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Abstract. Riverine dissolved organic carbon (DOC) plays a vital role in regional and global carbon cycles. However, the 

processes of DOC conversion from soil organic carbon (SOC) and leaching into rivers are insufficiently understood, 

inconsistently represented, and poorly parameterized, particularly in land surface and earthEarth system models. As a first 

attempt to fill this gap, we propose a generic formula that directly connects SOC concentration with DOC concentration in 15 

headwater streams, where a single parameter, the transformation rate from SOC in the soil to DOC leaching flux, 𝑃𝑟 , accounts 

for the overall processes governing SOC conversion to DOC and leaching from soils (along with runoff) into headwater 

streams. We then derive a high-resolution 𝑃𝑟  mapmaps over the contiguous U.S. (CONUS) inusing SOC data from two 

different sources: the Harmonized World Soil Database v1.2 (HWSD) and SoilGrids 2.0. Both maps are developed following 

the same five major steps: 1) selecting 2595 headwaterindependent catchments where observed riverine DOC data are available 20 

with reasonable quality; 2) estimating catchment-average SOC for the 2595independent catchments based on high-resolution 

SOC data; 3) estimating the 𝑃𝑟  values for these catchments based on the generic formula and catchment-average SOC; 4) 

developing a predictive model of 𝑃𝑟  with machine learning (ML)  techniques and catchment-scale climate, hydrology, geology, 

and other attributes; and 5) deriving a national map of 𝑃𝑟 , based on the ML model. For evaluation, we compare the DOC 

concentration derived using the 𝑃𝑟  map and the observed DOC concentration values at another 3210 headwater 25 

gauges.evaluation catchments. The resulting mean absolute scaled error and coefficient of determination are 0.73 and 0.47 for 

the HWSD-based model and 0.58 and 0.72 for the SoilGrids-based model, respectively, suggesting the effectiveness of the 

overall methodology. Efforts to constrain uncertainty and evaluate sensitivity of 𝑃𝑟  to different factors are discussed. To 

illustrate the use of such a mapmaps, we derive a riverine DOC concentration reanalysis dataset for more than two million 

small catchments over CONUS. The two 𝑃𝑟  mapmaps, robustly derived and empirically validated, layslay a critical cornerstone 30 

for better simulating the terrestrial carbon cycle in land surface and earthEarth system models. Our findings not only set a 

foundation for improving our predictive understanding of the terrestrial carbon cycle at the regional and global scales, but also 

hold promises for informing policy decisions related to decarbonization and climate change mitigation. 
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1 Introduction  

With the Earth's climate rapidly warming due to increasing atmospheric greenhouse gas concentrations, there is a growing 

focus on quantifying the regional and global carbon pools within the land, riverine, and oceanic systems, as well as the intricate 

interconnections among them (Duarte, 2017; (Jing et al., 2021; Teodoru et al., 2015; Duarte, 2017).). Each year, about 2 billion 

metric tons (Pg) of dissolved organic carbon (DOC) are transported from land to the oceans via rivers globally, comparable to 45 

the amount of atmospheric CO2 that deposits into the ocean (Hansell et al., 2009; Lønborg et al., 2020).). Moreover, riverine 

DOC is vital to aquatic biogeochemistry by providing nutrients to microbial communities and influencing aquatic greenhouse 

gas emissions (Li et al., 2019).). 

 

However, it remains a challenge to represent and predict riverine DOC effectively in the land biogeochemical module of Earth 50 

system models (ESMs),, which are the primary tools for studying carbon cycles in the context of climate change. A chief 

reason behind this long-standing challenge is the complexity of terrestrial and aquatic processes and their interactions 

governing SOC transformation to DOC and transport from soils to rivers. The relevant terrestrial processes include the 

conversion of solid SOC into soil DOC, the adsorption and desorption of DOC by surrounding soils, the transport of DOC 

from soils into headwater streams along with runoff, and the degradation of soil DOC during this transport. These processes 55 

are further influenced by numerous biotic factors, such as microbial, plant, and enzymatic activities, as well as abiotic factors, 

including soil temperature, moisture, pH (Davidson and Janssens, 2006; Kaiser and Kalbitz, 2012; Kalbitz et al., 2000; 

Sinsabaugh, 2010). The relevant aquatic processes include the transportation of riverine DOC from headwater streams, the 

interception of DOC fluxes by reservoirs and lakes, the degradation of riverine DOC during transport, and the consumption of 

DOC by aquatic biosystems. Furthermore, each process is controlled by several environmental factors, which often exhibit 60 

substantial spatial heterogeneity. Models attempt to represent these complexities through parameters associated with governing 

equations. For instance, Tian et al. (2015a, b) incorporated the effects of runoff on DOC leaching with a coefficient that 

involves both surface and subsurface runoff. Surface and subsurface runoff are further affected by many environmental factors 

such as climate, soil, vegetation, and topography (Li et al., 2014; Li and Sivapalan, 2014).).  

 65 
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The complexity of relevant processes and their driving environmental factors is also evident in the diverse process descriptions 

in several land biogeochemical models that are pioneers in representing the suite of processes from  SOC to riverine DOC, 

such as Dynamic Land Ecosystem Model (DLEM) (Tian et al., 2015a, b; Yao et al., 2021),), the integrated catchment model 

for carbon (INCA-C) (Futter et al., 2007),), the Joint UK Land Environment Simulator Dissolved Organic Carbon model 

(JULES-DOCM) (Nakhavali et al., 2018),), and the TRIPLEX-hydrological routing algorithm (TRIPLEX-HYDRA) (Li et al., 70 

2019).). These models differ in the processes involved and the process descriptions, owing to the inconsistent understanding 

of relevant processes among the modeling community. For instance, DLEM and TRIPLEX-HYDRA both adopt CENTURY-

like ((Parton et al., 1987; Metherell et al., 1993); Parton et al., 1987) formulas to estimate DOC leaching fluxes (Tian et al., 

2015a, b; Yao et al., 2021; Li et al., 2019),), but with notably different ways of incorporating both soil and water-related 

factors. For instance, TRIPLEX-HYDRA includes an empirical coefficient to account for soil absorption of SOC before its 75 

dissolution and DOC degradation in soils, which are not explicitly accounted for in DLEM. TRIPLEX-HYDRA incorporates 

hydrologic effects by directly using the water flow rate, whilst DLEM uses a dimensionless ratio to account for these effects. 

Equally important, the available observations have not been fully used for estimating or calibrating the numerous DOC-related 

parameters at the regional and larger scales in a spatially continuous yet variable fashion. Existing models usually calibrate 

several DOC-related parameters against DOC observations at a limited number of river gaugesstations, leading to the issue of 80 

overparameterization, where multiple combinations of parameter values can achieve the same simulation results (Sivapalan, 

2005).). Moreover, the resulting parameters often poorly reflect the spatial heterogeneity of underlying processes and 

environmental factors due to the limited spatial coverage of DOC observations (Futter et al., 2007; Tian et al., 2015a, b; 

Nakhavali et al., 2018; Li et al., 2019; Liao et al., 2019; Yao et al., 2021).). Overall, existing models for simulating DOC fluxes 

are still subject to limited transferability over poorly observed regions due to insufficient process understanding, data sca rcity, 85 

and overparameterization. 

 

One traditional strategy for improving model transferability over poorly observed regions is parameter regionalization. 

Generally, the low-dimensional relationships between a target parameter and other environmental variables are derived based 

on prior knowledge or regression analysis from the locations where sufficient observations are available. The relationships are 90 

then generalized and transferred to poorly-observed places ((Doron et al., 2011; Dupas et al., 2013; Ye et al., 2014; Alebachew 

et al., 2014; Ayata et al., 2018; Doron et al., 2011; Dupas et al., 2013; Tan et al., 2022).; Ye et al., 2014). However, such a 

strategy will not work well if statistically robust and mechanistically meaningful relationships can not be derived from the 

conventional regression analyses or prior knowledge when, for example, the relationships are high-dimensional and nonlinear 

(Abeshu et al., 2022; Li et al., 2022).). Fortunately, state-of-the-art machine learning (ML) techniques offer a promising and 95 

effective alternative strategy, owing to their proven advantages in capturing higher-order relationships between the target and 

predictive variables (predictors),, especially when prior knowledge of such relationships is still in its infancy (Afan et al., 

2016).). For example, ML techniques have been successfully employed to capture the complex relationships amongbetween 

median sediment particle size (D50) and several environmental factors, which enabled the derivation of a national map of 
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median sediment particle size D50 (Abeshu et al., 2022).). They have also been used to predict the concentration of fecal 100 

indicator bacteria, providing valuable guidance to beach closure problems (Li et al., 2022).). 

 

As the first step in addressing these challenges, this study develops an ML-powered approach for parameterizing DOC leaching 

fluxes at regional and continental scales. The rest of this paper is organized as follows. Section 2 outlines the overall 

methodology, including governing equations and corresponding parameters, data preparation, and the ML techniques 105 

employed. Section 3 presents the results over the contiguous United States (CONUS). Sections 4, 5, and 6 discuss the 

uncertainty, potential use of the resulting datasets, limitations of methods, and data availability. Section 7 concludes with a 

summary and potential future directions.  

2 Methods 

The methodology here is described with specific details over the CONUS region, but it is transferable to other regions after 110 

some modifications based on data availability.   

2.1 Governing Equation 

Several existing land or land biogeochemical models commonly employ CENTURY-like formulas to represent the leaching 

of DOC (Futter et al., 2007; Tian et al., 2015a, b; Nakhavali et al., 2018; Li et al., 2019; Yao et al., 2021; Parton et al., 1998).). 

In such formulas, the DOC leaching flux is estimated as a linear function of several factors, including the SOC or DOC 115 

concentration in soil, runoff, and other relevant environmental factors. For example, in DLEM (Tian et al., 2015a, b),), DOC 

leaching flux is estimated as 

                                                                      𝐹𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 = 𝐹𝑆𝑂𝐶_𝑆𝑜𝑖𝑙 × 𝛼1 × 𝛼2 × 𝛼3                             (1) 

Wherewhere 𝐹𝑆𝑂𝐶_𝑆𝑜𝑖𝑙 is the total amount of decomposed SOC in soil (g Cm-2s-1); 𝛼1 is the fraction of decomposed SOC that 

is dissolvable (%);  𝛼2 is the runoff coefficient (-), i.e., the ratio of total runoff volume to the sum of total runoff volume and 120 

soil water content; and 𝛼3 is another coefficient (-) accounting for the effects of DOC concentration in soil water and 

desorption. In TRIPLEX-HYDRA (Li et al., 2019), DOC leaching flux is given as  

                                                      𝐹𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 = 𝐶𝑆𝑂𝐶 × 𝐾𝑠 × 𝐾𝑎 × 𝑄𝑟𝑢𝑛𝑜𝑓𝑓 − 𝐾𝑠𝑜𝑖𝑙                                  (2) 

where 𝐹𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 is the DOC flux in the soil water (g C/s); 𝐶𝑆𝑂𝐶  is the concentration of SOC in the soil (g C/m3); Ks is the 

solubility of SOC (-); Ka is the adsorption coefficient of SOC (-); Ksoil represents the degradation rate of DOC in soils (g C/s), 125 

and 𝑄𝑟𝑢𝑛𝑜𝑓𝑓 is total runoff rate (m3/s). 

 

Based on the similarity between equations (1) and (2), while keeping minimal complexity in the process representation, we 

propose a simpler formula to estimate DOC leaching flux as 
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                                                                      𝐹𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 = 𝐶𝑆𝑂𝐶 × 𝑄𝑟𝑢𝑛𝑜𝑓𝑓 × 𝑃𝑟                                  (3) 130 

Eqn. (3) can be rewritten as  

                                                                       𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 =
𝐹𝐷𝑂𝐶𝑟𝑢𝑛𝑜𝑓𝑓

𝑄𝑟𝑢𝑛𝑜𝑓𝑓
= 𝐶𝑆𝑂𝐶 × 𝑃𝑟                                                   (4) 

Wherewhere 𝐹𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 is the DOC leaching flux (g C/s), 𝐶𝑆𝑂𝐶  is the SOC concentration (g C/m3 soil), 𝑄𝑟𝑢𝑛𝑜𝑓𝑓 is the runoff 

volume per unit time (m3 water/s), 𝑃𝑟  is the transformation rate from SOC in soil to DOC in runoff (m3 soil/ m3 water), and 

𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 is the DOC concentration in the runoff (g C/m3 water). 135 

 

Eqn. (4) has severaltwo advantages: 1) its lumped parameter, 𝑃𝑟 , accounts for all relevant processes and factors, including soil 

carbon decomposition, DOC sorption-desorption balance, DOC transport and degradation in soils, etc.; 2) its simplicity 

significantly reduces data requirements for large-scale parameterization since it is highly parameter-parsimonious and much 

more compatible with the availability of DOC observational data.  140 

 

WeFor a "small catchment", we further assume that 𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 can be approximated with the riverine DOC concentration at 

the catchment outlets for headwater catchments, i.e.  

                                                                              𝐶𝐷𝑂𝐶_𝑜𝑢𝑡𝑙𝑒𝑡  ≈  𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓                                                                      (5) 

Wherewhere 𝐶𝐷𝑂𝐶_𝑜𝑢𝑡𝑙𝑒𝑡 is the riverine DOC concentration at the catchment outlet (g C/m3). In this study, a "small catchment" 145 

refers to the drainage basin extending from the river station upstream to the furthest tributaries that do not have any upstream 

rivers. Note that a small catchment is not necessarily a headwater catchment that includes only one river (He et al., 2024). The 

rationale behind Eqn. (5) is two-fold: 1) Thethe travel time of runoff in small headwater streams of small catchments is typically 

much less than one day, e.g., the daily total runoff rate can be approximated with the daily streamflow rate for headwatersmall 

catchments ((Li et al., 2013; Ducharne et al., 2003),; Li et al., 2013), and 2) Due to the short travel time of DOC in headwater 150 

streams, riverine DOC the degradation in headwater streams mostly occurs at a rate of aboutDOC in headwater streams is 

approximately 1% per day according to previous, based on our literature review of existing experimental (Qualls and Haines, 

1992; Sobczak et al., 2003) and modeling studies (Strauss & Lamberti, 2002; Tian et al., 2015a, b; Li et al., 2019), hence is ) (for a full list of references, see 

Supplementary Table S1). Given this minimal degradation rate and the short residence time of DOC in streams of small 

catchments (on the order of a few hours), it is reasonable to assume negligible.  155 

stream to the point it exits into downstream rivers. Combining Eqn. (4) and (5) yields 

                                                                               𝐶𝐷𝑂𝐶_𝑜𝑢𝑡𝑙𝑒𝑡 ≈ 𝐶𝑆𝑂𝐶 × 𝑃𝑟                                                                        (6) 

Eqn. (6) may be used in at least two ways: 1) One can estimate 𝑃𝑟  at the catchment scale wherever observed DOC concentration 

and SOC values are available, and 2) Once 𝑃𝑟  is estimated a priori or through calibration, one can quickly predict riverine DOC 

concentration or discharge in headwater streams of small catchments from the corresponding SOC values.  160 
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2.2 Data 

A key step in the data preparation in this study is to pair up SOC data and riverine DOC observations at headwater catchments. 

The SOC data required for this study are from the Harmonized World Soil Database (HWSD) v1.2 (Fischer et al., 2008). This 

database provides SOC values at a spatial resolution of 1 km for two vertical soil layers at each grid cell - the top layer (0-30 

cm) and the sub-layer (30–100 cm). Considering that DOC leaching from soils into rivers predominantly comes from the 165 

topsoil (Brooks et al., 1999; Finlay et al., 2006), we use the SOC content data from the top 30 cm layer for our estimations. 

We also take into consideration that there are missing values in some grid cells in the HWSD v1.2 and adjust our catchment 

selection accordingly. Riverine DOC observations are available via the Water Quality Portal (WQP) (Water Quality Portal, 

2021). WQP integrates the publicly available water quality data from the USGS National Water Information System (NWIS) 

(U.S. Geological Survey), the EPA STOrage and RETrieval Water Quality eXchange (STORET-WQX) (USEPA), and the 170 

USDA ARS Sustaining The Earth's Watersheds - Agricultural Research Database System (STEWARDS) (Steiner et al., 

2008).). As of now, the WQP features data from 32071 river stations within the CONUS. These stations have recorded at least 

one DOC measurement between 1900 and the present. 

 

Regional and global soil property maps, such as soil organic carbon (SOC) maps, are typically generated using two primary 175 

methods: the linkage method (also known as the taxotransfer rule-based method) (Batjes, 2003) and digital soil mapping 

(McBratney et al., 2003). This study employs the most widely recognized datasets from each method: the Harmonized World 

Soil Database (HWSD) v1.2 (Fischer et al., 2008) and SoilGrids 2.0 (Poggio et al., 2021). HWSD provides SOC data at a 

spatial resolution of 1 km for two soil layers—the top layer (0–30 cm) and the sub-layer (30–100 cm). As one of the first 

globally harmonized soil datasets, it integrates data from diverse national and regional sources into a standardized framework, 180 

making it a foundational resource for many Earth system modeling studies  (Best et al., 2011; Han et al., 2014; Todd-Brown 

et al., 2013; Zhao et al., 2018). SoilGrids 2.0 offers SOC data at a higher resolution of 250 m for the same layers, leveraging 

machine learning algorithms to enhance accuracy and constrain uncertainty. Its higher resolution and improved reliability have 

made it increasingly popular for Earth system modeling since its release (Dai et al., 2019; Hengl et al., 2017; Poggio et al., 

2021). Considering that DOC leaching from soils into rivers predominantly comes from the topsoil (Brooks et al., 1999; Finlay 185 

et al., 2006), we use the SOC content data from the top 30 cm layer for our estimations. We also take into consideration that 

there are missing values in some grid cells in the HWSD v1.2  and SoilGrids 2.0 and adjust our catchment selection 

accordingly.  

 

In order to pair up SOC and DOC data at headwatersmall catchments, we rely on the National Hydrography Dataset Plus 190 

(NHDPlus) dataset hosted by the U.S. Geological Survey (USGS) (Mckay et al., 2012). This dataset is chosen for two reasons: 

Firstly, NHDPlus provides well-defined catchment boundaries and their correspondingassociated river segments, 

denotedreferred to as local catchments and flowlines. There areIt includes ~2.6 million NHDPlus flowlines inacross CONUS, 
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each with itslinked to a corresponding local catchment boundary and other environmental attributes. For each flowline, there are two types of catchment boundaries provided: a local catchment which is immediately adjacent to andthat collects lateral runoff into that flowline. Additionally, the flowline, and an upstream 

drainage catchment for any flowline, which is the sum of both local catchment and the drainage areas corresponding to all the 195 

flowlines upstream of the local one., can be derived from the established flowline network. The sizes of these 2.6 million local 

catchments vary from the 5th percentile at 9.680.02 km2 to the 95th percentile at 0.029.68 km2, depending on the corresponding surface 

topography, with a CONUS average of 3.12 km2 (see supplementary FigureSupplementary Fig. S1). Secondly, NHDPlus is closely linked to 

ScienceBase (Wieczorek et al., 2018), a comprehensive scientific data and information management platform also hosted by 

USGS. ScienceBase incorporatesincludes a wide range of environmental variables, including across 11 categories, such as climate, hydrology, soil, 200 

and geological data, conveniently available at the catchment scale overacross the wholeentire CONUS. These environmental 

data are critical in the ML modeling analysis.  

 

Correspondingly, the overall data preparation procedure consists of three major steps: 1) Selection of headwatersmall 

catchments based on the availability of observed riverine DOC concentrations of adequate quality. 2) Estimation of 𝑃𝑟  values 205 

for the catchments selected in Step 1, leveraging the corresponding riverine DOC observations and SOC reanalysis data. 3) 

Extraction of catchment-scale environmental variables that could potentially influence 𝑃𝑟 . Specific details of each step will be 

further discussed in the following subsections. This study adopts two SOC datasets, both of which directly influence the 

calculated 𝑃𝑟  values used in training, thereby affecting all steps leading to the final 𝑃𝑟  map. To enhance clarity and avoid 

redundancy, the HWSD-based model is the primary focus of discussion, as the workflow and major conclusions remain 210 

consistent. More information on the SoilGrids-based model is available in the supplementary materials. Users can choose their 

preferred 𝑃𝑟  map based on their specific needs. 

2.2.1 Selecting headwatersmall catchments 

Our selection process for suitable headwatersuimall catchments involves the integration of the NHDPlus dataset and observed 

riverine DOC concentration data from river stations: 215 

1. We conduct a geospatial analysis to identify the upstream drainage area of each WQP river station. This is 

accomplished by using the NHDPlus local catchments and flowlines. For every WQP station, we search for a 

NHDPlus flowline on which the station is located. Using athe Python package HyRiver (Chegini et al., 2021),), we co-locate 29320located 29,320 WQP stations with the closest 

corresponding NHDPlus flowlines. However, the remaining 27512,751 stations cannotcan not be linked with the NHDPlus dataset due to the absence of adjacent 

flowlines. SomeWhen WQP stations are in close proximity to each other and share the same NHDPlus flowlines. In 220 

such a caseflowline, we retain only one WQPthe station with the best data availability. EachFor a given flowline in 

NHDPlus is accompanied by a corresponding watershed boundary. However, not all WQP stations are precisely 

located at the outlets of these existing NHDPlus watershed , HyRiver traces it back to every upstream flowline, 

accessing and merging the boundaries. When faced with these circumstances, we derive the upstream drainage area  

of all related NHDPlus local catchments from the Hydro Network-Linked Data Index web server. It also requests the 225 

server to simplify the boundaries for the WQP stations from Digital Elevation Model (DEM) data. Upon completion 
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ofand split them precisely at the station locations. The relationship between the derived small catchment boundaries 

and the NHDPlus local catchments is shown in Supplementary Fig. S2a. Through this comprehensive geospatial 

analysis, we identify the upstream boundaries for 22,201 WQP stations. 

2. We further select the WQP stations whose drainage areas can be considered headwatersmall catchments, based on 230 

two criteria: 1) there are no upstream rivers flowing into them, and 2) their drainage areas are no more than 2500 km2. 

This size threshold ensures that the travel distance of river water (and consequently, DOC) is ~50 km  within these 

catchments. Assuming an average channel velocity of ~1.0 m/s (Chow et al., 1988),), the average travel time is ~14 

hours, i.e., less than one day. Using these criteria, we identify 18,612 pairs of WQP stations and headwatersmall 

catchments.   235 

3. For the 18,612 WQP stations, we perform a rigorous DOC data quality control based on five criteria: a) The record 

lengths of riverine DOC data should span at least one year; b) There should be at least two riverine DOC observations; 

c) No single season should dominate the riverine DOC observations, i.e., a single season should not account for more 

than 50% of the records; d) within the boundaries of the corresponding catchments, there should be sufficient 

availability of the NHDPlus catchment attributes and SOC reanalysis data; e) the catchments should not be 240 

significantly affected by dams, i.e., the total drainage areas of the dams within a catchment should be no more than 

5% of the total catchment area. The adoption of criteria (a)-(e) reflects a careful balance between ensuring data quality 

and maintaining adequate quantity, ensuring that sufficient WQP stations are retained to represent the entire CONUS. 

After the data quality control, there remain 5805 WQP stations with their corresponding headwatersmall catchments.  

4. For the 5805 WQP stations and their headwatersmall catchments, we verify the spatial independence among them. 245 

For instance, Catchment A A catchment is considered to be nested within Catchment Banother if A is situatedit lies 

entirely within the latter's drainage area of B. In such scenarios, while. While the fluxes observedflux at the 

downstream catchment's outlet of Catchment B are dependentdepends on those at the outlet of Catchment A, 

Catchment A itself remains independent of B.contributions from upstream catchments, the upstream catchments 

maintain their hydrological independence. As illustrated in Supplementary Figure S2, in cases of nested catchments, the catchment with the smaller area isFig. S2b, a simple nesting scenario shows 250 

two gray catchments, A and B, both located within the red catchment, C. Since A and B have no containing 

relationship and are both smaller than C, they are classified as independent catchments. In contrast, C is considered a 

nesting catchment. The same logic applies consistently selected as the independent catchment.in more complex nesting scenarios. From the 5805 pairs of 

the WQP stations and catchments, we identify 2595 as being independent and suitable for further ML modeling.model training. The 

other 3210 pairs, despite the nesting issue, are still valuable; they are thus kept for evaluation of estimated DOC (see 255 

SectionSect. 3.4). Due to missing values in SoilGrids 2.0, valid 𝑃𝑟  estimates are unavailable for 12 out of 2595 independent 

catchments; however, the number of evaluation catchments remains unchanged. 
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Figure 1. Variability in estimated 𝑷𝒓 across CONUS: a) For independent catchments (n=2595), and b) For evaluation catchments 

(n=3210). The points indicate the locations of the WQP stations, which are also the outlets of the corresponding small catchments. 260 
The CONUS boundary and river shapefiles are directly obtained from open-source datasets GeoPandas (geopandas.org) and 

Natural Earth (Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com), respectively. The color bars 

have been adjusted to enhance visual display by showing only the main body of values (from the 5th percentile to the 95th 

percentile)). 

 265 

2.2.2 Estimating 𝑷𝒓  

For the final set of the paired WQP stations and headwatersmall catchments, we calculate 𝑃𝑟 using the DOC observation from 

the WQP stations and long-term mean SOC from HWSD based on Eqn. (6). For each catchment, the catchment polygons are 
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used to clip the top-layer SOC map at the 1km resolution, and the catchment-scale SOC is subsequently calculated as the 

spatial average of SOC values at those 1km grid cells within the catchment. Hereafter the 𝑃𝑟  estimated using Eqn. (6) are 270 

referred to as "Estimated 𝑃𝑟". The Estimated 𝑃𝑟 , derived from the analysis of WQP DOC observations and HWSD SOC data, 

exhibits a wide range of values spanning several orders of magnitude. Figure 1a illustrates the spatial distribution of 𝑃𝑟  for the 

2595 independent catchments. In these catchments, the Estimated 𝑃𝑟 ranges from 4.61x10-6 to 8.04x10-3 (m3 soil/ m3 water), 

with a median value of 2.50x10-4 (m3 soil/ m3 water). As a broad assessment of the similarity between the catchments used to 

construct the model and the evaluation catchments, the values of 𝑃𝑟  for the evaluation catchments calculated from data values 275 

of DOC and SOC using Eqn. (6) are shown in FigureFig. 1b.  Here, the Estimated 𝑃𝑟  values in these catchments range from 

8.81x10-6 to 6.37x10-3 (m3 soil/ m3 water), with a median of 2.60x10-4 (m3 soil/ m3 water). Note that the spatial distribution of 

the selected catchments is quite consistent with the spatial distribution of the WQP stations, i.e., more densely distributed  in 

the eastern than western U.S,., suggesting a good spatial representation of the selected catchments over all the WQP stations 

in CONUS. Figure S8 shows the spatial distribution of Estimated 𝑃𝑟  values derived from the SoilGrids-based model for 280 

independent and evaluation catchments. The overall pattern closely resembles that derived from the HWSD-based model. The 

Estimated 𝑃𝑟  values have a slightly narrower range, from 1.16x10-5 to 8.69x10-3 (m3 soil/ m3 water) at independent catchments, 

and a similar range, from 7.78x10-6 to 7.55x10-3 (m3 soil/ m3 water) at evaluation catchments. 

2.2.3 Extracting environmental variables 

The ScienceBase dataset is a comprehensive resource that houses a wide array of We collect 126 environmental variables 285 

sorted into categories such as climate, hydrology, geology, and land use/land cover. We collect a wide range of environmental  

variables, comprising a total of 126 variables, across elevenfrom the ScienceBase dataset, spanning 11 distinct categories. We 

remove sevenSeven attributes related to dams and streams from the analysis as they are excluded as irrelevant to our analysis 

objectives. Furthermore, we exclude , along with 24 attributes from further analysis because theycontaining predominantly 

contain zero values, with over  (>80% of the values being zero over %) across CONUS. Out ofOf the remaining 95 variables 290 

(see supplementary Tables S1 and S2 for details),, 46 are relatively independent from each other. However, the otherwhile 49 

are highly correlated showed strong correlations with one or more variables. These 49 non-independent variables are further 

Following Schober et al. (2018), we define strong correlation as a Pearson correlation coefficient |r| ≥ 0.8. The 49 correlated 

variables are categorized into 9 distinct "correlated groups" and named based on the group property, as listed in Table 1. A 

"correlated group" is characterized by shared properties, where each variable demonstrates a strong correlation with at least 295 

one other variable within its group but a weak correlation (|r| < 0.8) with variables outside the group. We address the 

interdependence within each "correlated group" in through two steps. First, we normalize each variable within a group : 1) 

normalizing individual variables using the Yeo-Johnson power transformation (Yeo and Johnson, 2000) (see Supplementary 

Figure S3). The transformation ensures that the resulting dataset has a  to achieve zero mean of 0.0 and aunit variance of 1.0. 

Second, we merge all(Supplementary Fig. S3), and 2) merging the normalized variables into a single new variable through 300 

linear summation to create a single new variable (Daoud, 2018).). This new variable is thusnow relatively independent of the 
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other environmental variables. For those 46 independent variables, we apply the same transformation to minimize the impacts of varying 

magnitudes between different variables. Eventually, 54 independent variables remain, including 46 originally relatively independent and 9 

newly merged variables from the correlation groups.   (see Supplementary Tables S2 and S3 for details). 

 305 

 

The ML technique used in this study isWe use the eXtreme Gradient Boosting (XGBoost) algorithm,), which is a powerful 

and widely adopted machine learningML algorithm due to its exceptional performance in various applications (Abeshu et al., 

2022; Delavar et al., 2019; Li et al., 2022).). XGBoost is a scalable end-to-end tree-boosting system that belongs to the 

ensemble learning family (Chen and Guestrin, 2016).). It combines multiple weak learners into a strong learner via sequential 310 

training and improving, and eventually forms a robust and accurate predictive model. By using XGBoost in this study, we aim 

to develop a predictive model that establishes causal linkages between the target variable, 𝑃𝑟 , and a small number of 

environmental variables (denoted as predictors hereafter). 

 

In addition to XGBoost, we take advantage of some other ML tools and techniques. Specifically, we use the Optuna 315 

optimization framework (Akiba et al., 2019) and k-fold cross-validation (k=5) for tuning the hyperparameters. By leveraging 

Optuna and k-fold cross-validation, we can systematically search and optimize the hyperparameters, maximizing the model's 

performance and accuracy. Furthermore, we employ the SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 2017) to 

aid in the selection of environmental factors that are related to 𝑃𝑟 . SHAP is a technique that assigns importance values to 

individual predictors in a model, providing insights into their contributions to the prediction. By using SHAP, we can identify 320 

the key environmental factors that significantly influence 𝑃𝑟  and further refine our model. Recent studies have demonstrated 

the efficiency and effectiveness of these techniques in capturing high-dimensional and complex relationships between a target 

biogeochemical variable and various environmental predictors. These techniques have been successfully applied in various 

studies, including riverine sediment, beach water quality, oceanic particulate organic carbon, and eutrophication impacts from 

corn production (Abeshu et al., 2022; Fan et al., 2021; Li et al., 2022; Liu et al., 2021; Romeiko et al., 2020; Fan et al., 2021).), 325 

demonstrating their efficiency and effectiveness in capturing high-dimensional and complex relationships between a target 

biogeochemical variable and various environmental predictors. Readers are referred to Abeshu et al., (2022) for more details 

about these techniques.  

 

The overall procedure for developing a predictive ML model is illustrated in FigureFig. 2 (identical for the SoilGrids-based 330 

model) and outlined as follows: 

1. Prepare the input data for the ML modelling based on the independent catchments, their corresponding 𝑃𝑟  estimates, 

and environmental variables. To address the substantial statistical disparities and wide variation within each predictor, 

we employ power transformation on all predictors. The lambda parameter is held constant during the transformation 

process for the training, testing, and prediction datasets to ensure consistent and reproducible results. Following the 335 
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transformation, the dataset exhibits a zero-mean and unit variance, with a distribution that closely resembles a 

Gaussian distribution (as illustrated in FigureSupplementary Fig. S3).  

2. Randomly split the observational dataset (2595 catchments) into two sets: 70% for training and 30% for testing the 

ML model. These training and testing sets will be used throughout the subsequent steps.  

3. Identify the list of predictors out of the 54 environmental variables extracted in SectionSect. 2.2.3 in three sub-steps: 340 

a. Generate a completely random predictor. 

b. Prepare an initial list of candidate predictors consisting of the random predictor and an initial list of candidate 

environmental variables. Use Optuna and k-fold cross-validation to obtain the optimal hyperparameters and 

train an intermediate ML model until the model achieves the best performance evaluated using the testing 

set.  345 

c. Calculate and rank the SHAP values for all the candidate predictors. Update the list of candidate predictors 

by keeping only those predictors with better SHAP values than the random predictor. For example, if the 

random predictor is ranked 20th, only the top 19 predictors are passed to the next iteration.  

d. Obtain an almost-final list of predictors by repeating sub-steps b-c.  

4. Check the representativeness of the almost-final list of predictors identified in Step 3. For each of these predictors, 350 

check whether its values from the independent catchments are statistically representative of the whole CONUS, i.e., 

its values from those 2.6 million local catchments. Drop those predictors that cannot pass the representativeness 

check. Similar to Abeshu et al. (2022),), the representativeness check on each of the almost-final predictors is 

performed by comparing the cumulative distribution function (CDF) derived from the observational dataset (2595 

training catchments) and the CDF derived from the whole CONUS (about 2.6 million local catchments in NHDPlus). 355 

Specifically, comparisons are made between the 5th, 25th, 50th, 75th, and 95th percentiles between the two CDFs. 

After this Step 4, a final list of predictors is obtained. 

5. Develop the final ML model based on the final list of predictors using Optuna and k-fold cross-validation methods.  
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 360 

Figure 2. A workflow for the XGBoost model. 

 

In Steps 3 and 5, model performance metrics are required for model training and validationevaluation. The Kling-Gupta 

efficiency (KGE) (Gupta et al., 2009) has the advantage of simultaneously capturing both the magnitude and phase differences 

between the observed and simulated series ((Gupta et al., 2009; Abeshu et al., 2022).; Gupta et al., 2009). However, further 365 

investigations have revealed several limitations: a) lack of an inherent benchmark value to distinguish between "good" and 

"bad" model performance, b) sensitivity to outliers, which can result in a systematic overestimation of the target variable, and 

c) instability when the target variable approaches zero (Knoben et al., 2019; (Pool et al., 2018; Santos et al., 2018; Knoben et 

al., 2019).). Therefore, in addition to KGE, the mean absolute scaled error (MASE) is also used here to alleviate the influence 

of extreme values in the observation or simulation data (Hyndman and Koehler, 2006).). MASE is a scaled error metric that is 370 

defined as the mean absolute error (MAE) of the model simulation divided by scaling factors (MAE of the observation in the 
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original definition). In this study, we normalize MAE by the geometric mean of the observation data. Note that Steps 3 and 5 

above are relatively independent of each other and do not have to rely on the same metrics. 

3 Results 

3.1 Predictor selection 375 

In the predictor selection stage, after six iterations of hyperparameter tuning and predictor reduction with KGE as the metric, 

a list of 15 predictors is selected (see Table 2blue bars in Fig. 3), including those related to climate, hydrology, pedology, and 

land cover. In addition, using MASE as the metric in this stage leads to a list of 19 remaining predictors, among which 13 are 

the same as the list of predictors identified using KGE. The predictor list selected using KGE is preferred due to the fewer 

predictors and similar model performance. Figure S9 shows the feature selection results (blue bars) for the SoilGrids-based 380 

model, with 11 out of 13 predictors also included in the final list derived from the HWSD-based model. This overlap further 

reinforces the consistency of important features across datasets and enhance the robustness of the selection process. 

 

The most influential predictors, as determined by SHAP values, include the "hydro_related" group of hydrologic variables, the subsurface flow contact time ('index_tqsub'), the areal percentage of a soil class defined with a mixture of moderate and slow infiltration rates in a catchment ('per_soilmsI') (for more detailed definitions of soil classes, please refer to Ross et al., 2018), and the woody wetland percentage ('per_wwetland'). The "hydro_related" group of hydrologic variables is the linear summation of the annual average amount ofTo enhance the model transferability, we implement a representativeness check (detailed in Sect. 4.1.2) that led to the exclusion 

of 3 initially selected predictors: "BASIN_AREA," "NLCD01_52," and "NLCD01_95." These variables demonstrated 385 

insufficient representativeness of the anticipated real-world data distribution in the prediction phase, resulting in a final model 

with 12 predictors. Figure 3 presents a comparative analysis of mean absolute SHAP values between the original 15-predictor 

model (blue bars) and the final 12-predictor model (orange bars). Notably, both models identified the same five dominant 

predictors, ranked according to their influence in the 12-predictor model: 1) the merged  predictor of hydrologic variables 

("hydro_related"), 2) the areal percentage of Hydrologic Group BD soil ("HGBD"; detailed classification in Ross et al., 2018), 390 

3) the areal percentage of woody wetlands ("NLCD01_90"), 4) the consecutive wet days ("CWD"), and 5) the subsurface flow 

contact time ("CONTACT"). The "hydro_related" and "CWD" reflect the overall hydrology condition of a catchment, 

including runoff, precipitation, and groundwater recharge. Groundwater has a dilution effect on DOC concentration 

(Kortelainen and Karhu, 2006).). Similarly, precipitation and runoff contribute to the distribution and concentration of DOC 

(Baum et al., 2007; (Tranvik and Jansson, 2002; Baum et al., 2007; Wilson et al., 2013). The influence of subsurface flow contact time on DOC concentration is complex and indirect. For instance, during transport, a catchment with a shorter contact time experiences reduced mineralization loss (Ludwig et al., 1996) and microbial consumption (Helton et al., 2015). Conversely, studies have shown that labile DOC concentration increases with contact time in some alluvial aquifers, as deeper groundwater inflow could provide considerable labile DOC (Wickland et al., 2012; Helton et al., 2015).). Soil type plays a crucial role in determining the soil 395 

organic matter quantity and the partitioning of precipitation into runoff, consequently influencing the concentration of DOC 

in rivers (Autio et al., 2016; (Camino-Serrano et al., 2014; Autio et al., 2016).). Woody wetland, as one land cover attribute, has been identified as 

a significant predictor of downstream DOC concentration (Duan et al., 2017),), because of the enhanced breakdown of organic 

matter and plant respiration. To enhance the model transferability, a representativeness check (see Section 4.1.2) led to the exclusionThe influence of three predictors—'per_hwetland,' 'basin_area,'subsurface flow contact time on DOC concentration is complex and 'per_shurb.' These variables, initially chosen, were found inadequate in representing the real-world data distribution anticipatedindirect. For 

instance, during the prediction phase. Therefore, only 12 predictors are adopted in the final model training.transport, a 400 

catchment with a shorter contact time experiences reduced mineralization loss (Ludwig et al., 1996) and microbial consumption 

(Helton et al., 2015). Conversely, studies have shown that labile DOC concentration increases with contact time in some 
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alluvial aquifers, as deeper groundwater inflow could provide considerable labile DOC (Helton et al., 2015; Wickland et al., 

2012).  

 405 

 

Figure 3. Mean absolute SHAP values of predictors in models with 15 predictors (blue) and 12 predictors (orange). Note that the 

SHAP values have the same units as the target variable, 𝑷𝒓. Abbreviations: hydro_related (merged predictor representing recharge, 

runoff, and precipitation); HGBD (areal percentage of Hydrologic Group BD soil); NLCD01_90 (areal percentage of woody 410 
wetlands); CWD (consecutive wet days); CONTACT (subsurface contact time); temp_related (merged predictor encompassing 

potential evapotranspiration, first/last freeze timing, snow fraction, actual evapotranspiration, and mean/min/max temperature); 

CNPY11_BUFF100 (areal percentage of canopy in the riparian buffer); elev_related (merged predictor for mean/min/max 

elevation); NLCD01_42 (areal percentage of evergreen forest); RH (relative humidity); BFI (base flow index); soil_texture_related 

(merged predictor for silt and sand content); BASIN_AREA (catchment area); NLCD01_52 (areal percentage of shrub); 415 
NLCD01_95 (areal percentage of herbaceous wetlands). For detailed descriptions, refer to Supplementary Tables S2 and S3. 

 

3.2 Final model 

Figure 34 presents the performance of the ML model during both the training and testing phases (phases shown in FigureFig. 

2). To mitigate over-plotting, all the scatter plots (Figure 3Fig. 4 and hereinafter) employ color coding based on estimated 420 

density using kernel density estimation (KDE), as indicated by the corresponding color bar. After the exclusion of the three 

variables that displayed poor representativeness, the ML model performance remains stable between the training and testing 

phases, as gauged by metrics such as MASE, coefficient of determination (R2), and normalized root-mean-square-error 
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(NRMSE). The similarities in these metrics between the Estimated and predicted 𝑃𝑟  values across both phases support the 

robustness of our 12-predictor model. Consequently, the final ML model and the subsequent analyses are based on the 12 425 

selected predictors. Furthermore, the consistency of model performance between the training (MASE= 0.40) and testing 

(MASE= 0.81) phases suggests that the model overfitting issues are well-regulated (Ying, 2019).). We also use KGE as the 

metric during the final model training. After a comparison between the modeling results using MASE (Figure 3Fig. 4) and 

KGE (supplementary FigureSupplementary Fig. S4), MASE is preferred for two reasons: a) using MASE yields a better 

consistency in model performance between the training and testing phases, suggesting better model transferability; b) using 430 

MASE leads to a closer agreement between the model simulated and Estimated 𝑃𝑟  values. Figure S10 illustrates the 

performance of the SoilGrids-based model, showing similar metrics overall. However, during the testing phase (Supplementary 

Fig. S10b), the model slightly overestimates low values and underestimates high values. This discrepancy is likely due to the 

flatter data distribution in the testing dataset, which results in insufficient learning for those extreme values. 

 435 

 

Figure 34. Performance of the XGBoost model with 12 predictors during a) the training phase (n=1816) and b) the testing phase 

(n=779). The solid black line indicates a 1:1 ratio. The varying colours indicate the density of points in the scatter plot.  

 

Table 31 lists the optimized hyperparameter values of the final XGBoost model. (Supplementary Table S4 for that of SoilGrids-440 

based model). We choose to tune 8 model parameters, which are critical to the XGBoost tree booster controlling regularization, 

subsampling, learning process, and the growth of the tree. The optimal values of model hyperparameters are quite different 

from the default ones, suggesting hyperparameter tuning is necessary.  

 

Table 31. The optimal values of the XGBoost model hyperparameters. 445 
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Hyperparameter Optimal Value Tuning Range Default value  Description  

lambda 6.725 × 10−1 [0, ∞]∞] 1 
Control L1 and L2 regularization; the larger the value, the more conservative 

the model will be 
alpha 7.484 × 10−2 [0, ∞]∞] 0 

gamma 1.316 × 10−2 [0, ∞]∞] 0 Govern the model learning process by changing the step size shrinkage and 

minimum loss reduction; the larger the value, the more conservative the model 

will be eta 1.277 × 10−1 (0, 1] 0.3 

colsample_bytree 9.323 × 10−1 (0, 1] 1 
Control the subsample ratio of columns and training instances; a proper set of 

those values will prevent the model from over-fitting 
subsample 6.142 × 10−1 (0, 1] 1 

min_child_weight 8.410 × 10−2 [0, ∞]∞] 1 

Determine the growth of the tree 

Maxmax_depth 12 [0, ∞]∞] 6 

 

Figure 45 depicts the correlation between 𝑃𝑟  and the 12 predictors and among the predictors themselves, (Supplementary Fig. 

S11 for that of SoilGrids-based model), where highly positive correlated and negative correlated are shown in dark-red and 

blue colors, respectively. Since we have treated the highly correlated variables, the highest positive correlation coefficient is 

0.63 between "per_canopyCNPY11_BUFF100" and "hydro_related", lower than the threshold of 0.8 we adopt in Sect. 2.2.3. 450 

Among the observed correlation coefficients, the highest negative correlation coefficient, -0.69, is found between the variables 

"elev_related" and "temp_related." This strong negative correlation makes intuitive sense since air temperature decreases with 

increasing elevation. Note that all of the 12 selected predictors show weak or even negligible correlation with the target variable 

𝑃𝑟 , with the absolute values of the correlation coefficient less than 0.3. It is not surprising since the high-order, nonlinear 

relations between 𝑃𝑟 and the predictors, and likely among the predictors themselves, can only be effectively captured by the 455 

ML techniques but not the traditional regression analysis methods.  

 

Formatted Table
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Figure 5. Covariance heatmap of 𝑷𝒓  and the 12 selected NHDPlus predictors. The Pearson correlation coefficient is used. 

Abbreviations: hydro_related (merged predictor representing recharge, runoff, and precipitation); CONTACT (subsurface contact 460 
time); NLCD01_90 (areal percentage of woody wetlands); HGBD (areal percentage of Hydrologic Group BD soil); elev_related 

(merged predictor for mean/min/max elevation); CWD (consecutive wet days); temp_related (merged predictor encompassing 

potential evapotranspiration, first/last freeze timing, snow fraction, actual evapotranspiration, and mean/min/max temperature); 

soil_texture_related (merged predictor for silt and sand content); BFI (base flow index); RH (relative humidity); CNPY11_BUFF100 

(areal percentage of canopy in the riparian buffer); NLCD01_42 (areal percentage of evergreen forest). For detailed descriptions, 465 
refer to Supplementary Tables S2 and S3. 

 

3.3 𝑷𝒓 map 

We develop a spatially continuous map of 𝑃𝑟  over CONUS by applying the final XGBoost model over the 2.6 million NHDPlus 

local catchments, as shown in Figure 5Fig. 6. The spatial patterns of 𝑃𝑟  are generally consistent with those in FigureFig. 1. 470 

High 𝑃𝑟 values, shown in orange and red, are mostly located on the southeast coasts, New Mexico, Arizona, southern 

California, and North Dakota. Low 𝑃𝑟 values, shown in blue and purple, are more prevalent in the Northeast and Northwest 

regions. This consistency between FiguresFig. 1 and 5Fig. 6 again confirms that the 2595 independent catchments used in the 

ML modeling are representative of the whole CONUS domain, hence supporting the transferability of the ML modeling results. 

Figure S12 presents the spatial maps derived using the SoilGrids-based model. The overall patterns are very similar at most 475 
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places; however, the model predicts lower values in southern California, New Mexico, and Colorado, and higher values in 

northern Minnesota and southern Florida. 

 

Figure 56. ML model simulated 𝑷𝒓 at over 2.6 million NHDPlus local catchments. 

 480 

3.4 Evaluation  

We evaluate the  𝑃𝑟  map by comparing the DOC concentration values derived from this map (and Eqn. 6) with those observed, 

since there is no direct measurement of  𝑃𝑟 . The 3210 evaluation gauges (stations and their corresponding, headwater small 

catchments. See  (Fig. 1b) are used for this purpose. Note that each of these 3210 evaluation catchments may encompass 

multiple NHDPlus local catchments. The evaluation thus takes two steps: 1) For each evaluation NHDPlus local catchment, 485 

calculate its averageDOC concentration using the predicted 𝑃𝑟  value, SOC, and Eqn. (6); derived the DOC concentration for 

the evaluation catchment (whose outlet is an observational station) by taking the area-weighted average of the local 𝑃𝑟DOC 

values from the few NHDPlus local catchments located within this catchment; 2) Derive the DOC concentration value for the 

evaluation catchment (whose outlet is an observational gauge) by using the average 𝑃𝑟  value and Eqn. (6); 3) Compare the 

"derived" DOC concentration with the observed value at the same evaluation catchment. Note that two evaluation catchments 490 

are dropped during Step (1) for containing some NHDPlus local catchments without an effective model simulated 𝑃𝑟 .  

 

Figure 67 shows that our derived DOC concentration values effectively reproduce the spatial variability in the observed values. 

Note the unit of DOC concentration in water is mostly reported in mg/L (Schelker et al., 2012; Tian et al., 2015b; Langeveld 

et al., 2020). The MASE, NRMSE and R2 values are 0.73, 1.81, and 0.47, respectively, further suggesting a satisfactory 495 

performance. The scattering only occurs to a small portion of the dots, as indicated by the reddish colours. This scattering may 

stem from several causes, such as the limited availability of DOC observation data and the uncertainties in model development 

(see SectionSect. 4 for more details). Despite the scattering, the overall alignment between observed and predicted values 

suggests that our methods, including the generic formula and ML modelling, are appropriate and effective. The DOC 

evaluation performance of the SoilGrids-based model (Supplementary Fig. S13) reveals a larger systematic bias. This issue is 500 

also primarily attributed to differences in data distribution, as the 𝑃𝑟  values in evaluation exhibit a wider range than those in 

training, particularly at low values (see Sect. 2.2.2). Consequently, the model struggles to predict extreme values accurately. 

For example, for very small 𝑃𝑟  values in the evaluation catchments, the model tends to slightly overpredict due to the absence 

of such small values in the training dataset. Additionally, the typically higher SOC values in these regions further amplify the 

discrepancies. 505 
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Figure 67. Evaluation of derived DOC concentration at the catchment scale (n=3208). The solid black line indicates a 1:1 ratio. The 

varying colours indicate the density of points in the scatter plot.  

 510 

4 Uncertainty analyses 

The final product, our 𝑃𝑟  map, is subject to uncertainties from various sources. In this study, we have implemented several 

measures to constrain the uncertainties embedded in the input data and ML modeling exercise. We also look into the ML 

model parameter uncertainty via sensitivity analyses.  

4.1 Efforts to constrain uncertainty 515 

4.1.1 MLMachine learning model input data 

The estimation of the DOC long-term average transformation rate, 𝑃𝑟 , relies on SOC data from the HWSD v1.2 and SoilGrids 

2.0 dataset and DOC data from the WQP stations. Despite implementing stringent catchment selection (see SectionSect. 

2.2.1), the challenge of balancing data quantity and quality persists due to limited DOC measurements. Larger uncertainties in 

𝑃𝑟  are anticipated in catchments with fewer samples or those where most samples are collected in a single season. Additionally, 520 

potential uncertainties in the 𝑃𝑟  estimation may arise from the mismatch in sampling periods between SOC and DOC datasets. 

It is crucial to recognize and account for these uncertainties when interpreting and using the 𝑃𝑟  map. 
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The flowline and catchment attributes from NHDPlus constitute the primary inputs in both training and prediction phases for 

the ML model, and thus may contribute to the uncertainty in the results. NHDPlus catchment attributes are drawn from diverse 525 

sources, including remote sensing data and model simulations. Upstream-accumulated values are derived based on flowline 

data (Wieczorek et al., 2018). A majority of attributes have been compared to equivalent variables, when available, in the 

Geospatial Attributes of Gages for Evaluating Streamflow version II (GAGESII) dataset (Falcone et al., 2010).). These 

comparisons have demonstrated reasonably strong alignment. Inherent uncertainties may still arise from inaccurate flowline 

and catchment delineation, inaccuracies in the source data, the conversion of data formats (e.g., from grid-based to catchment-530 

based), and so on. Furthermore, instances of missing data or attributes with zero-inflated values (e.g., regions highlighted in 

white in FigureSupplementary Fig. S5b) from the NHDPlus dataset can complicate accurate data interpolation by the ML 

model. Despite the use of the sparsity-aware technique within the XGBoost algorithm, adept at handling missing or zero-

inflated data to a certain extent (Chen and Guestrin, 2016),), the presence of such challenges persists. Overcoming these 

limitations is beyond this study's scope. 535 

4.1.2 ML Machine learning model development 

In contrast to physical-based models with clearly pre-defined structures, machine learning (ML)ML models endeavor to 

discern the optimal structure from input data through the training process. Consequently, uncertainty may emerge at any stage 

of model development, as detailed in SectionSect. 2.3. To mitigate model uncertainty, we employ well-established strategies 

prevalent in diverse applications (Abeshu et al., 2022; Delavar et al., 2019; Li et al., 2022).). These encompass techniques such 540 

as transformation of input data, training and testing splits, feature selection, hyperparameter tuning, and cross-validation (refer 

to previous sections for details). These measures aim to constrain the uncertainties inherent in model development processes 

and fortify the model's predictive capabilities, for example by refining the interpretability of input data, mitigating the risk of 

overfitting, enhancing generalization performance, and minimizing the introduction of potentially noisy predictors. 

 545 

In addition to the commonly adopted strategies in using XGBoost and the other ML techniques, we augment the control of 

model uncertainty through a representativeness check. This check ensures alignment between the distribution of model 

parameters used during training and those applied in predictions. This additional step serves to enhance the model's 

transferability from the training catchment to the broader CONUS domain. To gauge the representativeness of our chosen 

predictors, we conducted a Cumulative Distribution Function (CDF) comparison for each parameter between the observational 550 

dataset (derived from 2595 independent catchments) and the entire CONUS dataset (comprising approximately 2.6 million 

local catchments in NHDPlus). For this comparison, we assess the relative difference in the 5th, 25th, 50th, 75th, and 95th 

percentiles between the two CDFs. As an illustration, the relative difference for the 5th percentile is computed as the ratio of  

the difference between the 5th percentile of the available 𝑃𝑟  data and that of the entire CONUS data to their average. Table 42 

provides a summary of the CDF comparison of the 15 selected predictors (also see supplementary FigureSupplementary Fig. 555 
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S6). A predictor is deemed representative of the whole CONUS if the average relative difference is less than 0.75. Following 

Abeshu et al. (2022),), the choice of the 0.75 threshold strikes a balance between maintaining data representativeness and 

avoiding the exclusion of too many predictors. Three predictors, namely "basin_area", "per_hwetlandBASIN_AREA", 

"NLCD01_95", and "per_shurbNLCD01_52", have failed the representativeness check and are consequently excluded. Note 

that the ML model performance has only slightly changed after reducing the number of predictors from 15 to 12, as shown in 560 

the supplementary Figure S7.  Supplementary Fig. S7. Following the same process, the SoilGrids-based model excludes 

"NLCD01_95" during the representativeness check, resulting in 12 out of 13 predictors being retained for the final optimal 

model (Supplementary Table S5). 

 

Table 42. Representativeness of XGBoost model input predictors over CONUS. 565 

Attributes 
Relative difference in percentiles between 𝑃𝑟-available and whole_conus data 

Average 
5th 25th 50th 75th 95th 

basin_areaBASIN_A

REA 
1.941 1.728 1.669 1.794 1.900 1.806 

per_hwetlandNLCD0

1_95 
0.667 0.667 0.842 1.144 1.529 0.969 

per_shurbNLCD01_5
2 

0.353 0.624 1.224 1.482 0.889 0.914 

per_canopyCNPY11

_BUFF100 
1.684 1.090 0.427 0.080 0.078 0.672 

per_wwetlandNLCD

01_90 
0.769 0.314 0.461 0.621 0.807 0.594 

per_eforestNLCD01_
42 

0.667 0.559 0.651 0.502 0.225 0.521 

elev_related 0.769 0.806 0.320 0.621 0.008 0.505 

hydro_related 0.584 0.898 0.316 0.108 0.106 0.402 

per_soilmsIHGBD 0.955 0.264 0.152 0.095 0.255 0.344 

index_tqsubCONTA

CT 
0.166 0.135 0.248 0.292 0.393 0.247 

index_bflowBFI 0.476 0.304 0.152 0.002 0.027 0.192 

per_rhumidityRH 0.197 0.103 0.015 0.014 0.014 0.068 

soil_texture_related 0.095 0.071 0.068 0.071 0.015 0.064 

ave_wetdayCWD 0.063 0.065 0.028 0.053 0.033 0.048 

temp_related 0.035 0.034 0.009 0.029 0.006 0.023 

Abbreviations: BASIN_AREA (catchment area); NLCD01_95 (areal percentage of herbaceous wetlands); NLCD01_52 (areal percentage of 

shrub); CNPY11_BUFF100 (areal percentage of canopy in the riparian buffer); NLCD01_90 (areal percentage of woody wetlands); 

NLCD01_42 (areal percentage of evergreen forest); elev_related (merged predictor for mean/min/max elevation); hydro_related (merged 

predictor representing recharge, runoff, and precipitation); HGBD (areal percentage of Hydrologic Group BD soil); CONTACT (subsurface 

contact time); BFI (base flow index); RH (relative humidity); soil_texture_related (merged predictor for silt and sand content); CWD 570 
(consecutive wet days); temp_related (merged predictor encompassing potential evapotranspiration, first/last freeze timing, snow fraction, 

actual evapotranspiration, and mean/min/max temperature); For detailed descriptions, refer to Supplementary Tables S2 and S3. 

 

4.2 Sensitivity analyses 

Model sensitivity analysis (SA) involves probing the importance of uncertainties in model parameters (Loucks and Van Beek, 575 

2017). We examine our model's sensitivity to each selected predictor using two different methods: 1) dropping one predictor 
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at a time and tracking the changes in model performance, and 2) the Sobol sensitivity analysis approach (Sobol, 2001).). Figure 

78 demonstrates the model performance difference in the training and testing phases after dropping one of the 12 variables. 

Blue, red, and grey colors are employed to indicate whether dropping the corresponding predictor will result in an increase, 

decrease, or insignificant change in the model's performance, respectively. A 5% threshold is chosen to determine the 580 

significance of the change. In general, the shifting pattern in MASE scores remains consistent between the training and testing 

phases. However, the alterations in MASE values for most predictors, particularly during the testing phase, are minimal or 

even negligible. In other words, the model appears to be insensitive to most predictors according to this first sensitivity analysis 

method.  

 585 

 

Figure 78. Sensitivity of XGBoost model to predictors in the training and testing phases. The MASE value is represented by the blue, 

red, and grey bars, indicating whether the model performance increases, decreases, or remains relatively unchanged after dropping 

the corresponding predictor. The dashed grey line indicates the model performance with all variables included. Abbreviations: 

hydro_related (merged predictor representing recharge, runoff, and precipitation); CONTACT (subsurface contact time); 590 
NLCD01_90 (areal percentage of woody wetlands); HGBD (areal percentage of Hydrologic Group BD soil); elev_related (merged 
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predictor for mean/min/max elevation); CWD (consecutive wet days); temp_related (merged predictor encompassing potential 

evapotranspiration, first/last freeze timing, snow fraction, actual evapotranspiration, and mean/min/max temperature); 

soil_texture_related (merged predictor for silt and sand content); BFI (base flow index); RH (relative humidity); CNPY11_BUFF100 

(areal percentage of canopy in the riparian buffer); NLCD01_42 (areal percentage of evergreen forest). For detailed descriptions, 595 
refer to Supplementary Tables S2 and S3. 

 

The Sobol sensitivity analysis is a widely used variance-based global sensitivity analysis method (Borgonovo and Plischke, 

2016).). It provides two indices: First-order Index (S1), which measures the sensitivity of an individual predictor itself (local 

variance), and Total Index (ST), which accounts for the effects of both an individual predictor itself and its interactions with 600 

any other predictors (global variance) (Saltelli, 2002; Saltelli et al., 2010).). These interactions, which can be of any order, can 

be isolated. For instance, second and higher-order interactions can be isolated by subtracting SI from ST. The results from the 

Sobol test are summarized in Table 53. The distribution of S1 is highly right-skewed, suggesting that the model exhibits 

insensitivity to most predictors if only local variance is considered. There are, however, a few exceptions, such as 

"hydro_related", and "temp_related", which present high S1 values. The global variance, represented by the ST index, paints 605 

a somewhat different picture. When considering the ST index, a broad set of predictors emerge as sensitive, particularly those 

with ST values exceeding 0.1. It's worth noting that these predictors also hold high rankings in the predictor selection, as shown 

in Table 2Fig. 3. Furthermore, it is significant that 11 out of the total 12 predictors show a normalized difference between S1 

and ST (calculated as (ST-S1)/ST) greater than 50%. This observation underscores the significant interactions among the 

predictors (Saltelli et al., 2010).). This suggests that if a predictor is dropped, the remaining predictors could potentially 610 

compensate for its absence, highlighting the nonlinear, high-order interdependence among the predictors in our model. 

 

Table 53. Sobol sensitivity analysis results for the 12 selected predictors. 

Predictors Total Indices (ST) First Order Indices (S1) Difference ((ST-S1)/ST) 

hydro_related 0.466 0.291 0.375 

temp_related 0.311 0.141 0.546 

ave_wetdayCWD 0.207 0.044 0.788 

index_tqsubCONT

ACT 
0.143 0.003 0.977 

per_canopyCNPY1

1_BUFF100 
0.132 0.028 0.787 

per_wwetlandNLC
D01_90 

0.125 0.049 0.608 

elev_related 0.087 0.017 0.806 

index_bflowBFI 0.072 0.012 0.831 

per_rhumidityRH 0.062 0.010 0.836 

soil_texture_related 0.034 0.000 1.000 

per_eforestNLCD01

_42 
0.024 0.005 0.798 

per_soilmsIHGBD 0.013 0.002 0.873 
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Abbreviations: hydro_related (merged predictor representing recharge, runoff, and precipitation); temp_related (merged predictor 

encompassing potential evapotranspiration, first/last freeze timing, snow fraction, actual evapotranspiration, and mean/min/max 615 
temperature); CWD (consecutive wet days); CONTACT (subsurface contact time); CNPY11_BUFF100 (areal percentage of canopy in the 

riparian buffer); NLCD01_90 (areal percentage of woody wetlands); elev_related (merged predictor for mean/min/max elevation); BFI (base 

flow index); RH (relative humidity); soil_texture_related (merged predictor for silt and sand content); NLCD01_42 (areal percentage of 

evergreen forest); HGBD (areal percentage of Hydrologic Group BD soil); For detailed descriptions, refer to Supplementary Tables S2 and 

S3. 620 

 

The above sensitivity analyses suggest that our model exhibits low sensitivity to most predictors when considering their 

individual (local) impact. However, the Sobol sensitivity analysis uncovers a heightened degree of sensitivity in the context  of 

global effects, particularly given the significant interactions among the predictors. A similar sensitivity analysis was conducted 

for the SoilGrids-based model, yielding the same conclusions (Supplementary Fig. S14 and Supplementary Table S6). 625 

5 Potential use and limitations 

The 𝑃𝑟  map has several promising uses. For instance, one of the pivotal applications of the 𝑃𝑟  map is to estimate the lateral 

leaching of DOC. Figure 89, as an illustration, shows a 𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓  map over CONUS depicting the long-term average 

concentration of DOC in the leaching flux at over two million NHDPlus local catchments. This map is derived based on Eqn. 

(4), leveraging the 𝑃𝑟  map in Fig. 6 and the top-layer SOC data from HWDS1.2. Due to missing data in the HWSD 1km SOC 630 

map at about 0.6 million NHDPlus local catchments, we cannot calculate the 𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓  values over those catchments. 

 

 

Figure 89. Calculated CONUS map of DOC concentration in leaching flux from soils to headwater streamsover 2.6 million NHDPlus 

flowlines. 635 
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The spatial patterns of the 𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 map are highly correlated to those of the 𝑃𝑟  (see Figure 5Fig. 6) and SOC map (see supplementary FigureSupplementary Fig. 

S5a). Notably, the 𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 values are high in regions with extremely high SOC values. Additionally, the 𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 

values are high in North Dakota, Montana, and southern coasts, where the 𝑃𝑟  values are high. Interestingly, the influences of 

𝑃𝑟  and SOC can counterbalance each other in some places. For instance, in the upper Rocky Mountains, the SOC storage is 640 

abundant due to the presence of forests. However, the low temperature in this region hinders microbial activities, resulting in 

extremely low 𝑃𝑟  valuevalues. As a result, the concentration of DOC leaching flux is relatively low. Moreover, the spatial coverage 

of wetlands also appears to be relevant (see supplementary FigureSupplementary Fig. S5b), which is consistent with the suggested crucial role of 

wetlands in riverine DOC dynamics (Duan et al., 2017; Leibowitz et al., 2023).). For instance, high 𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 values are 

observed in upper Minnesota, Florida, and Louisiana, where wetlands are prevalent. In places with few wetlands, like Nevada, 645 

Arizona, and New Mexico, the leaching flux concentration is considerably lower. 

 

There are at least two other potential uses of the 𝑃𝑟 map: 1) It can support large-scale DOC modeling over CONUS or a major 

river basin. For instance, testing the use of the map within the framework of the Energy Exascale Earth System Model 

(Burrows(Golaz et al., 20192020; Caldwell et al., 2019; Golaz et al., 2019; Burrows et al., 2020)) is ongoing and will be 650 

reported in the near future. 2) It can be used to provide a quick estimation of riverine DOC concentration or flux at any 

headwater catchments where no DOC observations are available.  

 

We caution the potential users of the 𝑃𝑟 map with several limitations in the methods invoked. Firstly, the 𝑃𝑟  values in the map 

account for the spatial heterogeneity of various DOC-related processes and factors only in a long-term average sense owing to 655 

the limited data availability, i.e., the SOC reanalysis data are long-term averages, and the observed riverine DOC data are only 

available at irregular time intervals. While we believe that such a 𝑃𝑟 map is a critical step in effectively capturing the spatial 

heterogeneity of the relevant processes and environmental factors, incorporating their temporal dynamics is beyond the scope 

of this study and left for future work. SecondlySecond, the ML techniques are not process-based and thus do not yet offer rich 

insight into the relevant mechanisms. To improve our understanding of the DOC-related processes, the 𝑃𝑟  map should be used 660 

in conjunction with other observational data, process-based models, and carefully designed numerical experiments. Third, the 

lack of direct measurements of 𝑃𝑟  necessitates the use of indirect validation methods. To further enhance robustness, we 

encourage the design and implementation of new field experiments guided by our lumped parameter approach. Last but not 

least, the ML model has been trained with the data in the CONUS domain only, so it may not be transferable beyond CONUS. 

 665 

Our lumped parameter approach and machine learning-based parameterization strategy are designed to generalize beyond the 

CONUS and scale globally. The framework is inherently generic, independent of site-specific characteristics, and supported 

by machine learning techniques adaptable to diverse regions. The CONUS study area, characterized by substantial spatial 

heterogeneity, provides a robust foundation for demonstrating this generalizability. However, extending the framework to a 
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global scale introduces challenges, particularly in data availability and variability in environmental conditions. Addressing 670 

these requires extensive observational data collection, especially riverine DOC observations, leveraging public datasets, 

literature, and increased fieldwork for enhanced coverage. At the global scale, managing increased uncertainties is crucial, as 

larger variability is expected compared to the CONUS-based parameterization. Efforts should focus on assembling 

comprehensive catchment attributes while maintaining flexibility in their significance assessment, allowing the machine 

learning model to determine their importance contextually. High-priority attributes identified in this study (Fig. 3), such as 675 

woody wetland percentage, should receive particular attention as they are likely critical in other regions. 

6 Data and code availability 

The resulting 𝑃𝑟  and 𝐶𝐷𝑂𝐶_𝑟𝑢𝑛𝑜𝑓𝑓 maps over CONUS are freely available at https://doi.org/10.5281/zenodo.8339372 (Li et al., 

2024).https://zenodo.org/records/14563816 (Li et al., 2024). The Zenodo repository includes the following resources: a) 

Pr.gpkg – a 9.9 GB GeoPackage file containing data on Pr, SOC, and DOC, derived using SOC data from HWSD v1.2 and 680 

SoilGrids 2.0 across over 2.6 million NHDPlus local catchments. This file also includes COMID and local catchment boundary 

polygons and is compatible with GIS software such as QGIS, ArcGIS, and Python libraries like GeoPandas for analysis and 

editing; b) PNG images – two high-resolution PNG files illustrating the HWSD-based and SoilGrids-based model-simulated 

Pr maps across over 2.6 million NHDPlus local catchments; c) Required input files – files necessary to reproduce the reported 

results; and d) ReadMe document – a text file providing detailed descriptions of each resource in the Zenodo repository. The 685 

input data are obtained from the water quality portal (https://www.waterqualitydata.us/), NHDPlus 

(https://www.epa.gov/waterdata/nhdplus-national-data), ScienceBase (https://doi.org/10.5066/F7765D7V) and), HWSD v1.2 

(https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/).) and 

SoilGrids2.0 (https://files.isric.org/soilgrids/latest/data/). Additionally, the Python scripts used for feature selection, model 

training, and evaluation are available on the Github repository at https://github.com/Ceyxleo/DOC-Param-Map.  690 

7 Conclusions 

We develop adeveloped two new mapmaps of 𝑃𝑟 , the transformation rate from SOC concentration in soil to DOC concentration 

in the leaching flux, over CONUS., based on SOC data from the HWSD v1.2 and SoilGrids 2.0. Evaluation of derived DOC 

concentrationconcentrations at over 3000 headwaterWQP stations confirms the robustness of our methodology, 

includingwhich incorporates a generic formula linking SOC and DOC via 𝑃𝑟 , riverine DOC observations, environmental 695 

variables, and the ML techniques that effectively capture high-order, nonlinear relationships between 𝑃𝑟   and the environmental 

variables. Such a map did not exist before and isThese 𝑃𝑟  maps, the first of their kind, are highly valuable for large-scale DOC 

modeling and for improving our understanding of the DOC-related processes across the land-river continuum.   

https://zenodo.org/records/14563816
https://www.waterqualitydata.us/
https://www.epa.gov/waterdata/nhdplus-national-data
https://doi.org/10.5066/F7765D7V
about:blank
https://files.isric.org/soilgrids/latest/data/
https://github.com/Ceyxleo/DOC-Param-Map
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Figure S1. Distribution of the 2.6 million NHDPlus local catchment areaareas and length of flowlines.flowline lengths.   
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 Figure S2. Comparison of catchment relationships: a) a small catchment and its containing NHDPlus local catchments, and b) 

independent catchment and nesting catchment. Note: The catchments outlined in red represent the same area, but only the boundary 

is shown in subplot a) for better visual clarity.  15 
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Figure S3. Histogram of the percentage of hydrologic group D soil (HGD) predictor before (left panel) and after (right panel) power 

transformation. 
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 20 

Figure S4. Performance of the XGBoost model (using HWSD) with 12 predictors trained by using KGE during a) the training phase 

(n=1816) and b) the testing phase (n=779). The solid black line indicates a 1:1 ratio. Note that the axes are in a log-log scale. 
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Figure S5. CONUS maps of: a) HWSD top-layer soil organic carbon (SOC) concentration, and b) woody wetland fraction across 25 
over 2 million NHDPlus catchments. Regions displayed in white may indicate missing data or a zero fraction. 
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Figure S6. Comparison of the cumulative distribution function (CDF) of 15 selected predictors between training data and all 30 
flowlines (i.e., NHDPlus). Abbreviations: hydro_related (merged predictor representing recharge, runoff, and precipitation); 

CONTACT (subsurface contact time); NLCD01_90 (areal percentage of woody wetlands); HGBD (areal percentage of Hydrologic 

Group BD soil); elev_related (merged predictor for mean/min/max elevation); CWD (consecutive wet days); temp_related (merged 

predictor encompassing potential evapotranspiration, first/last freeze timing, snow fraction, actual evapotranspiration, and 

mean/min/max temperature); soil_texture_related (merged predictor for silt and sand content); BFI (base flow index); RH (relative 35 
humidity); NLCD01_95 (areal percentage of herbaceous wetlands); CNPY11_BUFF100 (areal percentage of canopy in the riparian 

buffer); NLCD01_42 (areal percentage of evergreen forest); BASIN_AREA (catchment area); NLCD01_52 (areal percentage of 

shrub). For detailed descriptions, refer to Supplementary Tables S1 and S2.  
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Figure S7. Performance of the XGBoost model (using HWSD) with 15 predictors during a) the training phase (n=1816) and b) the 40 
testing phase (n=779). The solid black line indicates a 1:1 ratio. Note that the axes are in a log-log scale. 
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Table S1.  

Figure S8. Variability in estimated 𝑷𝒓 (using SoilGrids 2.0) across CONUS: a) For independent catchments (n=2583), and b) For 

evaluation catchments (n=3210). The points indicate the locations of the WQP stations, which are also the outlets of the 45 
corresponding small catchments. The CONUS boundary and river shapefiles are directly from open-source datasets GeoPandas 

(geopandas.org) and Natural Earth (Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com), 

respectively. The color bars have been adjusted to enhance visual display by showing only the main body of values (from the 5th 

percentile to the 95th percentile).  

  50 
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Figure S9. Mean absolute SHAP values of predictors in models (using SoilGrids 2.0) with 13 predictors (blue) and 12 predictors 

(orange). Note that the SHAP values have the same units as the target variable, 𝑷𝒓. Abbreviations: temp_related (merged predictor 

encompassing potential evapotranspiration, first/last freeze timing, snow fraction, actual evapotranspiration, and mean/min/max 

temperature); CONTACT (subsurface contact time); hydro_related (merged predictor representing recharge, runoff, and 55 
precipitation); elev_related (merged predictor for mean/min/max elevation); NLCD01_90 (areal percentage of woody wetlands); 

HGBD (areal percentage of Hydrologic Group BD soil); CNPY11_BUFF100 (areal percentage of canopy in the riparian buffer); 

HGB (areal percentage of Hydrologic Group B soil); CLAYAVE (clay content percentage); NLCD01_42 (areal percentage of 

evergreen forest); soil_texture_related (merged predictor for silt and sand content); BFI (base flow index); NLCD01_95 (areal 

percentage of herbaceous wetlands). For detailed descriptions, refer to Supplementary Tables S2 and S3. 60 
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Figure S10. Performance of the XGBoost model (using SoilGrids 2.0) with 12 predictors during a) the training phase (n=1808) and 

b) the testing phase (n=775). The solid black line indicates a 1:1 ratio. The varying colours indicate the density of points in the scatter 

plot.  65 
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Figure S11. Covariance heatmap of 𝑷𝒓  (using SoilGrids 2.0) and the 12 selected NHDPlus predictors. The Pearson correlation 

coefficient is used. Abbreviations: hydro_related (merged predictor representing recharge, runoff, and precipitation); NLCD01_90 

(areal percentage of woody wetlands); CONTACT (subsurface contact time); temp_related (merged predictor encompassing 70 
potential evapotranspiration, first/last freeze timing, snow fraction, actual evapotranspiration, and mean/min/max temperature); 

elev_related (merged predictor for mean/min/max elevation); BFI (base flow index); soil_texture_related (merged predictor for silt 

and sand content); CLAYAVE (clay content percentage); HGB (areal percentage of Hydrologic Group B soil); NLCD01_42 (areal 

percentage of evergreen forest); CNPY11_BUFF100 (areal percentage of canopy in the riparian buffer); HGBD (areal percentage 

of Hydrologic Group BD soil). For detailed descriptions, refer to Supplementary Tables S2 and S3. 75 
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Figure S12. ML model (using SoilGrids 2.0) simulated 𝑷𝒓 at over 2.6 million NHDPlus local catchments. 
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 80 

Figure S13. Evaluation of derived DOC (using SoilGrids 2.0) concentration at the catchment scale (n=3208). The solid black line 

indicates a 1:1 ratio. The varying colours indicate the density of points in the scatter plot.  
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Figure S14. Sensitivity of XGBoost model (using SoilGrids 2.0) to predictors in the training and testing phases. The MASE value is 85 
represented by the blue, red, and grey bars, indicating whether the model performance increases, decreases, or remains relatively 

unchanged after dropping the corresponding predictor. The dashed grey line indicates the model performance with all variables 

included. Abbreviations: hydro_related (merged predictor representing recharge, runoff, and precipitation); NLCD01_90 (areal 

percentage of woody wetlands); CONTACT (subsurface contact time); temp_related (merged predictor encompassing potential 

evapotranspiration, first/last freeze timing, snow fraction, actual evapotranspiration, and mean/min/max temperature); elev_related 90 
(merged predictor for mean/min/max elevation); BFI (base flow index); soil_texture_related (merged predictor for silt and sand 

content); CLAYAVE (clay content percentage); HGB (areal percentage of Hydrologic Group B soil); NLCD01_42 (areal percentage 

of evergreen forest); CNPY11_BUFF100 (areal percentage of canopy in the riparian buffer); HGBD (areal percentage of Hydrologic 

Group BD soil). For detailed descriptions, refer to Supplementary Tables S2 and S3. 

 95 
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Table S1. In-stream DOC degradation rate (k) from previous modeling and experimental studies 

  

Study  

Type 

First-Order 

Decay rate (k d-1) 
Study Domain Reference 

Modeling 

0.01 Eastern North America Tian et al., 2015 

0.01 Global Li et al., 2019 

0.0163/0.0223a Upland and forested catchments in Canada Futter et al., 2007 

Experimental 

0.011b 
Upland and forested catchment 

(Southern Appalachian Mountains, USA) 
Qualls and Haines, 1992 

0.009b 
Upland and forested catchment  

(Catskill Mountains, USA) 
Sobczak et al., 2003 

0.013c 
Forested headwater catchment 

(Haean Basin, South Korea) 
Jung et al., 2014 

0.09c 
Agro-urban headwater catchments 

(Taihu Lake Watershed, China) 
Wu et al., 2019 

a. calibrated for the two catchments separately. 

b. adopted from Table 2 in Mineau et al., 2016 

c. calculated by fitting a first-order decay model using the published data. 
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Table S2. List of 46 independent predictive attributes 100 

Group Acronym Description 

Chemical NEMATICIDE Nematicide use on agricultural land (kg/km2) 

Climate CWD Average number of consecutive days with measurable precipitation 

MINP6190 Watershed minimum average annual precipitation (mm) 

MINWD6190 Watershed average of minimum monthly number of days of measurable precipitation 

RH Percent of the watershed average relative humidity 

Geology BEDPERM_1 Percent of NHDPlus version 2 flowline catchment whose bedrock permeability class is not a 

principal aquifer 

BEDPERM_6 Percent of NHDPlus version 2 flowline catchment whose bedrock permeability class is 

unconsolidated sand and gravel 

OLSON_PERM Rock hydraulic conductivity (10-6 m/s) 

ROCKTYPE_200 Estimated percent of catchment that is underlain by the principal aquifer rock type, semi-

consolidated sand aquifers 

ROCKTYPE_999 Estimated percent of catchment that is underlain by the principal aquifer rock type, other rocks 

Hydrologic BFI Base Flow Index, a ratio of base flow to total streamflow, expressed as a percentage and 

ranging from 0 to 100 

CONTACT The Subsurface flow contact time index estimates the duration infiltrated water resides in the 

saturated subsurface zone of the basin before discharging into the stream, measured in days 

IEOF Percent of Horton overland flow 

SATOF Percent of Dunne overland flow 

Hydrologic Modifications DITCHES92 Percent of watershed subjected to ditches for the year 1992 

MIRAD_2002 Percent of watershed in irrigated agriculture, from USGS 2002 250-m MODIS data 
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MIRAD_2007 Percent of watershed in irrigated agriculture, from USGS 2007 250-m MODIS data 

MIRAD_2012 Percent of watershed in irrigated agriculture, from USGS 2012 250-m MODIS data 

TILES92 Percent of watershed subjected to tile drains for the year 1992 

Land Cover CNPY11_BUFF100 Percent of tree canopy in 100meter riparian buffer 

LAKEPOND Percent of lakes or ponds 

NLCD01_11 Areal percent of 2001 land-use and land-cover type Open Water: All areas of open water, 

generally with less than 25 percent cover of vegetation or soil.  

NLCD01_31 Areal percent of 2001 land-use and land-cover type Barren Land: Barren areas of bedrock, 

desert pavement, scarps, talus, slides, volcanic material, glacial debris, sand dunes, strip mines, 

gravel pits, and other accumulations of earthen material. Generally, vegetation accounts for 

less than 15 percent of total cover. 

NLCD01_41 Areal percent of 2001 land-use and land-cover type Deciduous Forest: Areas dominated by 

trees generally greater than 5 meters tall, and greater than 20 percent of total vegetation cover. 

More than 75 percent of the tree species shed foliage simultaneously in response to seasonal 

change. 

NLCD01_42 Areal percent of 2001 land-use and land-cover type Evergreen Forest: Areas dominated by 

trees generally greater than 5 meters tall, and greater than 20 percent of total vegetation cover. 

More than 75 percent of the trees maintain their leaves all year. Canopy is never without green 

foliage. 

NLCD01_43 Areal percent of 2001 land-use and land-cover type Mixed Forest: Areas dominated by trees 

generally greater than 5 meters tall, and greater than 20 percent of total vegetation cover. 

Neither deciduous nor evergreen species are greater than 75 percent of total tree cover.  

NLCD01_52 Areal percent of 2001 land-use and land-cover type Shrub/Scrub: Areas dominated by shrubs 

less than 5 meters tall. Shrub canopy is typically greater than 20 percent of total vegetation. 

This class includes true shrubs, young trees in an early successional stage or trees stunted from 

environmental conditions. 

NLCD01_71 Areal percent of 2001 land-use and land-cover type Grassland/Herbaceous: Areas dominated 

by graminoid or herbaceous vegetation, generally greater than 80 percent of total vegetation. 

These areas are not subject to intensive management such as tilling, but can be utilized for 

grazing. 
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NLCD01_81 Areal percent of 2001 land-use and land-cover type Pasture/Hay: Areas of grasses, legumes, 

or grass-legume mixtures planted for livestock grazing or the production of seed or hay crops, 

typically on a perennial cycle. Pasture/hay vegetation accounts for greater than 20 percent of 

total vegetation. 

NLCD01_90 Areal percent of 2001 land-use and land-cover type Woody Wetlands: Areas where forest or 

shrubland vegetation accounts for greater than 20 percent of vegetative cover and the soil or 

substrate is periodically saturated with or covered with water. 

NLCD01_95 Areal percent of 2001 land-use and land-cover type Emergent Herbaceous Wetlands: Areas 

where perennial herbaceous vegetation accounts for greater than 80 percent of vegetative cover 

and the soil or substrate is periodically saturated with or covered with water. 

SWAMPMARSH Percent of swamps or marshes 

Soils CLAYAVE Percent of average clay content  

HGA Areal percent of Hydrologic Group A soil. Hydrologic group A soils have high infiltration 

rates. Soils are deep and well drained and, typically, have high sand and gravel content 

HGAD Areal percent of Hydrologic Group AD soil. Hydrologic group AD soils have group A 

characteristics (high infiltration rates) when artificially drained and have group D 

characteristics (very slow infiltration rates) when not drained 

HGB Areal percent of Hydrologic Group B soil. Hydrologic group B soils have moderate infiltration 

rates. Soils are moderately deep, moderately well drained, and moderately coarse in texture 

HGBD Areal percent of Percentage of Hydrologic Group BD soil. Hydrologic group BD soils have 

group B characteristics (moderate infiltration rates) when artificially drained and have group 

D characteristics (very slow infiltration rates) when not drained 

HGC Areal percent of Hydrologic Group C soil. Hydrologic group C soils have slow soil infiltration 

rates. The soil profiles include layers impeding downward movement of water and, typically, 

have moderately fine or fine texture 

HGCD Areal percent of Hydrologic Group CD soil. Hydrologic group CD soils have group C 

characteristics (slow infiltration rates) when artificially drained and have group D 

characteristics (very slow infiltration rates) when not drained 

HGD Areal percent of Percentage of Hydrologic Group D soil. Hydrologic group D soils have very 

slow infiltration rates. Soils are clayey, have a high water table, or have a shallow impervious 

layer 
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SALINAVE Salinity measured as average millimhos per centimeter 

Topographic ARTIFICIAL Flowlines coded as Artificial paths 

BASIN_AREA NHDPlusV2 flowline catchment area (km2) 

RDX Number of road and stream intersections 

STREAMRIVER Flowlines coded as Streams or Rivers 

Water Use FRESHWATER_WD Freshwater withdrawals from 1995-2000 county-level estimates 
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Table S2S3. List of 49 correlated predictive attributes 

Correlated Group Acronym Description 

hydro_related RECHG Mean annual natural groundwater recharge (mm/yr). 

WB5100_ANN Annual averaged runoff from McCabe and Wolock's Runoff Model 1951-2000 (mm). 

MAXP6190 Watershed maximum average annual precipitation (mm). 

PPT7100_ANN Mean annual precipitation for the watershed, from 800m PRISM data (mm). 30 years 

period of record 1971-2000. 

RUN7100 Estimated 30-year (1971-2000) average annual runoff (mm/yr). 

temp_related PET Mean annual potential evapotranspiration (PET), estimated using the Hamon equation. 

FSTFZ6190 Watershed average of mean day of the year of first freeze, derived from 30 years of 

record (1961-1990), 2km PRISM. 

LSTFZ6190 Watershed average of mean day of the year of last freeze, derived from 30 years of 

record (1961-1990), 2km PRISM.  

PRSNOW Snow percent of total precipitation estimate, mean for period 1901-2000.  

ET Mean-annual actual evapotranspiration (ET), estimated using regression equation of 

Sanford and Selnick (2013). 

TMAX7100 Watershed average of maximum monthly air temperature from 800m PRISM, derived 

from 30 years (1971-2000) of record (oC). 

TAV7100_ANN Watershed average of monthly air temperature from 800m PRISM, derived from 30 

years (1971-2000) of record (oC). 

TMIN7100 Watershed average of minimum monthly air temperature from 800m PRISM, derived 

from 30 years (1971-2000) of record (oC). 

agri_chem_related FUNGICIDE Fungicide use on agricultural land (kg/km2). 

HERBICIDE Herbicide use on agricultural land (kg/km2). 
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INSECTICIDE Insecticide use on agricultural land (kg/km2). 

N97 Estimated nitrogen from fertilizer and manure. 

P97 Estimated phosphorous from fertilizer and manure. 

NLCD01_82 Areal percent of 2001 land-use and land-cover type Cultivated Crops: Areas used for 

the production of annual crops, such as corn, soybeans, vegetables, tobacco, and cotton, 

and also perennial woody crops such as orchards and vineyards. Crop vegetation 

accounts for greater than 20 percent of total vegetation. This class also includes all land 

being actively tilled.  

PEST219 Estimate of agricultural pesticide application (kg/km2). 

KGBI Toxicity Weighted Use for benthic invertebrates on agricultural land, 2013 (kg/km2). 

KGCLADO Toxicity Weighted Use for cladocerans on agricultural land, 2013 (kg/km2). 

KGFISH Toxicity Weighted Use for fish on agricultural land, 2013 (kg/km2). 

urban_related POPDENS90 Population density from 1990 Census block level data, persons per km2 per NHDPlus 

version 2 catchment. 

IMPV01_BUFF100 NLCD 2001 percent of imperviousness in the 100meter riparian buffer zones. 

IMPV06 NLCD 2006 percent of imperviousness per NHDPlus version 2 catchment. 

IMPV06_BUFF100 NLCD 2006 percent of imperviousness in the 100meter riparian buffer zones.  

POPDENS00 Population density from 2000 Census block level data, persons per km2 per NHDPlus 

version 2 catchment. 

POPDENS10 Population density from 2010 Census block level data, persons per km2 per NHDPlus 

version 2 catchment. 



 

23 

 

NLCD01_21 Areal percent of 2001 land-use and land-cover type Developed, Open Space: Includes 

areas with a mixture of some constructed materials, but mostly vegetation in the form 

of lawn grasses. Impervious surfaces account for less than 20 percent of total cover. 

These areas most commonly include large-lot single-family housing units, parks, golf 

courses, and vegetation planted in developed settings for recreation, erosion control, or 

aesthetic purposes. 

NLCD01_22 Areal percent of 2001 land-use and land-cover type Developed, Low Intensity: Includes 

areas with a mixture of constructed materials and vegetation. Impervious surfaces 

account for 20-49 percent of total cover. These areas most commonly include single-

family housing units.  

NLCD01_23 Areal percent of 2001 land-use and land-cover type Developed, Medium Intensity: 

Includes areas with a mixture of constructed materials and vegetation. Impervious 

surfaces account for 50-79 percent of the total cover. These areas most commonly 

include single-family housing units.  

NLCD01_24 Areal percent of 2001 land-use and land-cover type Developed, High Intensity: Includes 

highly developed areas where people reside or work in high numbers. Examples include 

apartment complexes, row houses, and commercial/industrial. Impervious surfaces 

account for 80-100 percent of the total cover. 

TOTAL_ROAD_DENS Density of all road types per NHDPlusV2 catchment. Density is defined as the length 

of road divided by the catchment area. 

HDENS10 Historic housing densities for 2010. 

soil_texture_related SILTAVE Percent of average value of silt content. 

SANDAVE Percent of average value of sand content. 

soil_restrictive_related SRL25AG Estimated percent of the soil restrictive layer in the upper 25cm of agricultural land. 

SRL35AG Estimated percent of the soil restrictive layer in the upper 35cm of agricultural land. 

SRL45AG Estimated percent of the soil restrictive layer in the upper 45cm of agricultural land. 

SRL55AG Estimated percent of the soil restrictive layer in the upper 55cm of agricultural land. 

wetd_related MAXWD6190 Watershed average of maximum monthly number of days of measurable precipitation, 

derived from 30 years of record (1961-1990), 2.3km PRISM.  
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WDANN NHDPlusV2 catchment value for the 30year annual average (1961-1990) number of 

days of measurable precipitation.  

topo_related EWT Average depth to water table relative to the land surface (m). 

TWI Topographic wetness index, ln(a/S); where ln is the natural log, a is the upslope area per 

unit contour length and S is the slope at that point.  

BASIN_SLOPE NHDPlusV2 flowline catchment's average slope in percent.  

elev_related ELEV_MEAN NHDPlusV2 flowline catchment's mean elevation (m). 

ELEV_MIN NHDPlusV2 flowline catchment's minimum elevation (m). 

ELEV_MAX NHDPlusV2 flowline catchment's maximum elevation (m). 

 105 
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Table S4. The optimal hyperparameters values of the XGBoost model (using SoilGrids 2.0). 

Hyperparameter Optimal Value Tuning Range Default value  Description  

lambda 8.497 × 10−1 [0, ∞] 1 
Control L1 and L2 regularization; the larger the value, the more conservative 
the model will be 

alpha 2.198 × 10−2 [0, ∞] 0 

gamma 9.045 × 10−2 [0, ∞] 0 Govern the model learning process by changing the step size shrinkage and 

minimum loss reduction; the larger the value, the more conservative the model 
will be eta 1.146 × 10−1 (0, 1] 0.3 

colsample_bytree 5.004 × 10−1 (0, 1] 1 
Control the subsample ratio of columns and training instances; a proper set of 

those values will prevent the model from over-fitting 
subsample 9.730 × 10−1 (0, 1] 1 

min_child_weight 3.123 × 10−1 [0, ∞] 1 

Determine the growth of the tree 

max_depth 8 [0, ∞] 6 
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Table S5. Representativeness of XGBoost model (using SoilGrids 2.0) input predictors over CONUS. 110 

Attributes 
Relative difference in percentiles between Pr-available and whole_conus data 

Average 
5th 25th 50th 75th 95th 

NLCD01_95 0.667 0.667 0.853 1.144 1.528 0.972 

CNPY11_BUFF100 1.686 1.098 0.429 0.080 0.078 0.674 

NLCD01_90 0.769 0.307 0.448 0.612 0.806 0.589 

NLCD01_42 0.689 0.548 0.648 0.501 0.224 0.522 

elev_related 0.736 0.783 0.312 0.618 0.008 0.491 

hydro_related 0.586 0.899 0.317 0.109 0.106 0.403 

HGBD 0.920 0.276 0.159 0.098 0.252 0.341 

CONTACT 0.165 0.140 0.248 0.294 0.410 0.251 

CLAYAVE 0.233 0.412 0.249 0.178 0.140 0.243 

HGB 0.232 0.308 0.180 0.160 0.093 0.194 

BFI 0.477 0.306 0.152 0.002 0.028 0.193 

soil_texture_related 0.096 0.071 0.068 0.070 0.015 0.064 

temp_related 0.036 0.034 0.008 0.029 0.005 0.022 

Abbreviations: NLCD01_95 (areal percentage of herbaceous wetlands); CNPY11_BUFF100 (areal percentage of canopy in the riparian 

buffer); NLCD01_90 (areal percentage of woody wetlands); NLCD01_42 (areal percentage of evergreen forest); elev_related (merged 

predictor for mean/min/max elevation); hydro_related (merged predictor representing recharge, runoff, and precipitation); HGBD (areal 

percentage of Hydrologic Group BD soil); CONTACT (subsurface contact time); CLAYAVE (clay content percentage); HGB (areal 

percentage of Hydrologic Group B soil); BFI (base flow index); soil_texture_related (merged predictor for silt and sand content); 115 
temp_related (merged predictor encompassing potential evapotranspiration, first/last freeze timing, snow fraction, actual 

evapotranspiration, and mean/min/max temperature). For detailed descriptions, refer to Supplementary Tables S2 and S3.  
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Table S6. Sobol sensitivity analysis results for the 12 selected predictors (using SoilGrids 2.0). 

Predictors Total Indices (ST) First Order Indices (S1) Difference ((ST-S1)/ST) 

temp_related 0.573 0.316 0.448 

hydro_related 0.192 0.124 0.351 

CONTACT 0.118 0.044 0.624 

NLCD01_42 0.115 0.009 0.918 

elev_related 0.102 0.036 0.643 

CNPY11_BUFF100 0.098 0.016 0.833 

HGB 0.075 0.007 0.910 

NLCD01_90 0.057 0.028 0.507 

CLAYAVE 0.049 0.001 0.978 

BFI 0.047 0.003 0.938 

soil_texture_related 0.032 0.000 1.000 

HGBD 0.005 0.002 0.499 

Abbreviations: temp_related (merged predictor encompassing potential evapotranspiration, first/last freeze timing, snow fraction, actual 

evapotranspiration, and mean/min/max temperature); hydro_related (merged predictor representing recharge, runoff, and precipitation); 120 
CONTACT (subsurface contact time); NLCD01_42 (areal percentage of evergreen forest); elev_related (merged predictor for mean/min/max 

elevation); CNPY11_BUFF100 (areal percentage of canopy in the riparian buffer); HGB (areal percentage of Hydrologic Group B soil); 

NLCD01_90 (areal percentage of woody wetlands); CLAYAVE (clay content percentage); BFI (base flow index); soil_texture_related 

(merged predictor for silt and sand content); HGBD (areal percentage of Hydrologic Group BD soil). For detailed descriptions, refer to 

Supplementary Tables S2 and S3. 125 
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