water level time series acquired from various altimeters was converted to 

the corresponding storage-time series using the Elevation-Storage (E-S) curve (see Section 3.4). We collected water level 375 

observations for 20 reservoirs across the MSEA region for which the altimetry passes were available for at least five years. 

The comparison between time series shows that 14 of 20 reservoirs have an R2 larger than 0.7 (average R2 = 0.80 and average 

nRMSE = 11.7%), suggesting a good match between estimated and altimetry-converted storage time series (Fig. 8a, b). The 

average R2 and nRMSE are 0.63 and 13.3%, respectively, when considering all 20 reservoirs together (Table S2). The storage 

time series comparison for two of the largest reservoirs [Sirikit (R2 = 0.70, nRMSE = 17%)] and Nuozhadu [(R2 = 0.96, nRMSE 380 

= 6.4%)] are shown in Fig. 8c and Fig. 8d, respectively. Overall, the direct and indirect validation metrics suggest that the 

InfeRes-derived storage data can be reliably used for water storage-related analysis on a weekly to yearly time scale.      

 

 

Figure 7: Direct validation of the inferred storage time series against local observations. (a-b) Spatial distribution of the coefficient 385 

of determination (R2) and nRMSE, respectively. (c) Comparison of the absolute storage time series for Sirikit reservoir during the 

period 2010-2023. (d) Same as (c), but for Shringarind reservoir.  
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 390 

Figure 8: Indirect validation of the inferred storage time series against the altimetry-converted storage (water level is converted to 

the corresponding storage using the Elevation-Storage curve). (a-b) Spatial distribution of the coefficient of determination (R2) and 

nRMSE, respectively. (c) Comparison of the absolute storage time series for Sirikit reservoir during the period 2010-2023. (d) 

Same as (c), but for Nuozhadu reservoir.    

4.5 Example application: 2019-2020 drought’s impact on water storage  395 

We finally used the estimated storage time series (Level-1 data) to showcase an example application of the MSEA-Res 

database. Studies reported that the 2019-2020 drought in the MSEA region seriously impacted agriculture, water resources, 

and hydropower generation (Ha et al., 2022, 2023). Banking on the new developed data, we analysed the impact of the 2019-

2020 drought on surface water storage across the region by utilizing precipitation data from the Climate Hazards group Infrared 

Precipitation with Stations [CHIRPS; (Funk et al., 2015)] and storage anomalies for all 185 reservoirs.  400 

 

The precipitation anomalies (%) in 2019 and 2020 with respect to the reference period 1981-2023 are very pronounced (Fig. 

9a and 9b). In 2019, Mainland Southeast Asia experienced wide-spread below-average precipitation conditions, with rainfall 

significantly lower than the historical average in most areas, with some regions facing a decrease as high as -40% (Fig. 9a). 

Nearly 30% of the MSEA region suffered from more than five months of drought, impacting, in particular, Cambodia and 405 

Thailand (Fig. 9a). In contrast, 2020 showed a more mixed pattern, with several areas experiencing above-average precipitation 

while others continuing to have below-average levels (Fig. 9b). Overall, these severe drought conditions damaged nearly 40% 

of the rainfed rice area (Ha et al., 2023) and also threatened the surface water storage in lakes and reservoirs (ReliefWeb report, 

2020; Ha et al., 2022).  

 410 

To quantify the impact of the drought on the reservoir's storage volume, we estimated the reservoir storage anomalies in 2019 

and 2020 against the reference period 2017-2023. The anomalies in storage volume of the selected reservoirs for 2019 and 
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2020 are mostly negative (Fig. 9c and 9d). In 2019, 120 of 185 reservoirs (65%) exhibited negative storage departures, 

reflecting reduced water levels consistent with the observed precipitation deficit (Fig. 9c). These storage departures ranged up 

to -40%, highlighting significant impacts on water availability in the region. Many lakes in Cambodia and Thailand were 415 

indeed hardly hit by drought conditions, resulting in below-average levels. Reservoirs situated in the eastern basins (e.g., 

Mekong, Red river) were affected the most, compared to the reservoirs in the western part, where some reservoirs showed 

positive storage anomalies (Fig. 9c). Storage conditions worsened even further in 2020, with 144 of 185 reservoirs (78%) 

exhibiting negative storage departures, primarily due to the combined effects of precipitation deficits in both 2019 and 2020 

(Fig. 9d). Except for reservoirs in the Upper Mekong basin, all other reservoirs experienced storage anomalies ranging between 420 

-5% to -40% (Fig. 9d). This is in line with direct observations, as the reservoirs in nine provinces of Thailand -- Chiang Mai, 

Uthai Thani, Chaiyaphum, Khon Kaen, Nakhon Ratchasima, Buri Ram, Suphan Buri, Lop Buri, and Chachoengsao – were 

reported to reach low storage values (ReliefWeb report, 2020; Danial R, 2021). As a result, Thailand experienced the worst 

water crisis in the past 40 years, with 25 provinces declaring drought disaster zones (Danial R., 2021). Moreover, the 2019-

2020 water shortage increased the political tensions among countries, particularly in the Upper-Mekong Region, since China 425 

was criticized for holding back water in its dams, thus exacerbating the impact of the drought in the lower basins. Overall, 

analyses like this one illustrate the importance of working with detailed information on reservoir operations when analysing 

the impact of droughts: aside from the preliminary analysis reported here, one could, for instance combine the storage data 

with a hydrological model to investigate the drought impact on the Mekong level, which was reported to have reached the 

lowest level in almost 100 years (MRC report, 2020).  430 
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Figure 9: Precipitation and water storage anomalies during the 2019-2020 drought in Mainland Southeast Asia. (a-b) Spatial 

variability in the precipitation anomalies (%) in 2019 and 2020. (c-d) Same as (a-b), but for reservoir storage anomalies. The 

anomalies of precipitation were estimated against the reference period 1985-2023, whereas, for storage anomalies, the reference 

period is 2017-2023.  435 
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5 Conclusions 

We produced time series of absolute storage for 185 reservoirs (with capacity larger than 0.1 km3) in Mainland Southeast Asia 

for the period 1985-2023 with an aggregated storage capacity of nearly 175 km³, which corresponds to about 60 mm of water 

storage over the entire mainland Southeast Asia region.  The reservoir time series were reconstructed using optical remote 

sensing data (NDWI) from Landsat composite and Sentinel-2 with a 10-day temporal resolution. The reservoir locations and 440 

other attributes, such as design capacity, year of commission, and maximum surface area, were retrieved by combining GRanD 

v1.3, the Mekong Dam database (Ang et al., (2024)), and the GDAT database. For each reservoir, we generated (i) scene-based 

NDWI raster image, (ii) water frequency raster, (iii) maximum water extent raster, and (iv) elevation raster (i.e., DEM). A 

Python package called 'InfeRes' was created to automatically download and process all satellite images using the Google Earth 

Engine Python API. The water area from the satellite data was then translated into storage values using hypsometric curves 445 

(Area-Elevation-Storage relationship) derived from the SRTM Digital Elevation Model (DEM) and bathymetry 

reconstructions from the GRDL database, wherever necessary.  

 

The reconstructed database of absolute storage time series – unlike storage change metrics – offers a detailed view of reservoir 

status at any given time, thus providing a comprehensive and contextualized understanding of reservoir dynamics. This 450 

approach is particularly valuable for long-term monitoring (Gao et al., 2012) and planning of water resources in the region 

(Galelli et al., 2022; Minocha et al., 2024). Accurate absolute storage estimates allow for detecting subtle trends and shifts in 

water availability that could be masked by focusing solely on changes (Hou et al., 2024; Li et al., 2023). This is particularly 

crucial for transboundary rivers like the Mekong, where the availability of data on reservoir operations could help alleviate the 

water governance issues that emerged in the past years (Danial R., 2021). Another important downstream application of 455 

MSEA-Res is hydrological modelling; integrating the estimated absolute reservoir storage data into hydrological models can 

offer significant advances in the understanding of human-water interactions and resource management in Mainland Southeast 

Asia. This integration allows for refining models that simulate water management strategies (Chang et al., 2019; Chowdhury 

et al., 2020; Galelli et al., 2022), flood control (Shin et al., 2020; Wang et al., 2021).  

 460 

Although the extraction of water surface area using optical images from Landsat and Sentinel-2 has provided valuable insights, 

there remains scope for further improvements. One opportunity lies in the integration of Sentinel-1 SAR data. Unlike optical 

sensors, Sentinel-1 SAR can penetrate clouds and operate under all weather conditions, offering consistent and reliable 

observations. The higher spatial resolution of Sentinel data (10 m) compared to Landsat (30 m) also enables more accurate 

classification of water and non-water pixels. Looking ahead, storage estimates can be further improved by combining Sentinel-465 

1's microwave SAR data with observations from the recently operational NASA SWOT mission (https://swot.jpl.nasa.gov/), 

which provides a wide coverage of water height measurements (Altenau et al., 2021; Hausman et al., 2021; Hossain et al., 
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2022). This integration would not only enhance the detection and classification of water bodies but also allow for a more 

precise estimation of reservoir storage by linking surface area with accurate water height data. 

 470 

Importantly, the developed code (available at https://doi.org/10.5281/zenodo.12787699) and framework are not tailored to 

Southeast Asia, therefore enabling their application to individual studies or other regions as well as further enrichment of this 

inventory with new reservoirs. The publicly available reservoir time series dataset can be used directly to assess storage trends 

and variability under climate change, inferring reservoir operations, agricultural water management, and hydrological model's 

inputs, and for comparison with previous studies. The overall outcome of our study will hopefully facilitate reservoir 475 

management and related research in hydrology, environmental science, and climate studies.  

6 Data and code availability 

The raw satellite data used in this study were acquired from Google Earth's engine. The reservoir location information was 

collected from the GRanD database (Lehner et al., 2011- https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/100125), 

the Mekong database (Ang et al., 2024- https://essd.copernicus.org/articles/16/1209/2024/), and the GDAT database (Zhang 480 

and Gu, 2023- https://www.nature.com/articles/s41597-023-02008-2), which are all publicly available. The supporting data – 

reconstructed reservoir bathymetry – were collected from the GRDL database (Hao et al., 2024), publicly available at 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2023WR035781. The MSEA-Res database containing the absolute 

reservoir storage time series and Python code are available at https://doi.org/10.5281/zenodo.12787699 (Mahto et al., 2024).  
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