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Abstract. Satellite-derived solar-induced chlorophyll fluorescence (SIF) offers valuable opportunities for monitoring large-

scale ecosystem functions. However, the inherent trade-off between satellite scan range and spatial resolution, along with 

incomplete spatial coverage and irregular temporal sampling, limits its broader application. In this study, we developed a 500-15 

m spatial resolution monthly SIF dataset for the China region (CNSIF) from 2003 to 2022, using a data-driven deep learning 

approach based on high-resolution apparent reflectance and thermal infrared data. The results indicate that CNSIF effectively 

captures the spatial patterns of vegetation photosynthetic activity and exhibits a positive annual growth trend of 0.054. 

Comparisons with tower-based observations validated the ability of CNSIF to track changes in photosynthetic intensity over 

time across different ecosystems. Furthermore, the strong correlation (R2
_2016 = 0.768, R2

_2020 = 0.743; P<0.001) between 20 

CNSIF and the MODIS monthly Gross Primary Production (GPP) product demonstrates its potential for estimating carbon 

flux. CNSIF's higher-resolution estimation of photosynthetic activity offers a promising tool for monitoring vegetation 

dynamics across China and estimating fragmented agricultural production. It enables the incorporation of ecosystem 

fragmentation effects into earth observation and carbon cycle systems. The CNSIF dataset is available at 

https://doi.org/10.6084/m9.figshare.27075145 (Du et al., 2024). 25 
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1 Introduction 

 The photosynthesis proxy capability of solar-induced chlorophyll fluorescence provides us with unprecedented opportunities 

to examine vegetation dynamics at both sub-daily and interannual scales over large regions (Xiao et al., 2021; Du et al., 2024). 

This is crucial for studying net-zero carbon emissions, the carbon cycle, and ecosystem functions (Doughty et al., 2022). 

However, the satellites used to generate SIF products are primarily designed to monitor greenhouse or trace gases in Earth's 5 

atmosphere. As a result, they typically feature low spatial resolution or non-continuous scanning patterns (Köhler et al., 2018). 

Currently, satellite-based SIF products can be broadly categorized into two types based on their swath coverage and spatial 

resolution. The first category includes SIF products from satellites with narrow swath widths and small footprints. For example, 

the Chinese Carbon Dioxide Observation Satellite Mission (TanSat) provides SIF products with a spatial resolution of 2 km × 

2 km (Du et al., 2018; Yao et al., 2021). The Orbiting Carbon Observatory-2 (OCO-2) generates SIF products with a spatial 10 

resolution of 1.3 km × 2.25 km (Frankenberg et al., 2014). Slightly different from OCO-2, the Orbiting Carbon Observatory-

3 (OCO-3) serves as a replica of OCO-2, which provides SIF products with a spatial resolution of 1.6 km × 2.2 km since May 

2019 (Eldering et al., 2019). Notably, the TROPOspheric Monitoring Instrument (TROPOMI) has a swath width of 2,600 km 

and a spatial resolution of 3.5 km × 5.5 km (Köhler et al., 2018). TROPOSIF stands out for its unique advantage of combining 

a wide swath with relatively high spatial resolution. The Greenhouse Gases Observing Satellite (GOSAT) provides SIF 15 

products with a spatial resolution of 10.5 km × 10.5 km, but its observation frequency is relatively low (Joiner et al., 2011). 

The second category consists of SIF products derived from satellites with wide swath coverage but coarser spatial resolution. 

These include the Global Ozone Monitoring Experiment-2 (GOME-2) SIF product with a spatial resolution of 40km × 80km 

(Joiner et al., 2013) and the Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY) SIF 

product with a spatial resolution of 30km × 240km (Köhler et al., 2015). These SIF products have garnered significant attention 20 

from researchers across various fields, including remote sensing, climate studies, Earth observation system science, and plant 

physiology (Mohammed et al., 2019; Xiao et al., 2019; Porcar-Castell et al., 2021). 

However, the inherently low spatial resolution of satellites, as well as narrow and incomplete spatial coverage and irregular 

temporal sampling, have prevented SIF's broader application (Xiao et al., 2021). There has been some recent work to improve 

the resolution of existing SIF products through physically-based approaches. Köhler et al. (2018) proposed the first global 25 
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0.05° TROPOMI SIF observations (Caltech TROPOMI SIF) by relying on the Fraunhofer line principle and singular value 

decomposition. Zhang et al. (2018) used surface reflectance data and OCO-2 SIF to train a neural network, generating a 0.05° 

spatially continuous SIF (CSIF) product under clear-sky conditions. Li and Xiao (2019), utilizing discrete OCO-2 SIF 

observations and meteorological reanalysis data, developed a 0.05° global SIF dataset (GOSIF) through a data-driven approach. 

Duveiller et al. (2020) established a semi-empirical relationship between SIF and MODIS explanatory variables using a light-5 

use efficiency model, downscaling GOME-2 SIF from 0.5° to 0.05°. Chen et al. (2022) employed machine learning to 

reconstruct a 0.05° TROPOMI SIF under clear-sky conditions (RTSIF), extending the temporal coverage of the dataset to 20 

years. Gensheimer et al. (2022) developed a convolutional neural network called SIFnet to enhance the spatial resolution of 

TROPOSIF by leveraging coarse SIF observations and high-resolution auxiliary data carrying GPP-related information. Zou 

et al. (2024) used a pseudo-invariant calibration method to correct the temporal degradation of the GOME-2A instrument, 10 

generating a 0.05° global GOME-2A SIF dataset (TCSIF) suitable for time trend analysis. 

However, these SIF data are still coarse for many research areas. Although most of the downscaled SIF datasets have a spatial 

resolution of 0.05°, there has been a persistent effort to estimate SIF at finer spatial scales due to the presence of fine-scale 

phenomena such as ecosystem fragmentation and vegetation cover diversification in the earth observation system and the 

carbon cycle system (Brudvig et al., 2015). Zhang et al. (2020a) used a data-driven approach combining optical, SIF, and 15 

environmental data to predict maize yields, finding that coarse-resolution SIF products (0.05°–1°) could only capture a small 

portion of the spatial characteristics of crops. Turner et al. (2020) applied an oversampling method to obtain 500-m spatial 

resolution SIF data for California, demonstrating strong consistency with tower-based GPP measurements. Zhang et al. (2021c) 

further downscaled the 0.05° GOSIF product to obtain SIF estimates with a spatial resolution of 0.008°. They combined it with 

surface temperature data to monitor agricultural drought during the maize growing season. Kang et al. (2023) explored the 20 

spatiotemporal prediction-driving mechanism of SIF, downscaling the monthly GOSIF product to plot size, and successfully 

predicting cotton yields at the field scale one to two months before harvest. 

Additionally, most large-scale vegetation photosynthesis studies have focused on North or South America (Turner et al., 2021; 

Zhang et al., 2023; Li et al., 2023). For example, Turner et al. (2021) reconstructed 500-m SIF estimates for the contiguous 

United States, observing annual GPP anomalies driven by extreme climate events, again circumstantially demonstrating the 25 
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linear relationship between SIF and GPP. Zhang et al. (2023) constructed an afternoon photosynthetic inhibition index based 

on OCO-3 SIF, revealing that during the 2020 drought in the southwestern United States, vegetation sensitivity to vapor 

pressure deficit increased as the drought intensified. Their findings offer new insights into the mechanisms of plant mortality 

and how they affect the terrestrial carbon and water cycles. Li et al. (2023), using environmental satellite observations 

combined with OCO-3 SIF, observed that photosynthetic responses to the 2020 U.S. heatwave varied across vegetation types 5 

and drought gradients, underscoring the need to consider the asymmetric increase in GPP when evaluating carbon-climate 

interactions under environmental stress. These studies have deepened our understanding of vegetation photosynthetic 

responses to environmental stress in specific ecosystems across the Americas. However, there is a pressing need to investigate 

photosynthetic changes across diverse vegetation types in a broader range of ecosystems. In particular, a more comprehensive 

understanding of vegetation dynamics in the East Asian region is needed, covering a variety of ecosystems such as drylands 10 

in northern China, paddy fields in southern China, subtropical forests, alpine meadows on the Tibetan Plateau, and estuarine 

wetlands. 

Advancing the development of satellite-based SIF datasets is essential for their global-scale application. However, despite the 

continuous production of satellite-based SIF products in recent years, no publicly available long-term, high-resolution SIF 

dataset for the East Asian region has been available so far due to the limitations of the spatial resolution of SIF-related 15 

explanatory variables. This study aims to provide a monthly 500-m spatial resolution SIF dataset for the China region from 

2003 to 2022, offering a comprehensive understanding of historical vegetation dynamics in the East Asian region. We applied 

a data-driven deep learning approach to develop a China regional high-resolution SIF dataset (CNSIF), based on high-

resolution surface reflectance and thermal infrared data from the Landsat 7 / 8 and Sentinel-2 satellites. The performance of 

CNSIF was rigorously evaluated using tower-based SIF observations, tower-based GPP observations, the MODIS monthly 20 

GPP product, and other similar SIF products. The long-term, high-resolution SIF dataset generated here provides a promising 

tool for monitoring vegetation dynamics in the China region, which will improve our understanding of vegetation 

photosynthetic activity in the East Asian region. 
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2 Materials and methods 

2.1 Datasets for the generation of CNSIF 

The remote sensing data we collected in this study are shown in Table 1. 

GOSIF is a 0.05° SIF product obtained by Li and Xiao (2019) using a machine learning approach to fill in the discrete OCO-

2 SIF dataset based on MODIS EVI data and meteorological reanalysis data from MERRA-2. They used the Cubist regression 5 

tree model to create a rule-based predictive model from OCO-2 SIF training samples, with the final prediction being the 

average of multiple output values. This method produced comparable results with other machine learning approaches and has 

been widely applied to estimate carbon fluxes and biophysical variables. This dataset exhibits similar seasonality to OCO-2 

SIF and has a remarkable ability to highlight the crop regions with the highest global daily productivity. Therefore, we used 

the monthly GOSIF dataset as the reference SIF for the CNN-driven downscaling method. 10 

The surface reflectance and thermal infrared data were sourced from the Enhanced Thematic Mapper Plus (ETM+) sensor on 

the Landsat 7 satellite, the Thermal Infrared Sensor (TIRS) on the Landsat 8 satellite, and the Multispectral Instrument (MSI) 

on the Sentinel-2 satellite. The limitations of data coverage, the temporal span of the CNSIF dataset, and the advantages of 

new sensors were considered. We collected visible and near-infrared reflectance data from ETM+ sensors, along with thermal 

infrared data, covering the period from January 2003 to March 2017. Subsequently, we gathered visible and near-infrared 15 

reflectance data from MSI sensors and thermal infrared data from TIRS sensors for the period from April 2017 to December 

2022. 

The MODIS Version 6.1 land cover product (MCD12Q1) provides annual global land cover maps at the 500-m spatial 

resolution, with classification accuracy remaining stable over a long period. Therefore, we used the International Geosphere-

Biosphere Programme (IGBP) classification layer from MCD12Q1 to extract land cover types. 20 

2.2 Tower-based measurements 

2.2.1 Tower-based SIF for the verification of CNSIF 

Ground validation is a necessary step in verifying the accuracy of almost all remote sensing products. Therefore, we used 

tower-based SIF observations to validate the CNSIF dataset. The tower-based SIF validation data were collected from nine 

flux sites in the ChinaSpec network (AR, DM, GC, HL, JR, PYH, SQ, XTS, and YX) (Du et al., 2023b; Du et al., 2019; Zhang 25 

https://doi.org/10.5194/essd-2024-432
Preprint. Discussion started: 8 January 2025
c© Author(s) 2025. CC BY 4.0 License.



6 

 

et al., 2020b; Li et al., 2020), which include some publicly available SIF observations from 2017 to 2021. The locations of 

these sites are shown in Figure 1, and site information is detailed in Table 2. 

The nine tower-based SIF observation sites are distributed across various regions of China, with the main observed land cover 

types including four drylands, one paddy field, two grasslands, and two wetlands. Among them, the DM site grows dryland 

maize only in the summer, while the SQ site practices irrigated maize cultivation. The GC and XTS sites implement wheat-5 

maize crop rotation, while the JR site rotates rice and wheat, growing rice in the summer and wheat in the winter. The 

underlying surface of the AR site consisted of alpine grassland, while the HL site featured a mixture of grassland and a few 

begonia trees. The underlying surface observed at the PYH site was tussock grass, which represents the characteristics of the 

ecological wetland of a freshwater lake. The underlying surface observed at the YX site was mangrove forest, which means 

the characteristics of the environmental type of subtropical mangrove forests and the transition zone of land-sea intersection. 10 

2.2.2 Tower-based GPP for the verification of CNSIF 

Tower-based GPP validation data were collected from 10 flux sites within China (Cha, Cng, Dan, Din, Du2, Du3, Ha2, HaM, 

Qia, and Sw2) as part of the FLUXNET 2015 network, which includes some publicly available GPP measurements from 2003 

to 2012 (Pastorello et al., 2020). The locations of these sites are displayed in Figure 1, with detailed site information provided 

in Table 3.  15 

The ten flux sites are distributed across various ecological types, including temperate mixed needle and broadleaf forests, 

subtropical evergreen broadleaf forests, artificial evergreen coniferous forests, typical grasslands, alpine meadows, desert 

steppes, and degraded grassland ecosystems. 

2.3 Data processing and SIF retrieval method 

2.3.1 Data processing for satellite observation 20 

To obtain monthly data, we processed the collected high-resolution surface reflectance and thermal infrared data. First, the 

thermal infrared band data were processed into land surface temperature (LST) data based on the Google Earth Engine (GEE) 

platform (Ermida et al., 2020). Second, we performed a cloud masking process using a 65% cloud probability threshold to 

generate clean pixels without cloud shadows for each image (Pazur et al., 2022; Xu et al., 2022). Next, we calculated the 
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median surface reflectance (SR) and median LST on a monthly basis. Finally, we applied a Savitzky-Golay (SG) filter with a 

window size of 7 and a polynomial order of 2 to further eliminate null values and outliers (You and Dong, 2020; You et al., 

2021). The processed SR and LST data were then resampled to 50-m and 500-m spatial resolutions, respectively. 

Recent studies have shown that near-infrared reflectance of vegetation (NIRv) and the enhanced vegetation index (EVI) can 

serve as proxies for SIF (Du et al., 2023a; Zeng et al., 2022; Bandopadhyay et al., 2021). Additionally, the near-infrared band 5 

plays a crucial role in driving SIF variations in SIF product modeling (Zhang et al., 2018). Therefore, we used reflectance data 

from three visible light bands (blue, green, and red) and one near-infrared band to calculate two vegetation indices. Specifically, 

we calculated NIRv and EVI using Eq. (1) and (2), respectively, and incorporated these indices along with near-infrared 

reflectance (RNIR) and LST as input data for the CNN model in this study. 

NIRv = 𝑅NIR × NDVI = 𝑅NIR × [(𝑅NIR − 𝑅Red) (𝑅NIR + 𝑅Red)⁄ ]                                          (1) 10 

EVI = 2.5 × [(𝑅NIR − 𝑅Red) (𝑅NIR + 6 × 𝑅Red − 7.5 × 𝑅Blue + 1)⁄ ]                                       (2) 

2.3.2 Data processing for tower-based measurements 

The tower-based SIF data collected from the ChinaSpec network includes SIF estimates calculated using various retrieval 

methods, such as the 3FID method, spectral fitting method (SFM), and singular value decomposition (SVD) method. Liu and 

Liu (2015) evaluated the performance of several SIF retrieval methods. They found that the 3FLD method is the most robust 15 

for ground-based observations with a spectral resolution of 0.3 nm. Therefore, we used tower-based SIF values retrieved using 

the 3FLD method for validation purposes. The hourly tower-based SIF data were aggregated to a daily timescale, and median 

statistics were calculated monthly, resulting in the final monthly tower-based SIF dataset.  

The tower-based GPP data collected from FLUXNET 2015 includes GPP estimates for both daytime (GPP_DT_VUT_REF) 

and nighttime (GPP_NT_VUT_REF) periods, available on daily and monthly scales. The monthly tower-based GPP data were 20 

obtained by calculating the average of the daytime and nighttime GPP values.  

Considering the spatial scale differences between the tower-based observations and the spatial resolution (500-m) of the 

developed SIF product, we applied the method proposed by Du et al. (2023b) (Eq. 3), using NIRv to bridge the gap between 

the tower-based observations and CNSIF samples, thereby enabling more effective validation efforts. 

𝑆𝐼𝐹𝑖𝑛−𝑠𝑖𝑡𝑢_𝑁𝐼𝑅𝑣 = 𝑆𝐼𝐹𝑖𝑛−𝑠𝑖𝑡𝑢 × 𝑁𝐼𝑅𝑣𝐶𝑁𝑆𝐼𝐹 𝑁𝐼𝑅𝑣𝑡𝑜𝑤𝑒𝑟⁄                                                    (3) 25 
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where SIFin-situ_NIRv represents the tower-based SIF value scaled by NIRv; SIFin-situ is the original tower-based SIF observation; 

NIRvCNSIF refers to the NIRv value of the CNSIF pixel matched to each tower site; and NIRvtower represents the NIRv value of 

the Sentinel-2 pixel centered on the tower location. 

2.3.3 Data-driven-based SIF retrieval method 

As mentioned earlier, most existing SIF products are developed using machine learning models, which typically train SIF 5 

values by selecting multiple features at the same pixel location and resolution (Fig. 2 a-c-d) (Zhang et al., 2018; Li and Xiao, 

2019). These models do not account for the internal spatial structure information within the SIF pixel. In contrast, deep learning 

techniques, due to their deep, nonlinear structures, have recently been recognized as a promising downscaling technology (Sun 

and Lan, 2021; Jeong et al., 2022; Xu et al., 2021). In the field of remote sensing, several studies have demonstrated that 

convolutional neural networks (CNNs) can automatically learn and extract features from complex data, thereby enhancing the 10 

spatial accuracy of remote sensing data (Sha et al., 2020; Bano-Medina et al., 2021).  

We believe that the downscaling design is key to generating high-resolution SIF products. Therefore, we adopted a 2D CNN-

based approach, taking into account the relationship between SIF pixels and their internal spatial structure to develop the SIF 

model (Fig. 2 b-c-d). We trained the model using multi-year (2003-2022) NIRv, RNIR, EVI, LST, and GOSIF data respectively, 

used the 2019 monthly GOSIF data for validation, and selected the best-performing CNN-driven SIF model as the target model. 15 

Finally, through transfer learning, we transferred the target model from a coarse resolution (0.05°) to a finer resolution (500-

m) (Fig. 2e). The constructed CNN consists of four convolutional layers (kernel size: 3×3) and one fully connected layer (Fig. 

2c). All CNNs were trained using an initial learning rate of 0.001, with stochastic gradient descent with momentum (SGDM) 

as the optimization algorithm. 

3 Results 20 

3.1 Model performance 

Figure. 3 illustrates the performance of the CNN-driven SIF model trained on 2018 data, with 2019 GOSIF data used for 

validation. We find that the SIF estimated by the model considering the information of the internal spatial structure of the pixel 

shows strong agreement with the referenced SIF (Fig. 3a), with a coefficient of determination (R2) of 0.856 and a root mean 
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square error (RMSE) of 0.089 mW m−2 nm−1 sr−1. Compared to other SIF models trained on multi-year data, the deviation 

between the referenced SIF and estimated SIF is smaller across the entire range. Additionally, the fit slope between the 

referenced SIF and estimated SIF is close to 1, indicating the absence of systematic bias (Fig. 3b). 

3.2 Spatial distribution of the CNSIF dataset 

Figure. 4 illustrates the spatial distribution of monthly CNSIF for the summer and winter of 2016 and 2020. We observed that 5 

the monthly CNSIF effectively captures the spatial patterns of vegetation photosynthetic activity. In July, high SIF values were 

mainly observed in the temperate coniferous forests and cropping areas of the Northeast Plain in northeastern China, the 

temperate deciduous broadleaf forests and cropping areas of the Huang-Huai-Hai Plain in central China, and the subtropical 

evergreen broadleaf forests and tropical rainforests in the southern part of the country (Fig. 4c, d). In December, high SIF 

values were observed in the evergreen forests and tropical rainforests along the southern coastal regions (Fig. 4e). These two 10 

vegetation types maintain photosynthesis throughout the year, resulting in naturally higher SIF values during winter compared 

to the deciduous forests in the north. In fact, the Huang-Huai-Hai Plain in December also shows a marked SIF difference 

compared to its surroundings (Fig. 4f). This is because the higher resolution of the CNSIF data is capable of capturing the 

photosynthetic activity of winter crops, specifically winter wheat, in the region. In addition, the standard errors (σSIF) of the 

weighted averages of monthly CNSIF for 2016 and 2020 range from 0 to 0.36 mW m-2 sr-1 nm-1 (Fig. 4g, h). The mean values 15 

of the standard errors for the two years are 0.159 mW m-2 sr-1 nm-1 and 0.154 mW m-2 sr-1 nm-1, respectively, indicating that 

the error in the monthly gridded averages of CNSIF does not exceed 16%. 

The zoomed-in spatial distribution map of CNSIF in the Huang-Huai-Hai Plain region showed a spatial pattern similar to that 

of GOSIF. However, the 500-m resolution CNSIF offers more effective pixel samples and finer details compared to the 0.05° 

resolution GOSIF (Fig. 4a, b), thereby reducing the uncertainty in monitoring vegetation photosynthesis, especially in small-20 

scale or fragmented vegetation areas. 

3.3 Temporal pattern in the CNSIF dataset 

We further investigated the time series variation of CNSIF and compared it with GOSIF. The results showed that the CNSIF 

dataset exhibited evident seasonal variation between 2003 and 2022 (Fig. 5c). Additionally, the monthly average SIF in the 
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China region displayed a positive trend over the past 20 years (CNSIF: 0.054), indicating a gradual increase in vegetation 

greenness across the region. GOSIF also observed this phenomenon (GOSIF: 0.073), but CNSIF exhibited more significant 

interannual variability. Additionally, CNSIF showed slightly higher SIF values than GOSIF during the autumn and winter 

seasons. This may be due to GOSIF's coarse spatial resolution, which is more susceptible to mixed pixels, diluting the strength 

of the SIF signal. Moreover, in autumn and winter, crops such as winter wheat may still be growing in some regions of China, 5 

and CNSIF is able to more accurately detect the photosynthetic activity of vegetation in these small-scale areas. 

Figure. 5a shows the time trend differences between CNSIF and GOSIF. We observed that in most regions of China, CNSIF 

exhibits slower growth compared to GOSIF (purple areas), indicating that the SIF trend in these areas has been overestimated. 

The reconstructed CNSIF reduces this overestimation, particularly between 42°N and 55°N and between 18°N and 25°N (Fig. 

5b). Additionally, compared to GOSIF, CNSIF shows less trend variability between 28°N and 44°N. 10 

3.4 Temporal pattern in the CNSIF dataset 

Recently, some publicly available tower-based SIF observations have provided valuable opportunities to validate the 

vegetation dynamics observed in CNSIF. For comparison, we used SIF results derived by the 3FLD method from the 

ChinaSpec network and aggregated the daily observations into monthly data (Zhang et al., 2021b). The tower-based 

observations were then scaled using the NIRv method proposed by Du et al. (2023b). 15 

The results show that CNSIF exhibits good agreement with the scaled tower-based SIF observations (Fig. 6h), with an R2 of 

0.489 and an RMSE of 0.149 mW m-2 sr-1 nm-1. We observed that scatter points are more densely concentrated in the low SIF 

value range (0 to 0.2 mW m-2 sr-1 nm-1) and the mid-value range (0.5 to 0.7 mW m-2 sr-1 nm-1). This is because the dominant 

vegetation types at the nine observation sites are grasslands, farmlands, and wetlands, with observations restricted to periods 

of pronounced vegetation phenology (grasslands: May-September, farmlands: April-October, wetlands: year-round). This also 20 

validates the accuracy of CNSIF. 

Additionally, we validated CNSIF's ability to monitor vegetation phenology changes. We compared tower-based SIF data from 

sites with two or more observation periods against CNSIF (Fig. 6 a-g). The underlying surfaces of the seven sites included one 

alpine meadow, one grass-tree mixture, two wetlands, and three farmlands. We found that CNSIF was slightly underestimated 

compared to the tower-based SIF. However, CNSIF successfully captured the dynamic trends of different vegetation types at 25 
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six sites and accurately reproduced the seasonal patterns of enhanced photosynthesis in spring and summer and reduced 

photosynthesis in autumn and winter (Fig. 6a, c-g). However, the comparison results for the HL site were significantly worse 

than those for the other sites (Fig. 6b). Ignoring differences in the number of tower-based observation samples, we attribute 

this to the vegetation heterogeneity of the HL site's underlying surface. The proportion of the primary land cover type at the 

HL site is only 0.25 (Table 2), with the observed surface being a mix of grass and a few crabapple trees. In contrast, the 5 

proportion of the primary land cover type at the other six sites is much higher than at HL. 

3.5 Comparison of CNSIF with tower-based GPP 

Considering the spatial scale differences between flux tower observations and the CNSIF dataset, we utilized the 30m 

resolution GLC_FCS30 land cover product (Zhang et al., 2021a) to select flux tower sites where the land cover type within 

the CNSIF grid was homogeneous (with the proportion of the primary land cover type being greater than or equal to 0.5). The 10 

observation periods at these flux sites span from 2003 to 2012. 

The strong linear relationship between CNSIF and tower-based GPP (Fig. 7k, R²=0.530) demonstrates the reliability of the 

dataset we developed. They are closely correlated on a monthly timescale. Additionally, we compared the relationship between 

CNSIF and tower-based GPP across different biomes (underlying surfaces of various observation sites) (Fig. 7a-j). Except for 

the degraded grassland, CNSIF was significantly correlated with monthly GPP across nearly all biomes, demonstrating its 15 

applicability across different ecosystem types. The degraded grassland, characterized by its unique vegetation-soil degradation 

synergy, experiences declines in productivity, height, and cover as the degree of degradation intensifies. As a result, the GPP 

values observed at the Du3 and Sw2 flux sites (-1 to 2) are the lowest among the 10 sites. Despite this, CNSIF and GPP still 

exhibited significant correlations in both the degraded grassland (Fig. 7f) and the desert grassland zonal vegetation biome (Fig. 

7j). Additionally, we observed larger slopes in the mixed needle-broadleaf forest (Fig. 7a, slope=0.053), evergreen broadleaf 20 

forest (Fig. 7d, slope=0.078), and artificial coniferous forest (Fig. 7i, slope=0.065). This is due to the canopy structure of 

forests being different from that of grasslands, and the stronger reabsorption of SIF caused the larger slopes. 
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3.6 Comparison of CNSIF with MODIS GPP products 

We applied the mean compositing method to synthesize the 8-day MODIS GPP product (MOD17A2H) into monthly data to 

evaluate CNSIF's ability to monitor ecosystem function across different periods. 

We conducted a correlation analysis between the CNSIF and GPP values for each pixel location across different months. The 

results indicated that the downscaled CNSIF has a strong correlation with monthly GPP. The average R² between CNSIF and 5 

GPP was 0.768 in 2016 (Fig. 8a) and 0.743 in 2020 (Fig. 8b). Additionally, over 62.9% and 57.4% of pixels across the study 

area had an R² greater than 0.80 in these two independent years, respectively. However, the R² between CNSIF and GPP is 

relatively low in southern China. The growth cycles and biomass production capacities of various vegetation types, from 

subtropical evergreen forests to seasonal rainforests, differ significantly. In particular, during drought seasons, severe 

meteorological stress events caused by prolonged heat and low rainfall may not always be consistently reflected in GPP data. 10 

4 Discussion 

4.1 Reducing the uncertainty of the downscaling method 

In this study, we used the spatiotemporally continuous GOSIF product, which has been successfully applied to research in 

various ecological fields, as the data source for downscaling SIF. During model training, we found that the size of the input 

data significantly impacts the model's performance. 15 

In fact, we experimented with four different input data formats: 7×7 and 9×9 pixel sizes that considered only internal spatial 

structure, and 11×11 and 13×13 pixel sizes that took both internal and neighboring information into account. Obviously, the 

results trained with different input data sizes revealed significant differences in the spatial distribution of SIF. The closer the 

input data size is to the pixel size of the data source, the higher the fitting accuracy of the downscaling model, and the closer 

the fitting slope is to 1 (Fig. 9b, Slope = 1.002; Fig. 9c, Slope = 0.971). Further comparison between models trained with 9×9 20 

and 11×11 pixel sizes revealed that the SIF model considering only internal information performed significantly better than 

the model that also incorporated neighboring information (9×9 pixels: R² = 0.856, RMSE = 0.089; 11×11 pixels: R² = 0.812, 

RMSE = 0.126). Therefore, this study ultimately selected the 9×9 pixel, which maximizes the inclusion of internal information, 
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as the input data size for the model. This choice enables the model to converge more easily and achieve higher estimation 

performance. 

4.2 Mitigating the spatial scale differences between CNSIF and tower-based SIF 

There is a significant difference in spatial coverage between satellite-based and tower-based observations. This spatial 

mismatch increases the difficulty of ground validation for nearly all remote sensing products. Previous studies have 5 

demonstrated a strong linear correlation between SIF and NIRv (Du et al., 2023a; Zeng et al., 2019; Badgley et al., 2019; 

Dechant et al., 2022). Therefore, we attempted to use NIRv as a bridge to reduce the uncertainties caused by spatial scale 

differences. 

As shown in Figure. 4, CNSIF exhibits good agreement with the scaled tower-based SIF observations and successfully captures 

the dynamic trends of photosynthetic activity across different vegetation types. The only exception is the HL site, where 10 

vegetation heterogeneity in the underlying surface led to lower validation accuracy. Therefore, using the NIRv-based method 

to scale tower-based SIF to match the CNSIF grid size is a reasonable approach. 

5 Data availability 

 The monthly SIF dataset for the China region at 500-m spatial resolution from 2003 to 2022 (CNSIF) is publicly available at

 https://doi.org/10.6084/m9.figshare.27075145 (Du et al., 2024). The CNSIF dataset is stored in TIFF format and organized c15 

hronologically. The files are named CNSIF_<YYYY>_<MM>.tif, where "YYYY" and "MM" represent the year and month,

 respectively. 

6 Conclusions 

 We conducted a comprehensive evaluation of the reconstructed CNSIF dataset and validated its performance. Overall, CNSIF 

exhibits a positive trend (Slope = 0.054), shows clear seasonality over time, and demonstrates more significant interannual 20 

variability. Spatially, it effectively captures the patterns of vegetation photosynthetic activity, with the mean standard error of 

the monthly CNSIF grid controlled within 16%. By comparing with tower-based observations, CNSIF successfully captured 

the dynamic trends of various vegetation types and accurately reproduced seasonal variations in photosynthetic intensity. The 
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strong correlations between tower-based GPP, MODIS GPP, and CNSIF further demonstrate CNSIF's applicability across 

different biomes. Additionally, the reconstructed CNSIF mitigated the overestimation of SIF trend changes in the China region. 

Overall, the CNSIF dataset, with its higher-resolution estimation of photosynthetic activity, offers a promising tool for 

monitoring historical vegetation dynamics in the China region. It allows us to incorporate the effects of ecosystem 

fragmentation into global carbon cycle estimates and more refined biosphere models. 5 
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Fig. 1: Land cover types of the study area and the locations of all tower-based observation sites used in this research. 
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Fig. 2: CNN-based SIF retrieval framework design. (a) 1 × 1 pixel at a coarse scale, (b) 9 × 9 pixels at a fine scale, (c) schematic diagram 

of the CNN network structure, (e) flowchart of the retrieval framework. 
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Fig. 3: (a) Comparison between the reference results and the reconstructed predicted results, (b) model performance. 
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Fig. 4: Spatial distribution of CNSIF. (a), (b) local zoomed-in views of dense crop areas; (c), (d) summer spatial distribution characteristics 

of CNSIF; (e), (f) winter spatial distribution characteristics of CNSIF; (g), (h) standard errors of the weighted means of CNSIF. 
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Fig. 5: (a) Time trend differences between the CNSIF and GOSIF datasets, (b) latitudinal distribution from 2003 to 2022, and (c) time series 

variation of the mean CNSIF from 2003 to 2022. The yellow and green shaded areas in (b) represent the standard errors of the CNSIF and 

GOSIF trends, respectively. 
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Fig. 6: (a)-(g) Comparison between tower-based SIF observations and CNSIF for sites with two or more observation periods, (h) comparison 

between CNSIF and the scaled tower-based SIF observations across all sites. 

 

https://doi.org/10.5194/essd-2024-432
Preprint. Discussion started: 8 January 2025
c© Author(s) 2025. CC BY 4.0 License.



24 

 

 

Fig. 7: (a)–(j) Comparison between CNSIF and tower-based GPP observations across different biomes, (k) comparison between CNSIF and 

tower-based GPP observations across all sites. 
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Fig. 8: Comparison between CNSIF and the MODIS GPP product. 
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Fig. 9: Model performance based on different input data sizes. (a) 7×7 pixels considering only internal information, (b) 9×9 pixels 

considering only internal information, (c) 11×11 pixels considering both internal and neighboring information, (d) 13×13 pixels considering 

both internal and neighboring information.  
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Table 1 

An overview of the collected datasets in this study. 

Dataset Data source Variables/Band 
Spatial 

resolution 

Temporal 

resolution 
Temporal range 

GOSIF OCO-2 SIF SIF 0.05°× 0.05° Monthly 2001.01-present 

Surface 

reflectance 

Landsat 7 ETM+ 
SR_B1, SR_B2, 

SR_B3, SR_B4 
30-m 16-day 1999.05-2022.04 

Sentinel 2 MSI B2, B3, B4, B8 50-m 5-day 2017.03-present 

Thermal 

infrared data 

Landsat 7 ETM+ ST_B6 60-m 16-day 1999.05-2022.04 

Landsat 8 TIRS ST_B10 30-m 16-day 2013.04-present 

Land cover MCD12Q1 Land cover 500-m Yearly 2001.01-2022.01 
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Table 2 

Detailed information of SIF sites used in this study. 

Site Name ID 
Latitude 

Longitude 
Ecosystem type 

Fraction of primary 

land cover type 
Temporal range 

ARou AR 
38.0444 N 

100.4647 E 
Alpine grass 0.81 2019 - 2021 

DaMan DM 
38.8555 N 

100.3722 E 
Cropland (maize) 0.92 2018 - 2021 

GuCheng GC 
39.1486 N 

115.7351 E 

Cropland (winter wheat 

and maize rotation) 
0.93 2020 - 2021 

HuaiLai HL 
40.3489 N 

115.7882 E 

Mixture of grass and 

crabapple trees 
0.25 2018 - 2021 

JuRong JR 
31.8068 N 

119.2173 E 

Cropland (rice and wheat 

rotation) 
0.93 2017 

PoYangHu PYH 
28.8949 N 

116.3371 E 
Wetland 0.75 2020 - 2021 

ShangQiu SQ 
34.5870 N 

115.5753 E 

Cropland (maize on 

irrigated land) 
0.92 2017 - 2018 

XiaoTangshan XTS 
40.1786 N 

116.4432 E 

Cropland (winter wheat 

and maize rotation) 
0.37 2018 - 2021 

YunXiao YX 
23.9064 N 

117.4028 E 
Wetland 0.83 2017 - 2018 
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Table 3 

Detailed information on GPP sites was used in this study. 

Site Name ID 
Latitude 

Longitude 
Ecosystem type 

Fraction of primary 

land cover type 

Temporal 

range 

ChangBaiShan Cha 
42.4025 N 

128.0958 E 

Mixed coniferous 

and broadleaf forest 
1 2003 - 2005 

ChangLing Cng 
44.5934 N 

123.5092 E 
Meadow grassland 0.8 2007 - 2010 

DangXiong Dan 
30.4978 N 

91.0664 E 
Alpine meadow 0.5-0.8 2004 - 2005 

DingHuShan Din 
23.1733 N 

112.5361 E 

Evergreen broad-

leaved forest 
1 2003 - 2005 

DuoLun_Grassland Du2 
42.0467 N 

116.2836 E 
Typical grassland 1 2007 - 2008 

DuoLun_Degraded 

meadow 
Du3 

42.0551 N 

116.2809 E 
Degraded meadow 1 2009 - 2010 

HaiBei_Shrubland Ha2 
37.6652 N 

101.3312 E 
Alpine meadow 1 2003 - 2005 

HaiBei_Alpine 

Tibet site 
HaM 

37.6128 N 

101.3128 E 
Alpine meadow 1 2003 - 2004 

QianYanZhou Qia 
26.7414 N 

115.0581 E 

Artificial coniferous 

forests 
1 2003 - 2005 

SiZiWang_Grazed Sw2 
41.7902 N 

111.8971 E 

Desert grassland 

zonal vegetation 
1 2010 - 2012 
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