Supplement for Manuscript

Global ocean surface heat fluxes revisited: A new dataset from maximum entropy production framework with heat storage and Bowen ratio optimizations

Yong Yang¹, Huaiwei Sun^{1,2,3,4*}, Jingfeng Wang⁵, Wenxin Zhang⁶, Gang Zhao⁷, Weiguang Wang⁸, Lei Cheng⁹, Lu Chen¹, Hui Qin¹, Zhanzhang Cai⁶

¹School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

²Hubei Key Laboratory of Digital River Basin Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

³Institute of Water Resources and Hydropower, Huazhong University of Science and Technology, Wuhan 430074, China

⁴College of Water Conservancy & Architectural Engineering, Shihezi University

⁵ School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30318, USA

⁶ Department of Physical Geography and Ecosystem Science, Lund University, Sweden

^{7.} Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences

and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

⁸. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China

⁹ State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China

Correspondence to: Huaiwei Sun (hsun@hust.edu.cn) and Wenxin Zhang (wenxin.zhang@nateko.lu.se)

Fig. S1

Figure S1. Spatial distribution map of buoy array sites used in this study

Fig. S2

Figure S2. Violin plot of observations from distinct buoy arrays.

Figure S3. Scatter density plots of monthly latent heat flux (a~f) and sensible heat flux (g~l) derived by the original method and modified MEP method versus observations from the KEO buoy station for the period from June 17, 2004, to August 12, 2023. (a) The original MEP method, (b) The modified MEP method considering the heat storage effect, (c) The modified MEP method considering both the heat storage and empirical Bowen ratio formula $B_{oa}=0.24B_o^*$, (d)~(f) for the modified MEP method considering both the heat storage and empirical Bowen ratio formulas $B_{oa}=0.79B_o^*-0.21$, $B_{oa}=0.63B_o^*-0.15$, and $B_{oa}=0.37B_o^*-0.05$. (g)~(l) are the same with (a)~(f) but for sensible heat flux.

Figure S4. Comparisons of time series between MEP estimates and buoy observations. (a) Variations of observed net radiation (R_n) , latent heat flux (LE), and sensible heat flux (H). (b) Variations of observed R_n , observed LE, and MEP estimated LE. (c) Variations of observed R_n , observed H, and MEP estimated H.

Figure S5. Comparisons of observed heat storage with predicted heat storage (a) and surface thermal energy flux Q (c) by the original MEP method, along with corresponding scatter plots (b, d) at KEO sites. *Gobs* represents observed heat storage, MEP_Q denotes surface thermal energy flux, and MEP_G represents heat storage predicted by the original MEP method.

Figure S6. Assessment of net radiation derived from different datasets against buoy observations: (a) J-OFURO3, (b) CERES, (c) GEWEX-SRB, (d) ERA5, and (e) MERRA2.

Figure S7. Spatial distribution of Pearson coefficient R (left panel) and RMSE value (right panel) in the comparison of heat storage derived from J-OFURO3 dataset with buoy observations from 129 stations.

Figure S8. Comparisons of time series between estimates extracted from gridded remote sensed datasets and buoy observations: (a) Net radiation, (b) Sea surface temperature, and (c) heat storage at WHOTS station from August 2004 to December 2017.

Fig. S9

Figure S9. Comparison of Bowen ratios extracted from five different gridded products against observations at the PAPA site (144.9°W, 50.1°N) from June 2007 to November 2023. The median values of the Bowen ratio are as follows: Observed (0.23), MEP (0.24), ERA5 (0.07), J-OFURO3 (-0.09), OAFlux (0.01), MERRA2 (0.11).

Figure S10. A fitted empirical relationship between actual Bowen ratio estimated by the improved MEP model and latitude using a polynomial regression method.

Table S1.

Depths of	Linear regression	\mathbb{R}^2	RMSE
ΔOHC	Y=observed G , x= ΔOHC		(W/m^2)
0~100m	Y=0.92x+22.5	0.82	34.94
0~300m	Y=0.61x+22.6	0.44	57.71
0~700m	Y=0.41x+23.1	0.29	74.08
0~1500m	Y=0.40x+23.0	0.32	76.07
0~2000m	Y=0.40x+23.0	0.32	76.83
0~3000m	Y=0.40x+23.0	0.33	77.11
0~4000m	Y=0.40x+23.0	0.33	77.08
0~5000m	Y=0.40x+23.0	0.33	77.02
0~6000m	Y=0.40x+23.0	0.33	77.02

Table S1. The comparisons between changes in ocean heat content (Δ OHC) and observed heat storage (R_n -LE-H) at various ocean depths at the WHOTS buoy site