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Abstract. Riverine dissolved organic carbon (DOC) plays a vital role in regional and global carbon cycles. However, the 

processes of DOC conversion from soil organic carbon (SOC) and leaching into rivers are insufficiently understood, 

inconsistently represented, and poorly parameterized, particularly in land surface and Earth System Models. As a first attempt 

to fill this gap, we propose a generic formula that directly connects SOC concentration with DOC concentration in headwater 15 

streams, where a single parameter, the transformation rate from SOC in the soil to DOC leaching flux, 𝑃𝑟 , accounts for the 

overall processes governing SOC conversion to DOC and leaching from soils (along with runoff) into headwater streams. We 

then derive high-resolution 𝑃𝑟  maps over the contiguous U.S. (CONUS) using SOC data from two different sources: the 

Harmonized World Soil Database v1.2 (HWSD) and SoilGrids 2.0. Both maps are developed following the same five major 

steps: 1) selecting independent catchments where observed riverine DOC data are available with reasonable quality; 2) 20 

estimating catchment-average SOC for the independent catchments; 3) estimating the 𝑃𝑟  values for these catchments based on 

the generic formula and catchment-average SOC; 4) developing a predictive model of 𝑃𝑟  with machine learning (ML)  

techniques and catchment-scale climate, hydrology, geology, and other attributes; and 5) deriving a national map of 𝑃𝑟 , based 

on the ML model. For evaluation, we compare the DOC concentration derived using the 𝑃𝑟  map and the observed DOC 

concentration values at evaluation catchments. The resulting mean absolute scaled error and coefficient of determination are 25 

0.73 and 0.47 for the HWSD-based model and 0.58 and 0.72 for the SoilGrids-based model, respectively, suggesting the 

effectiveness of the overall methodology. Efforts to constrain uncertainty and evaluate sensitivity of 𝑃𝑟  to different factors are 

discussed. To illustrate the use of such maps, we derive a riverine DOC concentration reanalysis dataset over CONUS. The 

two 𝑃𝑟  maps, robustly derived and empirically validated, lay a critical cornerstone for better simulating the terrestrial carbon 

cycle in land surface and Earth System Models. Our findings not only set a foundation for improving our predictive 30 

understanding of the terrestrial carbon cycle at the regional and global scales, but also hold promises for informing policy 

decisions related to decarbonization and climate change mitigation. 
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1 Introduction 40 

With the Earth's climate rapidly warming due to increasing atmospheric greenhouse gas concentrations, there is a growing 

focus on quantifying the regional and global carbon pools within the land, riverine, and oceanic systems, as well as the intricate 

interconnections among them (Duarte, 2017; Jing et al., 2021; Teodoru et al., 2015). Each year, about 2 billion metric tons of 

dissolved organic carbon (DOC) are transported from land to the oceans via rivers globally, comparable to the amount of 

atmospheric CO2 that deposits into the ocean (Hansell et al., 2009; Lønborg et al., 2020). Moreover, riverine DOC is vital to 45 

aquatic biogeochemistry by providing nutrients to microbial communities and influencing aquatic greenhouse gas emissions 

(Li et al., 2019). 

 

However, it remains a challenge to represent and predict riverine DOC effectively in the land biogeochemical module of Earth 

System Models, which are the primary tools for studying carbon cycles in the context of climate change. A chief reason behind 50 

this long-standing challenge is the complexity of terrestrial and aquatic processes and their interactions governing SOC 

transformation to DOC and transport from soils to rivers. The relevant terrestrial processes include the conversion of solid 

SOC into soil DOC, the adsorption and desorption of DOC by surrounding soils, the transport of DOC from soils into 

headwater streams along with runoff, and the degradation of soil DOC during this transport. These processes are further 

influenced by numerous biotic factors, such as microbial, plant, and enzymatic activities, as well as abiotic factors, including 55 

soil temperature, moisture, and pH (Davidson and Janssens, 2006; Kaiser and Kalbitz, 2012; Kalbitz et al., 2000; Sinsabaugh, 

2010). The relevant aquatic processes include the transportation of riverine DOC from headwater streams, the interception of 

DOC fluxes by reservoirs and lakes, the degradation of riverine DOC during transport, and the consumption of DOC by aquatic 

biosystems. Furthermore, each process is controlled by several environmental factors, which often exhibit substantial spatial 

heterogeneity. Models attempt to represent these complexities through parameters associated with governing equations. For 60 

instance, Tian et al. (2015a, b) incorporated the effects of runoff on DOC leaching with a coefficient that involves both surface 

and subsurface runoff. Surface and subsurface runoff are further affected by many environmental factors such as climate, soil, 

vegetation, and topography (Li et al., 2014; Li and Sivapalan, 2014).  
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The complexity of relevant processes and their driving environmental factors is also evident in the diverse process descriptions 65 

in several land biogeochemical models that are pioneers in representing the suite of processes from  SOC to riverine DOC, 

such as Dynamic Land Ecosystem Model (DLEM) (Tian et al., 2015a, b; Yao et al., 2021), the integrated catchment model for 

carbon (INCA-C) (Futter et al., 2007), the Joint UK Land Environment Simulator Dissolved Organic Carbon model (JULES-

DOCM) (Nakhavali et al., 2018), and the TRIPLEX-hydrological routing algorithm (TRIPLEX-HYDRA) (Li et al., 2019). 

These models differ in the processes involved and the process descriptions, owing to the inconsistent understanding of relevant 70 

processes among the modeling community. For instance, DLEM and TRIPLEX-HYDRA both adopt CENTURY-like 

(Metherell et al., 1993; Parton et al., 1987) formulas to estimate DOC leaching fluxes (Tian et al., 2015a, b; Yao et al., 2021; 

Li et al., 2019), but with notably different ways of incorporating both soil and water-related factors. For instance, TRIPLEX-

HYDRA includes an empirical coefficient to account for soil absorption of SOC before its dissolution and DOC degradation 

in soils, which are not explicitly accounted for in DLEM. TRIPLEX-HYDRA incorporates hydrologic effects by directly using 75 

the water flow rate, whilst DLEM uses a dimensionless ratio to account for these effects. Equally important, the available 

observations have not been fully used for estimating or calibrating the numerous DOC-related parameters at the regional and 

larger scales in a spatially continuous yet variable fashion. Existing models usually calibrate several DOC-related parameters 

against DOC observations at a limited number of river stations, leading to overparameterization, where multiple combinations 

of parameter values can achieve the same simulation results (Sivapalan, 2005). Moreover, the resulting parameters often poorly 80 

reflect the spatial heterogeneity of underlying processes and environmental factors due to the limited spatial coverage of DOC 

observations (Futter et al., 2007; Tian et al., 2015a, b; Nakhavali et al., 2018; Li et al., 2019; Liao et al., 2019; Yao et al., 

2021). Overall, existing models for simulating DOC fluxes are still subject to limited transferability over poorly observed 

regions due to insufficient process understanding, data scarcity, and overparameterization. 

 85 

One traditional strategy for improving model transferability over poorly observed regions is parameter regionalization. 

Generally, low-dimensional relationships between a target parameter and other environmental variables are derived based on 

prior knowledge or regression analysis from the locations where sufficient observations are available. The relationships are 

then generalized and transferred to poorly-observed places (Alebachew et al., 2014; Ayata et al., 2018; Doron et al., 2011; 

Dupas et al., 2013; Tan et al., 2022; Ye et al., 2014). However, such a strategy will not work well if statistically robust and 90 

mechanistically meaningful relationships can not be derived from the conventional regression analyses or prior knowledge 

when, for example, the relationships are high-dimensional and nonlinear (Abeshu et al., 2022; Li et al., 2022). Fortunately, 

state-of-the-art machine learning (ML) techniques offer a promising and effective alternative strategy, owing to their proven 

advantages in capturing higher-order relationships between the target and predictive variables, especially when prior 

knowledge of such relationships is still in its infancy (Afan et al., 2016). For example, ML techniques have been successfully 95 

employed to capture the complex relationships between median sediment particle size and several environmental factors, which 

enabled the derivation of a national map of median sediment particle size (Abeshu et al., 2022). They have also been used to 

predict the concentration of fecal indicator bacteria, providing valuable guidance to beach closure problems (Li et al., 2022). 
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As the first step in addressing these challenges, this study develops an ML-powered approach for parameterizing DOC leaching 100 

fluxes at regional and continental scales. The rest of this paper is organized as follows. Section 2 outlines the overall 

methodology, including governing equations and corresponding parameters, data preparation, and the ML techniques 

employed. Section 3 presents the results over the contiguous United States (CONUS). Sections 4, 5, and 6 discuss the 

uncertainty, potential use of the resulting datasets, limitations of methods, and data availability. Section 7 concludes with a 

summary and potential future directions.  105 

2 Methods 

The methodology here is described with specific details over the CONUS region, but it is transferable to other regions after 

some modifications based on data availability.   

2.1 Governing Equation 

Several existing land or land biogeochemical models commonly employ CENTURY-like formulas to represent the leaching 110 

of DOC (Futter et al., 2007; Tian et al., 2015a, b; Nakhavali et al., 2018; Li et al., 2019; Yao et al., 2021; Parton et al., 1998). 

In such formulas, the DOC leaching flux is estimated as a linear function of several factors, including the SOC or DOC 

concentration in soil, runoff, and other relevant environmental factors. For example, in DLEM (Tian et al., 2015a, b), DOC 

leaching flux is estimated as 

                                                                      𝐹𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 = 𝐹𝑆𝑂𝐶_𝑆𝑜𝑖𝑙 × 𝛼1 × 𝛼2 × 𝛼3                             (1) 115 

where 𝐹𝑆𝑂𝐶_𝑆𝑜𝑖𝑙 is the total amount of decomposed SOC in soil (g Cm-2s-1); 𝛼1 is the fraction of decomposed SOC that is 

dissolvable (%);  𝛼2 is the runoff coefficient (-), i.e., the ratio of total runoff volume to the sum of total runoff volume and 

soil water content; and 𝛼3 is another coefficient (-) accounting for the effects of DOC concentration in soil water and 

desorption. In TRIPLEX-HYDRA (Li et al., 2019), DOC leaching flux is given as  

                                                      𝐹𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 = 𝐶𝑆𝑂𝐶 × 𝐾𝑠 × 𝐾𝑎 × 𝑄𝑟𝑢𝑛𝑜𝑓𝑓 − 𝐾𝑠𝑜𝑖𝑙                                  (2) 120 

where 𝐹𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 is the DOC flux in the soil water (g C/s); 𝐶𝑆𝑂𝐶  is the concentration of SOC in the soil (g C/m3); Ks is the 

solubility of SOC (-); Ka is the adsorption coefficient of SOC (-); Ksoil represents the degradation rate of DOC in soils (g C/s), 

and 𝑄𝑟𝑢𝑛𝑜𝑓𝑓  is total runoff rate (m3/s). 

 

Based on the similarity between equations (1) and (2), while keeping minimal complexity in the process representation, we 125 

propose a simpler formula to estimate DOC leaching flux as 

                                                                      𝐹𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 = 𝐶𝑆𝑂𝐶 × 𝑄𝑟𝑢𝑛𝑜𝑓𝑓 × 𝑃𝑟                                  (3) 

Eqn. (3) can be rewritten as  
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                                                                       𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 =
𝐹𝐷𝑂𝐶𝑟𝑢𝑛𝑜𝑓𝑓

𝑄𝑟𝑢𝑛𝑜𝑓𝑓
= 𝐶𝑆𝑂𝐶 × 𝑃𝑟                                                   (4) 

where 𝐹𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 is the DOC leaching flux (g C/s), 𝐶𝑆𝑂𝐶  is the SOC concentration (g C/m3 soil), 𝑄𝑟𝑢𝑛𝑜𝑓𝑓 is the runoff volume 130 

per unit time (m3 water/s), 𝑃𝑟  is the transformation rate from SOC in soil to DOC in runoff (m3 soil/ m3 water), and 𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 

is the DOC concentration in the runoff (g C/m3 water). 

 

Eqn. (4) has two advantages: 1) its lumped parameter, 𝑃𝑟 , accounts for all relevant processes and factors, including soil carbon 

decomposition, DOC sorption-desorption balance, DOC transport and degradation in soils, etc.; 2) its simplicity significantly 135 

reduces data requirements for large-scale parameterization since it is highly parameter-parsimonious and much more 

compatible with the availability of DOC observational data.  

 

For a "small catchment", we further assume that 𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 can be approximated with the riverine DOC concentration at the 

catchment, i.e.  140 

                                                                              𝐶𝐷𝑂𝐶_𝑜𝑢𝑡𝑙𝑒𝑡  ≈  𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓                                                                      (5) 

where 𝐶𝐷𝑂𝐶_𝑜𝑢𝑡𝑙𝑒𝑡 is the riverine DOC concentration at the catchment outlet (g C/m3). In this study, a "small catchment" refers 

to the drainage basin extending from the river station upstream to the furthest tributaries that do not have any upstream rivers. 

Note that a small catchment is not necessarily a headwater catchment that includes only one river (He et al., 2024). The 

rationale behind Eqn. (5) is two-fold: 1) the travel time of runoff in streams of small catchments is typically much less than 145 

one day, e.g., the daily total runoff rate can be approximated with the daily streamflow rate for small catchments (Ducharne et 

al., 2003; Li et al., 2013), and 2) the degradation rate of DOC in headwater streams is approximately 1% per day, based on our 

literature review of existing experimental (Qualls and Haines, 1992; Sobczak et al., 2003) and modeling studies (Tian et al., 

2015a, b; Li et al., 2019) (for a full list of references, see Supplementary Table S1). Given this minimal degradation rate and 

the short residence time of DOC in streams of small catchments (on the order of a few hours), it is reasonable to assume 150 

negligible DOC degradation from the point it enters the stream to the point it exits into downstream rivers. Combining Eqn. 

(4) and (5) yields 

                                                                               𝐶𝐷𝑂𝐶_𝑜𝑢𝑡𝑙𝑒𝑡 ≈ 𝐶𝑆𝑂𝐶 × 𝑃𝑟                                                                        (6) 

Eqn. (6) may be used in at least two ways: 1) One can estimate 𝑃𝑟  at the catchment scale wherever observed DOC concentration 

and SOC values are available, and 2) Once 𝑃𝑟  is estimated a priori or through calibration, one can predict riverine DOC 155 

concentration or discharge in streams of small catchments from the corresponding SOC values.  

2.2 Data 

DOC observations are available via the Water Quality Portal (WQP) (Water Quality Portal, 2021). WQP integrates the publicly 

available water quality data from the USGS National Water Information System (NWIS) (U.S. Geological Survey), the EPA 

STOrage and RETrieval Water Quality eXchange (STORET-WQX) (USEPA), and the USDA ARS Sustaining The Earth's 160 
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Watersheds - Agricultural Research Database System (STEWARDS) (Steiner et al., 2008). As of now, the WQP features data 

from 32071 river stations within the CONUS. These stations have recorded at least one DOC measurement between 1900 and 

the present. 

 

Regional and global soil property maps, such as soil organic carbon (SOC) maps, are typically generated using two primary 165 

methods: the linkage method (also known as the taxotransfer rule-based method) (Batjes, 2003) and digital soil mapping 

(McBratney et al., 2003). This study employs the most widely recognized datasets from each method: the Harmonized World 

Soil Database (HWSD) v1.2 (Fischer et al., 2008) and SoilGrids 2.0 (Poggio et al., 2021). HWSD provides SOC data at a 

spatial resolution of 1 km for two soil layers—the top layer (0–30 cm) and the sub-layer (30–100 cm). As one of the first 

globally harmonized soil datasets, it integrates data from diverse national and regional sources into a standardized framework, 170 

making it a foundational resource for many Earth System Modeling studies  (Best et al., 2011; Han et al., 2014; Todd-Brown 

et al., 2013; Zhao et al., 2018). SoilGrids 2.0 offers SOC data at a higher resolution of 250 m for the same layers, leveraging 

machine learning algorithms to enhance accuracy and constrain uncertainty. Its higher resolution and improved reliability have 

made it increasingly popular for Earth System Modeling since its release (Dai et al., 2019; Hengl et al., 2017; Poggio et al., 

2021). Considering that DOC leaching from soils into rivers predominantly comes from the topsoil (Brooks et al., 1999; Finlay 175 

et al., 2006), we use the SOC content data from the top 30 cm layer for our estimations. We also take into consideration that 

there are missing values in some grid cells in the HWSD v1.2  and SoilGrids 2.0 and adjust our catchment selection 

accordingly.  

 

In order to pair up SOC and DOC data at small catchments, we rely on the National Hydrography Dataset Plus (NHDPlus) 180 

dataset hosted by the U.S. Geological Survey (USGS) (Mckay et al., 2012). This dataset is chosen for two reasons: Firstly, 

NHDPlus provides well-defined catchment boundaries and associated river segments, referred to as local catchments and 

flowlines. It includes ~2.6 million flowlines across CONUS, each linked to a corresponding local catchment that collects lateral 

runoff into that flowline. Additionally, the upstream drainage catchment for any flowline, which is the sum of both local 

catchment and the drainage areas corresponding to all the flowlines upstream of the local one, can be derived from the 185 

established flowline network. The sizes of these 2.6 million local catchments vary from the 5th percentile at 0.02 km2 to the 

95th percentile at 9.68 km2, depending on the corresponding surface topography, with a CONUS average of 3.12 km2 

(Supplementary Fig. S1). Secondly, NHDPlus is closely linked to ScienceBase (Wieczorek et al., 2018), a comprehensive 

scientific data and information management platform also hosted by USGS. ScienceBase includes a wide range of 

environmental variables across 11 categories, such as climate, hydrology, soil, and geological data, conveniently available at 190 

the catchment scale across the entire CONUS. These environmental data are critical in the ML modeling analysis.  

 

Correspondingly, the overall data preparation procedure consists of three major steps: 1) Selection of small catchments based 

on the availability of observed riverine DOC concentrations of adequate quality. 2) Estimation of 𝑃𝑟  values for the catchments 
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selected in Step 1, leveraging the corresponding riverine DOC observations and SOC reanalysis data. 3) Extraction of 195 

catchment-scale environmental variables that could potentially influence 𝑃𝑟 . Specific details of each step will be further 

discussed in the following subsections. This study adopts two SOC datasets, both of which directly influence the calculated 𝑃𝑟  

values used in training, thereby affecting all steps leading to the final 𝑃𝑟  map. To enhance clarity and avoid redundancy, the 

HWSD-based model is the primary focus of discussion, as the workflow and major conclusions remain consistent. More 

information on the SoilGrids-based model is available in the supplementary materials. Users can choose their preferred 𝑃𝑟  map 200 

based on their specific needs. 

2.2.1 Selecting small catchments 

Our selection process for suimall catchments involves the integration of the NHDPlus dataset and observed riverine DOC 

concentration data from river stations: 

1. We conduct a geospatial analysis to identify the upstream drainage area of each WQP river station using NHDPlus 205 

local catchments and flowlines. Using the Python package HyRiver (Chegini et al., 2021), we co-located 29,320 WQP 

stations with the closest corresponding NHDPlus flowlines. However, 2,751 stations can not be linked due to the 

absence of adjacent flowlines. When WQP stations are in close proximity and share the same NHDPlus flowline, we 

retain only the station with the best data availability. For a given flowline, HyRiver traces it back to every upstream 

flowline, accessing and merging the boundaries of all related NHDPlus local catchments from the Hydro Network-210 

Linked Data Index web server. It also requests the server to simplify the boundaries and split them precisely at the 

station locations. The relationship between the derived small catchment boundaries and the NHDPlus local 

catchments is shown in Supplementary Fig. S2a. Through this comprehensive geospatial analysis, we identify the 

upstream boundaries for 22,201 WQP stations. 

2. We further select the WQP stations whose drainage areas can be considered small catchments, based on two criteria: 215 

1) there are no upstream rivers flowing into them, and 2) their drainage areas are no more than 2500 km2. This size 

threshold ensures that the travel distance of river water (and consequently, DOC) is ~50 km within these catchments. 

Assuming an average channel velocity of ~1.0 m/s (Chow et al., 1988), the average travel time is ~14 hours, i.e., less 

than one day. Using these criteria, we identify 18,612 pairs of WQP stations and small catchments.   

3. For the 18,612 WQP stations, we perform a rigorous DOC data quality control based on five criteria: a) The record 220 

lengths of riverine DOC data should span at least one year; b) There should be at least two riverine DOC observations; 

c) No single season should dominate the riverine DOC observations, i.e., a single season should not account for more 

than 50% of the records; d) within the boundaries of the corresponding catchments, there should be sufficient 

availability of the NHDPlus catchment attributes and SOC reanalysis data; e) the catchments should not be 

significantly affected by dams, i.e., the total drainage areas of the dams within a catchment should be no more than 225 

5% of the total catchment area. The adoption of criteria (a)-(e) reflects a careful balance between ensuring data quality 
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and maintaining adequate quantity, ensuring that sufficient WQP stations are retained to represent the entire CONUS. 

After the data quality control, there remain 5805 WQP stations with their corresponding small catchments.  

4. For the 5805 WQP stations and their small catchments, we verify the spatial independence among them. A catchment 

is considered nested within another if it lies entirely within the latter's drainage area. While the flux at the downstream 230 

catchment's outlet depends on contributions from upstream catchments, the upstream catchments maintain their 

hydrological independence. As illustrated in Supplementary Fig. S2b, a simple nesting scenario shows two gray 

catchments, A and B, both located within the red catchment, C. Since A and B have no containing relationship and 

are both smaller than C, they are classified as independent catchments. In contrast, C is considered a nesting 

catchment. The same logic applies consistently in more complex nesting scenarios. From the 5805 pairs of the WQP 235 

stations and catchments, we identify 2595 as independent and suitable for further ML model training. The other 3210 

pairs, despite the nesting issue, are still valuable; they are thus kept for evaluation of estimated DOC (see Sect. 3.4). 

Due to missing values in SoilGrids 2.0, valid 𝑃𝑟  estimates are unavailable for 12 out of 2595 independent catchments; 

however, the number of evaluation catchments remains unchanged. 
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 240 

Figure 1. Variability in estimated 𝑷𝒓 across CONUS: a) For independent catchments (n=2595), and b) For evaluation catchments 

(n=3210). The points indicate the locations of the WQP stations, which are also the outlets of the corresponding small catchments. 

The CONUS boundary and river shapefiles are directly obtained from open-source datasets GeoPandas (geopandas.org) and 

Natural Earth (Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com), respectively. The color bars 

have been adjusted to enhance visual display by showing only the main body of values (from the 5th percentile to the 95th percentile). 245 

 

2.2.2 Estimating 𝑷𝒓  

For the final set of the paired WQP stations and small catchments, we calculate 𝑃𝑟 using the DOC observation from the WQP 

stations and long-term mean SOC from HWSD based on Eqn. (6). For each catchment, the catchment polygons are used to 

clip the top-layer SOC map at the 1km resolution, and the catchment-scale SOC is subsequently calculated as the spatial 250 
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average of SOC values at those 1km grid cells within the catchment. Hereafter the 𝑃𝑟 estimated using Eqn. (6) are referred to 

as "Estimated 𝑃𝑟". The Estimated 𝑃𝑟 , derived from the analysis of WQP DOC observations and HWSD SOC data, exhibits a 

wide range of values spanning several orders of magnitude. Figure 1a illustrates the spatial distribution of 𝑃𝑟  for the 2595 

independent catchments. In these catchments, the Estimated 𝑃𝑟  ranges from 4.61x10-6 to 8.04x10-3 (m3 soil/ m3 water), with a 

median value of 2.50x10-4 (m3 soil/ m3 water). As a broad assessment of the similarity between the catchments used to construct 255 

the model and the evaluation catchments, the values of 𝑃𝑟  for the evaluation catchments calculated from data values of DOC 

and SOC using Eqn. (6) are shown in Fig. 1b.  Here, the Estimated 𝑃𝑟  values in these catchments range from 8.81x10-6 to 

6.37x10-3 (m3 soil/ m3 water), with a median of 2.60x10-4 (m3 soil/ m3 water). Note that the spatial distribution of the selected 

catchments is quite consistent with the spatial distribution of the WQP stations, i.e., more densely distributed in the eastern 

than western U.S., suggesting a good spatial representation of the selected catchments over all the WQP stations in CONUS. 260 

The spatial distribution of Estimated 𝑃𝑟  values derived from the SoilGrids-based model for both independent and evaluation 

catchments closely mirrors that obtained from the HWSD-based model (Supplementary Fig. S3). The Estimated 𝑃𝑟  values have 

a slightly narrower range, from 1.16x10-5 to 8.69x10-3 (m3 soil/ m3 water) at independent catchments, and a similar range, from 

7.78x10-6 to 7.55x10-3 (m3 soil/ m3 water) at evaluation catchments. 

2.2.3 Extracting environmental variables 265 

We collect 126 environmental variables from the ScienceBase dataset, spanning 11 distinct categories. Seven attributes related 

to dams and streams are excluded as irrelevant to our objectives, along with 24 attributes containing predominantly zero values 

(>80%) across CONUS. Of the remaining 95 variables, 46 are relatively independent while 49 showed strong correlations with 

one or more variables. Following Schober et al. (2018), we define strong correlation as a Pearson correlation coefficient |r| ≥ 

0.8. The 49 correlated variables are categorized into 9 distinct "correlated groups" based on shared properties, where each 270 

variable demonstrates a strong correlation with at least one other variable within its group but a weak correlation (|r| < 0.8) 

with variables outside the group. We address the interdependence within each correlated group through two steps: 1) 

normalizing individual variables using the Yeo-Johnson power transformation (Yeo and Johnson, 2000) to achieve zero mean 

and unit variance (Supplementary Fig. S4), and 2) merging the normalized variables through linear summation to create a 

single new variable (Daoud, 2018). This new variable is now relatively independent of the other environmental variables. For 275 

those 46 variables, we apply the same transformation to minimize the impacts of varying magnitudes between different 

variables. Eventually, 54 variables remain, including 46 originally relatively independent and 9 newly merged variables from 

the correlation groups (see Supplementary Tables S2 and S3 for details). 

2.3 Machine learning techniques 

We use the eXtreme Gradient Boosting (XGBoost), which is a powerful and widely adopted ML algorithm due to its 280 

exceptional performance in various applications (Abeshu et al., 2022; Delavar et al., 2019; Li et al., 2022). XGBoost is a 
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scalable end-to-end tree-boosting system that belongs to the ensemble learning family(Chen and Guestrin, 2016). It combines 

multiple weak learners into a strong learner via sequential training and improving, and eventually forms a robust and accurate 

predictive model. By using XGBoost in this study, we aim to develop a predictive model that establishes causal linkages 

between the target variable, 𝑃𝑟 , and a small number of environmental variables (denoted as predictors hereafter). 285 

 

In addition to XGBoost, we take advantage of some other ML tools and techniques. Specifically, we use the Optuna 

optimization framework (Akiba et al., 2019) and k-fold cross-validation (k=5) for tuning the hyperparameters. By leveraging 

Optuna and k-fold cross-validation, we can systematically search and optimize the hyperparameters, maximizing the model's 

performance and accuracy. Furthermore, we employ the SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 2017) to 290 

aid in the selection of environmental factors that are related to 𝑃𝑟 . SHAP is a technique that assigns importance values to 

individual predictors in a model, providing insights into their contributions to the prediction. By using SHAP, we can identify 

the key environmental factors that significantly influence 𝑃𝑟  and further refine our model. These techniques have been 

successfully applied in various studies, including riverine sediment, beach water quality, oceanic particulate organic carbon, 

and eutrophication impacts from corn production (Abeshu et al., 2022; Fan et al., 2021; Li et al., 2022; Liu et al., 2021; 295 

Romeiko et al., 2020), demonstrating their efficiency and effectiveness in capturing high-dimensional and complex 

relationships between a target biogeochemical variable and various environmental predictors. Readers are referred to Abeshu 

et al., (2022) for more details about these techniques. 

 

The overall procedure for developing a predictive ML model is illustrated in Fig. 2 (identical for the SoilGrids-based model) 300 

and outlined as follows: 

1. Prepare the input data for the ML modelling based on the independent catchments, their corresponding 𝑃𝑟  estimates, 

and environmental variables. To address the substantial statistical disparities and wide variation within each predictor, 

we employ power transformation on all predictors. The lambda parameter is held constant during the transformation 

process for the training, testing, and prediction datasets to ensure consistent and reproducible results. Following the 305 

transformation, the dataset exhibits a zero-mean and unit variance, with a distribution that closely resembles a 

Gaussian distribution (Supplementary Fig. S4).  

2. Randomly split the observational dataset (2595 catchments) into two sets: 70% for training and 30% for testing the 

ML model. These training and testing sets will be used throughout the subsequent steps.  

3. Identify the list of predictors out of the 54 environmental variables extracted in Sect. 2.2.3 in three sub-steps: 310 

a. Generate a completely random predictor. 

b. Prepare an initial list of candidate predictors consisting of the random predictor and an initial list of candidate 

environmental variables. Use Optuna and k-fold cross-validation to obtain the optimal hyperparameters and 

train an intermediate ML model until the model achieves the best performance evaluated using the testing 

set.  315 
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c. Calculate and rank the SHAP values for all the candidate predictors. Update the list of candidate predictors 

by keeping only those predictors with better SHAP values than the random predictor. For example, if the 

random predictor is ranked 20th, only the top 19 predictors are passed to the next iteration. 

d. Obtain an almost-final list of predictors by repeating sub-steps b-c.  

4. Check the representativeness of the almost-final list of predictors identified in Step 3. For each of these predictors, 320 

check whether its values from the independent catchments are statistically representative of the whole CONUS, i.e., 

its values from those 2.6 million local catchments. Drop those predictors that cannot pass the representativeness 

check. Similar to Abeshu et al. (2022), the representativeness check on each of the almost-final predictors is 

performed by comparing the cumulative distribution function (CDF) derived from the observational dataset (2595 

training catchments) and the CDF derived from the whole CONUS (about 2.6 million local catchments in NHDPlus). 325 

Specifically, comparisons are made between the 5th, 25th, 50th, 75th, and 95th percentiles between the two CDFs. 

After Step 4, a final list of predictors is obtained. 

5. Develop the final ML model based on the final list of predictors using Optuna and k-fold cross-validation methods.  
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 330 

Figure 2. A workflow for the XGBoost model. 

 

In Steps 3 and 5, model performance metrics are required for model training and evaluation. The Kling-Gupta efficiency (KGE) 

(Gupta et al., 2009) has the advantage of simultaneously capturing both the magnitude and phase differences between the 

observed and simulated series (Abeshu et al., 2022; Gupta et al., 2009). However, further investigations have revealed several 335 

limitations: a) lack of an inherent benchmark value to distinguish between "good" and "bad" model performance, b) sensitivity 

to outliers, which can result in a systematic overestimation of the target variable, and c) instability when the target variable 

approaches zero (Knoben et al., 2019; Pool et al., 2018; Santos et al., 2018). Therefore, in addition to KGE, the mean absolute 

scaled error (MASE) is also used here to alleviate the influence of extreme values in the observation or simulation data 

(Hyndman and Koehler, 2006). MASE is a scaled error metric that is defined as the mean absolute error (MAE) of the model 340 

simulation divided by scaling factors (MAE of the observation in the original definition). In this study, we normalize MAE by 
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the geometric mean of the observation data. Note that Steps 3 and 5 above are relatively independent of each other and do not 

have to rely on the same metrics. 

3 Results 

3.1 Predictor selection 345 

In the predictor selection stage, after six iterations of hyperparameter tuning and predictor reduction with KGE as the metric, 

a list of 15 predictors is selected (blue bars in Fig. 3), including those related to climate, hydrology, pedology, and land cover. 

In addition, using MASE as the metric in this stage leads to a list of 19 remaining predictors, among which 13 are the same as 

the list of predictors identified using KGE. The predictor list selected using KGE is preferred due to the fewer predictors and 

similar model performance. The feature selection results for the SoilGrids-based model (blue bars in Supplementary Fig. S5), 350 

indicate that 11 out of 13 predictors are also present in the final list derived from the HWSD-based model. This overlap further 

reinforces the consistency of important features across datasets and enhance the robustness of the selection process. 

 

To enhance the model transferability, we implement a representativeness check (detailed in Sect. 4.1.2) that led to the exclusion 

of 3 initially selected predictors: "BASIN_AREA," "NLCD01_52," and "NLCD01_95." These variables demonstrated 355 

insufficient representativeness of the anticipated real-world data distribution in the prediction phase, resulting in a final model 

with 12 predictors. Figure 3 presents a comparative analysis of mean absolute SHAP values between the original 15-predictor 

model (blue bars) and the final 12-predictor model (orange bars). Notably, both models identified the same five dominant 

predictors, ranked according to their influence in the 12-predictor model: 1) the merged  predictor of hydrologic variables 

("hydro_related"), 2) the areal percentage of Hydrologic Group BD soil ("HGBD"; detailed classification in Ross et al., 2018), 360 

3) the areal percentage of woody wetlands ("NLCD01_90"), 4) the consecutive wet days ("CWD"), and 5) the subsurface flow 

contact time ("CONTACT"). The "hydro_related" and "CWD" reflect the overall hydrology condition of a catchment, 

including runoff, precipitation, and groundwater recharge. Groundwater has a dilution effect on DOC concentration 

(Kortelainen and Karhu, 2006). Similarly, precipitation and runoff contribute to the distribution and concentration of DOC 

(Baum et al., 2007; Tranvik and Jansson, 2002; Wilson et al., 2013). Soil type plays a crucial role in determining the soil 365 

organic matter quantity and the partitioning of precipitation into runoff, consequently influencing the concentration of DOC 

in rivers (Autio et al., 2016; Camino-Serrano et al., 2014). Woody wetland, as one land cover attribute, has been identified as 

a significant predictor of downstream DOC concentration (Duan et al., 2017), because of the enhanced breakdown of organic 

matter and plant respiration. The influence of subsurface flow contact time on DOC concentration is complex and indirect. For 

instance, during transport, a catchment with a shorter contact time experiences reduced mineralization loss (Ludwig et al., 370 

1996) and microbial consumption (Helton et al., 2015). Conversely, studies have shown that labile DOC concentration 

increases with contact time in some alluvial aquifers, as deeper groundwater inflow could provide considerable labile DOC 

(Helton et al., 2015; Wickland et al., 2012).  
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Figure 3. Mean absolute SHAP values of predictors in models with 15 predictors (blue) and 12 predictors (orange). Note that the 

SHAP values have the same units as the target variable, 𝑷𝒓. Abbreviations: hydro_related (merged predictor representing recharge, 

runoff, and precipitation); HGBD (areal percentage of Hydrologic Group BD soil); NLCD01_90 (areal percentage of woody 

wetlands); CWD (consecutive wet days); CONTACT (subsurface contact time); temp_related (merged predictor encompassing 

potential evapotranspiration, first/last freeze timing, snow fraction, actual evapotranspiration, and mean/min/max temperature); 380 
CNPY11_BUFF100 (areal percentage of canopy in the riparian buffer); elev_related (merged predictor for mean/min/max 

elevation); NLCD01_42 (areal percentage of evergreen forest); RH (relative humidity); BFI (base flow index); soil_texture_related 

(merged predictor for silt and sand content); BASIN_AREA (catchment area); NLCD01_52 (areal percentage of shrub); 

NLCD01_95 (areal percentage of herbaceous wetlands). For detailed descriptions, refer to Supplementary Tables S2 and S3. 

 385 

3.2 Final model 

Figure 4 presents the performance of the ML model during both the training and testing phases (phases shown in Fig. 2). To 

mitigate over-plotting, all the scatter plots (Fig. 4 and hereinafter) employ color coding based on estimated density using kernel 

density estimation (KDE), as indicated by the corresponding color bar. After the exclusion of the three variables that displayed 

poor representativeness, the ML model performance remains stable between the training and testing phases, as gauged by 390 

metrics such as MASE, coefficient of determination (R2), and normalized root-mean-square-error (NRMSE). The similarities 

in these metrics between the Estimated and predicted 𝑃𝑟  values across both phases support the robustness of our 12-predictor 

model. Consequently, the final ML model and the subsequent analyses are based on the 12 selected predictors. Furthermore, 
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the consistency of model performance between the training (MASE= 0.40) and testing (MASE= 0.81) phases suggests that the 

model overfitting issues are well-regulated (Ying, 2019). We also use KGE as the metric during the final model training. After 395 

a comparison between the modeling results using MASE (Fig. 4) and KGE (Supplementary Fig. S6), MASE is preferred for 

two reasons: a) using MASE yields a better consistency in model performance between the training and testing phases, 

suggesting better model transferability; b) using MASE leads to a closer agreement between the model simulated and Estimated 

𝑃𝑟  values. The performance of the SoilGrids-based model, as depicted in Supplementary Fig. S7, shows similar overall metrics; 

nonetheless, the model slightly overestimates low values and underestimates high values during the testing phase. This 400 

discrepancy is likely due to the flatter data distribution in the testing dataset, which results in insufficient learning for those 

extreme values. 

 

 

Figure 4. Performance of the XGBoost model with 12 predictors during a) the training phase (n=1816) and b) the testing phase 405 
(n=779). The solid black line indicates a 1:1 ratio. The varying colours indicate the density of points in the scatter plot.  

 

Table 1 lists the optimized hyperparameter values of the final XGBoost model (Supplementary Table S4 for that of SoilGrids-

based model). We choose to tune 8 model parameters, which are critical to the XGBoost tree booster controlling regularization, 

subsampling, learning process, and the growth of the tree. The optimal values of model hyperparameters are quite different 410 

from the default ones, suggesting hyperparameter tuning is necessary.  

 

Table 1. The optimal values of the XGBoost model hyperparameters. 

Hyperparameter Optimal Value Tuning Range Default value  Description  
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lambda 6.725 × 10−1 [0, ∞] 1 
Control L1 and L2 regularization; the larger the value, the more conservative 

the model will be 
alpha 7.484 × 10−2 [0, ∞] 0 

gamma 1.316 × 10−2 [0, ∞] 0 Govern the model learning process by changing the step size shrinkage and 
minimum loss reduction; the larger the value, the more conservative the model 

will be eta 1.277 × 10−1 (0, 1] 0.3 

colsample_bytree 9.323 × 10−1 (0, 1] 1 
Control the subsample ratio of columns and training instances; a proper set of 
those values will prevent the model from over-fitting 

subsample 6.142 × 10−1 (0, 1] 1 

min_child_weight 8.410 × 10−2 [0, ∞] 1 

Determine the growth of the tree 

max_depth 12 [0, ∞] 6 

 

Figure 5 depicts the correlation between 𝑃𝑟 and the 12 predictors and among the predictors themselves (Supplementary Fig. 415 

S8 for that of SoilGrids-based model), where highly positive correlated and negative correlated are shown in dark-red and blue 

colors, respectively. Since we have treated the highly correlated variables, the highest positive correlation coefficient is 0.63 

between "CNPY11_BUFF100" and "hydro_related", lower than the threshold of 0.8 we adopt in Sect. 2.2.3. Among the 

observed correlation coefficients, the highest negative correlation coefficient, -0.69, is found between the variables 

"elev_related" and "temp_related." This strong negative correlation makes intuitive sense since air temperature decreases with 420 

increasing elevation. Note that all of the 12 selected predictors show weak or even negligible correlation with the target variable 

𝑃𝑟 , with the absolute values of the correlation coefficient less than 0.3. It is not surprising since the high-order, nonlinear 

relations between 𝑃𝑟 and the predictors, and likely among the predictors themselves, can only be effectively captured by the 

ML techniques but not the traditional regression analysis methods.  

 425 
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Figure 5. Covariance heatmap of 𝑷𝒓  and the 12 selected NHDPlus predictors. The Pearson correlation coefficient is used. 

Abbreviations: hydro_related (merged predictor representing recharge, runoff, and precipitation); CONTACT (subsurface contact 

time); NLCD01_90 (areal percentage of woody wetlands); HGBD (areal percentage of Hydrologic Group BD soil); elev_related 

(merged predictor for mean/min/max elevation); CWD (consecutive wet days); temp_related (merged predictor encompassing 430 
potential evapotranspiration, first/last freeze timing, snow fraction, actual evapotranspiration, and mean/min/max temperature); 

soil_texture_related (merged predictor for silt and sand content); BFI (base flow index); RH (relative humidity); CNPY11_BUFF100 

(areal percentage of canopy in the riparian buffer); NLCD01_42 (areal percentage of evergreen forest). For detailed descriptions, 

refer to Supplementary Tables S2 and S3. 

 435 

3.3 𝑷𝒓 map 

We develop a spatially continuous map of 𝑃𝑟  over CONUS by applying the final XGBoost model over the 2.6 million NHDPlus 

local catchments, as shown in Fig. 6. The spatial patterns of 𝑃𝑟  are generally consistent with those in Fig. 1. High 𝑃𝑟  values, 

shown in orange and red, are mostly located on the southeast coasts, New Mexico, Arizona, southern California, and North 

Dakota. Low 𝑃𝑟 values, shown in blue and purple, are more prevalent in the Northeast and Northwest regions. This consistency 440 

between Fig. 1 and Fig. 6 again confirms that the 2595 independent catchments used in the ML modeling are representative of 

the whole CONUS domain, hence supporting the transferability of the ML modeling results. The spatial 𝑃𝑟  map derived using 

the SoilGrids-based model (Supplementary Fig. S9) reveals that, although the overall patterns remain largely similar, the model 
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predicts lower values in southern California, New Mexico, and Colorado, and higher values in northern Minnesota and southern 

Florida. 445 

 

Figure 6. ML model simulated 𝑷𝒓 at over 2.6 million NHDPlus local catchments. 

 

3.4 Evaluation  

We evaluate the  𝑃𝑟  map by comparing the DOC concentration values derived from this map (and Eqn. 6) with those observed, 450 

since there is no direct measurement of  𝑃𝑟 . The 3210 evaluation stations and their corresponding small catchments (Fig. 1b) 

are used for this purpose. Note that each of these 3210 evaluation catchments may encompass multiple NHDPlus local 

catchments. The evaluation thus takes two steps: 1) For each NHDPlus local catchment, calculate its DOC concentration using 

the predicted 𝑃𝑟  value, SOC, and Eqn. (6); derived the DOC concentration for the evaluation catchment (whose outlet is an 

observational station) by taking the area-weighted average of local DOC values from the few NHDPlus local catchments 455 

located within this catchment; 3) Compare the "derived" DOC concentration with the observed value at the same evaluation 

catchment. Note that two evaluation catchments are dropped during Step (1) for containing some NHDPlus local catchments 

without an effective model simulated 𝑃𝑟 .  

 

Figure 7 shows that our derived DOC concentration values effectively reproduce the spatial variability in the observed values. 460 

The MASE, NRMSE and R2 values are 0.73, 1.81, and 0.47, respectively, further suggesting a satisfactory performance. The 

scattering only occurs to a small portion of the dots, as indicated by the reddish colours. This scattering may stem from several 

causes, such as the limited availability of DOC observation data and the uncertainties in model development (see Sect. 4 for 

more details). Despite the scattering, the overall alignment between observed and predicted values suggests that our methods, 

including the generic formula and ML modelling, are appropriate and effective. The DOC evaluation performance of the 465 
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SoilGrids-based model (Supplementary Fig. S10) reveals a larger systematic bias. This issue is also primarily attributed to 

differences in data distribution, as the 𝑃𝑟  values in evaluation exhibit a wider range than those in training, particularly at low 

values (see Sect. 2.2.2). Consequently, the model struggles to predict extreme values accurately. For example, for very small 

𝑃𝑟  values in the evaluation catchments, the model tends to slightly overpredict due to the absence of such small values in the 

training dataset. Additionally, the typically higher SOC values in these regions further amplify the discrepancies. 470 

 

  

Figure 7. Evaluation of derived DOC concentration at the catchment scale (n=3208). The solid black line indicates a 1:1 ratio. The 

varying colours indicate the density of points in the scatter plot.  

 475 

4 Uncertainty analyses 

The final product, our 𝑃𝑟  map, is subject to uncertainties from various sources. In this study, we have implemented several 

measures to constrain the uncertainties embedded in the input data and ML modeling exercise. We also look into the ML 

model parameter uncertainty via sensitivity analyses.  
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4.1 Efforts to constrain uncertainty 480 

4.1.1 Machine learning model input data 

The estimation of the DOC long-term average transformation rate, 𝑃𝑟 , relies on SOC data from the HWSD v1.2 and SoilGrids 

2.0 dataset and DOC data from the WQP stations. Despite implementing stringent catchment selection (see Sect. 2.2.1), the 

challenge of balancing data quantity and quality persists due to limited DOC measurements. Larger uncertainties in 𝑃𝑟  are 

anticipated in catchments with fewer samples or those where most samples are collected in a single season. Additionally, 485 

potential uncertainties in the 𝑃𝑟  estimation may arise from the mismatch in sampling periods between SOC and DOC datasets. 

It is crucial to recognize and account for these uncertainties when interpreting and using the 𝑃𝑟  map. 

 

The flowline and catchment attributes from NHDPlus constitute the primary inputs in both training and prediction phases for 

the ML model, and thus may contribute to the uncertainty in the results. NHDPlus catchment attributes are drawn from diverse 490 

sources, including remote sensing data and model simulations. Upstream-accumulated values are derived based on flowline 

data (Wieczorek et al., 2018). A majority of attributes have been compared to equivalent variables, when available, in the 

Geospatial Attributes of Gages for Evaluating Streamflow version II (GAGESII) dataset (Falcone et al., 2010). These 

comparisons have demonstrated reasonably strong alignment. Inherent uncertainties may still arise from inaccurate flowline 

and catchment delineation, inaccuracies in the source data, the conversion of data formats (e.g., from grid-based to catchment-495 

based), and so on. Furthermore, instances of missing data or attributes with zero-inflated values (e.g., regions highlighted in 

white color in Supplementary Fig. S11a) from the NHDPlus dataset can complicate accurate data interpolation by the ML 

model. Despite the use of the sparsity-aware technique within the XGBoost algorithm, adept at handling missing or zero-

inflated data to a certain extent (Chen and Guestrin, 2016), the presence of such challenges persists. Overcoming these 

limitations is beyond this study's scope. 500 

4.1.2 Machine learning model development 

In contrast to physical-based models with clearly pre-defined structures, ML models endeavor to discern the optimal structure 

from input data through the training process. Consequently, uncertainty may emerge at any stage of model development, as 

detailed in Sect. 2.3. To mitigate model uncertainty, we employ well-established strategies prevalent in diverse applications 

(Abeshu et al., 2022; Delavar et al., 2019; Li et al., 2022). These encompass techniques such as transforming input data, 505 

training and testing splits, feature selection, hyperparameter tuning, and cross-validation (refer to previous sections for details). 

These measures aim to constrain the uncertainties inherent in model development processes and fortify the model's predictive 

capabilities, for example by refining the interpretability of input data, mitigating the risk of overfitting, enhancing 

generalization performance, and minimizing the introduction of potentially noisy predictors. 

 510 
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In addition to the commonly adopted strategies in using XGBoost and the other ML techniques, we augment the control of 

model uncertainty through a representativeness check. This check ensures alignment between the distribution of model 

parameters used during training and those applied in predictions. This additional step serves to enhance the model's 

transferability from the training catchment to the broader CONUS domain. To gauge the representativeness of our chosen 

predictors, we conducted a Cumulative Distribution Function (CDF) comparison for each parameter between the observational 515 

dataset (derived from 2595 independent catchments) and the entire CONUS dataset (comprising approximately 2.6 million 

local catchments in NHDPlus). For this comparison, we assess the relative difference in the 5th, 25th, 50th, 75th, and 95th 

percentiles between the two CDFs. As an illustration, the relative difference for the 5th percentile is computed as the ratio of 

the difference between the 5th percentile of the available 𝑃𝑟  data and that of the entire CONUS data to their average. Table 2 

provides a summary of the CDF comparison of the 15 selected predictors (Supplementary Fig. S12). A predictor is deemed 520 

representative of the whole CONUS if the average relative difference is less than 0.75. Following Abeshu et al. (2022), the 

choice of the 0.75 threshold strikes a balance between maintaining data representativeness and avoiding the exclusion of too 

many predictors. Three predictors, namely "BASIN_AREA", "NLCD01_95", and "NLCD01_52", have failed the 

representativeness check and are consequently excluded. Note that the ML model performance has only slightly changed after 

reducing the number of predictors from 15 to 12, as shown in Supplementary Fig. S13. Following the same process, the 525 

SoilGrids-based model excludes "NLCD01_95" during the representativeness check, resulting in 12 out of 13 predictors being 

retained for the final optimal model (Supplementary Table S5). 

 

Table 2. Representativeness of XGBoost model input predictors over CONUS. 

Attributes 
Relative difference in percentiles between 𝑃𝑟-available and whole_conus data 

Average 
5th 25th 50th 75th 95th 

BASIN_AREA 1.941 1.728 1.669 1.794 1.900 1.806 

NLCD01_95 0.667 0.667 0.842 1.144 1.529 0.969 

NLCD01_52 0.353 0.624 1.224 1.482 0.889 0.914 

CNPY11_BUFF100 1.684 1.090 0.427 0.080 0.078 0.672 

NLCD01_90 0.769 0.314 0.461 0.621 0.807 0.594 

NLCD01_42 0.667 0.559 0.651 0.502 0.225 0.521 

elev_related 0.769 0.806 0.320 0.621 0.008 0.505 

hydro_related 0.584 0.898 0.316 0.108 0.106 0.402 

HGBD 0.955 0.264 0.152 0.095 0.255 0.344 

CONTACT 0.166 0.135 0.248 0.292 0.393 0.247 

BFI 0.476 0.304 0.152 0.002 0.027 0.192 

RH 0.197 0.103 0.015 0.014 0.014 0.068 

soil_texture_related 0.095 0.071 0.068 0.071 0.015 0.064 

CWD 0.063 0.065 0.028 0.053 0.033 0.048 

temp_related 0.035 0.034 0.009 0.029 0.006 0.023 

Abbreviations: BASIN_AREA (catchment area); NLCD01_95 (areal percentage of herbaceous wetlands); NLCD01_52 (areal percentage of 530 
shrub); CNPY11_BUFF100 (areal percentage of canopy in the riparian buffer); NLCD01_90 (areal percentage of woody wetlands); 

NLCD01_42 (areal percentage of evergreen forest); elev_related (merged predictor for mean/min/max elevation); hydro_related (merged 

predictor representing recharge, runoff, and precipitation); HGBD (areal percentage of Hydrologic Group BD soil); CONTACT (subsurface 

contact time); BFI (base flow index); RH (relative humidity); soil_texture_related (merged predictor for silt and sand content); CWD 
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(consecutive wet days); temp_related (merged predictor encompassing potential evapotranspiration, first/last freeze timing, snow fraction, 535 
actual evapotranspiration, and mean/min/max temperature); For detailed descriptions, refer to Supplementary Tables S2 and S3. 

 

4.2 Sensitivity analyses 

Model sensitivity analysis involves probing the importance of uncertainties in model parameters (Loucks and Van Beek, 2017). 

We examine our model's sensitivity to each selected predictor using two different methods: 1) dropping one predictor at a time 540 

and tracking the changes in model performance, and 2) the Sobol sensitivity analysis approach (Sobol, 2001). Figure 8 

demonstrates the model performance difference in the training and testing phases after dropping one of the 12 variables. A 5% 

threshold is chosen to determine the significance of the change. In general, the shifting pattern in MASE scores remains 

consistent between the training and testing phases. However, the alterations in MASE values for most predictors, particularly 

during the testing phase, are minimal or even negligible. In other words, the model appears to be insensitive to most predictors 545 

according to this first sensitivity analysis method.  
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Figure 8. Sensitivity of XGBoost model to predictors in the training and testing phases. The MASE value is represented by the blue, 

red, and grey bars, indicating whether the model performance increases, decreases, or remains relatively unchanged after dropping 550 
the corresponding predictor. The dashed grey line indicates the model performance with all variables included. Abbreviations: 

hydro_related (merged predictor representing recharge, runoff, and precipitation); CONTACT (subsurface contact time); 

NLCD01_90 (areal percentage of woody wetlands); HGBD (areal percentage of Hydrologic Group BD soil); elev_related (merged 

predictor for mean/min/max elevation); CWD (consecutive wet days); temp_related (merged predictor encompassing potential 

evapotranspiration, first/last freeze timing, snow fraction, actual evapotranspiration, and mean/min/max temperature); 555 
soil_texture_related (merged predictor for silt and sand content); BFI (base flow index); RH (relative humidity); CNPY11_BUFF100 

(areal percentage of canopy in the riparian buffer); NLCD01_42 (areal percentage of evergreen forest). For detailed descriptions, 

refer to Supplementary Tables S2 and S3. 

 

The Sobol sensitivity analysis is a widely used variance-based global sensitivity analysis method (Borgonovo and Plischke, 560 

2016). It provides two indices: First-order Index (S1), which measures the sensitivity of an individual predictor itself (local 

variance), and Total Index (ST), which accounts for the effects of both an individual predictor itself and its interactions with 

any other predictors (global variance) (Saltelli, 2002; Saltelli et al., 2010). These interactions, which can be of any order, can 

be isolated. For instance, second and higher-order interactions can be isolated by subtracting SI from ST. The results from the 
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Sobol test are summarized in Table 3. The distribution of S1 is highly right-skewed, suggesting that the model exhibits 565 

insensitivity to most predictors if only local variance is considered. There are, however, a few exceptions, such as 

"hydro_related", and "temp_related", which present high S1 values. The global variance, represented by the ST index, paints 

a somewhat different picture. When considering the ST index, a broad set of predictors emerge as sensitive, particularly those 

with ST values exceeding 0.1. It's worth noting that these predictors also hold high rankings in the predictor selection, as shown 

in Fig. 3. Furthermore, it is significant that 11 out of the total 12 predictors show a normalized difference between S1 and ST 570 

(calculated as (ST-S1)/ST) greater than 50%. This observation underscores the significant interactions among the predictors 

(Saltelli et al., 2010). This suggests that if a predictor is dropped, the remaining predictors could potentially compensate for its 

absence, highlighting the nonlinear, high-order interdependence among the predictors in our model. 

 

Table 3. Sobol sensitivity analysis results for the 12 selected predictors. 575 

Predictors Total Indices (ST) First Order Indices (S1) Difference ((ST-S1)/ST) 

hydro_related 0.466 0.291 0.375 

temp_related 0.311 0.141 0.546 

CWD 0.207 0.044 0.788 

CONTACT 0.143 0.003 0.977 

CNPY11_BUFF100 0.132 0.028 0.787 

NLCD01_90 0.125 0.049 0.608 

elev_related 0.087 0.017 0.806 

BFI 0.072 0.012 0.831 

RH 0.062 0.010 0.836 

soil_texture_related 0.034 0.000 1.000 

NLCD01_42 0.024 0.005 0.798 

HGBD 0.013 0.002 0.873 

Abbreviations: hydro_related (merged predictor representing recharge, runoff, and precipitation); temp_related (merged predictor 

encompassing potential evapotranspiration, first/last freeze timing, snow fraction, actual evapotranspiration, and mean/min/max 

temperature); CWD (consecutive wet days); CONTACT (subsurface contact time); CNPY11_BUFF100 (areal percentage of canopy in the 

riparian buffer); NLCD01_90 (areal percentage of woody wetlands); elev_related (merged predictor for mean/min/max elevation); BFI (base 

flow index); RH (relative humidity); soil_texture_related (merged predictor for silt and sand content); NLCD01_42 (areal percentage of 580 
evergreen forest); HGBD (areal percentage of Hydrologic Group BD soil); For detailed descriptions, refer to Supplementary Tables S2 and 

S3. 

 

The above sensitivity analyses suggest that our model exhibits low sensitivity to most predictors when considering their 

individual (local) impact. However, the Sobol sensitivity analysis uncovers a heightened degree of sensitivity in the context of 585 

global effects, particularly given the significant interactions among the predictors. A similar sensitivity analysis was conducted 

for the SoilGrids-based model, yielding the same conclusions (Supplementary Fig. S14 and Supplementary Table S6). 
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5 Potential use and limitations 

The 𝑃𝑟  map has several promising uses. For instance, one of the pivotal applications of the 𝑃𝑟  map is to estimate the lateral 

leaching of DOC. Figure 9, as an illustration, shows a 𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓  map over CONUS depicting the long-term average 590 

concentration of DOC in the leaching flux at over two million NHDPlus local catchments. This map is derived based on Eqn. 

(4), leveraging the 𝑃𝑟  map in Fig. 6 and the top-layer SOC data from HWDS1.2. Due to missing data in the HWSD 1km SOC 

map at about 0.6 million NHDPlus local catchments, we cannot calculate the 𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 values over those catchments. 

 

 595 

Figure 9. Calculated CONUS map of DOC concentration in leaching flux from soils to over 2.6 million NHDPlus flowlines. 

 

The spatial patterns of the 𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 map are highly correlated to those of the 𝑃𝑟  (Fig. 6) and SOC map (Supplementary Fig. 

S11b). Notably, the 𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 values are high in regions with extremely high SOC values. Additionally, the 𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 

values are high in North Dakota, Montana, and southern coasts, where the 𝑃𝑟  values are high. Interestingly, the influences of 600 

𝑃𝑟  and SOC can counterbalance each other in some places. For instance, in the upper Rocky Mountains, the SOC storage is 

abundant due to the presence of forests. However, the low temperature in this region hinders microbial activities, resulting in 

extremely low 𝑃𝑟  values. As a result, the concentration of DOC leaching flux is relatively low. Moreover, the spatial coverage 

of wetlands also appears to be relevant (Supplementary Fig. S11a), which is consistent with the suggested crucial role of 

wetlands in riverine DOC dynamics (Duan et al., 2017; Leibowitz et al., 2023). For instance, high 𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 values are 605 

observed in upper Minnesota, Florida, and Louisiana, where wetlands are prevalent. In places with few wetlands, like Nevada, 

Arizona, and New Mexico, the leaching flux concentration is considerably lower. 
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There are at least two other potential uses of the 𝑃𝑟 map: 1) It can support large-scale DOC modeling over CONUS or a major 

river basin. For instance, testing the use of the map within the framework of the Energy Exascale Earth System Model (Burrows 610 

et al., 2020; Caldwell et al., 2019; Golaz et al., 2019) is ongoing and will be reported in the near future. 2) It can be used to 

provide a quick estimation of riverine DOC concentration or flux at any catchments where no DOC observations are available.  

 

We caution the potential users of the 𝑃𝑟 map with several limitations in the methods invoked. Firstly, the 𝑃𝑟 values in the map 

account for the spatial heterogeneity of various DOC-related processes and factors only in a long-term average sense owing to 615 

the limited data availability, i.e., the SOC reanalysis data are long-term averages, and the observed riverine DOC data are only 

available at irregular time intervals. While we believe that such a 𝑃𝑟 map is a critical step in effectively capturing the spatial 

heterogeneity of the relevant processes and environmental factors, incorporating their temporal dynamics is beyond the scope 

of this study and left for future work. Second, the ML techniques are not process-based and thus do not yet offer rich insight 

into the relevant mechanisms. To improve our understanding of the DOC-related processes, the 𝑃𝑟  map should be used in 620 

conjunction with other observational data, process-based models, and carefully designed numerical experiments. Third, the 

lack of direct measurements of 𝑃𝑟  necessitates the use of indirect validation methods. To further enhance robustness, we 

encourage the design and implementation of new field experiments guided by our lumped parameter approach. Last but not 

least, the ML model has been trained with the data in the CONUS domain only, so it may not be transferable beyond CONUS. 

 625 

Our lumped parameter approach and machine learning-based parameterization strategy are designed to generalize beyond the 

CONUS and scale globally. The framework is inherently generic, independent of site-specific characteristics, and supported 

by machine learning techniques adaptable to diverse regions. The CONUS study area, characterized by substantial spatial 

heterogeneity, provides a robust foundation for demonstrating this generalizability. However, extending the framework to a 

global scale introduces challenges, particularly in data availability and variability in environmental conditions. Addressing 630 

these requires extensive observational data collection, especially riverine DOC observations, leveraging public datasets, 

literature, and increased fieldwork for enhanced coverage. At the global scale, managing increased uncertainties is crucial, as 

larger variability is expected compared to the CONUS-based parameterization. Efforts should focus on assembling 

comprehensive catchment attributes while maintaining flexibility in their significance assessment, allowing the machine 

learning model to determine their importance contextually. High-priority attributes identified in this study (Fig. 3), such as 635 

woody wetland percentage, should receive particular attention as they are likely critical in other regions. 

6 Data and code availability 

The resulting 𝑃𝑟 and 𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 maps over CONUS are freely available at https://zenodo.org/records/14563816 (Li et al., 

2024). The Zenodo repository includes the following resources: a) Pr.gpkg – a 9.9 GB GeoPackage file containing data on Pr, 

SOC, and DOC, derived using SOC data from HWSD v1.2 and SoilGrids 2.0 across over 2.6 million NHDPlus local 640 

https://zenodo.org/records/14563816
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catchments. This file also includes COMID and local catchment boundary polygons and is compatible with GIS software such 

as QGIS, ArcGIS, and Python libraries like GeoPandas for analysis and editing; b) PNG images – two high-resolution PNG 

files illustrating the HWSD-based and SoilGrids-based model-simulated Pr maps across over 2.6 million NHDPlus local 

catchments; c) Required input files – files necessary to reproduce the reported results; and d) ReadMe document – a text file 

providing detailed descriptions of each resource in the Zenodo repository. The input data are obtained from the water quality 645 

portal (https://www.waterqualitydata.us/), NHDPlus (https://www.epa.gov/waterdata/nhdplus-national-data), ScienceBase 

(https://doi.org/10.5066/F7765D7V), HWSD v1.2 (https://www.fao.org/soils-portal/data-hub/soil-maps-and-

databases/harmonized-world-soil-database-v12/en/) and SoilGrids2.0 (https://files.isric.org/soilgrids/latest/data/). 

Additionally, the Python scripts used for feature selection, model training, and evaluation are available on the Github repository 

at https://github.com/Ceyxleo/DOC-Param-Map.  650 

7 Conclusions 

We developed two new maps of 𝑃𝑟 , the transformation rate from SOC concentration in soil to DOC concentration in the 

leaching flux, over CONUS, based on SOC data from the HWSD v1.2 and SoilGrids 2.0. Evaluation of derived DOC 

concentrations at over 3000 WQP stations confirms the robustness of our methodology, which incorporates a generic formula 

linking SOC and DOC via 𝑃𝑟 , riverine DOC observations, environmental variables, and ML techniques that effectively capture 655 

high-order, nonlinear relationships between 𝑃𝑟  and the environmental variables. These 𝑃𝑟  maps, the first of their kind, are 

highly valuable for large-scale DOC modeling and for improving our understanding of DOC-related processes across the land-

river continuum. 
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