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Abstract 

The recent surge in reservoir construction has increased global surface water storage, with Mainland Southeast Asia (MSEA) 10 

being a significant hotspot. Such infrastructural evolution demands updates in water management strategies and hydrological 

models. However, information on actual reservoir storage is hard to acquire, especially for transboundary river basins. To date, 

no high spatio-temporal dataset on absolute storage time series is available for reservoirs in MSEA. To address this gap, we 

present (1) a comprehensive, open-access database of absolute storage time series (sub-monthly) for 186 reservoirs (larger 

than 0.1 km3) in MSEA spanning the period 1985-2023, and (2) an analysis of the reservoir storage dynamics. This dataset is 15 

derived from remote sensing observations, integrating satellite-based water surface area extraction from high-resolution (30m) 

images and Area-Elevation-Storage (AES) relationships to estimate reservoir level and storage dynamics. The MSEA-Res 

database includes static (Area-Elevation-Storage curves, water frequency, reservoir extent) and dynamic (area, water level, 

and absolute storage time series) components for each reservoir. The 186 reservoirs collectively store around 175 km³ of water, 

with a minimum of 140 km³ and a maximum of 210 km³. They cover an average area of 8,700 km², ranging from a minimum 20 

of 6,500 km² to a maximum of 10,000 km². We show that the combined average reservoir storage has increased from 70 km³ 

to 160 km³ (+130%) from 2008 to 2017, primarily contributed by reservoirs in the Irrawaddy, Red, Upper Mekong, and Lower 

Mekong basins. Our in-situ validation provides a good match between estimated storage and in-situ observations, with 50% 

of the validation sites (10 out of 20) showing an R² > 0.7 and an average nRMSE < 14%. The indirect validation (based on 

altimetry-converted storage) shows even better results, with an R² > 0.7 and an average nRMSE < 12% for 70% (14 out of 20) 25 

of the reservoirs. Furthermore, the analysis of the 2019-2020 drought event in the MSEA region reveals that nearly 30-40% of 

the region experienced more than five months of drought, with the most significant impact on reservoirs in Cambodia and 

Thailand. As a result, storage departures ranged up to -40% in some reservoirs, highlighting significant impacts on water 

availability. Overall, this analysis demonstrates the potential of the inferred storage time series for assessing real-life water-

related problems in Mainland Southeast Asia, with the possibility of applying the method to estimate reservoir storage time 30 

series in other parts of the world. The reservoir storage database in Mainland Southeast Asia (MSEA-Res database) and the 

associated Python code are publicly available on Zenodo at https://zenodo.org/records/14844580 (Mahto et al., 2025). 
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1 Introduction 

Water reservoirs cause some of the most significant human-induced alterations of the hydrological cycle, influencing the 

distribution of water in space and time (Chao et al., 2008; Cooley et al., 2021; Haddeland et al., 2014; Lehner et al., 2011). 35 

The construction of reservoirs can also lead to significant environmental and socio-economic impacts, including biodiversity 

loss, alterations of geochemical cycles, and changes in land use patterns (Degu et al., 2011; Kirchherr et al., 2016; Maavara et 

al., 2020; Vörösmarty et al., 2010; Winemiller et al., 2016). Despite these impacts, reservoirs remain pivotal in generating 

renewable energy and supporting water management, thus driving the demand for new reservoirs (Chao et al., 2008; Wada et 

al., 2017), especially in the Global South. Accurate information on reservoir operations is thus crucial for practitioners, 40 

policymakers, and scientists to estimate water budgets, assess hydrological and nutrient fluxes, project water availability for 

hydropower generation, and mitigate flood and drought risks (Bakken et al., 2014; Chao et al., 2008). Information on the 

temporal evolution of absolute reservoir storage, or level, is particularly useful, since it provides a direct measurement of the 

total volume of water stored in a reservoir at any given time – this contrast against relative storage time series, which only 

track changes in storage across a given time interval. 45 

 

Currently, information on long-term absolute reservoir storage is limited across most of the globe, with consolidated datasets 

available only for a handful of countries (Li et al., 2023; Steyaert et al., 2022; Steyaert and Condon, 2024). Such type of 

information is particularly needed in regions – like Mainland Southeast Asia – that are experiencing rapid hydropower 

development. Laos, for instance, is realising its vision of becoming the “Battery of Asia” by constructing new hydropower 50 

reservoirs and exporting electricity to neighbouring countries; it is expected, moreover, that several additional reservoirs will 

become operational in the years to come (Ang et al., 2024). Similarly, other Southeast Asian countries, such as Vietnam and 

Cambodia,  have also built most of their reservoirs in the past two decades (Ang et al., 2024; Zhang and Gu, 2023), altering 

the flow of transboundary rivers and raising tensions between countries. With this concern in mind, we focus on the reservoirs 

of Mainland Southeast Asia, including Myanmar, Thailand, Laos, Vietnam, Cambodia, Malaysia, Singapore, and part of 55 

southern China—where several major rivers originate and flow through the region. 

 

The problem of inferring reservoir storage time series can only be partially addressed with the aid of hydrological models, 

since some basic information on operational strategies – typically not available – is needed to setup and validate models (Dang 

et al., 2020, p.2; Galelli et al., 2022; Hanasaki et al., 2006; Nazemi and Wheater, 2015a, b; Vu et al., 2022; Wada et al., 2017). 60 

Fortunately, advances in remote sensing offer a viable opportunity to estimate storage by relating information on reservoir 

surface area and elevation (Busker et al., 2019; Gao et al., 2012; Tortini et al., 2020; Vu et al., 2022). For this task, information 

on reservoir bathymetry – synthesized by Area-Elevation-Storage (A-E-S) curves – becomes crucial. It is indeed common 

practice to derive the A-E-S curves from remotely-sensed digital elevation models (DEMs) (Zhang and Gao, 2020); their time 

of acquisition, however, may limit the available information. When the DEM captures the reservoir's topography before its 65 
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filling begins, absolute storage estimation is possible using these remotely sensed data (Li et al., 2023).  For reservoirs 

constructed before the DEM was made available, the problem lies in the fact that satellite-based DEMs do not provide 

information below the reservoir water surface, leading to a partially unknown bathymetry. However, even in such cases, 

remotely sensed water surface area from sensors like Landsat, Sentinel, and MODIS, or water level data from satellite 

altimeters such as JASON, Sentinel-6, and SARAL-Altika, can still be used to estimate storage changes (Das et al., 2022; 70 

Minocha et al., 2024; Zhang et al., 2014).  Therefore, while recent studies have quantified long-term surface area and storage 

changes of reservoirs at global (Busker et al., 2019; Hou et al., 2024; Tortini et al., 2020) and regional scales (Shen et al., 2023; 

Song et al., 2022), absolute storage estimations – especially for those reservoirs built before 2000 (acquisition year of SRTM 

DEM) – are still uncertain in space and time because of the lack of detailed bathymetry information (Hao et al., 2024; Li et al., 

2023; Zhang and Gao, 2020). 75 

 

One potential approach to improving such estimates is radar altimetry, which has proven useful for measuring water levels in 

lakes and reservoirs (Markert et al., 2019; Schwatke et al., 2015; Vu et al., 2022). Yet, limited coverage is a major limitation 

in popular altimetry-based datasets, such as Hydroweb (Crétaux et al., 2011), G-REALM (Birkett et al., 2011), and DAHITI 

(Schwatke et al., 2015). For Mainland Southeast Asia, altimetry-based water level data are available for only a few (20-30) 80 

reservoir overpasses. On top of that, the available water level datasets are not continuous in time. Although time series datasets 

are available for reservoir storage anomaly (Shen et al., 2022, 2023), none of them provide long-term time series for absolute 

reservoir storage. Some studies modelled total storage – only for a few reservoirs –  using LiDAR data (Bacalhau et al., 2022; 

Chen et al., 2022; Li et al., 2020), surrounding topographical information (Fang et al., 2023; Liu et al., 2020; Liu and Song, 

2022), or through simplified modelling approaches (Khazaei et al., 2022; Yigzaw et al., 2018). However, they show 85 

inaccuracies in storage estimates for reservoirs that were built before 2000, because of the (necessary) assumptions on reservoir 

bathymetry (Hao et al., 2024; Li et al., 2023; Zhang and Gao, 2020). Other studies relied on field surveys to create three-

dimensional (3D) bathymetry maps to estimate absolute storage, but these are limited to very few reservoirs (Busker et al., 

2019; Weekley and Li, 2019).  

 90 

Recently, the GloLakes database was produced by Hou et al., (2024), providing absolute water storage dynamics for lakes 

from 1984 to present - for 27,000 global lakes and reservoirs using the geostatistical model described in Messager et al., (2016). 

Although Hou et al., (2024) covers the entire globe by providing a comprehensive dataset for large-scale assessments, it has a 

few limitations for the reservoirs located in Mainland Southeast Asia. First, the model parameters (used in the storage 

estimation) strongly depend on mean depth (extrapolating the surrounding topographical slope towards the centre of the lake 95 

to estimate lake depth), the surface area of the lake (derived from Landsat satellite images), and average slope (derived from 

DEM). Therefore, uncertainties in the estimates of reservoir storage may be generated by the estimation of depth, slope, and 

through other model coefficients. Second, GloLakes does not include some of the largest reservoirs in MSEA, including 
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Nuozhadu (22 km3), Xiaowan (15 km3), Xe Kaman 1 (4 km3), and Lower Seasan 2 (6 km3), which play a significant role in 

water redistribution and hydropower generation (Ang et al., 2024; Galelli et al., 2022; Vu et al., 2022). 100 

 

Here, we address these gaps by presenting a robust and comprehensive sub-monthly time series dataset of absolute reservoir 

storage for Mainland Southeast Asia (hereafter, “MSEA-Res database”), whose reservoir network is described in Section 2. 

Specifically, our open-access database includes sub-monthly time series data of absolute storage for 186 reservoirs (larger than 

0.1 km3) in mainland Southeast Asia (MSEA), covering the period from 1985 to 2023. The creation of this database is 105 

facilitated by two technical advances (Section 3), namely (1) the concomitant use of Landsat and Sentinel-2 images, and (2) 

the creation of hypsometric curves based on the new database introduced by Hao et al., (2024), which provides bathymetry 

information for all reservoirs in the GRanD database. The first advancement is aimed to increase the temporal resolution of 

our time series, while the latter allows us to address the (aforementioned) challenges concerning the estimation of hypsometric 

curves for reservoirs that were not recently built. To demonstrate the usefulness of MSEA-Res, we conduct a multi-basin 110 

analysis of the dynamics and trends of reservoir (absolute) storage, offering insights into how storage patterns have evolved 

over the years and across different basins (Section 4). Finally, we analyse the impact of the 2019-2020 drought in Mainland 

Southeast Asia on surface water storage, highlighting the significant effects of extreme dry weather events on water resources 

in Mainland Southeast Asia. Through these examples, we show that MSEA-Res can be used for a variety of applications, such 

as hydrological modelling, drought analyses, and regional water resources planning. 115 

2 Water reservoirs in Mainland Southeast Asia 

2.1 Dam design attributes  

We first analysed global and regional reservoir databases to compile a list of reservoirs (with storage larger than 0.1 km3) built 

in Mainland Southeast Asia until 2023. As shown in Table 1, we used two global databases [GRanD Version-1.3 (Lehner et 

al., 2011) and GDAT (Zhang and Gu, 2023)] and one regional database for the Mekong (Ang et al., 2024). The most popular 120 

global dam database – GRanD –  was used to get the list of georeferenced reservoirs that were built until 2016. Unfortunately, 

the GRanD database has not been updated for post-2017 reservoirs in our study region. Therefore, we collected the list of 

georeferenced reservoirs built between 2017 and 2023 from more recent databases. For the Mekong basin, we used the 

reservoir database prepared by Ang et al., (2024), whereas the GDAT database was used for the other basins (i.e., Chao Phraya, 

Red, Salween, Irrawaddy, and remaining smaller river basins). Information on each reservoir in the final list of 186 elements 125 

was verified and validated against high-resolution Google Earth images. Among the reservoir attributes, we collected four 

main ones: name of the reservoir, spatial coordinates of the reservoir (i.e., longitude and latitude), storage capacity, and year 

of commission. 

 

Table 1. List of global and regional reservoir databases used to collect the dam design attributes. 130 
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Category Database Region Number of 

reservoirs 

Period Source 

Global GRanD v1.3  

(https://ln.sync.com/dl/bd47eb6b0/anhxaikr-

62pmrgtq-k44xf84f-

pyz4atkm/view/default/447819520013/) 

Mainland 

Southeast Asia 

126 Until 2016 Lehner et al., 2011 

 Global Dam Tracker (GDAT) 

(https://www.nature.com/articles/s41597-023-

02008-2/) 

Mainland 

Southeast Asia, 

except the 

Mekong 

22 2017-2023 Zhang and Gu, 

2023 

Regional Reservoirs in the Mekong 

(https://essd.copernicus.org/articles/16/1209/2024/) 

Mekong basin 38 2017-2023 Ang et al., 2024 

2.2 Distribution and evolution of reservoirs 

Based on the acquired information, we first present the distribution and temporal evolution of reservoirs in Mainland Southeast 

Asia (Fig. 1). Among the 186 large reservoirs in MSEA, 125 (~68 %) were built in the twenty-first century. As a result, a dense 

network of newly constructed reservoirs spreads across all basins, with the exception of the Chao Phraya, western Lower 

Mekong, and southern coastal basins (Fig. 1a). The first big reservoirs (mainly, Srinagarind - 18 km3, Kenyi - 13.6 km3, 135 

Bhumibol - 13.5 km3, Sirikit - 9.5 km3, Khao Laem - 8.8 km3, and Nam Ngum - 7.0 km3) were built between 1964 and 1985, 

increasing the aggregated storage capacity from 0 to ~75 km3 in about twenty years (Fig. 1c). During the following 15 years 

(1986-2000), mostly small reservoirs were constructed, except for Rajjaprabha (5.6 km3), which started to operate in 1987. 

Until 2000, the cumulative storage from 60 reservoirs in Mainland Southeast Asia was thus ~85 km3. The construction of 125 

new reservoirs in the post-2000 period sharply increased the aggregated water storage by more than two-fold, reaching a 140 

storage capacity of ~180 km3 at the end of 2023 (Fig. 1c). During this time, a few mega reservoirs were built, such as Xiaowan 

(~15 km3) and Nuozhadu (~22 km3) in the Upper Mekong basin, contributing significantly to the aggregated storage capacity 

of Mainland Southeast Asia. At present, the largest number of reservoirs is in the Lower Mekong River basin (54), followed 

by the Irrawaddy (29), Red River (21), Upper Mekong (20), Chao Phraya (7), and Salween (3) [Fig. 1b, d]. 51 reservoirs are 

located in the remaining river basins (Indicated as “Others” in Fig. 1b, d). Although, based on the design specifications, we 145 

know how much water the reservoirs can hold, when full, we need a database containing time series of reservoir storage to 

better support hydrological studies and water resources management. Our MSEA-Res fills this gap.  

 

https://ln.sync.com/dl/bd47eb6b0/anhxaikr-62pmrgtq-k44xf84f-pyz4atkm/view/default/447819520013/
https://ln.sync.com/dl/bd47eb6b0/anhxaikr-62pmrgtq-k44xf84f-pyz4atkm/view/default/447819520013/
https://ln.sync.com/dl/bd47eb6b0/anhxaikr-62pmrgtq-k44xf84f-pyz4atkm/view/default/447819520013/
https://www.nature.com/articles/s41597-023-02008-2/
https://www.nature.com/articles/s41597-023-02008-2/
https://essd.copernicus.org/articles/16/1209/2024/
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Figure 1: Spatial distribution and evolution of reservoirs in Mainland Southeast Asia. (a) Map showing reservoir storage volume 150 
(km3), where the size of the circle is proportional to the reservoir capacity while the colour represents the year of commission of the 

reservoirs. (b) Basin-wise distribution of reservoir location (red dots), stream network in the respective catchments, and stream 

order. (c) Number of reservoirs built per year and their corresponding cumulative storage capacity. (d) Basin-wise total number of 

reservoirs built until 2023. 

3 Methodological framework   155 

The procedure adopted to produce the MSEA-Res database is illustrated in Fig. 2 and can be divided into three main steps. For 

each reservoir, we first derive the Area-Elevation-Storage relationship (i.e., A-E curve, E-S curve, and A-S curve), then we 

calculate the time series of water surface area, and finally, we derive the absolute reservoir storage by combining information 

on the reservoir surface area (or water level, if available) with the hypsometric curves. Although water levels from satellite 

altimetry observations can also be used to estimate the storage volume (Zhang et al., 2014), they are only available for a few 160 

reservoirs, and they are neither consistent nor continuous in time, thus creating missing data issues (Birkett et al., 2011; Busker 

et al., 2019; Schwatke et al., 2015). Therefore, we worked with satellite-based water surface area, which can be produced at 

higher frequency (e.g., at 10-day intervals) from the Earth Observation Satellites, such as Landsat-5, Landsat-7, Landsat-8, 

Landsat-9, and Sentinel-2, to retrieve the reservoir's area time series. Despite Landsat having a 16-day revisit time, we could 

achieve a 10-day interval data because more than one Landsat mission has been active in the time domain (except for the pre-165 

1999 period). For instance, 2013 has active sensors from the Landsat-7 ETM+ and Landsat-8 series of satellites, making it 

possible to achieve image composite at an interval of 10 days. Please note that there could be some months without any satellite 

data, resulting in storage unavailability in those months, which we filled by interpolation.  
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In the following sub-sections, we discuss each step-in detail, namely acquiring the raw satellite data, obtaining the hypsometric 170 

curves for different reservoirs, estimating water surface area, improving the area estimates, and finally inferring the storage 

time series. All steps are implemented in a Python package called InfeRes (publicly available on GitHub, 

https://github.com/Critical-Infrastructure-Systems-Lab/InfeRes/).  

 

 175 

 

Figure 2: Flowchart showing the methodological framework and steps taken to estimate reservoir storage from series of satellite 

images during 1985-2023 period. DEM is the 30m digital elevation model from the SRTM, acquired in February 2000. Normalized 

Difference Water Index (NDWI) is the normalized ratio between reflectance in Green and NIR bands, given by (Green-

NIR)/(Green+NIR), which is generally used to classify water and non-water pixels. Please note that the maximum water extent, 180 

frequency map, and NDWI images are the derived data, whereas DEM is acquired using Google Earth Engine (GEE) Python API. 

https://github.com/Critical-Infrastructure-Systems-Lab/InfeRes/
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3.1 Acquiring input data 

The process starts by obtaining the input datasets, mainly the Digital Elevation Model (DEM), Normalized Difference Water 

Index (NDWI) images, Water Frequency raster (FREQ), and Maximum Water Extent raster (EXT). We used the Google Earth 

Engine (GEE) coding platform to derive the necessary input dataset. Please note that the maximum water extent, frequency 185 

map, and NDWI images are the derived data, whereas DEM is acquired using Google Earth Engine (GEE) Python API. For 

each reservoir, rectangular bounding boxes are used to fix the dimension of the dataset in the GEE. As for the digital elevation 

model, we used the Shuttle Radar Topography Mission (SRTM, Farr et al., 2007) DEM-Version3, an international research 

effort that obtained digital elevation models on a near-global scale. NASA JPL provides the SRTM V3 product at a resolution 

of 1 arc-second (~30m). Unlike the DEM, the other maps (NDWI, FREQ, and EXT) were estimated from the Landsat-5 TM, 190 

Landsat-7 ETM+, Landsat-8 OLI/TIRS, Landsat-9 OLI-2/TIRS-2, and Sentilel-2 images (see Table 2 for details).  

 

Table 2. List of input satellite data and their specifications. 

Category Database Availability Resolution Earth Engine Snippet 

DEM SRTM DEM V3 2000 30m ee.Image("USGS/SRTMGL1_003") 

Landsat Landsat-5 TM 

 

1984-2012 30m USGS Landsat 5 Level 2, Collection 2, Tier 1 

ee.ImageCollection("LANDSAT/LT05/C02/T1_L2") 

 Landsat-7 ETM+ 

 

1999-Present 30m USGS Landsat 7 Level 2, Collection 2, Tier 1 

ee.ImageCollection("LANDSAT/LE07/C02/T1_L2") 

 Landsat-8 

OLI/TIRS 

 

2013-Present 30m USGS Landsat 8 Level 2, Collection 2, Tier 1 

ee.ImageCollection("LANDSAT/LC08/C02/T1_L2") 

 Landsat-9  

OLI-2/TIRS-2 

 

2021-Present 30m USGS Landsat 9 Level 2, Collection 2, Tier 1 

ee.ImageCollection("LANDSAT/LC09/C02/T1_L2") 

Sentinel Sentinel-2 

 

2016-Present 30m 

(resampled) 

Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-1C 

ee.ImageCollection("COPERNICUS/S2_HARMONIZED") 

 

The Green (G) and Near-infrared (NIR) bands from the satellite sensors (Landsat and Sentinel) are used to calculate NDWI 195 

[i.e. (G-NIR)/(G+NIR)] – as proposed by McFeeters, (1996) – for the available scenes, collectively covering the study period 

1985-2023. Shorter wavelength bands, Green (G) and Near-Infrared (NIR) can be affected by the presence of clouds – 

especially on rainy days – and so, NDWI. Therefore, getting a complete view of reservoir extent from a cloud-affected NDWI 

image becomes significantly challenging (Hou et al., 2024; Vu et al., 2022). To address this issue, we first filtered the Earth 

Engine Image Collection based on cloud threshold (Band Quality, BQ) and selected only those images that have less than 80% 200 

cloud coverage. We also made NDWI composites from available Landsat (1985-2023) and Sentinel (2016-2023) images at 

10-day intervals, which is the average of NDWI images in a given time interval (10 days in our case). For example, if we have 

three NDWI images with a grid cell having values of 0, 1, and 0, then the NDWI value in the composite image is 0.33. Please 
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note that there can be a maximum of three composite images in each month (i.e., only from Landsat) during the period 1985-

2015. On the other hand, it can have a maximum of six images per month (three from Landsat and three from Sentinel) in 205 

2016-2023. Making a composite of NDWI images maximizes the chances of getting more cloud-free pixels than individual 

NDWI images.  

 

To obtain the water frequency (FREQ) and maximum water extent (EXT) raster maps, we first create the binary NDWI images 

available between 2013 and 2023 from the Landsat and Sentinel image collection in the GEE environment. Positive NDWI 210 

values are considered an approximation for water pixels (with a value of 1), while negative NDWI values are non-water pixels 

(with a value of 0). More specifically, we use a threshold slightly above zero (e.g., 0.1) to classify water and non-water pixels 

in the NDWI image. In general, a positive value (>0) indicates a water pixel, and using a higher threshold (e.g., 0.1) increases 

the likelihood of identifying water pixels accurately. While some water pixels with NDWI values between 0 and 0.1 might be 

misclassified as non-water, this effect is negligible when creating composites. The FREQ layer is created by making a 215 

composite of all binary NDWI images (more than 200 images from the Landsat and Sentinel collections), whose cloud 

percentage is less than 20% (i.e., clear sky condition) and by dividing it by the total number of selected images (cloud 

percentage <20%). We multiply the FREQ layer by 100 to get the percentage of water present at each pixel. For example, if 

three NDWI images make a composite image of value 0.33 at any grid, the FREQ value for that grid cell will be 33.3%. Please 

note that there can be only one FREQ raster (image), which is derived by averaging all the binary NDWI images (cloud 220 

percentage <20%) available over the reservoir. Subsequently, the EXT layer is created by simply taking the largest extent of 

ones in all binary NDWI images available between 2013 and 2023. For example, if we have three NDWI images with a grid 

cell having values of 0, 1, and 0, then the EXT value will be 1 for that grid.  

 

To make the estimates more reliable and robust, we also validated our maps with that of the Global Surface Water Dataset 225 

(GSWD) (Pekel et al., 2016), which showed an excellent agreement (R2 = 0.98) between EXT and GSWD maximum extent 

maps across the 186 reservoirs (Fig. S1). We also compared EXT and FREQ maps spatially, for two randomly selected 

reservoirs i.e. Sirikit and Shringarind, which also confirmed the reliability of water frequency (FREQ) and maximum water 

extent (EXT) raster maps that we derived from GEE (Fig. S2 and S3). Overall, we assemble three raster layers (DEM, FREQ, 

and EXT) and scene-based NDWI images for each of the 186 reservoirs, which we process further to estimate the absolute 230 

reservoir storage time series.  

3.2 Area-Elevation-Storage curves  

Deriving the relationship between the area, elevation (or water level), and storage (A-E-S relationship) of a reservoir is crucial. 

This step relies on the bathymetry information, which further depends on the time of acquisition of the DEM. Considering that 

the SRTM-DEM was acquired in February 2000, reservoirs built after 2000 have complete bathymetry information; thus, the 235 

A-E-S relationship after the year 2000 can easily be derived. Since the majority of the reservoirs (~70%) in Mainland Southeast 
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Asia were built after 2000, we obtained the Area-Elevation-Storage (A-E-S) curves from the DEM. For each reservoir, the 

elevation range for the A-E-S curves was defined by the minimum and maximum DEM values within the reservoir's extent. 

The area at each elevation level was determined by contouring, while the corresponding absolute storage was estimated by 

cumulatively summing the areas across the elevation range. For the remaining 30% of the reservoirs built before 2000, the 240 

DEM cannot be applied directly to estimate E-A-S curves. This is a common problem in the existing studies for estimating 

absolute storage for reservoirs built before 2000 (Busker et al., 2019; Gao et al., 2012; Hou et al., 2024; Khazaei et al., 2022; 

Yigzaw et al., 2018). Although previous studies have used various modeling approaches based on simplified geometric 

assumptions to overcome this limitation (Fang et al., 2023; Hou et al., 2024; Khazaei et al., 2022; Yigzaw et al., 2018), results 

often do not meet the level of accuracy required for basin-scale water management modeling and decision-making. To address 245 

this problem, we banked on a recently-released database of global reservoir area-storage-depth derived through deep learning-

based bathymetry reconstruction (GRDL; Hao et al., (2024)), which provides reliable bathymetry information for the 7,250 

GRanD reservoirs across the globe. We thus utilized the GRDL database to obtain A-E-S curves for the remaining 60 reservoirs 

(Fig 2). 

3.3 Water surface area estimation 250 

We used the Landsat and Sentinel-based NDWI images downloaded from the Google Earth Engine platform (see section 3.1 

for details) to estimate the reservoir water surface area. A locally-adjusted Contrast Limited Adaptive Histogram Equalization 

(CLAHE) was applied to enhance the NDWI images before classification. CLAHE (Reza, 2004) is a variant of Adaptive 

histogram equalization (AHE), which takes care of over-amplification of the contrast in an image. CLAHE operates on small 

regions in the image (8 x 8 pixels window in our case) rather than the entire image. The size of its operational window (8 x 8) 255 

is based on the literature (Asghar et al., 2023), which suggests that CLAHE enhances the contrast and texture features of water, 

thereby improving the visualization of satellite images. This enhancement facilitates the classification of water and non-water 

pixels. We then applied the k-means clustering-based algorithm to classify the water pixels. We assigned a number of clusters 

(k) equal to three to classify each NDWI image to represent three different classes, i.e., water, non-water, and no data. Because 

of the presence of clouds and other disturbances, using the same NDWI threshold (equal to 0) in all satellite images may lead 260 

to overestimation or underestimation errors of the water surface area (Vu et al., 2022). Thus, to find NDWI thresholds for each 

satellite image, we resort to k-means clustering. Eventually, the preliminary water pixels were identified by selecting the cluster 

corresponding to the maximum centroid value of NDWI. The water surface area estimated from the preliminary water pixels 

is referred to as ‘Before_area’ for any given reservoir (Table 3). 

 265 

We further improved the water surface area estimates by filling the cloud-contaminated pixels, which were assigned a "No 

Data" value in the previous steps. To this purpose, we used the algorithm for water surface area estimation developed by Vu 

et al., (2022), which was initially introduced by Gao et al., (2012) and Zhang et al., (2014) to extract water surface area. The 

algorithm uses a water frequency raster (FREQ) to fill the cloud-affected pixels over the reservoir area. We add the clear water 
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pixels (k-means clustering) and cloud-filled water pixels (Vu et al., 2022) to get a complete picture of the reservoir water 270 

surface area for each NDWI image, called ‘After_area’ (Table 3). Finally, we adjust the boundary water pixels of the complete 

reservoir water surface area, represented as ‘Final_area’. Notably, if no adjustments are detected by the algorithm, the 

‘Final_area’ remains equal to the ‘After_area’ (Table 3).    

3.4 Absolute storage estimation and post-processing  

Once estimated the water surface area, we subsequently used the hypsometric curves to derive the corresponding absolute 275 

reservoir storage volume. Based on different processing stages, we post-processed the storage time series into three levels 

(Level-0, Level-1, and Level-2). For each reservoir, Level-0 corresponds to the scene-based (instantaneous) raw outputs of 

absolute reservoir storage, which have been derived from the available satellite images. We then performed a simple box plot 

analysis on Level-0 data to remove the outliers, creating the so-called Level-1 data.  Level-0 data are provided to give users 

the flexibility to generate their own Level-1 data using alternative outlier removal algorithms, if needed. Note that in our case, 280 

Level-1 data are created using a generalized box-plot framework for quality control that is not specifically designed for each 

reservoir; therefore, on a case-to-case basis, some values in the storage time series may still be considered outliers—they can 

be removed manually or with the aid of other data analysis algorithms. Therefore, the improvement in Level-1 data compared 

to Level-0 data varies between the reservoirs. To quantify it, we calculated the R2 and nRMSE for level-0 and level-1 data of 

the 20 reservoirs for which we have the observed storage. The detailed analysis of the 20 selected reservoirs is presented below 285 

in section 4.4 (Fig. 7 and Table S2). We found that the nRMSE decreased and R2 increased from Level-0 to Level-1, suggesting 

that the outlier removal process can further enhance the quality of the data (Fig. S4). Considering the demand for ready-to-use 

data for several applications (e.g., hydrological modelling), we further processed the Level-1 data to create continuous daily 

time series of absolute reservoir storage (called Level-2 data) using a non-linear (i.e. spline) interpolation technique, followed 

by data smoothening (moving mean method). It is important to note that the interpolation technique incorporates all available 290 

data points, including a few outliers, which introduces a higher level of uncertainty in the Level-2 data. Despite this, we 

undertook validation of the storage time series to strengthen confidence in our estimations. 

3.5 Validation of reservoir storage  

We adopted two validation approaches. The first approach is direct validation, where we compare and validate our estimated 

storage volume against observed reservoir storage. The second is indirect validation, where we use altimetry-converted storage 295 

to validate our time series of reservoir storage. Acquiring observed reservoir storage is challenging in MSEA because of the 

institutional and organizational data-sharing policies and restrictions, leading to a poor network of public data repositories for 

reservoir data. The only exception is the Thailand National Hydroinformatics Data Centre, which releases daily reservoir 

storage information to the public domain (National Water Database (NWD) - https://www.thaiwater.net/). We took the 

opportunity to download observed storage data from the NWD portal for 20 reservoirs in Thailand, and then compared these 300 

data with our storage estimates.  

https://www.thaiwater.net/
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For indirect validation, we used reservoir water level data measured by satellite-based altimeters such as TOPEX/Poseidon; 

Jason-1, Jason-2, and Jason-3; ENVISAT; ERS-1 and ERS-2; and Sentinel-3 and Sentinel-6, which have proven useful in 

measuring water levels in lakes and reservoirs (Birkett, 1998; Frappart et al., 2006; Santos da Silva et al., 2010). Specifically, 305 

we acquired the compiled time series of radar-altimetry-derived surface water elevation from the Database for Hydrological 

Time Series of Inland Waters (DAHITI- https://dahiti.dgfi.tum.de/) (Schwatke et al., 2015), and the Global Reservoirs and 

Lakes Monitor (GREALM- https://ipad.fas.usda.gov/cropexplorer/global_reservoir/) (Birkett et al., 2011). We took 20 

reservoirs across Mainland Southeast Asia – for which altimetry observations are available – to indirectly validate our 

estimated storage time series. Before carrying out the comparison, the altimetry-derived surface water levels were first 310 

converted to their corresponding storage time series based on the Elevation-Storage relationship.     

4 Results 

4.1 Structure of the MSEA-Res database 

The reservoir's information in the database is divided into static and dynamic components (Fig. 3 and Table 3). For each 

reservoir, static information is further divided into four categories: i) Area-Elevation-Storage relationship (hypsometric 315 

curves), (ii) reservoir extent, iii) water frequency (mean inundation frequency for each pixel), and iv) reservoir’s characteristics 

such as location (longitude and latitude), year of commission, area (km2), water level (m), and storage (million m3). Note that 

for area, level, and storage, static information includes minimum, mean, and maximum. On the other hand, dynamic 

information consists primarily of the sub-monthly time series of absolute reservoir storage. We did not separately provide the 

water-level and surface area time series, as they can easily be derived from the Area-Elevation-Storage curve for any given 320 

storage volume. In the subsequent sections, we use Level-1 and Level-2 data to analyze and validate the storage time series. 

Note that, for each reservoir, the data are processed within the period 1985-2023. If the year of commission of a reservoir is 

2015, then the storage time series is estimated between the years 2010 and 2023, assuming a maximum of five years as the 

filling period. All storage time series and other related information are publicly available in the MSEA-Res database at 

https://zenodo.org/records/14844580 (Mahto et al., 2025). 325 

https://dahiti.dgfi.tum.de/
https://ipad.fas.usda.gov/cropexplorer/global_reservoir/
https://zenodo.org/records/14844580
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Figure 3: Catalogue of the MSEA-Res database. Please note that the dynamic components (storage time series) are available from 

five years before the year of commission.  

 

Table 3. Reservoir attributes in the MSEA-Res database. 330 

Category Datatype Attributes Description 

Static components Area-Elevation-

Storage relationship 

Level_m Water level 

  Area_sq_km Water surface area 

  Storage_cubic_km Absolute storage 

 Reservoir extent  Georeferenced image (.TIFF) 

 Water frequency  Georeferenced image (.TIFF) 

 Reservoir’s 

characteristics 

Sl_No Serial number as per MSEA-Res database 

  GRAND_ID Identification number in the GRanD database (Lehner et 

al., 2011). For a non-GRandD reservoir, the value is 9999.  

  Longitude  Longitude in degrees decimal 

  Latitude  Latitude in degrees decimal 

  Year_of_commission Year of commission of the reservoir 

  Area_min_sqkm Minimum water surface area (km2) 

  Area_avg_sqkm Average water surface area (km2) 

  Area_max_sqkm Maximum water surface area (km2) 

  WL_min_m Minimum surface water level (m) 

  WL_min_m Average surface water level (m) 
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  WL_min_m Maximum surface water level (m) 

  Storage_min_cubic_km Minimum water storage (km3) 

  Storage_min_cubic_km Average water storage in (km3) 

  Storage_min_cubic_km Maximum water storage in (km3) 

Dynamic components 

(Storage time series) 

Level-0 ID Satellite data identification number (L0= Landsat and S2= 

Sentinel) 

  Date Image collection data 

  Cloud_percentage Percentage of cloud cover over the reservoir  

  Quality Quality control indicator (1= Good, 0= Bad) 

  Before_area Instantaneous water surface area before improvement 

(km2) 

  After_area Instantaneous water surface area after improvement (km2) 

  Final_area Instantaneous water surface area after final check (km2) 

  dem_value_m Instantaneous surface water level (m) 

  Tot_res_volume_km3 Instantaneous water storage after a final check (km3) 

 Level-1 Same as Level-0 Same as Level-0 

 Level-2 Date  Daily dates 

    Storage_km3 Interpolated instantaneous water storage (km3) 

 

4.2 Hypsometric curves and storage time series  

In this section, we illustrate one of the static components of the MSEA-Res database, i.e., the Area-Elevation-Storage 

relationship (see Table 3 for details), where elevation corresponds to the reservoir’s water level relative to mean sea level in 

meters (m a.s.l). In our database, we provide the hypsometric curves for each of the 186 reservoirs. Here, we further illustrate 335 

seven curves (Fig. 4); one reservoir for each major river basin. The seven selected reservoirs (basin) are Longjiang (Irrawaddy), 

Nuozhadu (Upper Mekong), Son La (Red), Mobye (Salween), Sirikit (Chao Phraya), Sringarind (Other basins), and Xe 

Kaman1 (Lower Mekong). The Area-Elevation (A-E curve) and Storage-Elevation (S-E curve) relationships are shown (Fig. 

4). These hypsometric curves represent the variability in reservoir’s storage and area, which results primarily from the diverse 

topography characterising the basins and reservoir locations.  340 

 

For the same seven reservoirs, we then illustrate the dynamic components of the MSEA-Res database – time series of reservoir 

storage at different processing levels, i.e., Level-0 (raw outputs), Level-1 (removal of outliers from Level-0), and Level-2 

(smooth interpolation of Level-1) (Fig. 5). The storage time series data can be used to infer meaningful information on the 

storage dynamics, including filling patterns, fluctuations, and response to wet and dry years. Looking at the filling patterns, 345 

for instance, Xe Kaman1 (2016) took almost four years to store more than 3 km3 of water and reach its normal operating 
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conditions (Fig. 5g). The Longjing (2010) reservoir was filled in roughly one year (Fig. 5a). By combining this information 

with inflow data, one could easily estimate the impact of reservoir filling strategies on downstream water availability—a rather 

contentious matter in transboundary river basins (Vu et al., 2022; Wheeler et al., 2016; Zaniolo et al., 2021). The time series 

also reveal the ‘typical’ behaviour of reservoir storage in Southeast Asia, with seasonal fluctuations between minimum and 350 

maximum operating levels driven by the drastic changes in the intra-annual water availability characterizing this region (i.e., 

a wet season between June and November followed by a drier period between December and May) (Nguyen et al., 2020). 

Importantly, the time series also reveal inter-annual changes in water storage, which are largely caused by hydrological-regime 

variability – a point further discussed in Section 4.5. 

 355 

 

 

Figure 4: Illustration of the static components of MSEA-Res database (Area-Elevation-Storage relationship) for seven reservoirs, 

one in each of the major river basins. In each panel, Elevation-Area (E-A) and Elevation-Storage (E-S) curves are shown in green 

and blue, respectively. The dates refer to year of commission of the reservoirs.  360 
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Figure 5: Illustration of reservoir storage time series – i.e., the dynamic components of the MSEA-Res database, for the seven 

selected reservoirs. Each panel (a-g) corresponds to a reservoir. For each panel, we report the scene-based reservoir storage (km3) 365 
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time series at Level-0, and the storage time series at Level-1 (after removing the outliers) overlapped with Level-2 (after 

interpolation and smoothening).  

 

4.3 Basin-wise reservoir storage analysis  

We used all Level-1 data to analyse the basin-wise evolution and dynamics of reservoir storage in Mainland Southeast Asia. 370 

Specifically, we calculated the total volume of water (km3) stored in all reservoirs for each of the main seven river basins, 

namely Irrawaddy, Upper Mekong, Red, Salween, Chao Phraya, Lower Mekong and “other basins” lumped together (Fig. 6). 

We found that the aggregated storage of all reservoirs in the Upper Mekong basin has increased by more than eight times 

(800% increase) in just five years (between 2010 and 2015) (Fig. 6b). Nuozhadu (22 km3) and Xiaowan (15 km3) are the main 

contributors to such increase, as they account approximately for 95% of the basin-total storage, whereas the remaining 18 375 

reservoirs contribute just 5% (Fig. 6b). Since the construction of Nuozhadu and Xiaowan, more reservoirs have been built in 

the Upper Mekong; yet, their capacity is smaller than the one of these two mega reservoirs (e.g., Miaowei, 0.66 km3). A 

seasonal fluctuation of storage is common across all basins, as the monsoon season has a similar precipitation pattern across 

the MSEA region (Ha et al., 2023; Skliris et al., 2022).  

 380 

Results further illustrate the spatio-temporal variability in reservoir construction across Mainland Southeast Asia. After 2017, 

all basins – except for the Lower Mekong – reached a plateau, with no significantly increasing trends in their aggregated 

reservoir storage (Fig. 6). For instance, 1998-2015 was the period in which a series of reservoirs were constructed in the 

Irrawaddy basin, increasing the aggregated storage volume form ~2 km3 to 10 km3 (500% increase). Similarly, it was in 2005-

2015 and 2010-2017, respectively, that the largest reservoirs were built in Red river (300% increase) and in the other-coastal 385 

basins (35% increase) (Fig. 6c, f). The aggregated reservoir storage in the Lower Mekong basin has instead increased since 

2009 (Fig. 6g). Two river basins – Salwaeen and Chao Phraya – show no significant change in the aggregated reservoir storage 

in last four decades (Fig. 6d, e). In fact, the storage volume in Chao Phraya has been found to be substantially reduced by 

~15% in the post-2010 (Fig 6e), due to persisting drought conditions during which both Bhumibol and Sirikit reservoirs showed 

a continuous decline in storage (Fig. S6b, Fig 5e). Putting all 186 reservoirs all together, we find that the aggregated average 390 

reservoir storage in Mainland Southeast Asia has increased significantly, from 70 to 160 km3 (130% increase), during the 

period 2008-2017. Presently, it is approximately 175 km3 (Fig. 6h). Additional details regarding the temporal evolution of 

reservoir storage in MSEA are reported in Fig. S5. 
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Figure 6: (a-g) Aggregated storage time series in Irrawaddy, Upper Mekong, Red, Salween, Chao Phraya, Lower Mekong and 

other minor river basins, during the 1985-2023 period. (h) Aggregated storage time series of all the 186 reservoirs in Mainland 

Southeast Asia. The color gradient in each panel represents the average storage with a 5-year interval. Please note that the 

aggregated storage is the total volume of water (km3) stored in all reservoirs at a given time in each river basin. 400 

4.4 Validation  

We validated the generated storage time series – Level-1 data – with the observed reservoir storage (direct validation) and 

altimetry-converted storage (indirect validation). As explained in Section 3.4, we first collected observed storage for 20 

reservoirs in Thailand from the National Water Database, the only publicly available storage database in the MSEA region. 

We then compared the estimated and observed storage based on two metrics – coefficient of determination (R2) and normalized 405 

(by reservoir’s total storage) root-mean-square-error (nRMSE).  

 

Despite the lack of actual bathymetry for most reservoirs in Thailand (since they were built before 2000), we found a good 

agreement between estimated and directly observed storage in most reservoirs (Fig. 7a, b). Sirikit and Shringarind showed 



19 

 

very good agreement, with R2 > 0.8 and nRMSE < 9.5% for both reservoirs (Fig. 7c, d). Notably, 10 out of 20 reservoirs show 410 

an R2 greater than 0.7 (average R2 = 0.77 and average nRMSE = 14.2%) (Fig. 7a, b; Table S1). Excluding three reservoirs with 

lower performance (Bang Lang, Rajjaprabha, and Bhumibol), the average R2 and nRMSE of the remaining 17 reservoirs is 

0.68 and 17%, respectively (Table S1), suggesting that the framework works well for reservoirs characterized by varying A-

E-S curves and sizes. For instance, the validation shows a strong agreement for both Khao Laem (~8 km3) and Lamphraphloeng 

(~0.1 km3), with R2 > 0.77 and nRMSE < 18% for both reservoirs (Fig. S6, Table S1). As expected, the average R2 and nRMSE 415 

across all 20 reservoirs are approximately 0.6 and 18.6%, respectively (Table S1). 

 

To make the evaluation more robust, we indirectly validated our storage time series using altimeter observations collected 

from the DAHITI and G-REALM databases. The water level time series acquired from various altimeters was converted to 

the corresponding storage-time series using the Elevation-Storage (E-S) curve (see Section 3.4). We collected water level 420 

observations for 20 reservoirs across the MSEA region for which the altimetry passes were available for at least five years. 

The comparison between time series shows that 14 of 20 reservoirs have an R2 larger than 0.7 (average R2 = 0.80 and average 

nRMSE = 11.7%), suggesting a good match between estimated and altimetry-converted storage time series (Fig. 8a, b). The 

average R2 and nRMSE are 0.63 and 13.3%, respectively, when considering all 20 reservoirs together (Fig. S7, Table S2). The 

storage time series comparison for two of the largest reservoirs [Sirikit (R2 = 0.70, nRMSE = 17%)] and Nuozhadu [(R2 = 425 

0.96, nRMSE = 6.4%)] are shown in Fig. 8c and Fig. 8d, respectively.  

 

The underperformance of certain reservoirs can likely be attributed to two key factors. First, potential inaccuracies in the 

hypsometric curves may introduce errors when converting inferred water surface area into absolute reservoir storage. Second, 

the quality of satellite-derived NDWI data, particularly cloud-free image availability and gap filling, can significantly impact 430 

accuracy. Enhancing satellite image pre-processing through techniques such as contrast stretching and histogram equalization 

could improve data quality and, in turn, refine reservoir storage estimations. Addressing these challenges will be crucial in 

further optimizing the framework’s reliability across diverse hydrological settings. Despite these challenges, the direct and 

indirect validation metrics suggest that the InfeRes-derived storage data can be reliably used for water storage-related analysis 

on a weekly to yearly time scale.     435 
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Figure 7: Direct validation of the inferred storage time series against local observations. (a-b) Spatial distribution of the coefficient 

of determination (R2) and nRMSE, respectively. (c) Comparison of the absolute storage time series for Sirikit reservoir during the 440 

period 2010-2023. (d) Same as (c), but for Shringarind reservoir.  

 

 

 

Figure 8: Indirect validation of the inferred storage time series against the altimetry-converted storage (water level is converted to 445 

the corresponding storage using the Elevation-Storage curve). (a-b) Spatial distribution of the coefficient of determination (R2) and 

nRMSE, respectively. (c) Comparison of the absolute storage time series for Sirikit reservoir during the period 2010-2023. (d) 

Same as (c), but for Nuozhadu reservoir.    

4.5 Example application: 2019-2020 drought’s impact on water storage  

We finally used the estimated storage time series (Level-1 data) to showcase an example application of the MSEA-Res 450 

database. Studies reported that the 2019-2020 drought in the MSEA region seriously impacted agriculture, water resources, 

and hydropower generation (Ha et al., 2022, 2023). Banking on the new developed data, we analysed the impact of the 2019-
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2020 drought on surface water storage across the region by utilizing precipitation data from the Climate Hazards group Infrared 

Precipitation with Stations [CHIRPS; (Funk et al., 2015)] and storage anomalies for all 186 reservoirs.  

 455 

The precipitation anomalies (%) in 2019 and 2020 with respect to the reference period 1981-2023 are very pronounced (Fig. 

9a and 9b). In 2019, Mainland Southeast Asia experienced wide-spread below-average precipitation conditions, with rainfall 

significantly lower than the historical average in most areas, with some regions facing a decrease as high as -40% (Fig. 9a). 

Nearly 30% of the MSEA region suffered from more than five months of drought, impacting, in particular, Cambodia and 

Thailand (Fig. 9a). In contrast, 2020 showed a more mixed pattern, with several areas experiencing above-average precipitation 460 

while others continuing to have below-average levels (Fig. 9b). Overall, these severe drought conditions damaged nearly 40% 

of the rainfed rice area (Ha et al., 2023) and also threatened the surface water storage in lakes and reservoirs (ReliefWeb report, 

2020; Ha et al., 2022).  

 

To quantify the impact of the drought on the reservoir's storage volume, we estimated the reservoir storage anomalies in 2019 465 

and 2020 against the reference period 2017-2023. The anomalies in storage volume of the selected reservoirs for 2019 and 

2020 are mostly negative (Fig. 9c and 9d). In 2019, 120 of 186 reservoirs (65%) exhibited negative storage departures, 

reflecting reduced water levels consistent with the observed precipitation deficit (Fig. 9c). These storage departures ranged up 

to -40%, highlighting significant impacts on water availability in the region. Many lakes in Cambodia and Thailand were 

indeed hardly hit by drought conditions, resulting in below-average levels. Reservoirs situated in the eastern basins (e.g., 470 

Mekong, Red River) were affected the most, compared to the reservoirs in the western part, where some reservoirs showed 

positive storage anomalies (Fig. 9c). Storage conditions were worsened in 2020, with 144 of 186 reservoirs (78%) exhibiting 

negative storage departures, primarily due to the combined effects of precipitation deficits in both 2019 and 2020 (Fig. 9d). 

Interestingly, we noticed some discrepancy between the spatial distribution of the precipitation and water storage anomalies 

(Fig. 9), likely due to the topology of the cascading reservoir system. In other words, some reservoirs located in regions 475 

characterized by positive precipitation anomalies, but may receive limited inflow from upstream reservoirs located in regions 

affected by droughts. Except for reservoirs in the Upper Mekong basin, all other reservoirs experienced storage anomalies 

ranging between -5% to -40% (Fig. 9d). This is in line with direct observations, as the reservoirs in nine provinces of Thailand 

-- Chiang Mai, Uthai Thani, Chaiyaphum, Khon Kaen, Nakhon Ratchasima, Buri Ram, Suphan Buri, Lop Buri, and 

Chachoengsao – were reported to reach low storage values (ReliefWeb report, 2020; Danial R, 2021). As a result, Thailand 480 

experienced the worst water crisis in the past 40 years, with 25 provinces declaring drought disaster zones (Danial R., 2021). 

Moreover, the 2019-2020 water shortage increased the political tensions among countries, particularly in the Upper-Mekong 

Region, thus exacerbating the impact of the drought in the lower basins. Overall, analyses like this one illustrate the importance 

of working with detailed information on reservoir operations when analysing the impact of droughts: aside from the preliminary 

analysis reported here, one could, for instance combine the storage data with a hydrological model to investigate the drought 485 

impact on the Mekong level, which was reported to have reached the lowest level in almost 100 years (MRC report, 2020).  
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Figure 9: Precipitation and water storage anomalies during the 2019-2020 drought in Mainland Southeast Asia. (a-b) Spatial 

variability in the precipitation anomalies (%) in 2019 and 2020. (c-d) Same as (a-b), but for reservoir storage anomalies. The 

anomalies of precipitation were estimated against the reference period 1985-2023, whereas, for storage anomalies, the reference 490 

period is 2017-2023.  

 



23 

 

5 Discussion and Conclusions 

We produced time series of absolute storage for 186 reservoirs (with capacity larger than 0.1 km3) in Mainland Southeast Asia 

for the period 1985-2023 with an aggregated storage capacity of nearly 175 km³ by the year 2023, which corresponds to about 495 

60mm of water storage over the entire mainland Southeast Asia region.  The reservoir time series were reconstructed using 

optical remote sensing data (NDWI) from Landsat composite and Sentinel-2 with a 10-day temporal resolution. The reservoir 

locations and other attributes, such as design capacity, year of commission, and maximum surface area, were retrieved by 

combining GRanD v1.3, the Mekong Dam database (Ang et al., (2024)), and the Global Dam Tracker (GDAT) database. For 

each reservoir, we generated (i) scene-based NDWI raster image, (ii) water frequency raster, (iii) maximum water extent raster, 500 

and (iv) elevation raster (i.e., DEM). A Python package called 'InfeRes' was created to automatically download and process all 

satellite images using the Google Earth Engine Python API. The water area from the satellite data was then translated into 

storage values using hypsometric curves (Area-Elevation-Storage relationship) derived from the Shuttle Radar Topography 

Mission (SRTM) Digital Elevation Model (DEM) and bathymetry reconstructions from the GRDL database, wherever 

necessary.  505 

 

The reconstructed database of absolute storage time series – unlike storage change metrics – offers a detailed view of reservoir 

status at any given time, thus providing a comprehensive and contextualized understanding of reservoir dynamics. This 

approach is particularly valuable for long-term monitoring (Gao et al., 2012) and planning of water resources in the region 

(Galelli et al., 2022; Minocha et al., 2024). Accurate absolute storage estimates allow for detecting subtle trends and shifts in 510 

water availability that could be masked by focusing solely on changes (Hou et al., 2024; Li et al., 2023). This is particularly 

crucial for transboundary rivers like the Mekong, where the availability of data on reservoir operations could help alleviate the 

water governance issues that emerged in the past years (Danial R., 2021). Another important downstream application of 

MSEA-Res is hydrological modelling; integrating the estimated absolute reservoir storage data into hydrological models can 

offer significant advances in the understanding of human-water interactions and resource management in Mainland Southeast 515 

Asia. This integration allows for refining models that simulate water management strategies (Chang et al., 2019; Chowdhury 

et al., 2020; Galelli et al., 2022), and flood control (Shin et al., 2020; Wang et al., 2021).  

 

Importantly, the developed code (available at https://zenodo.org/records/14844580) and framework are not tailored to 

Southeast Asia, therefore enabling their application to individual studies or other regions as well as further enrichment of this 520 

inventory with new reservoirs. The publicly available reservoir time series dataset can be used directly to assess storage trends 

and variability under climate change, inferring reservoir operations, agricultural water management, and hydrological model's 

inputs, and for comparison with previous studies. The overall outcome of our study will hopefully facilitate reservoir 

management and related research in hydrology, environmental science, and climate studies.  

 525 

https://zenodo.org/records/14844580
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Although the extraction of water surface area using optical images from Landsat and Sentinel-2 has provided valuable insights, 

there remains scope for further improvements. For example, other image processing techniques can be applied to further 

enhance the water surface estimates. This includes band normalization, adaptive filtering, and edge enhancement filters – other 

than Adaptive Histogram Equalization (CLAHE). Please note that CLAHE applied to NDWI images does not specifically 

correct for high turbidity, shadows, aquatic vegetation, mixed land-water pixels, or seasonal vegetation effects—this remains 530 

a limitation of our study. However, CLAHE (and similar techniques) aims to standardize reflectance values and reduce noise 

in NDWI-based water detection, thus helping address challenges like varying illumination conditions and subtle spectral 

differences that can lead to partial misclassification of water pixels, especially at the reservoir boundary. 

 

Another area for improvement is the development of hypsometric curves using DEM data, which is limited by the acquisition 535 

date of the DEM— with the earliest widely available dataset being the SRTM DEM (30 m) from the year 2000. Consequently, 

for approximately 30% of reservoirs (constructed before 2000), we utilized the recently released Global Reservoir Area-

Storage-Depth Database (GRDL; Hao et al., 2024), which provides a deep learning-based bathymetry reconstruction for 7,250 

GRanD reservoirs (Lehner et al., 2011), offering an alternative to traditional methods based on simplified geometric 

assumptions (Hou et al., 2024; Khazaei et al., 2022; Yigzaw et al., 2018). While GRDL demonstrates superior performance 540 

compared to earlier hypsometric curve methods, its accuracy depends heavily on the size and quality of the training dataset, 

introducing potential uncertainties in storage estimation. Furthermore, the reproducibility of GRDL's deep learning-based 

results remains a challenge, limiting opportunities for further refinement and development. In contrast, geometric assumption-

based methods, though less precise, offer greater flexibility and transparency for modification and advancement. While 

reconstructing reservoir bathymetry remains a significant challenge, a hybrid approach that integrates geometric assumption-545 

based methods, deep learning techniques, and field observations can yield innovative results. 

 

Opportunity for further improvement also lies in the integration of Sentinel-1 Synthetic aperture radar (SAR) data. Unlike 

optical sensors, Sentinel-1 SAR can penetrate clouds and operate under all weather conditions, offering consistent and reliable 

observations. The higher spatial resolution of Sentinel data (10 m) compared to Landsat (30 m) also enables more accurate 550 

classification of water and non-water pixels. Looking ahead, storage estimates can be further improved by combining Sentinel-

1's microwave SAR data with observations from the recently operational Surface Water and Ocean Topography (SWOT) 

mission (https://swot.jpl.nasa.gov/), by the National Aeronautics and Space Administration (NASA), which provides wide 

coverage of water height measurements (Altenau et al., 2021; Hausman et al., 2021; Hossain et al., 2022). This integration 

would not only enhance the detection and classification of water bodies but also allow for a more precise estimation of reservoir 555 

storage by linking surface area with accurate water height data. 

https://swot.jpl.nasa.gov/
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6 Data and code availability 

The raw satellite data used in this study were acquired from Google Earth's engine. The reservoir location information was 

collected from the GRanD database (Lehner et al., 2011- https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/100125), 

the Mekong database (Ang et al., 2024- https://essd.copernicus.org/articles/16/1209/2024/), and the GDAT database (Zhang 560 

and Gu, 2023- https://www.nature.com/articles/s41597-023-02008-2), which are all publicly available. The supporting data – 

reconstructed reservoir bathymetry – were collected from the GRDL database (Hao et al., 2024), publicly available at 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2023WR035781. The MSEA-Res database containing the absolute 

reservoir storage time series and Python code is available at https://zenodo.org/records/14844580 (Mahto et al., 2025).  
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