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Abstract. Riverine dissolved organic carbon (DOC) plays a vital role in regional and global carbon cycles. However, the 

processes of DOC conversion from soil organic carbon (SOC) and leaching into rivers are insufficiently understood, 

inconsistently represented, and poorly parameterized, particularly in land surface and earth system models. As a first attempt 

to fill this gap, we propose a generic formula that directly connects SOC concentration with DOC concentration in headwater 15 

streams, where a single parameter, the transformation rate from SOC in the soil to DOC leaching flux, 𝑃𝑟 , accounts for the 

overall processes governing SOC conversion to DOC and leaching from soils (along with runoff) into headwater streams. We 

then derive a high-resolution 𝑃𝑟  map over the contiguous U.S. (CONUS) in five major steps: 1) selecting 2595 headwater 

catchments where observed riverine DOC data are available with reasonable quality; 2) estimating catchment-average SOC 

for the 2595 catchments based on high-resolution SOC data; 3) estimating the 𝑃𝑟  values for these catchments based on the 20 

generic formula and catchment-average SOC; 4) developing a predictive model of 𝑃𝑟  with machine learning (ML)  techniques 

and catchment-scale climate, hydrology, geology, and other attributes; and 5) deriving a national map of 𝑃𝑟 , based on the ML 

model. For evaluation, we compare the DOC concentration derived using the 𝑃𝑟  map and the observed DOC concentration 

values at another 3210 headwater gauges. The resulting mean absolute scaled error and coefficient of determination are 0.73 

and 0.47, respectively, suggesting the effectiveness of the overall methodology. Efforts to constrain uncertainty and evaluate 25 

sensitivity of 𝑃𝑟  to different factors are discussed. To illustrate the use of such a map, we derive a riverine DOC concentration 

reanalysis dataset for more than two million small catchments over CONUS. The 𝑃𝑟  map, robustly derived and empirically 

validated, lays a critical cornerstone for better simulating the terrestrial carbon cycle in land surface and earth system models. 

Our findings not only set a foundation for improving our predictive understanding of the terrestrial carbon cycle at the regional 

and global scales but also hold promises for informing policy decisions related to decarbonization and climate change 30 

mitigation. 
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1 Introduction  

With the Earth's climate rapidly warming due to increasing atmospheric greenhouse gas concentrations, there is a growing 40 

focus on quantifying the regional and global carbon pools within the land, riverine, and oceanic systems, as well as the intricate 

interconnections among them (Jing et al., 2021; Teodoru et al., 2015; Duarte, 2017). Each year, about 2 billion metric tons 

(Pg) of dissolved organic carbon (DOC) are transported from land to the oceans via rivers globally, comparable to the amount 

of atmospheric CO2 that deposits into the ocean (Hansell et al., 2009; Lønborg et al., 2020). Moreover, riverine DOC is vital 

to aquatic biogeochemistry by providing nutrients to microbial communities and influencing aquatic greenhouse gas emissions 45 

(Li et al., 2019). 

 

However, it remains a challenge to represent and predict riverine DOC effectively in the land biogeochemical module of Earth 

system models (ESMs), which are the primary tools for studying carbon cycles in the context of climate change. A chief reason 

behind this long-standing challenge is the complexity of terrestrial and aquatic processes and their interactions governing SOC 50 

transformation to DOC and transport from soils to rivers. The relevant terrestrial processes include the conversion of solid 

SOC into soil DOC, the adsorption and desorption of DOC by surrounding soils, the transport of DOC from soils into 

headwater streams along with runoff, and the degradation of soil DOC during this transport. The relevant aquatic processes 

include the transportation of riverine DOC from headwater streams, the interception of DOC fluxes by reservoirs and lakes, 

the degradation of riverine DOC during transport, and the consumption of DOC by aquatic biosystems. Furthermore, each 55 

process is controlled by several environmental factors, which often exhibit substantial spatial heterogeneity. Models attempt 

to represent these complexities through parameters associated with governing equations. For instance, Tian et al. (2015a, b) 

incorporated the effects of runoff on DOC leaching with a coefficient that involves both surface and subsurface runoff. Surface 

and subsurface runoff are further affected by many environmental factors such as climate, soil, vegetation, and topography (Li 

et al., 2014; Li and Sivapalan, 2014).  60 

 

The complexity of relevant processes and their driving environmental factors is also evident in the diverse process descriptions 

in several land biogeochemical models that are pioneers in representing the suite of processes from  SOC to riverine DOC, 

such as Dynamic Land Ecosystem Model (DLEM) (Tian et al., 2015a, b; Yao et al., 2021), the integrated catchment model for 
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carbon (INCA-C) (Futter et al., 2007), the Joint UK Land Environment Simulator Dissolved Organic Carbon model (JULES-65 

DOCM) (Nakhavali et al., 2018), and the TRIPLEX-hydrological routing algorithm (TRIPLEX-HYDRA) (Li et al., 2019). 

These models differ in the processes involved and the process descriptions, owing to the inconsistent understanding of relevant 

processes among the modeling community. For instance, DLEM and TRIPLEX-HYDRA both adopt CENTURY-like (Parton 

et al., 1987; Metherell et al., 1993) formulas to estimate DOC leaching fluxes (Tian et al., 2015a, b; Yao et al., 2021; Li et al., 

2019), but with notably different ways of incorporating both soil and water-related factors. For instance, TRIPLEX-HYDRA 70 

includes an empirical coefficient to account for soil absorption of SOC before its dissolution and DOC degradation in soils, 

which are not explicitly accounted for in DLEM. TRIPLEX-HYDRA incorporates hydrologic effects by directly using the 

water flow rate, whilst DLEM uses a dimensionless ratio to account for these effects. Equally important, the available 

observations have not been fully used for estimating or calibrating the numerous DOC-related parameters at the regional and 

larger scales in a spatially continuous yet variable fashion. Existing models usually calibrate several DOC-related parameters 75 

against DOC observations at a limited number of river gauges, leading to the issue of overparameterization, where multiple 

combinations of parameter values can achieve the same simulation results (Sivapalan, 2005). Moreover, the resulting 

parameters often poorly reflect the spatial heterogeneity of underlying processes and environmental factors due to the limited 

spatial coverage of DOC observations (Futter et al., 2007; Tian et al., 2015a, b; Nakhavali et al., 2018; Li et al., 2019; Liao et 

al., 2019; Yao et al., 2021). Overall, existing models for simulating DOC fluxes are still subject to limited transferability over 80 

poorly observed regions due to insufficient process understanding, data scarcity, and overparameterization. 

 

One traditional strategy for improving model transferability over poorly observed regions is parameter regionalization. 

Generally, the low-dimensional relationships between a target parameter and other environmental variables are derived based 

on prior knowledge or regression analysis from the locations where sufficient observations are available. The relationships are 85 

then generalized and transferred to poorly-observed places (Doron et al., 2011; Dupas et al., 2013; Ye et al., 2014; Alebachew 

et al., 2014; Ayata et al., 2018; Tan et al., 2022). However, such a strategy will not work well if statistically robust and 

mechanistically meaningful relationships can not be derived from the conventional regression analyses or prior knowledge 

when, for example, the relationships are high-dimensional and nonlinear (Abeshu et al., 2022; Li et al., 2022). Fortunately, 

state-of-the-art machine learning (ML) techniques offer a promising and effective alternative strategy, owing to their proven 90 

advantages in capturing higher-order relationships between the target and predictive variables (predictors), especially when 

prior knowledge of such relationships is still in its infancy (Afan et al., 2016). For example, ML techniques have been 

successfully employed to capture the complex relationships among median sediment particle size (D50) and several 

environmental factors, which enabled the derivation of a national map of D50 (Abeshu et al., 2022). They have also been used 

to predict the concentration of fecal indicator bacteria, providing valuable guidance to beach closure problems (Li et al., 2022). 95 

 

As the first step in addressing these challenges, this study develops an ML-powered approach for parameterizing DOC leaching 

fluxes at regional and continental scales. The rest of this paper is organized as follows. Section 2 outlines the overall 
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methodology, including governing equations and corresponding parameters, data preparation, and the ML techniques 

employed. Section 3 presents the results over the contiguous United States (CONUS). Sections 4, 5, and 6 discuss the 100 

uncertainty, potential use of the resulting datasets, limitations of methods, and data availability. Section 7 concludes with a 

summary and potential future directions.  

2 Methods 

The methodology here is described with specific details over the CONUS region, but it is transferable to other regions after 

some modifications based on data availability.   105 

2.1 Governing Equation 

Several existing land or land biogeochemical models commonly employ CENTURY-like formulas to represent the leaching 

of DOC (Futter et al., 2007; Tian et al., 2015a, b; Nakhavali et al., 2018; Li et al., 2019; Yao et al., 2021; Parton et al., 1998). 

In such formulas, the DOC leaching flux is estimated as a linear function of several factors, including the SOC or DOC 

concentration in soil, runoff, and other relevant environmental factors. For example, in DLEM (Tian et al., 2015a, b), DOC 110 

leaching flux is estimated as 

                                                                      𝐹𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 = 𝐹𝑆𝑂𝐶_𝑆𝑜𝑖𝑙 × 𝛼1 × 𝛼2 × 𝛼3                             (1) 

Where 𝐹𝑆𝑂𝐶_𝑆𝑜𝑖𝑙  is the total amount of decomposed SOC in soil (g Cm-2s-1); 𝛼1 is the fraction of decomposed SOC that is 

dissolvable (%);  𝛼2 is the runoff coefficient (-), i.e., the ratio of total runoff volume to the sum of total runoff volume and 

soil water content; and 𝛼3 is another coefficient (-) accounting for the effects of DOC concentration in soil water and 115 

desorption. In TRIPLEX-HYDRA (Li et al., 2019), DOC leaching flux is given as  

                                                      𝐹𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 = 𝐶𝑆𝑂𝐶 × 𝐾𝑠 × 𝐾𝑎 × 𝑄𝑟𝑢𝑛𝑜𝑓𝑓 − 𝐾𝑠𝑜𝑖𝑙                                  (2) 

where 𝐹𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 is the DOC flux in the soil water (g C/s); 𝐶𝑆𝑂𝐶  is the concentration of SOC in the soil (g C/m3); Ks is the 

solubility of SOC (-); Ka is the adsorption coefficient of SOC (-); Ksoil represents the degradation rate of DOC in soils (g C/s), 

and 𝑄𝑟𝑢𝑛𝑜𝑓𝑓  is total runoff rate (m3/s). 120 

 

Based on the similarity between equations (1) and (2), while keeping minimal complexity in the process representation, we 

propose a simpler formula to estimate DOC leaching flux as 

                                                                      𝐹𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 = 𝐶𝑆𝑂𝐶 × 𝑄𝑟𝑢𝑛𝑜𝑓𝑓 × 𝑃𝑟                                  (3) 

Eqn. (3) can be rewritten as  125 

                                                                       𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 =
𝐹𝐷𝑂𝐶𝑟𝑢𝑛𝑜𝑓𝑓

𝑄𝑟𝑢𝑛𝑜𝑓𝑓
= 𝐶𝑆𝑂𝐶 × 𝑃𝑟                                                   (4) 
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Where 𝐹𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 is the DOC leaching flux (g C/s), 𝐶𝑆𝑂𝐶  is the SOC concentration (g C/m3 soil), 𝑄𝑟𝑢𝑛𝑜𝑓𝑓  is the runoff volume 

per unit time (m3 water/s), 𝑃𝑟  is the transformation rate from SOC in soil to DOC in runoff (m3 soil/ m3 water), and 𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 

is the DOC concentration in the runoff (g C/m3 water). 

 130 

Eqn. (4) has several advantages: 1) its lumped parameter, 𝑃𝑟 , accounts for all relevant processes and factors, including soil 

carbon decomposition, DOC sorption-desorption balance, DOC transport and degradation in soils, etc.; 2) its simplicity 

significantly reduces data requirements for large-scale parameterization since it is highly parameter-parsimonious and much 

more compatible with the availability of DOC observational data.  

 135 

We further assume that 𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 can be approximated with the riverine DOC concentration at the catchment outlets for 

headwater catchments, i.e.  

                                                                              𝐶𝐷𝑂𝐶_𝑜𝑢𝑡𝑙𝑒𝑡  ≈  𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓                                                                      (5) 

Where 𝐶𝐷𝑂𝐶_𝑜𝑢𝑡𝑙𝑒𝑡  is the riverine DOC concentration at the catchment outlet (g C/m3). The rationale behind Eqn. (5) is two-

fold: 1) The travel time of runoff in small headwater streams is typically much less than one day, e.g., the daily total runoff 140 

rate can be approximated with the daily streamflow rate for headwater catchments (Li et al., 2013; Ducharne et al., 2003), and 

2) Due to the short travel time of DOC in headwater streams, riverine DOC degradation in headwater streams mostly occurs 

at a rate of about 1% per day according to previous experimental and modeling studies (Strauss & Lamberti, 2002; Tian et al., 

2015a,b; Li et al., 2019), hence is negligible.  

 145 

Combining Eqn. (4) and (5) yields 

                                                                               𝐶𝐷𝑂𝐶_𝑜𝑢𝑡𝑙𝑒𝑡 ≈ 𝐶𝑆𝑂𝐶 × 𝑃𝑟                                                                        (6) 

Eqn. (6) may be used in at least two ways: 1) One can estimate 𝑃𝑟  at the catchment scale wherever observed DOC concentration 

and SOC values are available, and 2) Once 𝑃𝑟  is estimated a priori or through calibration, one can quickly predict riverine DOC 

concentration or discharge in headwater streams from the corresponding SOC values.  150 

2.2 Data 

A key step in the data preparation in this study is to pair up SOC data and riverine DOC observations at headwater catchments. 

The SOC data required for this study are from the Harmonized World Soil Database (HWSD) v1.2 (Fischer et al., 2008). This 

database provides SOC values at a spatial resolution of 1 km for two vertical soil layers at each grid cell - the top layer (0-30 

cm) and the sub-layer (30–100 cm). Considering that DOC leaching from soils into rivers predominantly comes from the 155 

topsoil (Brooks et al., 1999; Finlay et al., 2006), we use the SOC content data from the top 30 cm layer for our estimations. 

We also take into consideration that there are missing values in some grid cells in the HWSD v1.2 and adjust our catchment 

selection accordingly. Riverine DOC observations are available via the Water Quality Portal (WQP) (Water Quality Portal, 
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2021). WQP integrates the publicly available water quality data from the USGS National Water Information System (NWIS) 

(U.S. Geological Survey), the EPA STOrage and RETrieval Water Quality eXchange (STORET-WQX) (USEPA), and the 160 

USDA ARS Sustaining The Earth's Watersheds - Agricultural Research Database System (STEWARDS) (Steiner et al., 2008). 

As of now, the WQP features data from 32071 river stations within the CONUS. These stations have recorded at least one 

DOC measurement between 1900 and the present. 

 

In order to pair up SOC and DOC data at headwater catchments, we rely on the National Hydrography Dataset Plus (NHDPlus) 165 

dataset hosted by the U.S. Geological Survey (USGS) (Mckay et al., 2012). This dataset is chosen for two reasons: Firstly, 

NHDPlus provides well-defined catchment boundaries and their corresponding river segments, denoted as flowlines. There 

are ~2.6 million NHDPlus flowlines in CONUS, each with its corresponding local catchment boundary and other 

environmental attributes. For each flowline, there are two types of catchment boundaries provided: a local catchment which is 

immediately adjacent to and collects lateral runoff into the flowline, and an upstream drainage catchment which is the sum of 170 

both local catchment and the drainage areas corresponding to all the flowlines upstream of the local one. The sizes of these 2.6 

million local catchments vary from the 5th percentile at 9.68 km2 to the 95th percentile at 0.02 km2, depending on the 

corresponding surface topography, with a CONUS average of 3.12 km2 (see supplementary Figure S1). Secondly, NHDPlus 

is closely linked to ScienceBase (Wieczorek et al., 2018), a comprehensive scientific data and information management 

platform also hosted by USGS. ScienceBase incorporates a wide range of environmental variables, including climate, 175 

hydrology, soil, and geological data, conveniently available at the catchment scale over the whole CONUS. These 

environmental data are critical in the ML modeling analysis.  

 

Correspondingly, the overall data preparation procedure consists of three major steps: 1) Selection of headwater catchments 

based on the availability of observed riverine DOC concentrations of adequate quality. 2) Estimation of 𝑃𝑟  values for the 180 

catchments selected in Step 1, leveraging the corresponding riverine DOC observations and SOC reanalysis data. 3) Extraction 

of catchment-scale environmental variables that could potentially influence 𝑃𝑟 . Specific details of each step will be further 

discussed in the following subsections. 

2.2.1 Selecting headwater catchments 

Our selection process for suitable headwater catchments involves the integration of the NHDPlus dataset and observed riverine 185 

DOC concentration data from river stations: 

1. We conduct a geospatial analysis to identify the upstream drainage area of each WQP river station. This is 

accomplished by using the NHDPlus local catchments and flowlines. For every WQP station, we search for a 

NHDPlus flowline on which the station is located. Using a Python package HyRiver (Chegini et al., 2021), we co-

locate 29320 WQP stations with the corresponding NHDPlus flowlines. However, the remaining 2751 stations cannot 190 

be linked with the NHDPlus dataset due to the absence of adjacent flowlines. Some WQP stations are in close 
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proximity to each other and share the same NHDPlus flowlines. In such a case, we retain only one WQP station with 

the best data availability. Each flowline in NHDPlus is accompanied by a corresponding watershed boundary. 

However, not all WQP stations are precisely located at the outlets of these existing NHDPlus watershed boundaries. 

When faced with these circumstances, we derive the upstream drainage area boundaries for the WQP stations from 195 

Digital Elevation Model (DEM) data. Upon completion of this comprehensive geospatial analysis, we identify the 

upstream boundaries for 22,201 WQP stations. 

2. We further select the WQP stations whose drainage areas can be considered headwater catchments, based on two 

criteria: 1) there are no upstream rivers flowing into them, and 2) their drainage areas are no more than 2500 km2. 

This size threshold ensures that the travel distance of river water (and consequently, DOC) is ~50 km within these 200 

catchments. Assuming an average channel velocity of ~1.0 m/s (Chow et al., 1988), the average travel time is ~14 

hours, i.e., less than one day. Using these criteria, we identify 18,612 pairs of WQP stations and headwater 

catchments.   

3. For the 18,612 WQP stations, we perform a rigorous DOC data quality control based on five criteria: a) The record 

lengths of riverine DOC data should span at least one year; b) There should be at least two riverine DOC observations; 205 

c) No single season should dominate the riverine DOC observations, i.e., a single season should not account for more 

than 50% of the records; d) within the boundaries of the corresponding catchments, there should be sufficient 

availability of the NHDPlus catchment attributes and SOC reanalysis data; e) the catchments should not be 

significantly affected by dams, i.e., the total drainage areas of the dams within a catchment should be no more than 

5% of the total catchment area. The adoption of criteria (a)-(e) reflects a careful balance between ensuring data quality 210 

and maintaining adequate quantity, ensuring that sufficient WQP stations are retained to represent the entire CONUS. 

After the data quality control, there remain 5805 WQP stations with their corresponding headwater catchments.  

4. For the 5805 WQP stations and their headwater catchments, we verify the spatial independence among them. For 

instance, Catchment A is considered to be nested within Catchment B if A is situated within the drainage area of B. 

In such scenarios, while the fluxes observed at the outlet of Catchment B are dependent on those at the outlet of 215 

Catchment A, Catchment A itself remains independent of B. As illustrated in Supplementary Figure S2, in cases of 

nested catchments, the catchment with the smaller area is consistently selected as the independent catchment. From 

the 5805 pairs of the WQP stations and catchments, we identify 2595 as being independent and suitable for further 

ML modeling. The other 3210 pairs, despite the nesting issue, are still valuable; they are thus kept for evaluation of 

estimated DOC (see Section 3.4).  220 
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Figure 1. Variability in estimated 𝑷𝒓 across CONUS: a) For independent catchments (n=2595), and b) For evaluation catchments 

(n=3210). The color bars have been adjusted to enhance visual display by showing only the main body of values (from 5th percentile 

to 95th percentile) 

2.2.2 Estimating 𝑷𝒓  225 

For the final set of the paired WQP stations and headwater catchments, we calculate 𝑃𝑟  using the DOC observation from the 

WQP stations and long-term mean SOC from HWSD based on Eqn. (6). For each catchment, the catchment polygons are used 

to clip the top-layer SOC map at the 1km resolution, and the catchment-scale SOC is subsequently calculated as the spatial 

average of SOC values at those 1km grid cells within the catchment. Hereafter the 𝑃𝑟 estimated using Eqn. (6) are referred to 

as "Estimated 𝑃𝑟". The Estimated 𝑃𝑟 , derived from the analysis of WQP DOC observations and HWSD SOC data, exhibits a 230 
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wide range of values spanning several orders of magnitude. Figure 1a illustrates the spatial distribution of 𝑃𝑟  for the 2595 

independent catchments. In these catchments, the Estimated 𝑃𝑟  ranges from 4.61x10-6 to 8.04x10-3 (m3 soil/ m3 water), with a 

median value of 2.50x10-4 (m3 soil/ m3 water). As a broad assessment of the similarity between the catchments used to construct 

the model and the evaluation catchments, values of 𝑃𝑟  for the evaluation catchments calculated from data values of DOC and 

SOC using Eqn. (6) are shown in Figure 1b.  Here, the Estimated 𝑃𝑟  values in these catchments range from 8.81x10-6 to 235 

6.37x10-3 (m3 soil/ m3 water), with a median of 2.60x10-4 (m3 soil/ m3 water). Note that the spatial distribution of the selected 

catchments is quite consistent with the spatial distribution of the WQP stations, i.e., more densely distributed in the eastern 

than western U.S, suggesting a good spatial representation of the selected catchments over all the WQP stations in CONUS.  

2.2.3 Extracting environmental variables 

The ScienceBase dataset is a comprehensive resource that houses a wide array of environmental variables sorted into categories 240 

such as climate, hydrology, geology, and land use/land cover. We collect a wide range of environmental variables, comprising 

a total of 126 variables, across eleven distinct categories. We remove seven attributes related to dams and streams from the 

analysis as they are irrelevant to our analysis objectives. Furthermore, we exclude 24 attributes from further analysis because 

they predominantly contain zero values, with over 80% of the values being zero over CONUS. Out of the remaining 95 

variables (see supplementary Tables S1 and S2 for details), 46 are relatively independent from each other. However, the other 245 

49 are highly correlated with one or more variables. These 49 non-independent variables are further categorized into 9 

"correlated groups" and named based on the group property, as listed in Table 1. A "correlated group" is characterized by 

interdependence within each "correlated group" in two steps. First, we normalize each variable within a group using the Yeo-

Johnson power transformation (Yeo and Johnson, 2000) (see Supplementary Figure S3). The transformation ensures that the 

resulting dataset has a mean of 0.0 and a variance of 1.0. Second, we merge all the normalized variables into a single new 250 

variable through linear summation (Daoud, 2018). This new variable is thus independent of the other environmental variables. 

For those 46 independent variables, we apply the same transformation to minimize the impacts of varying magnitudes between 

different variables. Eventually, 54 independent variables remain, including 46 originally independent and 9 newly merged 

variables from the correlation groups.   

 255 

Table 1. The 9 correlation groups and the corresponding merged NHDPlus attributes. 

Correlation Group Original NHDPlus Attributes 

hydro_related RECHG, WB5100_ANN, MAXP6190, PPT7100_ANN, RUN7100 

temp_related PET, FSTFZ6190, LSTFZ6190, PRSNOW, ET, TMAX7100, TAV7100_ANN, TMIN7100 

agri_chem_related FUNGICIDE, HERBICIDE, INSECTICIDE, N97, P97, NLCD01_82, PEST219, KGBI, KGCLADO, KGFISH 

urban_related 
POPDENS90, IMPV01_BUFF100, IMPV06, IMPV06_BUFF100, POPDENS00, POPDENS10, NLCD01_21, 

NLCD01_22, NLCD01_23, NLCD01_24, TOTAL_ROAD_DENS, HDENS10 

soil_texture_related SILTAVE, SANDAVE 

soil_restrictive_related SRL25AG, SRL35AG, SRL45AG, SRL55AG 

wetd_related MAXWD6190, WDANN 

topo_related EWT, TWI, BASIN_SLOPE 
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elev_related ELEV_MEAN, ELEV_MIN, ELEV_MAX 

 

2.3 Machine learning techniques 

The ML technique used in this study is the eXtreme Gradient Boosting (XGBoost) algorithm, which is a powerful and widely 

adopted machine learning algorithm due to its exceptional performance in various applications (Abeshu et al., 2022; Delavar 260 

et al., 2019; Li et al., 2022). XGBoost is a scalable end-to-end tree-boosting system that belongs to the ensemble learning 

family (Chen and Guestrin, 2016). It combines multiple weak learners into a strong learner via sequential training and 

improving, and eventually forms a robust and accurate predictive model. By using XGBoost in this study, we aim to develop 

a predictive model that establishes causal linkages between the target variable, 𝑃𝑟 , and a small number of environmental 

variables (denoted as predictors hereafter). 265 

 

In addition to XGBoost, we take advantage of some other ML tools and techniques. Specifically, we use the Optuna 

optimization framework (Akiba et al., 2019) and k-fold cross-validation (k=5) for tuning the hyperparameters. By leveraging 

Optuna and k-fold cross-validation, we can systematically search and optimize the hyperparameters, maximizing the model's 

performance and accuracy. Furthermore, we employ the SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 2017) to 270 

aid in the selection of environmental factors that are related to 𝑃𝑟 . SHAP is a technique that assigns importance values to 

individual predictors in a model, providing insights into their contributions to the prediction. By using SHAP, we can identify 

the key environmental factors that significantly influence 𝑃𝑟  and further refine our model. Recent studies have demonstrated 

the efficiency and effectiveness of these techniques in capturing high-dimensional and complex relationships between a target 

biogeochemical variable and various environmental predictors. These techniques have been successfully applied in various 275 

studies, including riverine sediment, beach water quality, oceanic particulate organic carbon, and eutrophication impacts from 

corn production (Abeshu et al., 2022; Li et al., 2022; Liu et al., 2021; Romeiko et al., 2020; Fan et al., 2021). Readers are 

referred to Abeshu et al., (2022) for more details about these techniques.  

 

The overall procedure for developing a predictive ML model is illustrated in Figure 2 and outlined as follows: 280 

1. Prepare the input data for the ML modelling based on the independent catchments, their corresponding 𝑃𝑟  estimates, 

and environmental variables. To address the substantial statistical disparities and wide variation within each predictor, 

we employ power transformation on all predictors. The lambda parameter is held constant during the transformation 

process for the training, testing, and prediction datasets to ensure consistent and reproducible results. Following the 

transformation, the dataset exhibits a zero-mean and unit variance, with a distribution that closely resembles a 285 

Gaussian distribution (as illustrated in Figure S3).  

2. Randomly split the observational dataset (2595 catchments) into two sets: 70% for training and 30% for testing the 

ML model. These training and testing sets will be used throughout the subsequent steps.  
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3. Identify the list of predictors out of the 54 environmental variables extracted in Section 2.2.3 in three sub-steps: 

a. Generate a completely random predictor. 290 

b. Prepare an initial list of candidate predictors consisting of the random predictor and an initial list of candidate 

environmental variables. Use Optuna and k-fold cross-validation to obtain the optimal hyperparameters and 

train an intermediate ML model until the model achieves the best performance evaluated using the testing 

set.  

c. Calculate and rank the SHAP values for all the candidate predictors. Update the list of candidate predictors 295 

by keeping only those predictors with better SHAP values than the random predictor. For example, if the 

random predictor is ranked 20th, only the top 19 predictors are passed to the next iteration. 

d. Obtain an almost-final list of predictors by repeating sub-steps b-c.  

4. Check the representativeness of the almost-final list of predictors identified in Step 3. For each of these predictors, 

check whether its values from the independent catchments are statistically representative of the whole CONUS, i.e., 300 

its values from those 2.6 million local catchments. Drop those predictors that cannot pass the representativeness 

check. Similar to Abeshu et al. (2022), the representativeness check on each of the almost-final predictors is 

performed by comparing the cumulative distribution function (CDF) derived from the observational dataset (2595 

training catchments) and the CDF derived from the whole CONUS (about 2.6 million local catchments in NHDPlus). 

Specifically, comparisons are made between the 5th, 25th, 50th, 75th, and 95th percentiles between the two CDFs. 305 

After this Step 4, a final list of predictors is obtained. 

5. Develop the final ML model based on the final list of predictors using Optuna and k-fold cross-validation methods.  
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Figure 2. A workflow for the XGBoost model. 

 310 

In Steps 3 and 5, model performance metrics are required for model training and validation. The Kling-Gupta efficiency (KGE) 

(Gupta et al., 2009) has the advantage of simultaneously capturing both the magnitude and phase differences between the 

observed and simulated series (Gupta et al., 2009; Abeshu et al., 2022). However, further investigations have revealed several 

limitations: a) lack of an inherent benchmark value to distinguish between "good" and "bad" model performance, b) sensitivity 

to outliers, which can result in a systematic overestimation of the target variable, and c) instability when the target variable 315 

approaches zero (Pool et al., 2018; Santos et al., 2018; Knoben et al., 2019). Therefore, in addition to KGE, the mean absolute 

scaled error (MASE) is also used here to alleviate the influence of extreme values in the observation or simulation data 

(Hyndman and Koehler, 2006). MASE is a scaled error metric that is defined as the mean absolute error (MAE) of the model 

simulation divided by scaling factors (MAE of the observation in the original definition). In this study, we normalize MAE by 
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the geometric mean of the observation data. Note that Steps 3 and 5 above are relatively independent of each other and do not 320 

have to rely on the same metrics. 

3 Results 

3.1 Predictor selection 

In the predictor selection stage, after six iterations of hyperparameter tuning and predictor reduction with KGE as the metric, 

a list of 15 predictors is selected (see Table 2), including those related to climate, hydrology, pedology, and land cover. In 325 

addition, using MASE as the metric in this stage leads to a list of 19 remaining predictors, among which 13 are the same as 

the list of predictors identified using KGE. The predictor list selected using KGE is preferred due to the fewer predictors and 

similar model performance. 

 

The most influential predictors, as determined by SHAP values, include the "hydro_related" group of hydrologic variables, the 330 

subsurface flow contact time ('index_tqsub'), the areal percentage of a soil class defined with a mixture of moderate and slow 

infiltration rates in a catchment ('per_soilmsI') (for more detailed definitions of soil classes, please refer to Ross et al., 2018), 

and the woody wetland percentage ('per_wwetland'). The "hydro_related" group of hydrologic variables is the linear 

summation of the annual average amount of runoff, precipitation, and groundwater recharge. Groundwater has a dilution effect 

on DOC concentration (Kortelainen and Karhu, 2006). Similarly, precipitation and runoff contribute to the distribution and 335 

concentration of DOC (Tranvik and Jansson, 2002; Baum et al., 2007; Wilson et al., 2013). The influence of subsurface flow 

contact time on DOC concentration is complex and indirect. For instance, during transport, a catchment with a shorter contact 

time experiences reduced mineralization loss (Ludwig et al., 1996) and microbial consumption (Helton et al., 2015). 

Conversely, studies have shown that labile DOC concentration increases with contact time in some alluvial aquifers, as deeper 

groundwater inflow could provide considerable labile DOC (Wickland et al., 2012; Helton et al., 2015). Soil type plays a 340 

crucial role in determining the soil organic matter quantity and the partitioning of precipitation into runoff, consequently 

influencing the concentration of DOC in rivers (Camino-Serrano et al., 2014; Autio et al., 2016). Woody wetland, as one land 

cover attribute, has been identified as a significant predictor of downstream DOC concentration (Duan et al., 2017), because 

of the enhanced breakdown of organic matter and plant respiration. To enhance the model transferability, a representativeness 

check (see Section 4.1.2) led to the exclusion of three predictors—'per_hwetland,' 'basin_area,' and 'per_shurb.' These 345 

variables, initially chosen, were found inadequate in representing the real-world data distribution anticipated during the 

prediction phase. Therefore, only 12 predictors are adopted in the final model training.  

 

Table 2. Descriptions and SHAP values of 15 selected predictors 

Predictor  Description 
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Name used in this 
study 

Name in NHDPlus 

Mean absolute 

SHAP value (15 

attributes) 

Mean absolute 

SHAP value (12 

attributes) 

hydro_related  Correlated group of hydrologic-related attributes 4.67E-05 5.96E-05 

index_tqsub CONTACT Woody wetland percentage 3.80E-05 3.68E-05 

per_soilmsI HGBD 

Areal percentage of Hydrologic Group B/D soil, 
with moderate infiltration rate when artificially 

drained and very slow infiltration rate while not 

drained 

5.02E-05 5.37E-05 

per_wwetland NLCD01_90 Subsurface flow contact time index 3.52E-05 5.22E-05 

ave_wetday CWD 
Average number of consecutive days with 
measurable precipitation  

3.47E-05 3.78E-05 

temp_related  
Correlated group of temperature-related 
attributes 

2.03E-05 3.42E-05 

per_canopy CNPY11_BUFF100 
Percentage of tree canopy in 100-meter riparian 

buffer 
1.83E-05 2.51E-05 

elev_related  
Correlated group of catchment elevation-related 

attributes 
2.04E-05 2.30E-05 

per_eforest NLCD01_42 Evergreen Forest percentage 1.43E-05 1.72E-05 

per_rhumidity RH Watershed average relative humidity percent 8.89E-06 1.43E-05 

index_bflow BFI Base flow index 1.56E-05 1.37E-05 

soil_texture_related  Correlated group of soil texture-related attributes  1.09E-05 1.09E-05 

per_hwetland NLCD01_95 Herbaceous wetland percentage 2.75E-05  

basin_area BASIN_AREA NHDPlusV2 flowline catchment area 9.37E-06  

per_shurb NLCD01_52 
Percentage of areas dominated by shrubs less than 

5 meters tall 
1.54E-05   

 350 

3.2 Final model 

Figure 3 presents the performance of the ML model during both the training and testing phases (phases shown in Figure 2). 

To mitigate over-plotting, all the scatter plots (Figure 3 and hereinafter) employ color coding based on estimated density using 

kernel density estimation (KDE), as indicated by the corresponding color bar. After the exclusion of the three variables that 

displayed poor representativeness, the ML model performance remains stable between the training and testing phases, as 355 

gauged by metrics such as MASE, coefficient of determination (R2), and normalized root-mean-square-error (NRMSE). The 

similarities in these metrics between the Estimated and predicted 𝑃𝑟  values across both phases support the robustness of our 

12-predictor model. Consequently, the final ML model and the subsequent analyses are based on the 12 selected predictors. 

Furthermore, the consistency of model performance between the training (MASE= 0.40) and testing (MASE= 0.81) phases 

suggests that the model overfitting issues are well-regulated (Ying, 2019). We also use KGE as the metric during the final 360 

model training. After a comparison between the modeling results using MASE (Figure 3) and KGE (supplementary Figure 

S4), MASE is preferred for two reasons: a) using MASE yields a better consistency in model performance between the training 

and testing phases, suggesting better model transferability; b) using MASE leads to a closer agreement between the model 

simulated and Estimated 𝑃𝑟  values.  

 365 
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Figure 3. Performance of the XGBoost model with 12 predictors during a) the training phase (n=1816) and b) the testing phase 

(n=779). The solid black line indicates a 1:1 ratio. The varying colours indicate the density of points in the scatter plot.  

 

Table 3 lists the optimized hyperparameter values of the final XGBoost model. We choose to tune 8 model parameters, which 370 

are critical to the XGBoost tree booster controlling regularization, subsampling, learning process, and the growth of the tree. 

The optimal values of model hyperparameters are quite different from the default ones, suggesting hyperparameter tuning is 

necessary.  

 

Table 3. The optimal values of the XGBoost model hyperparameters. 375 

Hyperparameter Optimal Value Tuning Range Default value  Description  

lambda 6.725 × 10− 1 [0, ∞] 1 Control L1 and L2 regularization; the larger the value, the more conservative 
the model will be alpha 7.484 × 10− 2 [0, ∞] 0 

gamma 1.316 × 10− 2 [0, ∞] 0 Govern the model learning process by changing the step size shrinkage and 
minimum loss reduction; the larger the value, the more conservative the model 

will be eta 1.277 × 10− 1 (0, 1] 0.3 

colsample_bytree 9.323 × 10− 1 (0, 1] 1 Control the subsample ratio of columns and training instances; a proper set of 
those values will prevent the model from over-fitting subsample 6.142 × 10− 1 (0, 1] 1 

min_child_weight 8.410 × 10− 2 [0, ∞] 1 
Determine the growth of the tree 

Max_depth 12 [0, ∞] 6 

 

Figure 4 depicts the correlation between 𝑃𝑟 and the 12 predictors and among the predictors themselves, where highly positive 

correlated and negative correlated are shown in dark-red and blue colors, respectively. Since we have treated the highly 
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correlated variables, the highest positive correlation coefficient is 0.63 between "per_canopy" and "hydro_related", lower than 

the threshold of 0.8 we adopt in Sect 2.2.3. Among the observed correlation coefficients, the highest negative correlation 380 

coefficient, -0.69, is found between the variables "elev_related" and "temp_related." This strong negative correlation makes 

intuitive sense since air temperature decreases with increasing elevation. Note that all of the 12 selected predictors show weak 

or even negligible correlation with the target variable 𝑃𝑟 , with the absolute values of the correlation coefficient less than 0.3. 

It is not surprising since the high-order, nonlinear relations between 𝑃𝑟 and the predictors, and likely among the predictors 

themselves, can only be effectively captured by the ML techniques but not the traditional regression analysis methods.  385 

 

 

Figure 4. Covariance heatmap of 𝑷𝒓 and the 12 selected NHDPlus predictors. 

 

3.3 𝑷𝒓 map 390 

We develop a spatially continuous map of 𝑃𝑟  over CONUS by applying the final XGBoost model over the 2.6 million NHDPlus 

local catchments, as shown in Figure 5. The spatial patterns of 𝑃𝑟  are generally consistent with those in Figure 1. High 

𝑃𝑟  values, shown in orange and red, are mostly located on the southeast coasts, New Mexico, Arizona, southern California, 

and North Dakota. Low 𝑃𝑟  values, shown in blue and purple, are more prevalent in the Northeast and Northwest regions. This 
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consistency between Figures 1 and 5 again confirms that the 2595 independent catchments used in the ML modeling are 395 

representative of the whole CONUS domain, hence supporting the transferability of the ML modeling results.  

 

 

Figure 5. ML model simulated 𝑷𝒓 at over 2.6 million NHDPlus local catchments. 

 400 

3.4 Evaluation  

We evaluate the  𝑃𝑟  map by comparing the DOC concentration values derived from this map (and Eqn. 6) with those observed, 

since there is no direct measurement of  𝑃𝑟 . The 3210 evaluation gauges (and their corresponding, headwater catchments. See 

Fig. 1b) are used for this purpose. Note that each of these 3210 evaluation catchments may encompass multiple NHDPlus local 

catchments. The evaluation thus takes two steps: 1) For each evaluation catchment, calculate its average 𝑃𝑟  value by taking the 405 

area-weighted average of the local 𝑃𝑟  values from the few NHDPlus local catchments located within this catchment; 2) Derive 

the DOC concentration value for the evaluation catchment (whose outlet is an observational gauge) by using the average 𝑃𝑟  

value and Eqn. (6); 3) Compare the "derived" DOC concentration with the observed value at the same evaluation catchment. 

Note that two evaluation catchments are dropped during Step (1) for containing some NHDPlus local catchments without 

effective model simulated 𝑃𝑟 .  410 

 

Figure 6 shows that our derived DOC concentration values effectively reproduce the spatial variability in the observed values. 

Note the unit of DOC concentration in water is mostly reported in mg/L (Schelker et al., 2012; Tian et al., 2015b; Langeveld 

et al., 2020). The MASE, NRMSE and R2 values are 0.73, 1.81, and 0.47, respectively, further suggesting a satisfactory 

performance. The scattering only occurs to a small portion of the dots, as indicated by the reddish colours. This scattering may 415 
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stem from several causes, such as the limited availability of DOC observation data and the uncertainties in model development 

(see Section 4 for more details). Despite the scattering, the overall alignment between observed and predicted values suggests 

that our methods, including the generic formula and ML modelling, are appropriate and effective. 

 

  420 

Figure 6. Evaluation of derived DOC concentration at the catchment scale (n=3208). The solid black line indicates a 1:1 ratio. The 

varying colours indicate the density of points in the scatter plot.  

4 Uncertainty analyses 

The final product, our 𝑃𝑟  map, is subject to uncertainties from various sources. In this study, we have implemented several 

measures to constrain the uncertainties embedded in the input data and ML modeling exercise. We also look into the ML 425 

model parameter uncertainty via sensitivity analyses.  

4.1 Efforts to constrain uncertainty 

4.1.1 ML model input data 

The estimation of the DOC long-term average transformation rate, 𝑃𝑟 , relies on SOC data from the HWSD dataset and DOC 

data from the WQP stations. Despite implementing stringent catchment selection (see Section 2.2.1), the challenge of 430 

balancing data quantity and quality persists due to limited DOC measurements. Larger uncertainties in 𝑃𝑟  are anticipated in 

catchments with fewer samples or those where most samples are collected in a single season. Additionally, potential 
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uncertainties in the 𝑃𝑟  estimation may arise from the mismatch in sampling periods between SOC and DOC datasets. It is 

crucial to recognize and account for these uncertainties when interpreting and using the 𝑃𝑟  map. 

 435 

The flowline and catchment attributes from NHDPlus constitute the primary inputs in both training and prediction phases for 

the ML model, and thus may contribute to the uncertainty in the results. NHDPlus catchment attributes are drawn from diverse 

sources, including remote sensing data and model simulations. Upstream-accumulated values are derived based on flowline 

data (Wieczorek et al., 2018). A majority of attributes have been compared to equivalent variables, when available, in the 

Geospatial Attributes of Gages for Evaluating Streamflow version II (GAGESII) dataset (Falcone et al., 2010). These 440 

comparisons have demonstrated reasonably strong alignment. Inherent uncertainties may still arise from inaccurate flowline 

and catchment delineation, inaccuracies in the source data, the conversion of data formats (e.g., from grid-based to catchment-

based), and so on. Furthermore, instances of missing data or attributes with zero-inflated values (e.g., regions highlighted in 

white in Figure S5b) from the NHDPlus dataset can complicate accurate data interpolation by the ML model. Despite the use 

of the sparsity-aware technique within the XGBoost algorithm, adept at handling missing or zero-inflated data to a certain 445 

extent (Chen and Guestrin, 2016), the presence of such challenges persists. Overcoming these limitations is beyond this study's 

scope. 

4.1.2 ML model development 

In contrast to physical-based models with clearly pre-defined structures, machine learning (ML) models endeavor to discern 

the optimal structure from input data through the training process. Consequently, uncertainty may emerge at any stage of model 450 

development, as detailed in Section 2.3. To mitigate model uncertainty, we employ well-established strategies prevalent in 

diverse applications (Abeshu et al., 2022; Delavar et al., 2019; Li et al., 2022). These encompass techniques such as 

transformation of input data, training and testing splits, feature selection, hyperparameter tuning, and cross-validation (refer to 

previous sections for details). These measures aim to constrain the uncertainties inherent in model development processes and 

fortify the model's predictive capabilities, for example by refining the interpretability of input data, mitigating the risk of 455 

overfitting, enhancing generalization performance, and minimizing the introduction of potentially noisy predictors. 

 

In addition to the commonly adopted strategies in using XGBoost and the other ML techniques, we augment the control of 

model uncertainty through a representativeness check. This check ensures alignment between the distribution of model 

parameters used during training and those applied in predictions. This additional step serves to enhance the model's 460 

transferability from the training catchment to the broader CONUS domain. To gauge the representativeness of our chosen 

predictors, we conducted a Cumulative Distribution Function (CDF) comparison for each parameter between the observational 

dataset (derived from 2595 independent catchments) and the entire CONUS dataset (comprising approximately 2.6 million 

local catchments in NHDPlus). For this comparison, we assess the relative difference in the 5th, 25th, 50th, 75th, and 95th 

percentiles between the two CDFs. As an illustration, the relative difference for the 5th percentile is computed as the ratio of 465 
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the difference between the 5th percentile of the available 𝑃𝑟  data and that of the entire CONUS data to their average. Table 4 

provides a summary of the CDF comparison of the 15 selected predictors (also see supplementary Figure S6). A predictor is 

deemed representative of the whole CONUS if the average relative difference is less than 0.75. Following Abeshu et al. (2022), 

the choice of the 0.75 threshold strikes a balance between maintaining data representativeness and avoiding the exclusion of 

too many predictors. Three predictors, namely "basin_area", "per_hwetland", and "per_shurb", have failed the 470 

representativeness check and are consequently excluded. Note that the ML model performance has only slightly changed after 

reducing the number of predictors from 15 to 12, as shown in the supplementary Figure S7.   

 

Table 4. Representativeness of XGBoost model input predictors over CONUS. 

Attributes 
Relative difference in percentiles between 𝑃𝑟-available and whole_conus data 

Average 
5th 25th 50th 75th 95th 

basin_area 1.941 1.728 1.669 1.794 1.900 1.806 

per_hwetland 0.667 0.667 0.842 1.144 1.529 0.969 

per_shurb 0.353 0.624 1.224 1.482 0.889 0.914 

per_canopy 1.684 1.090 0.427 0.080 0.078 0.672 

per_wwetland 0.769 0.314 0.461 0.621 0.807 0.594 

per_eforest 0.667 0.559 0.651 0.502 0.225 0.521 

elev_related 0.769 0.806 0.320 0.621 0.008 0.505 

hydro_related 0.584 0.898 0.316 0.108 0.106 0.402 

per_soilmsI 0.955 0.264 0.152 0.095 0.255 0.344 

index_tqsub 0.166 0.135 0.248 0.292 0.393 0.247 

index_bflow 0.476 0.304 0.152 0.002 0.027 0.192 

per_rhumidity 0.197 0.103 0.015 0.014 0.014 0.068 

soil_texture_related 0.095 0.071 0.068 0.071 0.015 0.064 

ave_wetday 0.063 0.065 0.028 0.053 0.033 0.048 

temp_related 0.035 0.034 0.009 0.029 0.006 0.023 

 475 

4.2 Sensitivity analyses 

Model sensitivity analysis (SA) involves probing the importance of uncertainties in model parameters (Loucks and Van Beek, 

2017). We examine our model's sensitivity to each selected predictor using two different methods: 1) dropping one predictor 

at a time and tracking the changes in model performance, and 2) the Sobol sensitivity analysis approach (Sobol, 2001). Figure 

7 demonstrates the model performance difference in the training and testing phases after dropping one of the 12 variables. 480 

Blue, red, and grey colors are employed to indicate whether dropping the corresponding predictor will result in an increase, 

decrease, or insignificant change in the model's performance, respectively. A 5% threshold is chosen to determine the 

significance of the change. In general, the shifting pattern in MASE scores remains consistent between the training and testing 

phases. However, the alterations in MASE values for most predictors, particularly during the testing phase, are minimal or 

even negligible. In other words, the model appears to be insensitive to most predictors according to this first sensitivity analysis 485 

method.  

https://doi.org/10.5194/essd-2024-43
Preprint. Discussion started: 2 April 2024
c© Author(s) 2024. CC BY 4.0 License.



21 

 

 

Figure 7. Sensitivity of XGBoost model to predictors in the training and testing phases. The MASE value is represented by the blue, 

red, and grey bars, indicating whether the model performance increases, decreases, or remains relatively unchanged after dropping 

the corresponding predictor. The dashed grey line indicates the model performance with all variables included. 490 

 

The Sobol sensitivity analysis is a widely used variance-based global sensitivity analysis method (Borgonovo and Plischke, 

2016). It provides two indices: First-order Index (S1), which measures the sensitivity of an individual predictor itself (local 

variance), and Total Index (ST), which accounts for the effects of both an individual predictor itself and its interactions with 

any other predictors (global variance) (Saltelli, 2002; Saltelli et al., 2010). These interactions, which can be of any order, can 495 

be isolated. For instance, second and higher-order interactions can be isolated by subtracting SI from ST. The results from the 

Sobol test are summarized in Table 5. The distribution of S1 is highly right-skewed, suggesting that the model exhibits 

insensitivity to most predictors if only local variance is considered. There are, however, a few exceptions, such as 

"hydro_related", and "temp_related", which present high S1 values. The global variance, represented by the ST index, paints 

a somewhat different picture. When considering the ST index, a broad set of predictors emerge as sensitive, particularly those 500 
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with ST values exceeding 0.1. It's worth noting that these predictors also hold high rankings in the predictor selection, as shown 

in Table 2. Furthermore, it is significant that 11 out of the total 12 predictors show a normalized difference between S1 and 

ST (calculated as (ST-S1)/ST) greater than 50%. This observation underscores the significant interactions among the predictors 

(Saltelli et al., 2010). This suggests that if a predictor is dropped, the remaining predictors could potentially compensate for its 

absence, highlighting the nonlinear, high-order interdependence among the predictors in our model. 505 

 

Table 5. Sobol sensitivity analysis results for the 12 selected predictors. 

Predictors Total Indices (ST) First Order Indices (S1) Difference ((ST-S1)/ST) 

hydro_related 0.466 0.291 0.375 

temp_related 0.311 0.141 0.546 

ave_wetday 0.207 0.044 0.788 

index_tqsub 0.143 0.003 0.977 

per_canopy 0.132 0.028 0.787 

per_wwetland 0.125 0.049 0.608 

elev_related 0.087 0.017 0.806 

index_bflow 0.072 0.012 0.831 

per_rhumidity 0.062 0.010 0.836 

soil_texture_related 0.034 0.000 1.000 

per_eforest 0.024 0.005 0.798 

per_soilmsI 0.013 0.002 0.873 

 

The above sensitivity analyses suggest that our model exhibits low sensitivity to most predictors when considering their 

individual (local) impact. However, the Sobol sensitivity analysis uncovers a heightened degree of sensitivity in the context of 510 

global effects, particularly given the significant interactions among the predictors.  

5 Potential use and limitations 

The 𝑃𝑟  map has several promising uses. For instance, one of the pivotal applications of the 𝑃𝑟  map is to estimate the lateral 

leaching of DOC. Figure 8, as an illustration, shows a 𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓  map over CONUS depicting the long-term average 

concentration of DOC in the leaching flux at over two million NHDPlus local catchments. This map is derived based on Eqn. 515 

(4), leveraging the 𝑃𝑟  map in Fig. 6 and the top-layer SOC data from HWDS1.2. Due to missing data in the HWSD 1km SOC 

map at about 0.6 million NHDPlus local catchments, we cannot calculate the 𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 values over those catchments. 
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Figure 8. Calculated CONUS map of DOC concentration in leaching flux from soils to headwater streams 520 

 

The spatial patterns of the 𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓  map are highly correlated to those of the 𝑃𝑟  (see Figure 5) and SOC map (see 

supplementary Figure S5a). Notably, the 𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 values are high in regions with extremely high SOC values. Additionally, 

the 𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 values are high in North Dakota, Montana, and southern coasts, where the 𝑃𝑟  values are high. Interestingly, 

the influences of 𝑃𝑟  and SOC can counterbalance each other in some places. For instance, in the upper Rocky Mountains, the 525 

SOC storage is abundant due to the presence of forests. However, the low temperature in this region hinders microbial 

activities, resulting in extremely low 𝑃𝑟  value. As a result, the concentration of DOC leaching flux is relatively low. Moreover, 

the spatial coverage of wetlands also appears to be relevant (see supplementary Figure S5b), which is consistent with the 

suggested crucial role of wetlands in riverine DOC dynamics (Duan et al., 2017; Leibowitz et al., 2023). For instance, high 

𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 values are observed in upper Minnesota, Florida, and Louisiana, where wetlands are prevalent. In places with few 530 

wetlands, like Nevada, Arizona, and New Mexico, the leaching flux concentration is considerably lower. 

 

There are at least two other potential uses of the 𝑃𝑟 map: 1) It can support large-scale DOC modeling over CONUS or a major 

river basin. For instance, testing the use of the map within the framework of the Energy Exascale Earth System Model (Golaz 

et al., 2019; Caldwell et al., 2019; Burrows et al., 2020) is ongoing and will be reported in the near future. 2) It can be used to 535 

provide a quick estimation of riverine DOC concentration or flux at any headwater catchments where no DOC observations 

are available.  

 

We caution the potential users of the 𝑃𝑟 map with several limitations in the methods invoked. Firstly, the 𝑃𝑟 values in the map 

account for the spatial heterogeneity of various DOC-related processes and factors only in a long-term average sense owing to 540 
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the limited data availability, i.e., the SOC reanalysis data are long-term averages, and the observed riverine DOC data are only 

available at irregular time intervals. While we believe that such a 𝑃𝑟 map is a critical step in effectively capturing the spatial 

heterogeneity of the relevant processes and environmental factors, incorporating their temporal dynamics is beyond the scope 

of this study and left for future work. Secondly, the ML techniques are not process-based and thus do not yet offer rich insight 

into the relevant mechanisms. To improve our understanding of the DOC-related processes, the 𝑃𝑟  map should be used in 545 

conjunction with other observational data, process-based models, and carefully designed numerical experiments. Last but not 

least, the ML model has been trained with the data in the CONUS domain only, so it may not be transferable beyond CONUS. 

6 Data availability 

The resulting 𝑃𝑟 and 𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 maps over CONUS are freely available at https://doi.org/10.5281/zenodo.8339372 (Li et al., 

2024). The input data are obtained from the water quality portal (https://www.waterqualitydata.us/), NHDPlus 550 

(https://www.epa.gov/waterdata/nhdplus-national-data), ScienceBase (https://doi.org/10.5066/F7765D7V) and HWSD v1.2 

(https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/). 

7 Conclusions 

We develop a new map of 𝑃𝑟 , the transformation rate from SOC concentration in soil to DOC concentration in the leaching 

flux, over CONUS. Evaluation of derived DOC concentration at over 3000 headwater stations confirms the robustness of our 555 

methodology, including a generic formula linking SOC and DOC via 𝑃𝑟 , riverine DOC observations, environmental variables, 

and the ML techniques that effectively capture high-order, nonlinear relationships between 𝑃𝑟 and the environmental variables. 

Such a map did not exist before and is highly valuable for large-scale DOC modeling and improving our understanding of the 

DOC-related processes across the land-river continuum.   
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