the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global and National CO2 Uptake by Cement Carbonation from 1928 to 2024
Abstract. The hydration products of cement materials can absorb atmospheric CO2, and this carbonation process provides an important decarbonization pathway for the cement industry. Global carbon sequestration by cement materials has been reported, but carbon uptake in different countries remains unquantified. Here, we quantify the national cement carbon uptake from 1928 to 2023 based on 58517 activity level data from 163 cement-producing countries and regions worldwide and 6186 carbonation parameters from detailed data records of 42 countries, and project their trend to 2024. The global CO2 uptake by cement materials increases from 7.74 Mt yr-1 (95 % confidence interval, CI: 5.84–9.85 Mt CO2 yr-1) in 1928 to 0.84 Gt yr-1 (95 % CI: 0.71–1.00 Gt yr-1) in 2023, and projected to rise to 0.86 Gt yr-1 (95 % CI: 0.73–1.02 CO2 yr-1) in 2024. The accumulated CO2 uptake from 1928 to 2023 is 21.26 Gt CO2 (95 % CI: 17.93–25.17 Gt CO2), which offsets about 46 % of the cement process emission (46.06 Gt CO2) in past 96 years. Simultaneously, the dominance in cement carbon uptake has shifted from the USA, Japan and some European countries to emerging economies such as China and India, which account for 38.0 % and 9.1 % of total CO2 uptake, respectively, in the last decade (2014–2023). By analyzing the long time-series carbon emission and uptake of the 42 countries with detailed data, we find they contributed 82.1 % of global cement CO2 uptake from 1928 to 2023, including 21 peaked countries and 21 non-peaked countries in cement emissions The annual carbon offset level (the ratio of uptake to process emission in a given year) shows a remarkable decrease due to the temporal lag of cement carbon uptake. This is significant for countries with higher cement imports, for example, the cement industry in Australia and Japan have achieved net-zero when considering the cement carbonation sink. This study provides a precise bottom-up quantification to cement carbonation sinks at national and global levels. All the data described in this study are accessible at https://doi.org/10.5281/zenodo.13827861 (Wu et al., 2024).
- Preprint
(1664 KB) - Metadata XML
- BibTeX
- EndNote
Status: open (until 08 Jan 2025)
-
CC1: 'Comment on essd-2024-437', Peiying Li, 27 Nov 2024
reply
This study presents a updated dataset of global and national carbon uptake by cement carbonation from 1928 to 2024 based on previous studies (Xi et al., 2016; Guo et al., 2021; Huang et al., 2023). The updated dataset of cement carbon uptake covers 163 cement-producing countries worldwide for the first time, and extends the time scale to 1928-2024. Cement carbon sink has shown substantial impacts on the Global Carbon Budget (Friedlingstein et al., 2023, 2022a, b, 2020). While this study reveals the contribution of cement carbon sequestration as a carbon sink in each country, which making it is possible to include cement carbon sink in national GHG inventories (Andersson et al., 2019).
The manuscript is well written, however there are some comments need to be addressed.
- The data description of the article contains supplementaryinformation, including 4 supplementary tables (https://doi.org/10.5281/zenodo.13827861).But it is difficult for readers to find the corresponding relations between the main texts and the data in supplementary tables. It is recommended that manuscripts have clear links to data files in the data description section. For example, in the section “2.1 Data source and treatment”, the explicit table paths should be indicated in corresponding data (Ln.104-118).
- Figure 1c, 1e, and Figure 3, “uptakes”should be “uptake”.
- It is recommended that “emission”in the textshould be “process emission”, where the emission from energy consumption in cement industry was process emission.
- Why are the global cement carbonsinks in 2023 and 2024 in this study smaller than that of 2021 in previous study (Huang et al., 2023)? Please explain it more clearly.
References:
Andersson, R., Stripple, H., Gustafsson, T., and Ljungkrantz, C.: Carbonation as a method to improve climate performance for cement based material, Cement and Concrete Research, 124, 105819, https://doi.org/10.1016/j.cemconres.2019.105819, 2019.
Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S., Aragão, L. E. O. C., Arneth, A., Arora, V., Bates, N. R., Becker, M., Benoit-Cattin, A., Bittig, H. C., Bopp, L., Bultan, S., Chandra, N., Chevallier, F., Chini, L. P., Evans, W., Florentie, L., Forster, P. M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritzalis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., Haverd, V., Houghton, R. A., Ilyina, T., Jain, A. K., Joetzjer, E., Kadono, K., Kato, E., Kitidis, V., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland, G., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Niwa, Y., O’Brien, K., Ono, T., Palmer, P. I., Pierrot, D., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Smith, A. J. P., Sutton, A. J., Tanhua, T., Tans, P. P., Tian, H., Tilbrook, B., van der Werf, G., Vuichard, N., Walker, A. P., Wanninkhof, R., Watson, A. J., Willis, D., Wiltshire, A. J., Yuan, W., Yue, X., and Zaehle, S.: Global carbon budget 2020, Earth System Science Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, 2020.
Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Bakker, D. C. E., Hauck, J., Le Quéré, C., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., Bates, N. R., Becker, M., Bellouin, N., Bopp, L., Chau, T. T. T., Chevallier, F., Chini, L. P., Cronin, M., Currie, K. I., Decharme, B., Djeutchouang, L. M., Dou, X., Evans, W., Feely, R. A., Feng, L., Gasser, T., Gilfillan, D., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Luijkx, I. T., Jain, A., Jones, S. D., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lienert, S., Liu, J., Marland, G., McGuire, P. C., Melton, J. R., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Niwa, Y., Ono, T., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Rosan, T. M., Schwinger, J., Schwingshackl, C., Séférian, R., Sutton, A. J., Sweeney, C., Tanhua, T., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F., van der Werf, G. R., Vuichard, N., Wada, C., Wanninkhof, R., Watson, A. J., Willis, D., Wiltshire, A. J., Yuan, W., Yue, C., Yue, X., Zaehle, S., and Zeng, J.: Global carbon budget 2021, Earth System Science Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, 2022a.
Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., Arneth, A., Arora, V. K., Bates, N. R., Becker, M., Bellouin, N., Bittig, H. C., Bopp, L., Chevallier, F., Chini, L. P., Cronin, M., Evans, W., Falk, S., Feely, R. A., Gasser, T., Gehlen, M., Gkritzalis, T., Gloege, L., Grassi, G., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jain, A. K., Jersild, A., Kadono, K., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lindsay, K., Liu, J., Liu, Z., Marland, G., Mayot, N., McGrath, M. J., Metzl, N., Monacci, N. M., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O’Brien, K., Ono, T., Palmer, P. I., Pan, N., Pierrot, D., Pocock, K., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Rodriguez, C., Rosan, T. M., Schwinger, J., Séférian, R., Shutler, J. D., Skjelvan, I., Steinhoff, T., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tanhua, T., Tans, P. P., Tian, X., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., Walker, A. P., Wanninkhof, R., Whitehead, C., Willstrand Wranne, A., et al.: Global Carbon Budget 2022, Earth System Science Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, 2022b.
Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Bakker, D. C. E., Hauck, J., Landschützer, P., Le Quéré, C., Luijkx, I. T., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., Barbero, L., Bates, N. R., Becker, M., Bellouin, N., Decharme, B., Bopp, L., Brasika, I. B. M., Cadule, P., Chamberlain, M. A., Chandra, N., Chau, T.-T.-T., Chevallier, F., Chini, L. P., Cronin, M., Dou, X., Enyo, K., Evans, W., Falk, S., Feely, R. A., Feng, L., Ford, D. J., Gasser, T., Ghattas, J., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Joos, F., Kato, E., Keeling, R. F., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Körtzinger, A., Lan, X., Lefèvre, N., Li, H., Liu, J., Liu, Z., Ma, L., Marland, G., Mayot, N., McGuire, P. C., McKinley, G. A., Meyer, G., Morgan, E. J., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O’Brien, K. M., Olsen, A., Omar, A. M., Ono, T., Paulsen, M., Pierrot, D., Pocock, K., Poulter, B., Powis, C. M., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Rosan, T. M., Schwinger, J., Séférian, R., et al.: Global Carbon Budget 2023, Earth System Science Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, 2023.
Guo, R., Wang, J., Bing, L., Tong, D., Ciais, P., Davis, S. J., Andrew, R. M., Xi, F., and Liu, Z.: Global CO2 uptake by cement from 1930 to 2019, Earth System Science Data, 13, 1791–1805, https://doi.org/10.5194/essd-13-1791-2021, 2021.
Huang, Z., Wang, J., Bing, L., Qiu, Y., Guo, R., Yu, Y., Ma, M., Niu, L., Tong, D., Andrew, R. M., Friedlingstein, P., Canadell, J. G., Xi, F., and Liu, Z.: Global carbon uptake of cement carbonation accounts 1930–2021, Earth System Science Data, 15, 4947–4958, https://doi.org/10.5194/essd-15-4947-2023, 2023.
Xi, F., Davis, S. J., Ciais, P., Crawford-Brown, D., Guan, D., Pade, C., Shi, T., Syddall, M., Lv, J., Ji, L., Bing, L., Wang, J., Wei, W., Yang, K.-H., Lagerblad, B., Galan, I., Andrade, C., Zhang, Y., and Liu, Z.: Substantial global carbon uptake by cement carbonation, Nature Geosci, 9, 880–883, https://doi.org/10.1038/ngeo2840, 2016.
Citation: https://doi.org/10.5194/essd-2024-437-CC1 -
RC1: 'Comment on essd-2024-437', Anonymous Referee #1, 07 Dec 2024
reply
Review Comments for ESSD-2024-437
General Comment
The manuscript, ESSD-2024-437, represents the fourth update of the Global Cement Carbon Uptake Database. Compared to previous versions, this update enhances the records to the country level, extends the temporal coverage, and reduces uncertainty by focusing on cement clinker production rather than apparent consumption. The manuscript is well-written, and I believe such an update is valuable to the community. Below, I have outlined several comments that may help improve this work.Major Comments
- Forecasting for 2024
- The ARIMA temporal forecasting model is commonly applied when data series exhibit high autocorrelation, such as seasonal cycles. However, the annual production and carbon uptake data in this study are strongly influenced by economic development and policy-making in one specific year, leading to high variability (as shown in Figure 4). How do the authors justify the use of ARIMA in this context?
- CO₂ Uptake Characteristics
- The CO₂ uptake ability of concrete theoretically decreases significantly over time due to surface calcification. How does the CO₂ uptake model (Table 1) account for this characteristic? Including explicit figures to demonstrate this phenomenon would strengthen the analysis.
- Input Data Summary
- It is recommended to summarize the metadata of input data (e.g., time span, resolution, references, and data links) in a table for ease of reference.
- Figure 1b
- The carbon offset levels in Figure 1b show a clear overall increasing, stable, trend (unit as percentage) over the past 100 years. Considering the construction substantially increased over the past century, does this indicate that the carbon uptake efficiency of materials is increasing over time? I did not follow. Additionally, uncertainty levels should be provided in this figure. The explanation of short-term disturbances, such as World War II, is reasonable, but the manuscript lacks interpretation for the long-term stable increase in carbon offset levels.
- Discussion on Cement Carbonation Risks
- Page 10, Line 237: The authors call for inter-industry collaboration to maximize CO₂ uptake from cement materials. While this is an important goal, it is worth noting that cement carbonation significantly reduces the durability of constructions. Reconstruction necessitated by reduced durability would lead to additional carbon emissions. Could the authors discuss the potential risks associated with relying on carbonation as a pathway to achieving carbon neutrality?
- Comparison with Previous Studies
- As this study is an update of Huang et al. (2023) with some shared figures but updated results, it would be helpful to include an explicit comparison with previous reports. Are there any revised conclusions, corrections, or new insights presented in this update?
- Uncertainty and Future Directions
- Adding a dedicated section or paragraph to discuss data uncertainty and propose potential research directions would enhance the manuscript.
Minor Comments
- Page 2, Line 48: The manuscript refers to cement carbonation as a "permanent CO₂ uptake method." Given that the carbon uptake ability changes over time, why is it characterized as permanent?
- Page 2, Line 55: This report suggests a nearly 50% uptake from cement carbonation, which differs significantly from the 10% uptake reported by PCA. Could the authors explain this discrepancy?
- Page 3, Line 79: Citing the previous three updates of the Global Cement Carbon Uptake Database in this section would help readers better understand the evolution of the dataset.
- Figure 4 & 5: provide full spells of the countries in Appendix or supplement would be helpful. Any possibility to include the uncertainty range?
Citation: https://doi.org/10.5194/essd-2024-437-RC1
Data sets
Global and National CO2 Uptake by Cement Carbonation from 1928 to 2024 Songbin Wu, Le Niu, Jiaoyue Wang, and Fengming Xi https://doi.org/10.5281/zenodo.13827860
Viewed
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
226 | 60 | 8 | 294 | 4 | 4 |
- HTML: 226
- PDF: 60
- XML: 8
- Total: 294
- BibTeX: 4
- EndNote: 4
Viewed (geographical distribution)
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1