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Abstract. Ocean evaporation, represented by latent heat flux (LE), plays a crucial role in global precipitation 21 

patterns, water cycle dynamics, and energy exchange processes. However, existing bulk methods for 22 

quantifying ocean evaporation are associated with considerable uncertainties. The Maximum Entropy 23 

Production (MEP) theory provides a novel framework for estimating surface heat fluxes, but its application 24 

over ocean surfaces remains largely unvalidated. Given the substantial heat storage capacity of the deep ocean, 25 

which can create temporal mismatches between variations in heat fluxes and radiation, it is crucial to account 26 

for heat storage when estimating heat fluxes. This study derived global ocean heat fluxes using the MEP 27 

theory, incorporating the effects of heat storage and adjustments to the Bowen ratio (the ratio of sensible heat 28 

to latent heat). We utilized multi-source data from seven auxiliary turbulent flux datasets and 129 globally 29 

distributed buoy stations to refine and validate the MEP model. The model was first evaluated using observed 30 

data from buoy stations, and the Bowen ratio formula that most effectively enhances the model performance 31 

was identified. By incorporating the heat storage effect and adjusting the Bowen ratio within the MEP model, 32 

the accuracy of the estimated heat fluxes was significantly improved, achieving an R2 of 0.99 (regression 33 
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slope: 0.97) and a root mean squared error (RMSE) of 4.7 W·m-2 compared to observations. The improved 34 

MEP method successfully addressed the underestimation of LE and the overestimation of sensible heat by 35 

the original model, providing new global estimates of LE at 93 W·m-2 and sensible heat at 12 W·m-2 for the 36 

annual average from 1988 to 2017. Compared to the 129 buoy stations, the MEP-derived global LE dataset 37 

achieved the highest accuracy, with a mean error (ME) of 1.3 W·m-2, an RMSE of 15.9 W·m-2, and a Kling-38 

Gupta Efficiency (KGE) of 0.89, outperforming four major long-term global heat flux datasets, including J-39 

OFURO3, ERA5, MERRA2, and OAFlux. Analysis of long-term trends revealed a significant increase in 40 

global ocean evaporation from 1988 to 2010 at a rate of 3.58 mm·yr-1, followed by a decline at -2.18 mm·yr-41 

1 from 2010 to 2017. This dataset provides a new benchmark for the ocean surface energy budget and is 42 

expected to be a valuable resource for studies on global ocean warming, sea surface-atmosphere energy 43 

exchange, the water cycle, and climate change. The 0.25° monthly global ocean heat flux dataset based on 44 

the Maximum Entropy Production method (GOHF-MEP) for 1988–2017, is publicly accessible at 45 

https://doi.org/10.6084/m9.figshare.26861767.v2 (Yang et al., 2024; last accessed: 28 August 2024). 46 

1. Introduction 47 

The ocean system plays a pivotal role in regulating the global climate by receiving and redistributing heat 48 

and freshwater, thereby influencing Earth’s energy balance and the dynamics of the water cycle (Li et al., 49 

2023; Von Schuckmann et al., 2023; Marti et al., 2022; Johnson et al., 2020). A key component in this system 50 

is ocean evaporation, which accounts for approximately 86% of atmospheric water vapor, being the primary 51 

driver of the global hydrological cycle (Yu, 2011). As climate change warms the ocean, evaporation rates are 52 

expected to rise, potentially intensifying the global hydrological cycle (Masson-Delmotte et al., 2021). This 53 

intensification could alter precipitation patterns, affecting regional water availability and freshwater 54 

ecosystems (Konapala et al., 2020; Roderick et al., 2014). Therefore, precise estimation of ocean evaporation 55 

is critical to understand and quantify the global energy and water budget (Iwasaki et al., 2014). 56 

Existing methods for calculating surface latent heat (LE) and sensible heat flux (H) rely on bulk transfer 57 

formulations, which require extensive input variables and parameterizations, such as temperature gradients, 58 

humidity gradients, wind speed, and transfer coefficients (Fairall et al., 1996; Andreas et al., 2008). Although 59 

widely used, these bulk methods encounter significant limitations primarily due to challenges in accurately 60 

parameterizing and empirically deriving transfer coefficients (Zeng et al., 1998; Robertson et al., 2020). 61 

These methods heavily depend on assumptions regarding atmospheric stability and boundary layer dynamics, 62 

which may not consistently apply across diverse and complex environmental conditions (Fairall et al., 2003; 63 



 

3 

 

Andreas et al., 2013). Furthermore, uncertainties in estimating turbulent transfer coefficients can lead to 64 

substantial errors in the estimation of latent heat flux. The high demands for parameterization and challenges 65 

in data acquisition contribute to considerable uncertainties when implementing bulk methods for calculations. 66 

While numerous energy balance-based algorithms have been developed to estimate global terrestrial 67 

evapotranspiration (Wang et al., 2012; Yang et al., 2023), their application to ocean surface heat flux 68 

estimation remains limited. Therefore, proposing an innovative method for estimating ocean surface heat flux 69 

based on surface energy balance could yield significant theoretical and practical implications. Such an 70 

approach could serve as a valuable complement to existing bulk methods and their associated datasets, 71 

providing a fresh methodological perspective for quantifying ocean heat flux. This advancement would not 72 

only enhance our ability to estimate ocean energy fluxes with greater accuracy but also deepen our 73 

understanding of their role in the global energy and water cycles. 74 

The Maximum Entropy Production (MEP) model, an energy-balance-based approach, has recently 75 

emerged as a novel method for simulating surface heat fluxes. Developed from Bayesian probability theory 76 

and information theory, the MEP prioritizes the most probable partitioning of radiation fluxes (Wang & Bras, 77 

2011). The MEP model has been rigorously validated across diverse surface types and varying degrees of 78 

surface wetness (Wang et al., 2014; Huang et al., 2017; Yang et al., 2022; Sun et al., 2022; Sun et al., 2023). 79 

Notably, the MEP model requires fewer input variables—net radiation, surface temperature, and specific 80 

humidity—yet provides accurate estimates of LE, H, and ground heat fluxes simultaneously. Unlike bulk 81 

methods (Fairall et al., 2003), which rely on wind speed, temperature gradient, and humidity gradient, the 82 

MEP model satisfies the energy balance constraint without these dependencies. This characteristic enhances 83 

its applicability and robustness across diverse environmental conditions. However, the previous application 84 

of the MEP model over ocean surfaces has revealed significant limitations, including notable 85 

underestimations of latent heat and overestimations of H (Huang et al., 2017). The global multi-year averaged 86 

LE estimated by the MEP model indicated a value around 58 W·m-2, much lower than the range of 92~109 87 

W·m-2 reported by remote sensing or reanalysis-based products. Conversely, MEP estimated an averaged H 88 

of approximately 28 W·m-2, substantially higher the 6-18 W·m-2 range reported in other studies. These 89 

discrepancies highlight substantial uncertainties in applying the MEP model to oceanic energy partitioning, 90 

highlighting the urgent need for further refinement and rigorous validation. These substantial errors in MEP-91 
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estimated oceanic fluxes may be attributed to the lack of consideration of heat storage effects. The significant 92 

impact of heat storage in deep ocean water can introduce substantial bias in estimating seasonal evaporation 93 

rates when using the Penman combination-based method (McMahon et al., 2013; Bai & Wang et al., 2023). 94 

For instance, deep-water bodies typically store heat during the spring and release it in the fall, which can lead 95 

to overestimation of evaporation in the summer and underestimation in the fall if changes in heat storage are 96 

not accounted for (Zhao & Gao, 2019; Morton, 1994). Therefore, when estimating heat fluxes using the 97 

Bowen ratio (Bo, defined as the ratio of H to LE) energy budget-based method (including the MEP method), 98 

it is essential to incorporate heat storage effects to ensure accurate partitioning of available energy. 99 

Bo is crucial for understanding the global ocean energy partitioning process (Hicks & Hess, 1977). In 100 

the context of the energy balance-based MEP model, the significant overestimation of Bo suggests that 101 

focusing on this ratio can enhance our understanding of energy partitioning dynamics (Andreas et al., 1996). 102 

Studies have highlighted that the actual Bowen ratio over ocean surfaces (Boa) often diverges from the 103 

equilibrium Bowen ratio (Bo
*) observed under ideal conditions where the air is saturated with water vapor. 104 

The Boa may deviate significantly from Bo
* under non-equilibrium conditions, which are typical in most 105 

environments (Jo et al., 2002; Andreas et al., 2013), posing challenges in establishing a robust relationship 106 

between Boa and Bo
* (Liu & Yang, 2021). Therefore, developing an accurate Bo

* ~ Boa relationship is crucial 107 

for refining the energy partitioning process in the MEP model. The advancement of buoy observation 108 

networks has provided compelling evidence for validating ocean heat fluxes and become crucial in assessing 109 

their associated uncertainties (Bourras, 2006; Smith et al., 2011; Bentamy et al., 2017; Liang et al., 2022). 110 

This study utilizes the energy balance-based MEP method to estimate ocean evaporation, introducing a novel 111 

approach to redistributing surface energy budgets and offering a streamlined parameterization scheme 112 

distinct from conventional bulk methods used for estimating ocean heat fluxes. In contrast to existing 113 

approaches that using reanalysis-based schemes (e.g., NCEP, ECMWF, and GEOS) and their associated 114 

parameterizations to estimate LE, this study employs satellite observations to directly estimate ocean heat 115 

fluxes, thereby minimizing error propagation associated with the model structures and assimilation schemes.  116 

Current global ocean surface heat flux datasets can be classified into five categories based on their 117 

deriving approaches (Tang et al., 2023): remote sensing-based (e.g., J-OFURO3), atmospheric reanalysis-118 

based (e.g., ERA5), machine learning-based (e.g., OHFv2), in-situ based (e.g., NOC), and hybrid-based (e.g., 119 
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OAFlux) approaches. Compared to terrestrial flux products, these ocean flux products generally have a 120 

coarser spatial resolution ranging from 0.25º to 1.875º. Recent studies have conducted comprehensive 121 

assessments of global ocean heat flux datasets regarding their accuracy and error characteristics across spatial 122 

and temporal scales (Bentamy et al., 2017; Tang et al., 2023). However, substantial discrepancies remain 123 

among these datasets, particularly in terms of spatial patterns, annual means, and interannual variabilities. 124 

Therefore, developing a new global dataset using the innovative method could advance our understanding of 125 

deriving algorithms, improve temporal and spatial coverage of flux variables with a higher accuracy, and 126 

provide alternative reference to assess ocean surface heat fluxes in various applications. The primary 127 

objectives of this study are as follows: (1) to develop and validate the MEP approach for estimating ocean 128 

heat fluxes using observations from 129 stations; (2) to investigate the impact of heat storage on ocean energy 129 

allocation and the influence of the Bowen ratio on energy partitioning for heat flux estimations; (3) to produce 130 

a MEP-derived ocean heat fluxes product (spatial resolution: 0.25°; temporal coverage: 1988-2017) and 131 

present its spatiotemporal patterns.  132 

2. Methods 133 

2.1 Components of ocean surface energy balance  134 

The global ocean energy balance equation is as follows (Meehl, 1984; Wang et al., 2021): 135 

nR LE H G= + +                                                                     (1) 136 

n ns nl s s l lR R R R R R R   = + = − + −                                                (2) 137 

where 
nR , 

nsR , and 
nlR  are net radiation, net shortwave radiation (the difference of incoming radiation 138 

sR
 and reflected solar radiation sR

), and net longwave radiation (the difference of incoming longwave 139 

radiation lR
 and outgoing longwave radiation lR

 ) , respectively; H is sensible heat, LE is latent heat, and 140 

G is the heat flow through the surface. Unlike terrestrial surfaces, the energy balance equation for the ocean 141 

surface accounts for distinct energy exchange processes, including the impact of seawater mixing and 142 

dynamics on energy transfer. For the ocean surface, the flux term G has two components,  143 

Gt vG G= +                                                                     (3) 144 
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where G t
 is the change in the ocean heat content ( OHC , or heat storage), and 

vG is the lateral heat 145 

transported by ocean currents and other processes. The G t
 can be quantified as the vertical integration of 146 

temperature profile in a column of depth (Meehl, 1984, Li et al., 2023). Both the heat storage and the ocean 147 

heat transport 
vG  are difficult to quantify, which requires large masses of hydrographic variables and 148 

performing integrations at different depths. Since the lateral heat transport by ocean currents is zero at the 149 

global scale (Wang et al., 2021), G can be regarded as equivalent to the change in ocean heat content or heat 150 

storage at the global level. For the consistency throughout the paper, this study will consider the concept of 151 

G flux as equivalent to the changes in the heat storage. 152 

2.2 The Maximum Entropy Production theory 153 

2.2.1 The original MEP model 154 

The MEP model simulates ocean surface heat fluxes using inputs variables of net radiation (Rn), surface skin 155 

temperature (Ts), and surface specific humidity (qs) under the constraint of the surface energy balance. The 156 

latent heat, sensible heat, and surface thermal energy flux (Q) are calculated as, 157 
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where ( )B   is the reciprocal Bowen ratio,  is a dimensionless parameter that characterizes the phase 163 

change at the ocean surface,   (J∙kg-1) is the latent heat of vaporization of liquid surface, pc  (103 J·kg−1·K−1) 164 

is the specific heat of air under constant pressure, and 
vR  (461 J·kg−1·K−1) is the gas constant of water vapor. 165 

0I  is the “apparent thermal inertia” of air and describes the turbulent transport process of the boundary layer 166 
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based on the Monin-Obukhov similarity theory (MOST) (Wang and Bras, 2010). 
sI  is the thermal inertia of 167 

the ocean surface (J·m-2·K-1·s-1/2), and can be parametrized as sI c = (with density  , the specific 168 

heat c ) represents the physical property of surface (
sI =

31.56 10 J·m-2·K-1·s-1/2 for water surface and 169 

31.92 10  J·m-2·K-1·s-1/2 for ice surface) . 170 

Over the sea ice surface, assumed to be saturated, the specific humidity qs can be derived as a function 171 

of surface temperature Ts using the Clausius‐Clapeyron equation. (El Sharif et al., 2019; Shaman & Kohn, 172 

2009). 173 

0

0

( ) 1 1
exp[ ( )]s s s

s

v s

e T e
q

P P R T T


 = = −                                      (9) 174 

where  (= 0.622) represents the ratio of the molecular weight of water vapor to that of dry air, ( )s se T  175 

denotes the saturation vapor pressure at temperature Ts, 
0e  is the saturation vapor pressure at the reference 176 

temperature 𝑇0 (273.15 K), and P is the atmospheric pressure (mb). 177 

2.2.2 Specific improvements on the MEP model 178 

According to the MEP theory, the net solar radiation (Rns) entering the water surface medium is absorbed by 179 

the water body, with the allocable radiation flux denoted as 
nlR E H Q= + +  (Eq.6). Consequently, the 180 

expression for ocean heat uptake (heat storage) is derived as 
n nsG R E H R Q= − − = + . While this theory 181 

has received preliminary validation in shallower water bodies, such as lake surfaces (Wang et al., 2014), its 182 

applicability on deeper water bodies with larger heat storage capacities in ocean surfaces requires further 183 

evaluation. This study introduced two key hypotheses: (1) The substantial heat storage capacity of the ocean 184 

could exert a significant influence on seasonal latent and sensible fluxes, potentially introducing bias to the 185 

MEP equations, (2) The notable underestimation of latent heat flux and overestimation of sensible heat flux 186 

by the MEP model point to a significant deviation from the Bowen's ratio formula, necessitating a reasonable 187 

correction. To address this, the study proposed two approaches for enhancing the MEP formulas: (1) 188 

Considering the impact of heat storage in the MEP’s energy balance equation, and (2) Adjusting the 189 

theoretical equilibrium Bowen ratio within the MEP model. This can be specifically represented as follows: 190 
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o

H R G
B

+ = −                                                    (10) 191 

* 1

( )
oB

B 
=                                                            (11) 192 

*
oa oB a B b=  +                                                       (12) 193 

where Bo
* is the equilibrium Bowen ratio, which denotes the theoretical ratio of sensible heat flux to latent 194 

heat flux when the surface and the atmosphere are in equilibrium regarding water vapor. Correspondingly, 195 

the corresponding evaporation at this condition is known as equilibrium evaporation (defined as the water 196 

vapor evaporating from a saturated surface into a saturated atmosphere). To accurately predict actual 197 

evaporation, a reliable functional relationship needs to be established to predict Boa from Bo
*. Empirical 198 

studies have introduced coefficients to correlate Bo
* to Boa under diverse environmental circumstances; for 199 

instance, the Priestley–Taylor coefficient was expressed as (Priestley & Taylor, 1972). 200 

* 0.79 0.21 ( )
0.79 0.21

( )
oa o

B
B B

B





− 
=  − =                                    (13) 201 

Further studies have led to the emergence of more updated empirical coefficients. Hicks and Hess (1977) 202 

estimated the actual Bowen ratio as 
*0.63 0.15oa oB B=  − by aligning it with direct observations of the 203 

fluxes. Yang & Roderick (2019) deduced an empirical coefficient of 0.24 and formulated it as204 

*0.24oa oB B=   through fitting Bowen ratio and surface temperature data across the global ocean surface. 205 

Furthermore, Liu & Yang (2021) derived a new equation as 
*0.37 0.05oa oB B=  −  based on the 206 

atmospheric boundary layer model. Given their favorable spatial applicability and representativeness, this 207 

study opted to utilize these four Boa ~ Bo
* formulas to refine the MEP model and assess their suitability. The 208 

revised reciprocal actual Bowen ratio was represented as, 209 
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                                   (14) 210 

where 
1( )aB  ~

4( )aB   represent the four empirical Bowen ratio formulas for comparisons in this study. 211 

Thus, the workflow of the improved MEP model was conducted as: replacing the original 
( )B 

 with 212 

the corrected 
( )aB 

, then combining Eq. (5), (7)-(9), and (14) into the MEP energy balance equation 213 

considering heat storage (Eq. (10)), ultimately leading to the determination of latent and sensible heat flux. 214 

2.3 Sensitivity analysis 215 

To quantify the influence of input variables in the MEP model on evaporation estimate at the ocean surface, 216 

the sensitivity coefficient (S) was computed as (Beven, 1979; Isabelle et al., 2021),  217 

i
i

i

xLE
S

x LE


=


                                                                (15) 218 

where Si represents the sensitivity coefficient of LE to each variable xi. The magnitude of Si reflects the degree 219 

of impact of the variable's changes on LE; a larger absolute value indicates a greater influence of the variable 220 

on LE. A positive value signifies a positive correlation between evaporation and the variable's changes, while 221 

a negative value indicates a negative correlation. For example, a sensitivity coefficient of 0.5 represents that 222 

a 10% increase in the variable would result in a 5% increase in LE. The sensitivity levels can be categorized 223 

based on the absolute value |Si| (Lenhart et al., 2002; Yin et al., 2010): |Si| > 1 indicates very high sensitivity, 224 

1 > |Si| > 0.2 denotes high sensitivity, 0.2 > |Si| > 0.05 reflects moderate sensitivity, and |Si| < 0.05 suggests 225 

negligible sensitivity. 226 

2.4 Data fusion methods 227 

To drive the improved MEP model with high-quality input data, this study aims to obtain a heat storage 228 

dataset with optimal accuracy. The accuracy of the heat storage dataset was assessed using three approaches: 229 
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(1) individual dataset, (2) a fused dataset generated using the Bayesian Three-Cornered Hat (BTCH) method 230 

(He et al., 2020), and (3) an ensemble means obtained through the arithmetic average (AA) method. Previous 231 

studies have demonstrated that the BTCH method effectively quantifies uncertainties across diverse datasets 232 

and improves accuracy by integrating multiple datasets without requiring prior knowledge (Long et al., 2017; 233 

Liu et al., 2021; Duan et al., 2024). A recent study further evaluated various data fusion methods, including 234 

BTCH and the AA method, for addressing uncertainties in global evapotranspiration estimates derived from 235 

different datasets. The findings revealed that while both BTCH and AA are effective in identifying lower-236 

quality ET datasets, their ability to consistently produce higher-accuracy datasets remains uncertain and, in 237 

some cases, may even degrade the overall accuracy (Shao et al., 2022). The performance of these fusion 238 

methods is highly sensitive to the selection of input datasets. For instance, the AA method is particularly 239 

susceptible to the influence of lower-quality datasets, especially when the sample size is small. Similarly, the 240 

performance of BTCH diminishes as the error covariance among the included datasets increases. 241 

Consequently, following a comparative analysis of the accuracy of individual, BTCH, and AA fusion datasets, 242 

this study selected the optimal heat storage dataset to drive the MEP model. Since BTCH is not the primary 243 

focus of this study, detailed method descriptions are referred to He et al. (2020). 244 

3. Data materials 245 

3.1 Input data for MEP model 246 

The performance of both the original and improved Maximum Entropy Production (MEP) models was 247 

evaluated using observed data from in-situ buoy stations, as described in Section 3.2. The optimal empirical 248 

Bowen ratio formula for the MEP model was then determined through multi-site assessments. Subsequently, 249 

the improved MEP model was applied to estimate global heat fluxes using long-term remote sensing data, as 250 

detailed in Sections 3.3 and 3.4. Specifically, the input variables of net radiation, heat storage, and sea surface 251 

temperature driving the improved MEP model were derived from the J-OFURO3 dataset, spanning 1988 to 252 

2017 with a spatial resolution of 0.25°, as outlined in Section 4.3. 253 

3.2 In situ buoy observations 254 

A total of 129 in situ buoy sites were employed for ocean heat fluxes calculation and validation with MEP 255 

model and its modified version, as listed in Table 1. About 96% of selected sites (124 of 129 all sites) were 256 
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collected from the Global Tropical Moored Buoy Array (available at https://www.pmel.noaa.gov/), which 257 

consists of the TAO/TRION Pacific Ocean (69 buoys), PIRATA Atlantic Ocean (23 buoys), and RAMA 258 

Indian ocean (32 buoys), and the remaining sites including Upper Ocean Processes Group (3 buoys) consists 259 

of Project WHOTS - WHOI Hawaii Ocean Time-series Station (available at 260 

https://uop.whoi.edu/ReferenceDataSets/whotsreference.html), Project NTAS - Northwest Tropical Atlantic 261 

Station and Project STRATUS (https://uop.whoi.edu/ReferenceDataSets/ntasreference.html), and the Pacific 262 

ocean climate stations (2 buoys) consists of KEO and PAPA moorings 263 

(https://www.pmel.noaa.gov/ocs/data/fluxdisdel/). The availability of all buoy stations refers to the “Data 264 

availability” section. The observational sites covered the spatial range of 25°S~ 50.1°N latitude, temporal 265 

range span from 1989/12 to 2023/12. Observational meteorological variables and heat fluxes included the 266 

net longwave radiation, net shortwave radiation, sea surface skin temperature, specific humidity at 2m height 267 

(if available, or computed as the function of SST according to the Clausius‐Clapeyron equation), latent heat 268 

flux and sensible heat flux. Limited by the availability of longwave radiation observations, the net radiation 269 

had a relatively shorter time series length compared to latent and sensible heat fluxes. The surface air-sea 270 

fluxes of buoy observations were computed using the COARE 3.0b algorithm, which have been widely 271 

applied for fluxes estimations and validations (Tang et al., 2023; Bentamy et al., 2017; Fairall et al., 2003). 272 

All the selected original buoy observation (except for KEO and Papa sites) records were in monthly temporal 273 

resolution, and the original daily observations of KEO and Papa had been aggregated to monthly by simple 274 

average method. The spatially distributed map of all selected sites was illustrated in Fig.S1.   275 

 276 

Table 1. Information about observational ocean surface heat fluxes of 129 buoy sites 277 

Buoy array Buoy 

amount 

Spatial coverage Temporal 

coverage 

Number of 

LE (H) 

records 

Number of 

Rn records 

TAO/TRION 

pacific 

69 165°E-95°W 

10°S-10°N 

1989/12/16- 

2023/12/16 

12377 522 

PIRATA Atlantic 23 40°W-10°E, 

20°S-20°N 

1997/9/16- 

2023/12/16 

2644 

 

631 

RAMA Indian 32 55°E-100°E, 

25°S-15°N 

2001/11/16- 

2023/12/16 

1862 286 

WHOTS 1 158°W, 22.7°N 2004/08/15-

2021/08/15 

205 205 

https://www.pmel.noaa.gov/tao/drupal/disdel/
https://uop.whoi.edu/ReferenceDataSets/whotsreference.html
https://uop.whoi.edu/ReferenceDataSets/ntasreference.html
https://www.pmel.noaa.gov/ocs/data/fluxdisdel/
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NTAS 1 51°W, 15°N 2001-04/15- 

2020/03/15 

219 219 

STRATUS 1 85.4°W, 19.6°S 2000/10/15- 

2021/01/15 

235 235 

KEO 1 144.6°E, 32.3°N 2004/06/17-

2023/08/12 

177 177 

PAPA 1 144.9°W, 50.1°N 2007/06/08- 

2023/11/14 

181 181 

Note: The number of records represents the effective count (excluding NA values) of latent and sensible heat 278 

flux observations. 279 

3.3 Global turbulent heat flux datasets for evaluations 280 

This study evaluated and compared 7 global turbulent heat flux products with observations, categorizing 281 

them into three types: Remote sensing-based, atmosphere reanalysis-based, and hybrid-based (Table 2). 282 

These seven products encompassed monthly data spanning from 1988 to 2017, with spatial resolutions 283 

ranging from 0.25° to 1°. The criterion for dataset filtering prioritized products with relatively long time 284 

series, typically exceeding 15 years. 285 

The Clouds and Earth’s Radiant Energy Systems Synoptic Edition 4A (CERES SYN1deg_Ed4A, 286 

hereafter referred to as CERES4, available at https://ceres.larc.nasa.gov/data/) offers net radiation data, 287 

derived from clear-sky upward shortwave, downward shortwave flux, upward longwave, and downward 288 

longwave flux measurements (Wielicki et al., 1996; Rutan et al., 2015). Another remote sensing-based 289 

radiation product, the Global Energy and Water Cycle Experiment - Surface Radiation Budget (GEWEX-290 

SRB, available at https://asdc.larc.nasa.gov/project/SRB) (Pinker et al., 1992), in conjunction with CERES4, 291 

demonstrated good accuracy in retrieving Rn, as validated by six global observing networks (Liang et al., 292 

2022). 293 

The J-OFURO3 is the third-generation dataset developed by the Japanese Ocean Flux Data Sets with 294 

use of the Remote-Sensing Observations (J-OFURO) research project (available at https://j-295 

ofuro.isee.nagoya-u.ac.jp/en/) (Tomita et al., 2019). It calculated turbulent heat flux with the latest version 296 

of COARE3.0 algorithm, and provided datasets for Rn, LE, H and SST in this study. Validation with in situ 297 

observations showed that J-OFURO3 offered a superior performance of latent heat compared to other 5 298 

satellite products from 2002-2013 (Tomita et al., 2019). 299 

https://ceres.larc.nasa.gov/data/
https://asdc.larc.nasa.gov/project/SRB
https://j-ofuro.isee.nagoya-u.ac.jp/en/
https://j-ofuro.isee.nagoya-u.ac.jp/en/
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Two Atmosphere reanalysis products including the fifth generation European Centre for Medium-Range 300 

Weather Forecasts (ECMWF) atmospheric Re-Analysis52 (ERA5, available at 301 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-302 

means?tab=overview) (Hersbach et al., 2020), and the Modern-Era Retrospective analysis for Research and 303 

Applications Version2 (MERRA2, available at 304 

https://disc.gsfc.nasa.gov/datasets/M2TMNXOCN_5.12.4/summary) (Gelaro et al., 2017). Both ERA5 and 305 

MERRA2 products employed the bulk formula based on the MOST to calculate heat fluxes. Validation 306 

results from previous studies have demonstrated good consistency with buoy estimates regarding heat fluxes 307 

(Pokhrel et al., 2020; Chen et al., 2020).  308 

The OAFlux (available at https://oaflux.whoi.edu/), a hybrid-based product developed under the 309 

Objectively Analyzed Air-Sea Fluxes (OAFlux) project at the Woods Hole Oceanographic Institution (WHOI) 310 

(Yu et al., 2008), was utilized for comparisons with ocean heat fluxes derived from distinct methods. This 311 

product calculates fluxes based on the COARE3.0 bulk algorithm and employs a variational objective 312 

analysis to determine the optimal fitting of independent variables.  Detailed descriptions on all utilized global 313 

turbulent heat fluxes products, and their validation performances against buoy observations with reported 314 

studies were available in Tang et al (2023). 315 

 316 

Table 2. The information of the 7 used global radiation and heat fluxes products 317 

Product Variables  Spatial 

resolution 

Time span  Type Reference  

CERES4 Rn 1° 2000-2017 Remote 

sensing 

Rutan et al. 

(2015) 

GEWEX-SRB Rn 1° 1988-2017 Remote 

sensing 

Pinker et al. 

(1992) 

J-OFURO3 Rn, SST, LE, H 0.25° 1988-2017 Remote 

sensing 

Tomita et al. 

(2019) 

ERA5 Rn, LE, H, P 0.25° 1988-2017 Atmosphere 

reanalysis 

Hersbach. et 

al. (2020)  

MERRA2 Rn, LE, H 1/2° × 2/3° 1988-2017 Atmosphere 

reanalysis 

Gelaro et al. 

(2017) 

OAFlux LE, H 1° 1988-2017 Hybrid-based Yu et al. 

(2008) 

IAPv4-OHC  OHC  1° 1988-2017 Hybrid-based Cheng et al. 

(2017) 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview
https://disc.gsfc.nasa.gov/datasets/M2TMNXOCN_5.12.4/summary
https://oaflux.whoi.edu/
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3.4 Ocean heat content data 318 

Remote sensing data for heat storage (G) was primarily derived from two categories: the first category 319 

included data obtained from the residual of the energy balance equation (Rn-LE-H), including J-OFURO3, 320 

ERA5, and MERRA2; the second category was calculated from changes in Ocean Heat Content (OHC). The 321 

ocean heat content data was obtained from IAP OHC gridded analysis (IAPv4, available at 322 

http://www.ocean.iap.ac.cn/) dataset, covering ocean depth of 0-6000m (Cheng et al., 2017), and has been 323 

extensively utilized in global ocean heat analysis, ocean warming, and climate change studies (Li et al., 2023; 324 

Cheng et al., 2022; Cheng et al., 2024). The delta OHC was calculated using the numerical differentiation 325 

method (Xu et al., 2019) as 
( 1) ( 1)

OHC(i)
2

OHC i OHC i

i

+ − −
 =


, i denotes the OHC of i-th month. 326 

At the WHOTS site, this study compared the OHC changes at different depths with the observed G, derived 327 

as Rn-LE-H (Table S1). Since the OHC variation from 0~100m depth exhibited the smallest error with the 328 

observations, the data from 0~100m depth range were chosen as the heat storage. This study assessed the 329 

suitability of G flux and OHC  for global evaporation estimations, with the aim of minimizing the errors 330 

introduced by input variable data in the MEP model. 331 

This study evaluated the accuracy of all the variables Rn, Ts, and G using the aforementioned datasets 332 

on a global scale by comparing them against buoy observations (in Section 4.3), to optimize input accuracy 333 

for driving the MEP model. To maintain consistency in the analysis, this study resampled all products to 1° 334 

spatial resolution when comparing the Bowen ratio across multiple products. Nevertheless, when conducting 335 

site validations with buoy observations, the original resolution of the data was preserved to minimize 336 

uncertainty attributable to scale effects. 337 

4. Results 338 

4.1 The new MEP model with heat storage and the revised Bowen ratio formulas 339 

To demonstrate how the MEP model has been developed and improved, we showed the comparisons of 340 

different MEP models in simulating heat fluxes across 129 global buoy stations (Fig.1). Limited by the 341 

availability of RnL data, we used LE + H instead of the available energy (Rn – G), enabling the utilization of 342 

more observational records to verify the MEP model. The original MEP model (without considering heat 343 

http://www.ocean.iap.ac.cn/
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storage) showed a significant negative correlation between LE and H (with R2 exceeding 0.65 as in Fig.1a & 344 

Fig.1c), with considerable errors, where the RMSE of LE was 134.6 W·m-2 and that of H was 37 W·m-2. 345 

After incorporating the influence of heat storage effects (represented as MEP_M, as depicted in Fig.1b and 346 

Fig.1h), the MEP-simulated LE showed a good consistency with buoy observations, with an R2 value of 0.97 347 

and a reduced RMSE of 27 W·m-2. However, the MEP_M method revealed a significant bias in the 348 

partitioning of LE and H from the available energy. Specifically, LE was underestimated by 25% (regression 349 

slope = 0.75), while H was overestimated by 46% compared to observations. This finding agreed with 350 

previous research findings that equilibrium evaporation tended to underestimate actual evaporation from 351 

saturated surfaces by 20%~30% (Yang & Roderick, 2019; Philip, 1987). The significant difference between 352 

Boa and Bo* could exist as the equilibrium evaporation is considered as the lower limit of actual evaporation 353 

from saturated surfaces (Priestley and Taylor, 1972). To address the deviation between Boa and Bo
*, it is 354 

necessary to convert the equilibrium Bowen ratio into the actual Bowen ratio, allowing for a more reasonable 355 

and accurate allocation of surface energy budget. 356 

After incorporating the effects of heat storage, four variants of the MEP model were developed by 357 

replacing Bo* with Boa derived from four different empirical formulas. These variants were defined as follows: 358 

M_0.24 (where Boa=0.24 Bo
*), M_0.79 (where Boa=0.79 Bo

*-0.21), M_0.63 (where Boa=0.63Bo
*-0.15), and 359 

M_0.37 (where Boa=0.37Bo
*-0.05). Adjusting the Bowen ratio significantly improved the accuracy of the 360 

energy flux estimates. The simulated LE exhibited strong agreement with observations, with all R2 exceeding 361 

0.97 and RMSE ranging from 4.7 W·m-2 (for M_0.24) to 7.1 W·m-2 (for M_0.79), which was lower than that 362 

derived from Bo
* (RMSE = 27 W·m-2). Both M_0.79 and M_0.63 tended to underestimate LE, especially 363 

when LE exceeded 200 W·m-2 (Fig. 1d and Fig.1e). For the simulated H, the M_0.24 outperformed the other 364 

three, showing the smallest errors and highest R2.  365 

 366 
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 367 

Figure 1. Scatter density plots of monthly latent heat flux (a~f) and sensible heat flux (g~l) derived by the 368 

original and modified MEP methods versus observations from 129 buoy stations (as in Table 1). (a) The 369 

original MEP method, (b) The modified MEP method considering the heat storage effect, (c) The modified 370 

MEP method considering both the heat storage and empirical Bowen ratio formula Boa=0.24Bo
*, (d)~(f) for 371 

the modified MEP method considering both the heat storage and empirical Bowen ratio formulas 372 

Boa=0.79Bo
*-0.21, Boa=0.63Bo

*-0.15, and Boa=0.37Bo
*-0.05. (g)~(l) are the same with (a)~(f) but for sensible 373 

heat flux. 374 

 375 

Specifically, the spatial patterns of simulated errors for the four variants of the MEP model were 376 

obtained (Fig. 2), along with the errors across different observational buoy arrays (Fig. 3). Overall, the four 377 

variants of the improved MEP models demonstrated relatively lower bias at low latitudes (10°S to 10°N) but 378 

exhibit larger bias in higher latitude regions (above 15°N), particularly at the KEO, WHOTS, and STRATUS 379 

buoy sites. Comparing the four formulas across varying latitudes, the M_0.24 formula exhibited the smallest 380 

RMSE (ranging from 3.6 to 12 W·m-2) (Fig. 3c), while the M_0.79 formula showed the largest errors (RMSE 381 
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ranging from 3.9 to 26.6 W·m-2). This consistency was also evident in the Kling-Gupta Efficiency (KGE) 382 

coefficient, with M_0.24 demonstrating superior performance in terms of accuracy, robustness, and 383 

adaptability. In term of M_0.24 formula, the prediction errors across observational arrays ranked as follows: 384 

RAMA < PIRATA < TAO/TRION < PaPa < KEO < STRATUS < WHOTS < NTAS. The arrays with 385 

relatively larger RMSE (NTAS in the Atlantic Ocean, WHOTS, and STRATUS in the Pacific Ocean) may 386 

originate from the larger observed values of LE (Fig. S2). 387 

 388 

 389 

Figure 2. Spatial distribution of RMSE values in the comparison between latent heat flux estimated by the 390 

improved MEP method (modified by four different Bowen ratio formulas) and buoy observations from 129 391 

stations. 392 

 393 
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 394 

Figure 3. Comparisons between latent heat flux estimated by the improved MEP method using four empirical 395 

Bowen ratio formulas and the buoy observations from each buoy array in term of RMSE (a) KGE value (b), 396 

and latitudinal means of RMSE (c). Latitudinal means are based on data from 129 available buoy sites. 397 

 398 

4.2 Dynamics of heat fluxes and Bowen ratio between original and improved MEP model  399 

To thoroughly investigate the role of heat storage in the partitioning of surface energy and its implications 400 

for the temporal dynamics of heat fluxes, we selected the KEO site for detailed analysis. This selection was 401 

based on the site’s long-term observational records and notable variability in flux patterns, which offered an 402 

ideal context for a rigorous comparison of model-simulated error margins. 403 

The improved MEP methods demonstrated comparable performance in estimating heat fluxes at the 404 

KEO site when compared with other 128 sites (Fig. S3, Fig. 1), with the MEP (M_0.24) model exhibited the 405 

most effective performance. Analysis of the time series data revealed significant variations in latent heat, 406 

sensible heat, and Bowen ratio (Fig. 4). In the original MEP theory, the estimated LE exhibited an opposite 407 

variation cycle (peak versus trough) compared to the observations. For instance, over a yearly period, the 408 

observed peak in LE occurred in January 2005 (269 W·m-2) and the trough in June 2005 (6.9 W·m-2). In 409 

contrast, the MEP simulated the peak in LE to occur in August 2005 (105 W·m-2) and the trough in December 410 

2004 (0.7 W·m-2), resulting in a phase difference of 7 months for the peak and 6 months for the trough values. 411 

Sensible heat flux (Fig. 4b) showed similar phase differences: observed H peaked in January 2005 (79 W·m-412 
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2) and reached its minimum in June 2005 (-3 W·m-2), whereas MEP simulated H to peak in August 2005 (46 413 

W·m-2) and reach its minimum in December 2004 (0.6 W·m-2), consistent with the pattern observed for LE. 414 

It was noteworthy that the original MEP model simulated variations in LE and H align with Rn (Fig. S4), 415 

which was reasonable over land where the small G value can often be disregarded. However, over the ocean, 416 

the observed variations in Rn and LE do not align in terms of their cycles. The maximum Rn occurred in June 417 

2004 (329 W·m-2) and the minimum occurred in December 2004 (142 W·m-2), with a 6-month delay in 418 

relation to the variations in LE. Specifically, the peak Rn corresponded to the trough of LE, and the trough Rn 419 

corresponded to the peak of LE. This delay indicated that the heat storage effect delayed the peak of LE and 420 

altered the seasonal variations of LE and H. 421 

 422 

 423 

Figure 4. The inter-annual variations (a, c and e) and variabilities (b, d, and f) for latent heat flux, sensible 424 

heat flux, and Bowen ratio at KEO site from June 17, 2004, to August 12, 2023. The fluxes in the comparison 425 

include observations and the estimates from MEP using the original formula (MEP), the formula 426 

incorporating the ocean heat storage (MEP(M)), and four other formula considering both ocean heat storage 427 

and adjustment of Bowen ratio. Note that the (a) and (c) only display results using MEP (M_0.24) among all 428 

four empirical Bowen ratio formulas for clearer comparison. 429 

 430 
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For the patterns of the Bowen ratio, both the original MEP formula and the modified formulas exhibited 431 

consistent patterns with the observed values. The observed maximum Bowen ratio occurred in January 2005 432 

(0.29) and the minimum in June 2005 (-0.4). However, the original MEP formula simulated a maximum of 433 

1.01 and a minimum of 0.44, indicating a significant overestimation compared to the observed Bowen ratio. 434 

This discrepancy suggested that on the ocean surface, the available energy (Rn-G) was predominantly 435 

allocated to LE (Fig.S4). Among the four empirical formulas, M_0.24 simulated LE, H, and Bowen ratio 436 

values were closest to the observed values. The median of the observed Bowen ratio was 0.11, while the 437 

original MEP Bowen ratio was 0.66. Among the four modified Bowen ratio formulas (M_0.24, M_0.79, 438 

M_0.63, M_0.37), their median Bowen ratios were 0.15, 0.32, 0.27, and 0.19 respectively, with M_0.24 being 439 

the closest to the observed Bowen ratio. 440 

Heat storage is crucial for the energy distribution process over the ocean surface. While the original 441 

MEP formulas have been effectively validated when applied to surfaces with shallow depths such as water 442 

and snow (Wang et al., 2014), they exhibit significant uncertainty when applied to the ocean surface. This 443 

discrepancy primarily arises from the fact that land is a non-transparent medium with relatively small heat 444 

storage values at monthly scales. Similarly, shallow water bodies also exhibit small heat storage values that 445 

can often be ignored. In the study by Wang et al. (2014), for example, two lakes with depths of 2m (Lake 446 

Tämnaren) and 4m (Lake Råksjö) still resulted in underestimated LE. However, for deeper lakes (generally > 447 

3m depth), heat storage becomes significant and cannot be neglected (Zhao et al., 2016; Zhao & Gao, 2019). 448 

On deep ocean surfaces, with the most recent average depth estimate of 3,682m from NOAA satellite 449 

measurements, heat storage variations can influence depths up to 6,000m (Cheng et al., 2017). Therefore, the 450 

impact of heat storage was substantial and cannot be disregarded. In the original MEP theory, heat storage 451 

was not considered in the energy balance equation, where it was assumed that the net solar radiation (Rns) is 452 

absorbed by the ocean and RnL= LE + H + Q. Then, the heat storage was obtained as G = Rns + Q. In this 453 

study, we compared the characteristics of MEP-derived G (Rns + Q) with the observed G flux (G = Rn – LE 454 

– H (Fig. S5). MEP-derived G showed a good correlation (R = 0.96) and consistent trends with the observed 455 

values (Fig. S5a & b), ranging from -4 to 81 W·m-2. However, MEP-calculated Q (ranged from -210 to -65 456 

W·m-2) exhibited a negative correlation with the observed G (which ranged from -386 to 200 W·m-2). Both 457 

MEP-derived G and Q fluxes were significantly underestimated. Therefore, the prediction errors in LE and 458 
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H originated from the inability to accurately quantify the heat storage. Hence, considering the influence of 459 

heat storage was crucial for accurately predicting LE and H over the ocean surface. 460 

4.3 Evaluation of global radiation and heat storage flux 461 

4.3.1 Evaluation of net radiation 462 

After considering the effect of heat storage and the Bowen ratio, the improved MEP method demonstrated 463 

its high performance at the site scale. The results suggested that improved MEP method held substantial 464 

promise for further application at a global scale. To facilitate this, we assessed the primary input variables of 465 

the improved MEP method (including Rn, G, and Ts) to identify datasets with the best accuracy. 466 

Net radiation, as the primary variable in the energy balance equation, significantly influenced the 467 

uncertainty of the MEP model (Huang et al., 2017). Selecting a reliable Rn product was essential for accurately 468 

estimating global latent and sensible heat fluxes. Previous studies have evaluated the available global ocean 469 

surface Rn datasets at daily scales using observations from 68 moored buoy sites (Liang et al., 2022). In this 470 

study, we conducted a comprehensive evaluation of current available monthly Rn products, including three 471 

remote sensing-based products (CERES4, GEWEX-SRB, and JOFURO3) and two atmosphere reanalysis-472 

based products (ERA5 and MERRA2) at 129 buoy sites. All products exhibited good consistency with buoy 473 

observations (Table 3 and Fig. S6), with R2 values greater than 0.78. In terms of RMSE, the error rankings 474 

for all products were as: J-OFURO3 (10 W·m-2) < ERA5 (39.03 W·m-2) < CERES4 (40.67 W·m-2) < 475 

GEWEX-SRB (41.83 W·m-2) < MERRA2 (49.23 W·m-2). It was evident that J-OFURO3 demonstrated the 476 

highest accuracy, as indicated by RMSE, NSE, and KGE statistics. This result was also consistent with 477 

previous assessments of global Rn (Liang et al., 2022), emphasizing J-OFURO3 as the least erroneous among 478 

all individual products and superior to existing alternatives including CERES4, ERA5, MERRA2, GEWEX-479 

SRB, JRA55, OAFlux, and TropFlux. 480 

Table 3. Evaluation of global monthly net radiation products against buoy observations  481 

Products R2 ME 

(W·m-2) 

MAE 

(W·m-2) 

RMSE 

(W·m-2) 

PBIAS 

(%) 

NSE KGE 

J-OFURO3 0.96 1.6 7.3 10.0 1.0 0.96 0.97 

ERA5 0.79 28.8 30.3 39.0 17.8 0.45 0.77 

MERRA2 0.78 39.7 41.2 49.2 24.8 0.15 0.68 

CERES4  0.81 31.4 32.6 40.6 19.6 0.42 0.76 

GEWEX-SRB 0.78 32.6 33.8 41.8 20.2 0.37 0.76 
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Note: The evaluation period for all datasets is 1988-2017, except for CERES4, which spans from March 2000 482 

to December 2017. The best-performed statistics are indicated in bold type. 483 

4.3.2 Evaluation of heat storage  484 

The study underscored the importance of considering heat storage in simulating heat fluxes using the 485 

improved MEP model. For the first time, we assessed global heat storage using the J-OFURO3, ERA5, 486 

MERRA2, and ΔOHC datasets. In addition to assessing these individual datasets, we investigated the 487 

potential for enhancing accuracy through data fusion methods. We employed the BTCH and AA method to 488 

fuse heat storage data and compared the accuracy between individual datasets and fused datasets (Table 4). 489 

The results revealed that while using the AA method (e.g., AA4) to fuse yields smaller errors compared to 490 

ERA5, MERRA2, and ΔOHC, it still failed to achieve the accuracy of the J-OFURO3 product. Similarly, the 491 

BTCH method, despite fusing data from three or four sources, also does not match the accuracy of the J-492 

OFURO3 method, as indicated by metrics of R2, RMSE, and KGE. The heat storage derived from J-OFURO3 493 

data showed high consistency with observations (R2=0.95), as illustrated in Fig. 5 (spatial distribution of 494 

errors depicted in Fig.S7). Therefore, this study employed the heat storage data derived from the J-OFURO3 495 

dataset as the input for the MEP model. 496 

To ensure consistency with radiation data source, the Sea Surface Temperature (SST) data from J-497 

OFURO3 was utilized for Ts inputs, which was derived as the ensemble median from 12 global SST products 498 

(Tomita et al., 2019). Ultimately, the input variables including net radiation, heat storage, and sea surface 499 

temperature for driving MEP model were all determined from the J-OFURO3 dataset spanning from 1988 to 500 

2017. Saturated specific humidity was computed as a function of SST  and surface air pressure (from ERA5) 501 

using the Clausius‐Clapeyron equation. The reliability of gridded data for the variables Rn, G, and Ts were 502 

simultaneously examined at an observational site (Fig.S8), where all three variables demonstrated high 503 

consistency with observed data from August 2004 to December 2017 (with R² > 0.96), effectively capturing 504 

the monthly dynamics of Rn, G, and Ts. 505 

 506 

Table 4. Assessment of monthly heat storage between global remote sensing datasets and buoy observations  507 

Products R2 ME 

(W·m-2) 

MAE 

(W·m-2) 

RMSE 

(W·m-2) 

PBIAS (%) NSE KGE 

J-OFURO3 0.95 -3.5 15.3 19.7 -7.4 0.94 0.91 

ERA5 0.88 7.0 25.1 33.2 14.8 0.84 0.80 



 

23 

 

MERRA2 0.86 11.6 27.1 36.1 24.5 0.81 0.72 

OHC 0.35 -48.2 64.4 86.9 -101.9 -0.11 -0.10 

BTCH3-1 

(E M J) 

0.89 7.1 22.8 30.5 15.1 0.86 0.81 

BTCH3-2 

(E M O) 

0.88 4.6 24.0 31.4 9.9 0.85 0.86 

BTCH4 0.91 5.9 19.7 26.2 12.5 0.90 0.86 

AA2(EM) 0.87 9.3 25.4 34.1 19.7 0.83 0.76 

AA3 (EMJ) 0.91 4.7 20.2 26.7 10.1 0.90 0.87 

AA4 (E M J O) 0.91 11.5 21.4 28.6 24.4 0.88 0.74 

Note: BTCH3-1 represents the fusion of three products (ERA5, MERRA2, and J-OFURO3) using the BTCH 508 

method; TCH3-2 represents the fusion of ERA5, MERRA2, and OHC; BTCH4 represents the fusion of ERA5, 509 

J-OFURO3, MERRA, and OHC. AA denotes the Simple Arithmetic Average (AA) method. The evaluation 510 

period spans from 1988 to 2017, and the best-performed statistics are indicated in bold type. 511 

 512 

 513 

 514 

Figure 5. Assessment of heat storage (G) flux derived from remote sensed J-OFURO3 dataset against buoy 515 

observations. Distinct colors represent data collected from different buoy arrays. 516 

 517 

4.4 Estimating long-term global ocean surface heat fluxes by improved MEP model  518 

4.4.1 New estimate of global latent and sensible heat fluxes  519 

After identifying the optimal driving dataset, this study employed the best-performed improved MEP method 520 

(i, e., M_0.24, hereinafter referred to as MEP for simplicity, while the original MEP formula was denoted as 521 
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MEP (ori) for global scale estimation, producing new estimations of latent and sensible heat fluxes for the 522 

period 1988-2017 (Table 5). The MEP model calculated the multi-year average LE as 92.87 W·m-2 and the 523 

sensible heat flux as 12.27 W·m-2 from 1988 to 2017. In comparison, LE ranged from 88.95 (OAFlux) to 524 

100.54 W·m-2 (MERRA2), and H ranged from 10.17 (J-OFURO3) to 13.16 W·m-2 (MERRA2) for the other 525 

four products. The original MEP method yielded estimates of LE as 52.70 W·m-2 and H as 25.07 W·m-2, 526 

significantly underestimating LE and overestimating H compared to estimates from other products. As 527 

previously demonstrated (Sections 4.1 & 4.2), the original MEP method overestimated G (42.20 W·m-2) and 528 

exhibited notable deviations in the Bowen ratio. Therefore, the improved MEP method provided a more 529 

reasonable global estimation of LE and H. 530 

Regarding the global spatial pattern (Fig.6), the MEP-derived latent heat exhibited higher values in low-531 

latitude regions but significantly decreased beyond 45° latitude. The highest LE values were observed in the 532 

southern Indian Ocean near Australia, the Pacific and Atlantic regions near South America, and the Indian 533 

Ocean near southern Africa. The peak values were observed within western boundary current systems (ranged 534 

from 200 to 260 W·m-2), including the Gulf Stream in the North Atlantic and the Kuroshio in the western 535 

North Pacific. Impacted by the variations in oceanic currents near the equator, two general areas of higher 536 

LE have emerged (Yu et al., 2011), leading to notably low LE at the equator (88 W·m-2), peaking at ~18°S at 537 

132 W·m-2 (Fig. 6 & Fig. 7). The MEP estimated LE exhibited a similar spatial pattern with other four 538 

products globally (Fig.6), particularly resembling OAFlux between 15°S and 15°N (Fig. 7). Overall, for the 539 

region between 30°S and 30°N, the LE values were ranked as follows: OAFlux < MEP < J-OFURO3 < ERA5 540 

< MERRA2, which was consistent with the magnitude of available energy. For sensible heat, MEP-derived 541 

H closely resembled that of ERA5 and MERRA2, with higher values predominantly occurred in two western 542 

boundary current systems, the South Indian Ocean near Australia area, and the Arctic Ocean. The improved 543 

MEP method mitigated the issue of overestimating H in mid-to-high latitudes compared to its original form 544 

(Fig.6l), resulting in a more realistic spatial pattern. In high latitudes, J-OFURO3 exhibited higher H values 545 

than MEP and other comparable products in the Northern Hemisphere, with negative values observed 546 

between 45°S and 55°S. MEP generally estimated H within an intermediate range compared to other products, 547 

displaying a distribution that was more reasonable than that of J-OFURO3 product. 548 

 549 
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Table 5. Global area-averaged multi-annual mean estimates of latent heat flux 550 

LE products LE 

(W·m-2) 

Evaporation 

(mm/yr) 

H  

(W·m-2) 

G  

(W·m-2) 

 

MEP (0.24) 92.8 1195.5 12.2 19.7 

ERA5 99.2 1277.8 12.0 34.2 

MERRA2 100.5 1294.3 13.2 35.5 

J-OFURO3 94.9 1222.2 10.1 19.7 

OAflux 88.9 1145.1 10.4 / 

MEP (ori)  52.7 678.5 25.1 42.2 

Note: The period spans from 1988 to 2017. The MEP (0.24) denotes the improved MEP model, while MEP 551 

(ori) represents the original MEP model. 552 

 553 

 554 

Figure 6. Global spatial maps of annual mean latent heat flux (LE) and sensible heat flux (H) during 1988-555 

2017. Panels (a)-(f) depict latent heat flux derived from the improved MEP method, J-OFURO3, ERA5, 556 



 

26 

 

MERRA2, OAFlux, and the original MEP method. Panels (g)-(l) show sensible heat flux from the same 557 

datasets.  558 

 559 

 560 

Figure 7. Meridional profiles of latent heat (left panel), sensible heat (middle panel) and their sum 561 

representing available energy (right panel) for the period 1988-2017, produced by MEP, J-OFURO3, ERA5, 562 

MERRA2, and OAFlux datasets.  563 

 564 

4.4.2 Validation of global latent heat products against the observational sites 565 

To evaluate the discrepancies between MEP estimated LE and other datasets, this study validated global-566 

scale LE at 129 observational sites (as depicted in Fig.8 & Table 6). MEP-estimated LE showed strong 567 

consistency with buoy observations, achieving an R2 of 0.79, a ME of 1.26 W·m-2, and RMSE of 16 W·m-2, 568 

all surpassing those of alternative products, underscoring its superior performance. Moreover, the MEP 569 

method exhibited superior performance with a higher NSE value of 0.77 and KGE of 0.89, demonstrating 570 

enhanced accuracy, reliability, and robustness. According to the RMSE evaluation criterion, the ranking of 571 

best-performed LE products was as: MEP, J-OFURO3, OAFlux, ERA5, MERRA2. In a recent 572 

comprehensive assessment of 15 global ocean LE products (Tang et al., 2023), RMSE values ranged from 573 
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17.2 to 45.3 W·m-2, in which J-OFURO3 emerged as the best-performing product with the lowest RMSE of 574 

17.2 W·m-2, highest correlation coefficient (R) of 0.89, and ME of 6.5 W·m-2. Studies have also shown 575 

minimal bias were given by J-OFURO3 on daily scale (Bentamy et al., 2017). This superior performance of 576 

J-OFURO3 dataset can be attributed to the use of continuously updated bulk algorithms (COARE 3.0 version), 577 

the ongoing optimization of near-surface parameters (Tomita & Kubota, 2018), as well as the improved 578 

spatial resolution (0.25°). In this study, the improved MEP estimation of LE outperformed that of J-OFURO3, 579 

demonstrating higher accuracy and lower error (ME=1.26 W·m-2), thereby establishing it as the most accurate 580 

global LE product currently available. 581 

 582 

Figure 8. Scatter density plots of latent heat flux taken from different products versus observations from 129 583 

buoy stations during the period 1988-2017: (a) Improved MEP model, (b) J-OFURO3, (c) ERA5, (d) 584 

MERRA2, and (e) OAFlux. A total of 15444 records of latent heat observations are included.  585 

 586 

Table 6. Evaluation of latent heat flux from different methods against buoy observations  587 

Products R2 ME 

(W·m-2) 

MAE 

(W·m-2) 

RMSE 

(W·m-2) 

PBIAS (%) NSE KGE 

MEP 0.79 1.3 12.2 15.9 1.2 0.77 0.89 

J-OFURO3 0.78 6.3 13.4 17.4 5.8 0.73 0.87 

ERA5 0.81 18.4 19.9 23.9 17.3 0.48 0.80 

MERRA2 0.74 27.1 28.1 32.9 25.5 0.02 0.70 

OAFlux 0.68 3.4 14.9 19.1 3.2 0.67 0.79 

Note: The evaluation period spans from 1988 to 2017, and the best-performed statistics are indicated in bold 588 

type. 589 
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4.4.3 Comparisons of Bowen ratios  590 

The improved MEP model achieved accurate LE estimation after refining the process of partitioning the 591 

surface energy budget, specifically through revisions to the Bowen ratio. The improved MEP method notably 592 

decreased the global-scale Bowen ratio, as illustrated in Fig. 9 and 10. Regarding latitude averages, the 593 

Bowen ratio of the original MEP formula ranged from 0.37 to 1.48 (with a median of 0.80), whereas the 594 

modified MEP Bowen ratio ranged from 0.09 to 0.35 (median of 0.18). Specifically, in the low-latitude region 595 

(10°S-10°N), the Bowen ratio of the modified MEP formula decreased from 0.37 to approximately 0.1, 596 

aligning closely with the Bowen ratios obtained from other reanalysis products (MERRA2, ERA5, OAFlux, 597 

and J-OFURO3). Globally, the median Bowen ratios of the products were as follows: MERRA2 (0.15), MEP 598 

(0.12), ERA5 (0.09), OAFlux (0.08), and J-OFURO3 (0.06). Spatially, the MEP Bowen ratio resembled 599 

ERA5 in mid to low latitudes but exhibited deviations from other products at high latitudes, where those 600 

products showed fluctuating changes in the Bowen ratio (Fig.10). For instance, other products displayed 601 

abrupt transitions from negative to positive Bowen ratios in the Arctic and Antarctic regions, whereas MEP-602 

derived values demonstrated greater stability in variations at higher latitudes. This discrepancy was likely 603 

due to the reanalysis products relying on the bulk method, which was sensitive to variations in wind speed 604 

and temperature gradients, leading to errors in simulating high wind speeds at the poles and causing 605 

fluctuations in latent and sensible heat. In contrast, the MEP model strictly adheres to energy conservation 606 

principles and operates independently of wind speed and temperature gradients, resulting in a more accurate 607 

estimate of the Bowen ratio. For example (Fig.S9), at the high-latitude PAPA buoy site (144.9°W, 50.1°N), 608 

the Bowen ratio estimated by MEP (median 0.24) closely matched the observed Bowen ratio (median 0.23). 609 

In contrast, all the other products underestimated the Bowen ratio, with J-OFURO3 (median -0.09) and 610 

OAFlux frequently exhibiting negative values. The Bowen ratio derived from MEP fit well with a 611 

Generalized Additive Model (GAM) (Fig.9). The implicit functional relationship between Bowen ratio and 612 

latitude was expressed as (R2 = 0.996, p < 0.001): Boa (lat) = 0.207218 + f(lat) + 𝜀, where f(lat) represents a 613 

smoothing function derived from a smooth curve, and 𝜀  denotes the error term. However, the specific 614 

functional form of f(lat) cannot be explicitly determined. Therefore, a polynomial regression method was 615 

employed to explicitly fit Boa and lat, resulting in (R2 = 0.91, p < 0.001): Boa = 9.97 × 10-2 - 3.45 × 10-4 × lat 616 
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+ 4.71 × 10-5 × lat2 + 𝜀 (as in Fig.S10). This equation can serve as a reference for partitioning surface energy 617 

in data-sparse oceanic regions. 618 

 619 

Figure 9. Global ocean latitudinal averaged Bowen ratio derived by the MEP method and four other products 620 

from 1988 to 2017. (a) Latitudinal averaged Bowen ratio derived from the MEP model using original and 621 

modified Bowen ratio formulas, with points fitted by a generalized additive model (GAM). (b) Statistical 622 

distribution of the latitudinal annual mean Bowen ratio.  623 

 624 

 625 

Figure 10. Global distribution of ocean annual mean Bowen ratio during 1988-2017: (a) Improved MEP 626 

method, (b) J-OFURO3, (c) ERA5, (d) MERRA2, (e) OAFlux, and (f) MEP original method. 627 
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4.5 Spatial-temporal variability of ocean evaporation    628 

Heat flux reflects the energy exchange between the ocean and the atmosphere, while evaporation (ET) reflects 629 

moisture exchange within the water cycle. The spatiotemporal patterns of evaporation were analyzed using 630 

the Sen’s slope and Mann-Kendall test methods (Fig. 11). For the global ocean, approximately 74% of the 631 

regions showed an increasing trend, with about 27% of the grids exhibiting statistically significant increases 632 

(p < 0.05). In contrast, 26% displayed a decreasing trend, with only 5% of the grids showing statistically 633 

significant decrease (p < 0.05). For the whole periods, the regions with the highest increasing trends were 634 

predominantly observed near western boundary current systems, the convergence zones of the East 635 

Australian Current and the South Equatorial Current, and the convergence zones of the Eastern South 636 

Equatorial Current and the Brazil Current along South America. Decreasing trends were primarily observed 637 

in equatorial regions of the Pacific and Atlantic Oceans, as well as near the Labrador and Kuroshio currents 638 

and north of the Antarctic Circle. It was indicated that regions with significant increases (decreases) in 639 

evaporation generally correspond closely to the distribution of major warm currents (cold currents) spatially. 640 

However, global ocean evaporation experienced a notable shift around 2003, as illustrated in Figs.11b and 641 

11c. The downward trend observed from 2003 to 2017 counteracted a significant portion of the growth trend 642 

that occurred during the previous 16 years (1988-2003), particularly evident in the mid-latitude regions (15ºS-643 

20ºN). In the middle-to-low latitudes (0º-30ºN), nearly all ocean grids exhibited opposite trends around 2003. 644 

Spatially, regions that displayed the largest increasing trends during 1988-2003 transitioned to show the most 645 

substantial decreasing trends between 2003 and 2017. This includes regions associated with western 646 

boundary current systems, convergence zones of the East Australian Current and the South Equatorial Current, 647 

as well as equatorial regions of the Pacific and Atlantic Oceans (Fig. 11c). To further investigate the shift in 648 

ocean evaporation after 2003, we analyzed the interannual variability of global annual mean area-weighted 649 

evaporation using all available datasets (as shown in Fig.12). 650 

Over the multi-year period from 1988 and 2017, MEP, J-OFURO3, ERA5, and MERRA2 all exhibited 651 

significant increasing trends in ET. MEP estimated an evaporation increase rate of 2.31 mm/year, whereas 652 

OAFlux showed a non-significant trend (Fig. 12). While different datasets revealed varying magnitudes of 653 

evaporation changes, most exhibited a similar temporal pattern: an increasing trend from 1988 to around 654 

2003, followed by a hiatus during 2003-2010, and ultimately a decreasing trend after 2010 (Fig. 12a). 655 
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Specifically, MEP indicated an increasing trend in evaporation of 3.58 mm/year from 1988 to 2010, followed 656 

by a decrease of 2.18 mm/year after 2010 (Fig. 12a). The slowdown and transition of evaporation during 657 

2003-2010 aligned with the concept of a “global warming hiatus” (Medhaug et al., 2017; Sung et al., 2023), 658 

referring to the period when global mean surface air temperatures did not continue to rise between 1988 and 659 

2012. Previous studies have proposed four potential explanations for this global warming hiatus: internal 660 

variability, external drivers, the Earth’s response to CO2, and radiative forcing (Medhaug et al., 2017). This 661 

study indicates that changes in radiative forcing (Fig. 12b) can significantly affect the interannual variability 662 

of evaporation (Fig. 12a) and surface temperature (Fig. 12c). This finding is consistent with previous research 663 

that attributed more than 50% of the uncertainty in MEP-modeled fluxes to the radiation term (Huang et al., 664 

2017). Although surface temperature began to increase after 2012, the decrease in available energy remained 665 

the primary driver behind the decline in evaporation. 666 

 667 

 668 

Figure 11. Spatial distribution of multi-year trends in ocean evaporation estimated by the improved MEP 669 

method during (a) the period 1988-2017, (b) the period 1988-2003, (c) the period 2003-2017, and (d) the 670 

latitudinal average changes across three different periods. 671 
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 672 

Figure 12. Time series of area-averaged multi-annual mean evaporation from the improved MEP method (a), 673 

available energy (b), and sea surface temperature (c) over the global oceans during 1988-2017. The black 674 

dotted line in panel (a) marks the year 2010, and the label “S = 2.31” indicates that the MEP-estimated global 675 

multi-annual mean evaporation increased at a rate of 2.31 mm/year during 1988-2017, with change rates of 676 

different ET datasets represented by various colors. The black dashed lines in panels (b) and (c) denote the 677 

linear regression lines.  678 

5. Discussion 679 

5.1 Quantifying the impact of heat storage and radiation with sensitivity analysis 680 

The sensitivity analysis revealed the significant influence of input variables on latent heat flux derived from 681 

the MEP model. Notably, the heat storage (G) exhibited seasonal variations with both positive and negative 682 

values (Fig. 13). Positive G values coincided predominantly with summer in the Northern Hemisphere 683 

(winter in the Southern Hemisphere), specifically from June to August (Fig. 4 and Fig. S5). During this 684 

season, intensified solar radiation enhances the net energy input (Rn) at the ocean surface, leading to heat 685 

absorption and retention. Consequently, the energy available (Rn - G) for evaporation diminishes. The 686 

analysis indicated that Rn significantly influenced the energy-driven evaporation process, with a sensitivity 687 

coefficient exceeding 1 (median 1.74), highlighting its pivotal role. In contrast, G negatively impacted 688 

evaporation, as indicated by a sensitivity coefficient of -0.74. Specific humidity (median 0.08) and sea surface 689 



 

33 

 

temperature had relatively minor effects, consistent with previous MEP model findings focused on terrestrial 690 

surfaces (Isabelle et al., 2021). 691 

Conversely, negative values of heat storage predominate during winter, particularly from December to 692 

February in the Northern Hemisphere (June to August in the Southern Hemisphere). Despite reduced solar 693 

radiation during this period, residual heat stored from summer gradually releases into the atmosphere, 694 

resulting in greater energy output than input. This surplus energy increases the available energy for 695 

evaporation, leading to a positive sensitivity coefficient for G (median 0.29), second only to Rn (median 0.71). 696 

Consequently, this process generally reduces sea surface temperature, resulting in a negative sensitivity 697 

coefficient for surface temperature. Overall, these findings underscored the significant influence of Rn on 698 

latent heat flux, with G ranking as the second most influential variable in MEP estimates over ocean surfaces. 699 

For instance, a 10% decrease in positive G yielded a 7.4% increase in evaporation, while a 10% increase in 700 

negative G resulted in a 2.9% increase in evaporation, assuming other variables remain constant. Thus, Rn 701 

and G emerged as two primary drivers of oceanic evaporation, with humidity and temperature exerting 702 

minimal influence. 703 

The accuracy of available energy estimates significantly LE simulations, as it serves as the direct energy 704 

source for partitioning latent and sensible heat fluxes. Although the bulk methods (e.g., COARE 3.0 705 

algorithms) used for estimating heat fluxes are independent of surface energy budget allocation, discrepancies 706 

in LE estimation still correlate strongly with validated biases against observations in available energy 707 

estimates (see Tables 3 and 4). Notably, the MERRA2 product exhibited higher errors in simulating Rn and 708 

G compared to observations, leading to significant biases in LE estimation. In contrast, the ERA5 product 709 

demonstrated superior performance in simulating Rn and G, thereby achieving higher accuracy in LE 710 

estimation. Consequently, the energy-balance-based MEP model excels in accurately estimating surface heat 711 

fluxes by directly reflecting energy allocation. Unlike bulk methods, the MEP approach reduces sensitivity 712 

to temperature and humidity gradients, thereby minimizing uncertainties in LE simulations (Pelletier et al., 713 

2018). This advancement enhances the MEP model’s utility in global energy and water cycle research, 714 

particularly pertinent for future climate change studies. 715 

 716 
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 717 

Figure 13. Sensitivity coefficient associated with inputs variables for the improved MEP method at all 129 718 

buoy stations: (a) for positive G values, and (b) for negative G values.  719 

 720 

5.2 Discrepancy of empirical Bowen ratio formulas  721 

Bo plays a crucial role in understanding the surface energy partitioning process. In this study, four empirical 722 

formulas were utilized to modify the MEP model and evaluated against the observed LE, each with distinct 723 

conditions of applicability and suitability for integration with the MEP model: (1) Boa=0.63Bo
*-0.15 was 724 

derived from direct observational data fitting (Hicks and Hess, 1977). This formula was applicable for surface 725 

temperatures above 16°C, particularly within latitudes between 40°N and 40°S, making it more suitable for 726 

lower latitude regions; (2) Boa=0.79Bo
*-0.21 was derived using the Priestley–Taylor model under advection-727 

free conditions (Priestley and Taylor, 1972). The coefficients were determined based on a mean α value of 728 

1.26, although this value can vary in practice. Recent studies have revealed significant discrepancies due to 729 

the neglect of interaction between variations in Rn and Ts (Yang & Roderick, 2019). To address this limitation, 730 

the equation (3) Boa=0.24Bo
* was developed based on the maximum evaporation theory, considering the 731 

feedback mechanisms between Rn and Ts while assuming that G is small or negligible. The empirical 732 

coefficient 0.24 was determined by fitting B and Ts across the global ocean surface (Yang & Roderick, 2019); 733 

and (4) Boa=0.37Bo
*-0.05 was formulated based on principles derived from atmospheric boundary layer (ABL) 734 

theory (Liu & Yang, 2021), with coefficients also fitted from relationships between Boa and Ts. It should be 735 

noted that the derivations of Boa=0.24Bo
* and Boa=0.37Bo

*-0.05 were based on fitting using LE from the 736 

OAFlux dataset rather than direct buoy observations. Overall, the MEP model incorporated with Boa=0.24Bo
*, 737 
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exhibited superior accuracy at both localized and global scales, effectively mitigating the underestimation of 738 

LE in its original estimates.  739 

5.3 Contributions and implications of this study  740 

The main contributions of this study include: (1) The MEP model’s energy balance equation over water 741 

surfaces was revised to explicitly consider heat storage effect. This correction highlights the importance of 742 

heat storage in estimating LE. (2) The energy partitioning of the MEP model was revised to incorporate 743 

empirical Bowen ratio formulas, significantly improving the heat flux estimations. (3) This study conducted 744 

the first thorough global assessment of heat storage using extensive buoy observations and remote sensed 745 

data, enabling the MEP model to produce the most accurate global LE estimates. This study addresses the 746 

issue of underestimating LE by the original MEP model, increasing the global average LE from 53 W·m-2 to 747 

93 W·m-2, while reducing sensible heat flux from 25 W·m-2 to 12 W·m-2, improving the partitioning of energy 748 

budget. The improved MEP model provided precise LE estimates compared to existing datasets like J-749 

OFURO3, ERA5, MERRA2, and OAFlux, enabling it to become a valuable benchmark dataset for global 750 

evaporation studies. 751 

From a methodological perspective, the improved MEP method emerged as a novel approach for 752 

estimating energy fluxes that diverges from traditional bulk methods. The conventional bulk method requires 753 

multiple input parameters, including air temperature, specific humidity, wind speed, sea surface temperature, 754 

atmospheric pressure, and the observational height of all parameters (Fairall et al., 2003; Tomita et al., 2021). 755 

This method demands numerous input variables, and the estimated fluxes are highly sensitive to changes in 756 

temperature and humidity gradients. In contrast, the improved MEP model requires only net radiation, heat 757 

storage, surface temperature, and atmospheric pressure to simultaneously obtain latent and sensible heat 758 

fluxes, making it more flexible to operate and robust against variations in input variables. Furthermore, the 759 

improved MEP model is not constrained by the magnitude of heat storage and theoretically can be applied 760 

across various temporal scales (including sub-daily and daily), beyond the monthly scale used in this study. 761 

This underscores the applicability of the MEP method in addressing the constraints of traditional bulk 762 

methods, providing another independent approach to estimating heat fluxes across diverse environmental 763 

conditions. 764 



 

36 

 

This study applied the improved MEP model to ocean surface, with potential for future extension to lake 765 

and reservoir surfaces. Compared to the Penman model for water body evaporation (Tian et al., 2022; Zhao 766 

et al., 2022; Bai et al., 2023), the major advantage of MEP method lies in its independence from wind speed, 767 

provided that heat storage can be determined using an equilibrium temperature-based approach (McMahon 768 

et al., 2013; Zhao & Gao, 2019). The global LE dataset generated in this study, due to MEP’s insensitivity to 769 

variations in air temperature and humidity, can be applied in research related to ocean salinity (Liu et al., 770 

2019), ocean warming (Cheng et al., 2022), and global climate change and water cycle studies (Konapala et 771 

al., 2020). 772 

5.4 Limitations  773 

The improved MEP method proposed in this study offers a novel approach for estimating ocean heat fluxes, 774 

producing a validated long-term global dataset with high accuracy and spatiotemporal continuity. Despite its 775 

advancements, the proposed MEP method has several limitations that require further refinement: (1) 776 

Uncertainty of Driving data: The input variables of net radiation, heat storage, and sea surface temperature 777 

for the MEP model were sourced from the state-of-the-art satellite-based J-OFURO3 dataset. This dataset 778 

was constructed using observations from multiple satellite sensors. The net radiation in J-OFURO3 was 779 

derived by combining data from the CERES and the International Satellite Cloud Climatology Project 780 

(ISCCP) via the creeping sea fill method, along with twelve global sea surface temperature products (Tomitta, 781 

2019). Consequently, the uncertainty of the MEP-estimated fluxes may arise from biases in input data derived 782 

from various satellite sensors and their associated analysis methods. Therefore, it is essential to integrate 783 

multiple approaches to assess the uncertainty associated with the input datasets. Moreover, due to the limited 784 

temporal duration of the J-OFURO3 dataset, future work should utilize input datasets with longer time series, 785 

finer spatio-temporal resolution (Liang et al., 2022), and higher accuracy to advance ocean heat flux 786 

estimations using the MEP method. (2) Heat Storage Determination: This study did not employ a direct 787 

calculation method to obtain heat storage. Given the unclear relationship between heat storage and changes 788 

in ocean heat content at varying depths (as shown in Table 4), we utilized an energy balance residual-based 789 

approach to indirectly estimate heat storage. Consequently, this may render the MEP method susceptible to 790 

uncertainties in heat storage data derived from auxiliary flux datasets. Future research should focus on 791 

understanding the relationship between ocean heat content changes in the upper 100m and heat storage, with 792 
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the goal of establishing a functional relationship between water column temperature at different depths and 793 

heat storage. (3) Bowen Ratio Improvement: Accurate determination of the Bowen ratio in high-latitude 794 

regions remains challenging. The Bowen ratio derived from the MEP method showed significant 795 

discrepancies with other datasets in these areas (Fig. 10), particularly in sea-ice-covered Arctic regions, where 796 

other datasets exhibited notable overestimations and irregular fluctuations. Therefore, incorporating more 797 

observational data from high-latitude regions is essential for a better understanding of energy partitioning 798 

patterns. 799 

6. Data availability  800 

The GOHF-MEP dataset produced by the MEP method, which includes global latent heat flux and sensible 801 

heat flux at a monthly scale from 1988 to 2017, can be freely downloaded from the Figshare platform 802 

(https://doi.org/10.6084/m9.figshare.26861767.v2, Yang et al., 2024). All the datasets used in this study are 803 

publicly available online and are described in the “Data Materials” section.  804 

7. Conclusions 805 

In this study, we developed a new global ocean heat flux product (GOHF-MEP) covering the period from 806 

1988 to 2017. This product is grounded in a maximum entropy production theory framework, incorporating 807 

heat storage impacts and Bowen ratio adjustments. GOHF-MEP represents the first energy-balance-based 808 

dataset that diverges from existing global ocean heat flux datasets derived from bulk methods. To assess the 809 

accuracy of the input variables for the maximum entropy production framework, we utilized five global 810 

datasets, including two remote sensing-based and three from reanalysis-based, along with four global datasets 811 

of heat storage derived from the energy balance equation and ocean heat content changes. We employed data 812 

fusion methods, including arithmetic averaging and the Bayesian three-cornered hat method, to identify 813 

optimal input datasets through validation against observations. The performance of the newly produced 814 

GOHF-MEP dataset was evaluated against extensive observations from 129 globally distributed buoy 815 

stations using multiple statistical metrics. It was also compared with four auxiliary products: J-OFURO3, 816 

ERA5, MERRA2, and OAFlux. Moreover, we analyzed the long-term spatial-temporal variability of ocean 817 

https://doi.org/10.6084/m9.figshare.26861767.v2


 

38 

 

latent heat flux. Ultimately, we investigated the impacts of ocean heat storage, net radiation, and Bowen ratio 818 

changes on heat flux estimations and surface energy partitioning.  819 

The MEP framework provides new estimates of global heat fluxes. The MEP-estimated long-term 820 

annual mean latent heat flux is 93 W·m-2 (equivalent to 1196 mm/year of evaporation) during the period from 821 

1988 to 2017. This estimate is intermediate compared to other global flux products, which range from 90 822 

W·m-2 (OAFlux) to 101 W·m-2 (MERRA2). The MEP-estimated sensible heat flux is 12 W·m-2, falling within 823 

the range of 10.17 W·m2 (J-OFURO3) to 13 W·m2 (MERRA2) reported by other current products. Compared 824 

with previous heat flux products, the MEP-estimated latent heat demonstrated higher accuracy when 825 

validated against observations, with a ME of 1.26 W·m-2, a RMSE of 16 W·m-2, and a KGE value of 0.89, 826 

outperforming all other contemporary global products. Approximately 74% of oceanic regions experienced 827 

an increasing trend in evaporation from 1988 to 2017. In terms of long-term temporal variability, the global 828 

annual mean evaporation exhibited an increase rate of 3.58 mm/year from 1988 to 2010 but subsequently 829 

declined at a rate of 2.18 mm/year from 2010 to 2017, which was consistent with changes in surface available 830 

energy.  831 

This study demonstrates that the improved MEP framework has significantly improved the accuracy of 832 

the original MEP theory, addressing both the underestimation of latent heat and the overestimation of sensible 833 

heat flux. This improvement was achieved by incorporating the impact of heat storage and modifying the 834 

Bowen ratio formula within the MEP theory. The consideration of heat storage resolved the issue of seasonal 835 

phase mismatches (approximately 6-month lags) between MEP estimates and buoy observations. Building 836 

upon this improvement, this study further optimized the energy partitioning process by correcting the Bowen 837 

ratio, linearly adjusting the equilibrium Bowen ratio to align with actual conditions. Four empirical Bowen 838 

ratio formulas for modifying the MEP method were assessed globally, identifying Boa=0.24Bo
* as the most 839 

accurate formula for estimating latent heat flux within MEP method. The impact of heat storage on estimating 840 

heat fluxes was quantified through sensitivity analysis. Net radiation and heat storage were identified as the 841 

primary drivers of evaporation estimates. A 10% decrease in positive heat storage led to a 7.4% increase in 842 

evaporation, whereas a 10% increase in negative heat storage resulted in a 2.9% increase. 843 

Compared to existing bulk methods, the MEP model offers several advantages, including the 844 

requirement for fewer input variables, independence from wind speed, and insensitivity to variations in 845 
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temperature and humidity. The MEP-derived ocean heat flux dataset has been validated and provides accurate 846 

estimates of latent heat flux. Additionally, this MEP method can be applied to estimate evaporation from 847 

other deep-water surfaces, such as lakes and reservoirs where heat storage is significant. Overall, the MEP-848 

derived ocean heat flux dataset provides high global accuracy, fine spatial resolution (0.25°), and extensive 849 

long-term temporal records. This dataset is expected to be valuable for applications related to global ocean 850 

warming, hydrological cycles, and their interactions with other Earth system components in the context of 851 

climate change. 852 
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