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Abstract

Human activities have significantly disrupted the global carbon cycle, leading to increased 
atmospheric CO2 levels and altering ecosystems' carbon absorption capacities, with soils serving as 
the largest carbon reservoirs in terrestrial ecosystems. The complexity and variability of soil 
properties, shaped by long-term transformations, make it crucial to study these properties at various 
spatial and temporal scales to develop effective climate change mitigation strategies. However, 
integrating disparate soil databases presents challenges due to the lack of standardized protocols, 
necessitating collaborative efforts to standardize data collection and processing to improve the 
reliability of Soil Organic Carbon (SOC) estimates. This issue is particularly relevant in peninsular 
Spain, where variations in sampling protocols and calculation methods have resulted in significant 
discrepancies in SOC concentration and stock estimates. This study aimed to improve the 
understanding of SOC storage and distribution in peninsular Spain by focusing on two specific 
goals: integrating and standardizing existing soil profile databases, and modeling SOC 
concentrations (SOCc) and stocks (SOCs) at different depths using an ensemble machine-learning 
approach. The research produced four high-resolution SOC maps for peninsular Spain, detailing 
SOCc and SOCs at depths of 0-30 cm, 30-100 cm and the effective soil depth, along with associated
uncertainties. These maps provide valuable data for national soil carbon management and contribute
to compiling Spain's National Greenhouse Gas Emissions Inventory Report. Additionally, the 
findings support global initiatives like the Global Soil Organic Carbon Map, aligning with 
international efforts to improve soil carbon assessments. The soil organic carbon concentration 
(g/kg) maps for the 0-30 cm and 30-100 cm standard depths, along with the soil organic carbon 
stock (tC/ha) maps for the 0-30 cm standard depth and the effective soil depth, including their 
associated uncertainties, —all at a 90-meter pixel resolution— (SOCM90) are freely available at 
https://doi.org/10.6073/pasta/48edac6904eb1aff4c1223d970c050b4 (Durante et al., 2024).
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1. Introduction

Human activities have profoundly disrupted the global carbon cycle, leading to a significant 
increase in atmospheric CO2 levels and a consequential alteration of ecosystems' inherent carbon 
absorption capacity (Crowther et al., 2016). Soils emerge as the primary carbon reservoirs within 
terrestrial ecosystems due to their remarkable capacity to store approximately two to four times 
more organic carbon in the top meter (i.e., approximately 1500 Pg C; (Scharlemann et al., 2014). 
Furthermore, the residence time of soil organic carbon (SOC) exceeds that of aboveground biomass,
underscoring the crucial role of SOC storage in climate change mitigation strategies (Jobbágy et al.,
2000; Saatchi et al., 2007).

Understanding the biogeochemical properties of soils is crucial for assessing and tracking 
changes in SOC storage capacity. Soils inherently undergo long-term transformations, with 
processes affecting SOC storage varying significantly over time and across different regions. This 
complexity and spatiotemporal heterogeneity necessitate studying the biogeochemical properties of 
soils at various spatial scales, from local fields to entire landscapes, and at different temporal scales,
from short-term seasonal changes to long-term geological shifts (Stockmann et al., 2015). 
Consequently, numerous national and global initiatives have been launched to gather and 
standardize empirical data on soil properties accumulated over decades and make them readily 
available (Harden et al., 2018; Shangguan et al., 2014). 

Integrating legacy and collaborative regional and global datasets of soil properties can pose 
challenges due to the absence of standardized protocols. For instance, in Spain, numerous 
organizations and institutions have collected soil profile data over fifty years, using different 
methods, laboratory techniques, standards, scales, and georeferencing systems (Llorente et al., 
2018). Hence, this valuable information is currently scattered and fragmented, requiring substantial 
effort to integrate the historical soil databases into a cohesive, harmonized, and geographically well-
defined dataset. Moreover, many of these databases lack the necessary information for accurately 
calculating Soil Organic Carbon stocks (SOCs), which depend on data such as SOC concentration 
(SOCc), bulk density, and coarse fragments (Calvo de Anta et al., 2020; Poeplau et al., 2017). This 
deficiency can lead to biased estimates of SOCs across different ecosystems. This challenge is also 
exacerbated by the considerable costs and operational complexities associated with soil data 
collection (Smith et al., 2020; Vargas et al., 2017). The absence of readily available databases 
containing consistent and comprehensive information on soil properties poses a significant 
challenge to effective soil monitoring across Spain and other regions of the world. The integration 
process is hindered by discrepancies in data formats, resolution, and quality, leading to potential 
inaccuracies and gaps in soil information. These challenges underscore the need for systematic 
methodologies and collaborative efforts to standardize data collection and processing protocols, 
thereby enhancing the reliability and usability of soil data for assessing SOCs and supporting 
climate change mitigation strategies.

The dynamics of SOC are determined by both soil physical and chemical properties, along 
with environmental soil-forming factors (Jenny, 1941). Soil properties exhibit diverse and complex 
patterns across scales due to the broad spatial and temporal range of soil formation conditions 
(Allen and Starr, 2019). To account for these complexities, SOC modeling has evolved from simple 
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qualitative approaches to sophisticated quantitative estimations and uncertainty assessment through 
models such as CLORPT or SCORPAN (Jenny, 1941; McBratney et al., 2003). Rooted in these 
theoretical models, digital soil mapping (DSM) has introduced a plethora of empirical models that 
estimate SOCs as a function of concurrent environmental factors (i.e., explanatory variables) (Chen 
et al., 2022), potentially reducing the number of in situ samples required for accurate spatial 
predictions (McBratney et al., 2003; Searle et al., 2021). These empirical models usually shows 
variability in their SOCs estimates, so ensemble methods are used to merge predictions by 
leveraging the strengths of each modeling technique (Shangguan et al., 2017; Wang et al., 2018b). 
Thus, ensemble modeling is assumed to provide more accurate and robust spatial predictions than 
individual models, especially when different models capture distinct aspects of soil dynamics 
(Padarian and McBratney, 2020). In conjunction with the spatial predictions of SOCs, it is also 
crucial to report their associated uncertainty, as it conveys valuable information for the proper 
interpretation of these empirically derived estimates (Poggio et al., 2021).

In Spain, the aforementioned challenges associated with sampling protocols and stock 
calculation procedures have yielded considerable variation in SOCs estimates. Local-scale 
estimations of SOCs have been developed for various ecosystems, including agricultural lands  
(Albaladejo et al., 2009; Álvaro-Fuentes et al., 2008; Muñoz-Rojas et al., 2012), forests, and 
pastures (Doblas-Miranda et al., 2013). At the national level, SOCs estimates within the upper 30 
cm depth have shown a notable range, varying from 2.82 Pg C (Rodríguez Martín et al., 2016) to 
3.25 Pg C (Calvo de Anta et al., 2020). While SOCs are typically standardized to the upper 30 cm, 
the subsoil carbon pool (i.e., >30 cm) may contribute up to 50% of the total stock in Mediterranean 
soils (Mulder et al., 2016). This discrepancy can lead to an underestimation of a substantial portion 
of carbon within the effective soil depth (i.e., the soil depth where most SOC storage occurs). 
Therefore, addressing these multifaceted challenges is pivotal in designing more accurate national-
scale assessments of SOCs that support effective management strategies for mitigating climate 
change.

The overall goal of this study was to enhance our understanding of SOC storage and 
distribution in peninsular Spain by distinguishing between different carbon variables: SOCc (g/kg), 
and SOCs (tC/ha). To this aim, we addressed two specific goals: 1) to integrate and standardize 
disparate soil profile databases developed over the years within peninsular Spain, and 2) to model 
and map SOCc and SOCs at two soil depths using a machine-learning-based ensemble modeling 
approach, including their associated uncertainties. Furthermore, we present four 90-meter pixel 
resolution SOC maps for peninsular Spain (i.e., SOCM90). These maps outline the spatial estimate 
of SOCc at depths of 0-30 cm and 30-100 cm, along with the SOCs at 0-30 cm and its effective 
depth, including their associated uncertainties. This information can serve as a reference point for 
effectively estimating and managing soil carbon sinks at the national level, as well as for compiling 
the National Greenhouse Gas Emissions Inventory Report (Ministry for Ecological Transition and 
the Demographic Challenge, 2024). Furthermore, the insights gained from this study contribute to 
global efforts, including the Global Soil Organic Carbon Map and the GlobalSoilMap (FAO and 
ITPS, 2018; Arrouays et al., 2014a), as it aligns with the specifications of the Global Soil Organic 
Carbon Map consortium (Arrouays et al., 2014b).

3

81
82
83
84
85
86
87
88
89
90
91
92
93

94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

https://doi.org/10.5194/essd-2024-431
Preprint. Discussion started: 12 November 2024
c© Author(s) 2024. CC BY 4.0 License.



2. Materials and Methods

We followed a three-step methodological framework (Fig. 1). First, we collected soil data 
from various public sources at different administrative levels and compiled static environmental 
predictors. Next, we built and assessed ensemble spatial models for SOCc and SOCs using three 
distinct supervised learning approaches. The final step involved generating spatial predictions and 
evaluating their accuracy.

Figure 1. The three-setp methodological framework for this study (adapted from the World Soil 
Information Service; Hengl et al., 2017).
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Study area

The study area encompassed peninsular Spain, spanning an area of 491,258 km2 (Fig. 2). 
Peninsular Spain is characterized by an intricate topography dominated by rugged mountain 
systems, expansive plateaus, and broad watershed depressions. The expansive Central Plateau 
covers most of the peninsula, with elevations ranging from 600 to 760 masl. The plateau gently 
slopes towards the west, directing the flow of most watercourses towards the Atlantic Ocean. 
Surrounding the plateau lie hills and steep mountain ranges, with a maximum altitude of 3,478 masl
(Serrano, 2000).

Figure 2. Study area (outlined in black) showing the locations of soil samples collected between 
1954 and 2018 (points in green; n=8,361).

Spain is one of the most diverse countries in Europe in terms of climate, ranging from humid
to semiarid conditions (AEMET IPMA, 2011). The average annual precipitation ranges from 200 
mm (in the southeast) to 2200 mm (in the northern and mountainous regions), while the mean 
annual temperature spans from below 2.5ºC at higher altitudes to over 17.5ºC in the southern and 
southeastern. The Mediterranean climate is dominant, extending across the inland plateaus 
(continental Mediterranean) to the coastal areas (coastal Mediterranean). This climate is 
characterized by wet, cold to mild winters and dry, hot, or mild summers, with variable 
temperatures and rainfall during autumn and spring. However, these contrasting climatic conditions 
are weaker along the coast, transitioning predominantly to arid or semi-desert conditions in the 
southeast. Conversely, in the north and northwest, the climate tends to be predominantly oceanic, 
characterized by high humidity and mild temperatures.

The diverse topography and wide-ranging climatic conditions facilitate a mosaic of land 
covers and uses. Despite a decreasing trend in agricultural areas over the past two decades, 
agricultural land still occupies approximately 33% of the total land area (MAPA, 2021). The 
agricultural landscape boasts diverse systems, encompassing herbaceous crops, primarily dryland 
cereals, and orchard crops such as grapes, olives, almonds, and various fruits. Forested areas cover 
more than 59% of the peninsula, predominantly comprising natural forests, plantations—mostly 
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found in mountainous regions within humid and subhumid areas—and shrublands. Extensive 
grasslands and other herbaceous vegetation thrive, particularly in high-altitude regions and the 
northern part of the country. Wetlands and water surfaces cover 0.9% of peninsular Spain's total 
area, while artificial surfaces occupy 7.1%.

2.1 Data compilation
2.1.1 Soil database

The database comprised 8,361 georeferenced soil profiles, containing 27,931 pedogenetic 
soil horizons. We collected soil data from public domain resources or were facilitated by national 
institutions responsible for the information. Specifically, the Red Carbosol database contributed 
78% of the samples, compiled through a collaborative network of Spanish soil experts across 
multiple research centers and universities, aggregating data from 635 different sources (Llorente et 
al., 2018). The second major source (18% of profiles) was the Consejería de Sostenibilidad, Medio 
Ambiente y Economía Azul (Andalusian Government, personal communication). The remaining 4%
of the data were extracted from the LUCDEME database, which was compiled by various regional 
institutions, including Región de Murcia (Alias and Ortiz, 1986), the Agrarian Technological 
Institute (Junta de Castilla y León), and the University of Castilla La-Mancha (Bravo et al., 2019). 
Sampling periods spanned from 1954 to 2018, with most samples collected between 1965 and 2000.

To facilitate standardized and reconciled information on soil properties across sampling 
units, the compiled data structure was modified to create a unified database. The database included 
information on soil properties related to the computation of the variables, i.e., profile and horizon 
ID, horizon depth (cm), total carbon content (g/kg), bulk density (g/cm³), sand, silt, and clay (%), 
and coarse fragment content (> 2 mm; % of total volume). 

Profile inclusion in the final database was contingent upon meeting quality criteria aligned 
with our research objectives and guided by quantitative pedological methodologies (Beaudette et 
al., 2013). These criteria encompassed accurate georeferencing, eliminating duplicate information, 
handling missing data values, verifying information consistency with the horizon, and fixing format
inconsistencies. Furthermore, soil properties were explored through basic descriptive statistics, such
as minimum, maximum, average, and standard deviation values, to ensure data consistency and 
evaluate their variability. Inconsistent data were appropriately reclassified as "no data". Further 
database adjustments included log-transforming the original SOC data. This step was taken to 
capitalize on the log-normal distribution tendency previously observed in SOC (Yigini et al., 2018). 
This transformation aimed to improve the correlation between SOC and its predictive factors, 
ultimately enhancing the accuracy of SOC spatial distribution modeling. To prioritize the organic 
carbon estimation in mineral soils, profiles or horizons containing more than 20% organic matter 
were omitted from the database, which is in line with WRB criteria (WRB-IUSS, 2014). As a result,
Histosol profiles and horizons primarily composed of organic materials (H, O, L) were excluded 
from the analysis.

2.1.2 Standard soil depths and estimation of SOC concentration and stock

The soil depth of morphological horizons was standardized to facilitate the integration of the
outcomes. The resulting range was established using widely recognized worldwide criteria for SOC 
estimation (Brus et al., 2017). The information concerning SOCc was obtained through analytical 
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measurements and used directly in the estimation process. However, some data were converted into 
SOCc from organic matter values, employing a conversion factor of 0.67, based on the assumption 
of 58% carbon content in organic matter (Rosell et al., 2001). SOCc values were then discretized 
into two standard depths: 0-30 cm and 30-100 cm. For each standard depth, the final value was 
determined as the sum of SOCc from morphological horizons, weighted by their original depth. 
Subsequently, the SOCs within a profile -the total amount of soil carbon per unit area at its effective
depth- were computed using Equation [1]. The effective soil depth (ESD) was defined as the solum,
encompassing surface and subsurface horizons with root presence and biological activity (Baillie, 
2001).

SOCs ( Kg ⋅m2)=∑
i=1

n

SOC ( g /Kg )i ⋅BD ( Kg ⋅m3) i⋅ [1 −(CRFVOL
100 )]i⋅HSIZE (cmi ) Eq. [1]

where i represents the horizon, n denotes the total number of horizons in the profile, BD stands for 
bulk density, CRFVOL is the percentage of coarse fragments (i.e., over 2 mm in diameter), and 
HSIZE is the horizon thickness. SOCs were estimated for the standard depth of 0-30 cm before 
standardizing it to the 0-30 cm range. To prevent the propagation of errors in estimating parameters 
that may be absent in certain profiles from the existing soil data, the SOCs was computed only for 
profiles containing available information on bulk density and coarse fragment content. Thus, the 
final number of profiles used for modeling carbon content as a function of depth was 8,332 profiles 
for SOCc (g/kg) at a standard depth of 0-30 cm, 6,947 profiles for SOCc (g/kg) at a standard depth 
of 30-100 cm, 1,475 profiles for SOCs (tC/ha) at a standard depth of 0-30 cm, and 1,499 profiles for
SOCs (tC/ha) at its effective depth. Finally, the primary characteristics of SOC in peninsular Spain 
were determined through basic descriptive statistics of carbon-related variables, including density 
distribution, mean profiles, and spatial autocorrelation. Data was processed using QGIS and the R 
packages: aqp, PerformanceAnalytics, GSIF, and gstat (R Foundation for Statistical Computing, 
2022; Beaudette et al., 2023; Hengl et al., 2020; Pebesma, 2004; Peterson et al., 2014).

2.1.3 Representativeness of the soil database

The spatial representativeness of the compiled soil database was evaluated using a 
probability distribution approach based on the maximum entropy method (Maxent), which has 
extensively been applied in modeling spatial point patterns (Phillips et al., 2006) and 
representativeness of environmental monitoring networks (Villarreal et al., 2018). We used the 
Maxent approach to estimate the relationship between the number of soil samples and soil-forming 
factors. Thus, the Maxent model was used to identify distinct representative areas based on 
pertinent environmental covariates chosen through covariate selection methods (see “Feature 
selection” subsection below). The model's predictive accuracy was evaluated using the Area Under 
the Curve (AUC) metric for the training data (see section 2.3 below). This metric was compared 
against the AUC expected for a random model. Thus, AUC values lower than 0.5 would indicate 
that the model's predictive performance was worse than random estimation (Fielding and Bell, 
1997). We built a model-based predictive map depicting the similarity of environmental predictor 
variables, thereby minimizing relative entropy between them and locations containing sampled soil 
data (Elith et al., 2011). This method effectively conveyed information on the spatial 
representativeness of soil samples across different environmental factors in peninsular Spain.
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2.1.4 Environmental Covariates

We identified the environmental variabcorporated into the SOC model following the 
SCORPAN conceptual spatial inference model. This conceptual model categorizes soil property 
predictions based on seven forming factors, encompassing soil properties (S), climatic variables 
(C), biota (O), relief (R), parent material (P), time, age (A), and spatial location (N). These 
covariates were grouped by static and dynamic variables as follows:

Static variables

Relief Factor. Geomorphometric variables depicting terrain characteristics were assessed. 
Topographic relief was evaluated through geomorphometry and feature extraction derived from the 
Geomorpho90m global dataset at a resolution of 90 meters under the WGS84 geodetic datum. This 
dataset comprised 26 fully standardized geomorphometric variables derived from the MERIT-
Digital Elevation Model (DEM), encompassing layers that depict (i) the rate of change across the 
elevation gradient using first and second derivatives, (ii) ruggedness, and (iii) geomorphological 
forms (Amatulli et al., 2020). Details regarding the source and resolution of these products are 
outlined in Table 1.

Human Factor. Land cover and land use information (IGN, 2012) were reclassified into 13 
classes, i.e., non-irrigated arable land, permanently irrigated land, heterogeneous agricultural areas, 
agro-forestry areas, broad-leaved forest, coniferous forest, mixed forest, sclerophyllous vegetation, 
pastures, moors and heathland, sparsely vegetated areas, and transitional woodland/shrub.

Parent Material Factor. Lithological classes were derived from the lithological map of Spain 
1M, which comprises 22 hierarchical levels (IGME, 1995).

Soil Properties. Soil information was obtained from the Digital District Soil Atlas (USDA, 
1987). The soil map was digitized based on the 1:2,000,000 map in the Atlas Nacional de España 
(Soil Science) published by the CSIC/IRNAS (De la Rosa et al., 2001).

Dynamic variables

Climate Factor. Precipitation and temperature climatic variables were obtained from 
Ninyerola et al. (2005).

Biota Factor. We computed a set of ecosystem functioning attributes derived from remotely 
sensed indices. These attributes are associated with the carbon cycle, water cycle, and energy or 
heat balance. Functional attributes relate to each index's quantity, seasonality, and phenology. The 
satellite products spanned a sufficient time interval to ensure their stability over time (2000-2019). 
The complete remotely sensed set comprised 172 ecosystem functioning attributes as candidate 
predictors for SOC. Details regarding the sources and resolution of the satellite products are 
provided in Table 1. The Google Earth Engine platform (Gorelick et al., 2017) was employed to 
derive these attributes, including the annual mean (serving as a proxy for annual total amount), 
annual maximum and minimum (indicating annual extremes), seasonal standard deviation 
(describing seasonality), and sine and cosine of the dates of maximum and minimum (indicating 
phenology) (Alcaraz-Segura et al., 2017).

In summary, 254 environmental covariates, capturing the diverse forming factors across 
peninsular Spain, were computed as an initial step preceding the spatial modeling of SOC.
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Table 1. Description of predictors for spatial modeling of SOC.

Category Variables Source Scale/
Resolution

Topographic
 (i)  Slope,  Aspect,  Aspect  cosine,  Aspect  sine,  Eastness,
Northness,  Convergence,  Compound  topographic  index,
Stream power index, East-West first order partial derivative,
North-South first order partial derivative

(ii)  Profile  curvature,  Tangential  curvature,  East-West  second
order  partial  derivative,  North-South  second  order  partial
derivative, Second order partial derivative

(iii)  Elevation  standard  deviation,  Terrain  ruggedness  index,
Roughness, Vector ruggedness measure, Topographic position
index, Maximum multiscale deviation (dev-magnitude), Scale
of  the  maximum multiscale  deviation,  Maximum multiscale
roughness, Scale of the maximum multiscale roughness

(iv) Geomorphon

Geomorpho90m
(Amatulli et al., 2020) 90m

Climate
Mean  annual  precipitation  (mm).  Mean,  minimum,  and
maximum annual temperature (ºC). Radiation (kW/m2). 
Period 1951-1999.

University of Barcelona
(Ninyerola  et  al.,
2005) 

20 m

Land features

Soil types Proyecto  SEIS.net
(MIMAM- CSIC) 1:100000

Lithology SGE-IGME (Spain) 1:200000

Land use/cover IGN-Corine Land Cover 1:100000

Remotely sensed indices

Carbon cycle
Normalized Difference Vegetation Index
(NDVI),  Enhanced  Vegetation  Index
(EVI

MOD13Q1 250 m

Water cycle
Precipitation,
Normalized Difference Water Index (NDWI)

Evapotranspiration (ET)

CHIRPS
MCD43A4

1km
500 m

Radiative
balance Albedo MCD43B3 500 m

Sensible heat Land Surface Temperature (LST) MOD11A2 1 km

Ecosystem Functional attributes (inter-annual and monthly mean):          (Alcaraz-Segura et al.,
2017) 
Amount: mean, maximum, minimum
Seasonality: standard deviation, coefficient of variation, range, relative range
Phenology: sine and cosine of the dates of maximum and minimum

(i) First order derivative, (ii) Second order derivative, (iii) Ruggedness, (iv) Geomorphological forms.

Finally, the environmental covariates were compiled into a covariate matrix with spatially
explicit  information.  A  method  alternative  to  reprojection  and  rescaling  was  employed  to
accommodate the diverse formats of coordinate reference systems (CRS) and spatial resolutions of
the  covariates.  This  approach aimed to  reduce  geometric  distortion  and mitigate  computational
limitations  stemming  from the  substantial  volume  of  data  (Bauer-Marschallinger  et  al.,  2014).
Firstly, a reference matrix was created based on the pixel center locations (x, y) of the most detailed
resolution layer, i.e., MERIT-DEM (90 m), with WGS84 (EPSG 4326) as the CRS. Subsequently,
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geoprocessing techniques extracted the covariate values for each location in the reference matrix.
When applicable, the reference matrix coordinates were then reprojected to match the CRS of each
covariate. The resulting matrix comprised the value of each covariate (columns) extracted for every
point in the study area at intervals of 90 meters. This matrix was organized into a tiling system to
enhance  computing  processing  time  during  geoprocessing  analyses.  Categorical  variables  were
rasterized. To do that, only categories with a sufficiently representative number of soil samples (i.e.,
over  100 data  points)  were  considered.  These  categories  were subsequently  transformed into  a
binary variable, indicating the presence or absence of the specific category (Yigini et al., 2018). The
covariance matrix was generated using the R packages sp, rgdal, and raster (Hijmans, 2024; Keitt
et al., 2012; Pebesma and Bivand, 2005).

2.2 Modeling

The data matrix comprised the log transformations of SOCc and SOCs and the covariate 
point data extracted at the same locations as the soil profiles. To mitigate geometric distortions, the 
coordinates of the profiles were reprojected to match the CRS of each covariate, where applicable. 
This organized structure facilitated analyzing the relationship between carbon and the covariates, 
ensuring accurate spatial alignment for meaningful interpretation.

2.2.1 Covariate selection

We analyzed covariate importance (CVI) to discern which covariates had the most 
significant impact on soil carbon models, thus reducing the substantial number of covariates (254) 
and mitigating the risk of potential overfitting (Gregorutti et al., 2017). CVI was evaluated using 
three selection methods: multiple linear regression, Bayesian analysis, and projection pursuit 
regression models (coupled with partial dependence plots).

Multiple linear regression is an easily interpretable method where the dependent variable 
(here SOCc and SOCs) is represented as a linear combination of regression coefficients, predictor 
variables, and a random error term. This error term accounts for the variation in the dependent 
variable that cannot be explained by the linear relationship with the predictors and their coefficients.
Two fundamental assumptions are considered: a) the existence of a linear relationship between the 
response variable and the predictors (environmental covariates), and b) the absence of 
multicollinearity among the predictors (Yan and Su, 2009). To evaluate the importance of each 
covariate, we utilized the absolute value of the t-statistic. The t-statistic was computed by dividing 
the regression coefficient associated with each predictor by its standard error, serving as a measure 
of predictor accuracy (Greenwell and Boehmke, 2020). This analysis was conducted using the vip R
package (Greenwell and Boehmke, 2020).

Bayesian analysis is an inferential approach rooted in the probability distribution of 
parameters derived from observed data and additional available information. Unlike traditional 
multilinear models, Bayesian probability models treat parameters as random variables and integrate 
data and prior information on the parameter distribution through a likelihood function to form a new
posterior distribution (Gelman et al., 2013). The resulting parameter estimates are conditional on the
observed data, which, following the rules of probability theory, ensures a consistent posterior 
distribution interpretation (McElreath, 2018). The Bayesian models were fitted using the Markov 
Chain Monte Carlo (MCMC) sampling methodology through an iterative selection of the most 
significant covariates. The final covariate selection was determined by evaluating the models based 
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on their Watanabe–Akaike information criteria (WAIC) scores, with preference given to the model 
exhibiting the lowest WAIC value. This criterion serves as a measure of model performance, 
balancing goodness of fit with model complexity. We implemented the Bayesian approach using the
rethinking package in R (McElreath, 2020).

Projection Pursuit Regression (PPR) involves forming linear combinations of non-
parametric functions of the predictor variables, enabling the exploration of nonlinear relationships 
within the data (Friedman and Stuetzle, 1981). Thus, PPR captures complex relationships between 
predictor variables and the dependent variable. Partial dependence plots (PDPs) were constructed 
for each covariate of interest, illustrating how changes in each covariate affect the predicted 
outcome while keeping other covariates fixed. The flatness of each PDP was assessed to determine 
the strength of the association between the covariate and the predicted outcome. CVI scores were 
computed based on the variability in the partial dependence values, supporting the identification of 
the most influential covariates. These scores captured the variability in the partial dependence 
values for each main effect by calculating the standard deviation of the y-axis values for each PDP. 
Covariates were ranked based on their CVI scores and the shape of their PDPs, guiding the 
selection of covariates for inclusion in the final model. The PPR models and PDPs were constructed
using the stats and pdp packages in R (Greenwell, 2017).

Finally, covariates exhibiting the highest CVI scores, consistently identified across all three 
selection techniques, were integrated into the final dataset. Finally, expert criteria guided the 
decision-making process for the final selection of variables. This selection procedure was conducted
individually for each dependent variable (i.e., SOCc and SOCs) at both the 0-30 cm and 30-100 cm 
standard depths (SOCc), and at both the 0-30 cm and the effective depth (SOCs).

2.2.2 Predictive models

There are multiple algorithms for predicting SOC using DSM and arguably there is not a 
single ideal one for predicting SOC across large geographical areas (Guevara et al., 2018). Given 
the intricate and often nonlinear relationship between SOC and environmental variables, the 
integration of multi-model ensemble methods with machine learning (ML) algorithms has been 
adopted to predict SOC spatial variability along with associated uncertainties (Gray et al., 2015; 
Shangguan et al., 2017; Wang et al., 2018a). Ensemble learning, a branch of ML, combines multiple
base ML models, homogeneous (e.g., a combination of multiple decision trees) or heterogeneous 
(e.g., a combination of decision trees with support vector machines), to enhance predictive 
performance by mitigating errors between observed and predicted data (Zhang and Ma, 2012). 
Here, we employed three ensemble modeling approaches for predicting SOC.

Quantile regression forest (QRF), unlike traditional regression methods, QRF can handle 
sparse legacy data effectively without the need for kriging interpolation of residuals (Meinshausen, 
2006). The QRF algorithm can predict SOC values at various quantiles without relying on specific 
assumptions about the; therefore, it extends the capabilities of the random forest by providing 
accurate estimates across the entire distribution of the response variable. We leverage the 
quantregForest package in R (Meinshausen, 2006) to implement the QRF method. Validation 
statistics for QRF models were computed using out-of-bag error estimation. This method evaluates 
the model's performance by measuring the prediction error on data points not included in the 
samples used to train each decision tree in the ensemble. Thus, out-of-bag error estimation provides 
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an unbiased estimate of the model's predictive accuracy, helping to measure its performance in 
generalizing to new data.

Ensemble Machine Learning (MLR) combines linear model regression predictors with non-
parametric models using bagging and boosting algorithms (Dietterich, 2000). Bagging and boosting 
are ensemble learning techniques used to improve the performance of ML models by combining 
multiple base models. Overall, bagging involves creating multiple subsets of the training data 
through bootstrapping (random sampling with replacement). Then, a base model (e.g., a decision 
tree) is trained on each subset independently. Finally, predictions from all base models are 
combined, typically by averaging, to make the final prediction. Conversely, Boosting works 
sequentially by training a series of weak models (i.e., models that perform slightly better than 
random models) and giving more weight to mispredicted data in subsequent iterations. Each new 
model focuses on the observations mispredicted by the previous models, thus gradually improving 
the model's performance. The final prediction is typically a weighted sum of predictions from all 
weak models. Both bagging and boosting aim to reduce overfitting and improve the overall 
performance and robustness of the model. We constructed a stacked model by integrating 
predictions from five modeling techniques: linear model regression, random forest, deep learning, 
cubist, and weighted k-nearest neighbor classifier. The predictions were used as features for a 
stacked model trained to compress the predictions from the base models. Each base model 
underwent independent assessment through ten-fold cross-validation. To incorporate spatial 
information, the dataset was split using spatial partitioning by k-means clustering, considering two 
classification layers: the XY locations of soil data and the Köppen climate classification (Kottek et 
al., 2006). The MLR R package was used to implement this ensemble approach (Bischl et al., 2016).

Auto-machine learning (AutoML) automates building ML models by efficiently selecting 
algorithms, tuning hyperparameters, and optimizing computational resources. With the vast array of
ML algorithms available and the complexities of hyperparameter tuning, manual selection, and 
optimization can be challenged. We used the H2O package in R (Fryda T; Erin LeDell, 2024) to 
address this issue, which employs various Gradient Boosting Machine (GBM) algorithms such as 
generalized linear models, distributed random forests, deep neural networks, XGBoost, and gradient
boosting machines. This diversity of models allows stacked ensembles to produce robust final 
predictions. The models were evaluated using 10-fold cross-validation and ranked based on their 
root-mean-square error (RMSE).

2.3 Spatial Prediction

We built model-based predictive maps for SOCc at depths of 0-30 cm and 30-100 cm, and 
for SOCs at depths of 0-30 cm and the effective depth, with a pixel resolution of 90 meters. To do 
that, we first generated three prediction maps using each ensemble modeling approach (i.e., QRF, 
MLR, and AutoML) and calculated the standard deviation for each pixel in these maps. Then, we 
assigned the predicted value from the most accurate map -determined by the lowest standard 
deviation value (i.e., the highest agreement among models)- to each pixel (Fig. 3). This approach 
ensures that the final predictive maps reflect the most reliable estimates of SOC content at each 
pixel, incorporating the collective insights from multiple modeling techniques and accounting for 
the associated uncertainty. This approach has been successfully applied in digital soil mapping 
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(Varón-Ramírez et al., 2022; Arroyo-Cruz et al., 2017) and in reducing uncertainty when modeling 
ecosystem-related variables (Gavilán-Acuña et al., 2021).

Figure 3. Scheme illustrating the generation of predictive maps of soil organic carbon using an 
ensemble modeling approach to reduce model uncertainty. SD (standard deviation).

The metrics and information criteria used to evaluate the models’ performance generated by 
the three ensemble modeling approaches included coefficient of determination (R2), concordance 
correlation coefficient (CC), which measures the concordance level between predicted and observed
values, root mean square error (RMSE), and mean absolute error (MAE). The dataset was randomly
split into calibration (75%) and validation (25%) data for each modeling approach. Conditional 
quantile plots were generated to further assess model performance across the entire distribution of 
observed SOC values (Wilks, 2019). These plots evenly divide the predicted values and identify 
corresponding observation values, including the median, 25th/75th, and 10th/90th percentiles. By 
doing so, they offer insights into the alignment between predictions and observations across the 
entire range of values. The conditional quantile plots were generated using the openair package in R
(Carslaw and Ropkins, 2012).
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3. Soil database overview
The harmonized soil database comprised 8,332 soil profiles with 25,370 morphological 

horizons distributed across peninsular Spain. Only profiles with complete information were used for
SOC content calculation to prevent error propagation. This resulted in 1,499 profiles, slightly 
exceeding the 1,475 used for SOC estimation at the standard depth of 0-30 cm. SOCc exhibited 
high variability across soil horizons, ranging from 0.02 g/kg to 296.9 g/kg, with a mean of 16.53 
g/kg (Table 2). The mean SOCc at the standard depth of 0-30 cm was 20.7 g/kg; at the 30-100 cm 
depth, it was 5.8 g/kg, representing 35% of the soil profile mean. Similarly, SOCs varied from 0.006
kg/m² to 87.1478 kg/m², with a mean of 2.965 kg/m². SOCs at the standard depth of 0-30 cm 
accounted for 65% of the soil profile mean.

Table 2. Statistical summary of SOCc and SOCs at different soil depths.

Variable Depth Number of
profiles Minimum 1st Quantile Median Mean 3rd Quantile Maximum

SOCc
(g/kg)

0-30 8,332 0.017 7.148 14.008 20.691 27.098 257.95

30-100 6,947 0.017 1.700 3.371 5.833 6.814 185.743

SOCs
(kg/m2)

0-30 1,475 0.119 2.066 3.738 5.31 6.95 39.967

ESD(1) 1,499 0.119 3.000 5.300 8.198 10.260 93.892
(1) Effective soil depth. Soil organic carbon concentration (SOCc). Soil organic carbon stock (SOCs).

Both SOCc and SOCs followed a normal distribution with a right-skew after transforming 
the original values to a natural log (Fig. S1 in Supplementary material). The highest SOCc values 
were concentrated at the upper layers (0-30 cm), decreasing rapidly with depth (Fig. 4). Mean 
profile values ranged from 23 g/kg in the upper horizon (0-5 cm) to 3 g/kg in the deepest horizon 
(>200 m). In general, peninsular Spain’s soils showed shallow depths, with only 35% of horizons 
extending over 100 cm and decreasing to 3% at depths exceeding 150 cm. 

Figure 4. Average Soil Organic Carbon concentration (SOCc; g/kg) at different depths.
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Nugget-to-sill ratio (NSR) analysis indicated weak spatial autocorrelation of SOC with an 
NSR >75% for the log-transformed SOCc. The large nugget effect (i.e., 1.3; Fig. S2 in 
Supplementary material) suggested that the data did not capture a significant portion of fine-scale 
SOCc variation. Despite the weak autocorrelation evidence, SOCc kriging predictions aligned with 
the expected distribution and demonstrated relatively low standard errors (Fig. S2 in Supplementary
material). To delve deeper into the spatial dependence of SOCc with soil depth, autocorrelation 
analysis was conducted at six different depths, ranging from 5 cm to depths exceeding 100 cm 
(Table S1 in Supplementary material). A moderate dependence was observed, with the best spatial 
correlation (NSR = 35%) at the shallowest horizon (0-5 cm), gradually decreasing with depth to an 
NSR of 72% at 2 m.

4. Representativeness of the soil database
The representativeness of a soil type in the database (i.e., the probability of a soil type being 

sampled) as a function of soil-forming factors is illustrated in Fig. 5. The representativeness values 
ranged from 0 (low) to 1 (high). The Maxent model yielded an AUC value of 0.611, indicating a 
predictive capacity greater than that yielded by a random model (i.e., 0.5). The predictive map 
showed variations in representativeness across different ecosystems. Overall, mountainous regions 
such as the Central Mountain System in central Spain, Sierra Morena and the Betic System in the 
south, as well as the Sierra de la Demanda, Cantabrian Range, and the Pyrenees in the north, 
showed high representativeness, as depicted by the blue areas in Fig. 5. In contrast, the Central 
Plateau, Ebro Depression, and Tajo and Guadiana Basins (i.e., interior regions in both the south and 
the north) were among the least represented areas (areas in green). 

Figure 5. Maxent model-based representativeness of soil types sampled across peninsular Spain.
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5. SOC modeling and prediction
The CVI analysis resulted in a highly reduced covariate space across selection methods for 

SOCs and SOCc. Table 3 shows the selected covariates at different depths. Seventeen and nineteen 
covariates were selected for modeling SOCc at the 0-30 cm and 30-100 cm depth, respectively. For 
modeling SOCs, thirteen covariates were selected for the 0-30 cm depth and the effective depth. 
Overall, annual precipitation, and the mean and minimum spring temperatures, were identified as 
the most influential climatic factors. Similarly, among the remotely sensed variables related to the 
carbon cycle, the annual mean and maximum NDVI and the monthly mean EVI (in March) were 
found relevant. Moreover, annual and monthly indices linked to the water cycle, such as ET and 
NDWI, exhibited notable importance. Regarding topographic covariates, indices derived from 
terrain roughness, including maximum rough-magnitude, dev-scale related to topographic position, 
and slope, were identified as particularly relevant. Additionally, soil covariates, such as lithology, 
soil type, and land use/cover, were included in all SOC models due to their fundamental role in 
modeling soil properties (Jenny, 1941).

Table 3. Covariates selection for modeling soil organic carbon concentration (SOCc) and soil 
organic carbon stock (SOCs) at different standard depths.

Frequency SOCc (0-30 cm) SOCc (30-100 cm) SOCs (0-30 cm/ESD) (1)

Climate variables (2)

Annual - Min Temp - Mean Pp
- Mean Pp 
- Mean Temp

Monthly

- Mean Pp for May
- Mean Temp for May
- Min Temp for May

- Max Temp for Feb
- Mean Temp for May
- Min Temp for March

- Max Temp for April
- Min Temp for May

Remotely sensed indices (2)

Annual
- Max Albedo
- Mean NDVI
- Max NDWI

- Mean ET
- Max LST
- Max NDVI
- Max NDWI

- Max ET
- Mean NDVI

Monthly

- Mean Albedo for 
August

- Mean ET for March
- Mean LST for 

March
- Mean NDVI for 

June

- Mean EVI for March
- Mean ET for May
- Mean LST for July
- Mean NDWI for July

- Mean EVI for March

Topographic variable (2)

Static
- dev-magnitude 
- dev-scale 
- rough-magnitude 

- dev-magnitude 
- dev-scale 
- rough-magnitude
- slope

- elev-stdev
- rough-magnitude
- slope

Land features

  Static      - Lithology                         - Soil types                              - Land use/cover

Total number 17 19 13
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(1) ESD: effective soil depth.  (2) Max: maximum; Min: minimum; dev-magnitude: Max multiscale deviation; dev-scale: Scale of the Max multiscale;
rough-magnitude:  Max multiscale  roughness;  elev-stdev:  Elevation  standard  deviation;  Pp:  precipitation;  Temp:  temperature;  NDVI:  Normalized
Difference Vegetation Index; NDWI: Normalized Difference Water Index; ET: Evapotranspiration, LST: Land Surface Temperature.

Analysis of residuals revealed R2 values of 0.68 for SOCc and 0.54 for SOCs in the upper
30 cm, with lower values  in  deeper  horizons.  Table 4 summarizes  SOC models'  performance at
different  depths.  Model  validation  included  computing  the  CC for  both  calibration  (CCcal)  and
validation (CCval) data and the normalized root mean square error (nRMSE) and normalized mean
absolute  error  (nMAE)  for  validation  data.  The  inconsistency  between  CCcal  and  CCval  was
minimal, except in the AutoML model, where the GBM family of algorithms notably contributed to a
higher CCcal. Based on CCval and nMAE metrics, a decline in accuracy with depth was observed for
both SOC variables. For instance, at the 0-30 cm depth, CCval was 0.583, and nMAE was 0.441,
while at the 30-100 cm depth, CCval was 0.351, and nMAE was 0.668 for SOCc. Comparing the
same depth intervals, SOCc demonstrated greater accuracy than SOCs across all models in the upper
30 cm, whereas it exhibited the lowest accuracy at 30-100 cm. Although the disparities in nMAE
among the three predictive ensemble approaches were minimal, there were noticeable differences in
CC values,  indicating a decreasing trend of higher performance in the AutoML, QRF, and MLR
models.

Table 4. Average model performance for soil organic carbon concentration (SOCc) and stock (SOCs)
at different depths.

Parameter CCcal CCval nRMSE nMAE CCcal CCval nRMSE nMAE

SOC concentration

Predictive model 0-30 cm 30-100 cm

AutoML 0.825 0.583 0.684 0.433 0.629 0.351 1.296 0.668

QRF 0.485 0.472 0.733 0.458 0.354 0.307 0.680 0.610

MLR 0.434 0.350 0.775 0.474 0.278 0.227 0.737 0.578

SOC stock

0-30 cm Effective soil depth

AutoML 0.672 0.417 0.548 0.441 0.563 0.378 0.651 0.516

QRF 0.445 0.381 0.545 0.504 0.358 0.295 0.646 0.552

MLR 0.401 0.270 0.628 0.535 0.323 0.232 0.711 0.570

Normalized root mean square error (nRMSE) and Normalized mean absolute error (nMAE) in parts per unit.

The conditional quantile plots revealed that the predicted SOC values did not encompass
the entire  range of observed values (Fig.  S3 in Supplementary material).  The highest predicted
SOCc at 0-30 cm reached a maximum of 136.1 g/kg (compared to the maximum observed value of
257.95 g/kg), while the highest predicted SOCs value at the effective soil depth (ESD) reached
38.33  kg/m2  (compared  to  the  observed  value  of  93.892  kg/m2)  (Fig.  S3  in  Supplementary
material).
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Model-based predictive maps of SOCc and SOCs in peninsular Spain are shown in Figs. 6
and 7, respectively. Overall, SOCc and SOCs exhibited similar and consistent spatial patterns across
depths (Fig, 6a and 7a). Higher SOC predicted values correlated with both climatic and topographic
features. For example, the northwest and north regions, characterized by a humid climate, exhibited
the highest SOC content, gradually decreasing toward the east. Similarly, major mountainous areas,
such  as  the  Central  Mountain  System,  Iberian  System,  and  Subbetic  System,  also  achieved
noticeable  SOC  predictions.  In  contrast,  low  SOC  predictions  were  obtained  in  extensive
agricultural  regions,  including  the  Central  Plateau,  southwest  Guadiana  alluvial  plain,  and  the
Guadalquivir  depression,  along  with  arid  zones  in  the  southeast.  The  uncertainty  around  SOC
predictions revealed distinct spatial patterns for SOC predictions, with notable disparities between
the northern and southern regions of peninsular Spain. These disparities positively correlated with
SOC content.  North areas  with higher  SOC predicted values  also exhibited  greater  uncertainty
(Figs. 6b and 7b). Although the spatial distribution of SOC uncertainty remained consistent between
concentration and stock, SOCc exhibited larger areas with higher uncertainty. Regarding standard
depths, regions with higher uncertainty were more prevalent in upper horizons (0-30 cm) than in
deeper horizons.

The  spatial  distribution  of  the  ensemble  modeling  approach  used  for  predicting  SOC
content  varied depending on the combination of  SOCc and SOCs and depth (Figs 6c and 7c).
Regarding SOCc at 0-30 cm, all three models exhibited a uniform spatial distribution, except for
regions with higher SOCc in the north and mountainous areas, where the QRF model was dominant.
In contrast, predictions for SOCc at 30-100 cm showed a reduced contribution from the AutoML
approach, with MLR and QRF models dominating distinct areas. Models’ capacity to predict SOCs
was spatially consistent at different depths, with no discernible spatial pattern.
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Figure 6. (a) Soil organic carbon concentration (SOCc) maps in peninsular Spain at a 90-meter
pixel resolution. (b) Uncertainty maps are based on the standard deviation of predictions obtained
through the three ensemble modeling approaches. (c) Ensemble algorithm employed for pixel-level
SOC predictions.  The visualization used the cumulative pixel  count  cut method, with a default
range from 2% to 98%.
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Figure  7.  (a)  Soil  organic  carbon  stock  (SOCs)  maps  in  peninsular  Spain  at  a  90-meter  pixel
resolution. (b) Uncertainty maps are based on the standard deviation of predictions obtained through
the three ensemble modeling  approaches.  (c)  Ensemble  algorithm employed for  pixel-level  SOC
predictions. The visualization used the cumulative pixel count cut method, with a default range from
2% to 98%.
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6. Data availability
The soil organic carbon concentration (g/kg) maps for the 0-30 cm and 30-100 cm standard

depths, along with the soil organic carbon stock (tC/ha) maps for the 0-30 cm standard depth and the
effective soil depth, including their associated uncertainties, —all at a 90-meter pixel resolution—
(SOCM90) are freely available at 
https://doi.org/10.6073/pasta/48edac6904eb1aff4c1223d970c050b4 (Durante et al., 2024).

7. Further considetations
Our study seeks to enhance the availability and reliability of soil information essential for

informed decision-making regarding SOC management and climate change mitigation strategies. By
integrating disparate soil profile databases and employing advanced ensemble modeling techniques,
we aimed to provide comprehensive and standardized SOC maps for peninsular Spain, facilitating
access to critical soil data at the national scale. As part of the broader effort to enhance soil data
accessibility  and  usability,  our  methodology  demonstrates  the  transformation  of  previously
inaccessible soil information into actionable insights for spatial variability studies and carbon stock
assessments.

By establishing a systematic approach to organizing national soil information, we mitigate
potential errors and discrepancies in future data generation processes, ensuring the reliability and
consistency of soil carbon estimates. Furthermore, the enhanced spatial modeling approach of soil
information in peninsular Spain supports ongoing global soil information initiatives, including the
Global  Soil  Organic  Carbon  Map,  a  project  of  FAO,  the  Global  Soil  Partnership,  and  the
GlobalSoilMap.Net  project.  It  enables  informed  decision-making  regarding  land  use  planning,
agricultural practices, and environmental conservation efforts. 

The SOCM90 integrated information on more than eight thousand profiles for peninsular
Spain soils. Despite these advancements, it is essential to acknowledge the existence of data gaps in
certain  areas  and  incentivize  future  soil  survey  programs  to  increase  sampling  efforts  in
underrepresented regions. By expanding soil monitoring networks and improving spatial coverage,
the SOCM90 can contribute to more comprehensive assessments of SOC content and inform targeted
soil management strategies.
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