IAPv4 ocean temperature and ocean heat content gridded dataset

Lijing Cheng1,1*, Yuying Pan1,1, Zhetao Tan1,1, Huayi Zheng1,1, Yujing Zhu1,1, Wangxu Wei1,1, Juan Du1, Huifeng Yuan2,1, Guancheng Li3, Hanlin Ye4, Viktor Gouretski5, Yuanlong Li4,1, Kevin E. Trenberth5,6, John Abraham7, Yuchun Jin4,1, Franco Reseghetti8, Xiaopei Lin9, Bing Zhang4,1, Gengxin Chen10,1,1, Michael E. Mann12, Jiang Zhu1,1

1 Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China, 100029.
2 Computer Network Information Center, Chinese Academy of Sciences, Beijing, 100083.
3 Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, PRC, Guangzhou 510611, China.
4 Institute of Oceanography, Chinese Academy of Sciences, Qingdao, China.
5 National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307, USA.
6 University of Auckland, Auckland, New Zealand.
7 University of St. Thomas, School of Engineering, 2115 Summit Ave., St Paul, MN 55105, USA.
9 Frontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China.
10 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
11 University of Chinese Academy of Sciences, Beijing, China.
12 Dept. of Earth and Environmental Science, University of Pennsylvania, Philadelphia PA, USA

Correspondence to: Lijing Cheng (chenglij@mail.iap.ac.cn)
Abstract. Ocean observational gridded products are vital for climate monitoring, ocean and climate research, model evaluation, and supporting climate mitigation and adaptation measures. This paper describes the 4th version of the Institute of Atmospheric Physics (IAPv4) ocean temperature and ocean heat content (OHC) objective analysis product. It accounts for recent developments in quality control (QC) procedures, climatology, bias correction, vertical and horizontal interpolation, and mapping and is available for the upper 6000 m (119 levels) since 1940 (more reliable after ~1957) for monthly and 1° × 1° temporal and spatial resolutions. The IAPv4 is compared with the previous version, IAPv3, and to the other data products, sea surface temperatures (SSTs), and satellite observations. It has a slightly stronger long-term upper 2000 m OHC increase than IAPv3 for 1955-2023, mainly because of newly developed bias corrections. IAPv4 OHC 0-2000 m trend is also higher during 2005-2023 than IAPv3. The first level of IAPv4 is consistent with independent SST datasets. The month-to-month OHC variability for IAPv4 is desirably less than IAPv3 and other OHC products investigated in this study; annual variations are consistent with the net energy imbalance at the top of the atmosphere, and the sea level budget can be closed within uncertainty. The gridded product is freely accessible at: http://dx.doi.org/10.12157/IOCAS.20240117.002 for temperature data (Cheng et al., 2024a) and http://dx.doi.org/10.12157/IOCAS.20240117.001 for ocean heat content data (Cheng et al., 2024b).

1. Introduction

Observational gridded products are essential for understanding the ocean, the atmosphere, and climate change; they support policy decisions and social-economy developments (Abraham et al., 2022; Abraham and Cheng, 2022; Cheng et al., 2022a). For instance, many of the climate indicators used in the Working Group I report of the 6th Intergovernmental Panel on Climate Change (IPCC-AR6-WG1) are gridded products (Gulev et al., 2021; IPCC, 2021), mainly because the raw oceanic data suffer from inhomogeneous data quality and irregular and incomplete data coverage (Abraham et al., 2013; Cheng et al., 2022a; Meyssignac et al., 2019).
As more than 90% of the Earth’s energy imbalance (EEI) in the past half-century has accumulated in the ocean, increasing ocean temperature (T) and ocean heat content (OHC) are essential climate variables for monitoring, understanding, and projecting climate change (Hansen et al., 2011; Trenberth, 2022; Trenberth et al., 2009; von Schuckmann et al., 2020). OHC also impacts air-sea and ice-sea interactions and thus exerts a considerable influence over the other components of the climate system. It provides critical feedback through energy, water, and carbon cycles (Cheng et al., 2022a; Trenberth, 2022; von Schuckmann et al., 2016). Substantial changes in ocean temperatures also profoundly impact ocean biogeochemical processes and ecosystems and are critical for ocean health and human society (Bindoff et al., 2019; Cheng et al., 2022a).

Many gridded T/OHC datasets have been produced by independent groups, and most of them are updated annually or more frequently (Cheng et al., 2022a; Good et al., 2013; Hosoda et al., 2008; Ishii et al., 2017; Levitus et al., 2012; Li et al., 2017; Meyssignac et al., 2019; Roemmich and Gilson, 2009). Most widely-used products are at 1° × 1° horizontal resolution and monthly temporal resolution from near-surface to at least 2000 m depth. Some products utilize all available in situ observations and span at least half a century, prominent examples being the data products compiled by the Institute of Atmospheric Physics (IAP) (Cheng and Zhu, 2016; Cheng et al., 2017) from 1940-present; Japan Meteorological Agency (JMA) (Ishii et al., 2017) from 1955-present; National Centers for Environmental Information (NCEI), National Oceanic and Atmospheric Administration (NOAA) from 1950-present (Levitus et al., 2012); and University of California since 1949 (Bagnell and DeVries, 2021). As Argo data has achieved near-global upper 2000 m open ocean coverage since ~2005, many Argo-based or Argo-only gridded products are available. Examples include gridded products from SCRIPPS after 2004 (Roemmich and Gilson, 2009); China Argo Real-time Data Center since 2005 (Li et al., 2017); and Copernicus since 2005 (von Schuckmann and Le Traon, 2011). These products usually span from ~2005 to the present for the upper ~2000 m. These data benefit from the high quality of Argo data but are not fully resolving polar regions, shallow waters, and regions with complex topography.

In 2016, the IAP group provided its first gridded product for the upper 700 m ocean (Cheng and Zhu, 2016) by merging all available observations since 1960. With a revised mapping method and a thorough evaluation process with synthetic observations, an update (IAP version 3, IAPv3) became available in 2017 for the upper 2000 m ocean with data...
since the 1950s (Cheng et al., 2017). The IAPv3 has supported scientific research, climate assessment reports, and monitoring practices (Bindoff et al., 2019; Gulev et al., 2021; WMO, 2022).

After the release of IAPv3, there has been progress with observation data quality control and new/updated techniques for temperature data processing and reconstruction. For example, Gouretski et al. (2022) found that old Nansen cast bottle data contained systematic biases that impacted the T/OHC data before 1990. Revisions are also available to the bias corrections for the Mechanical Bathythermographs (MBT) and eXpendable Bathythermographs (XBT) data (Cheng et al., 2014; Gouretski and Cheng, 2020), mainly impacting the data within 1940–2005. Tan et al. (2023) developed a new quality-control system that advances the detection of outliers after accounting for the non-Gaussian distribution of local temperatures in determining the local climatological range. The impact of inhomogeneous vertical resolution of temperature profiles has been recognized previously (Cheng and Zhu, 2014) and received more attention recently (Li et al., 2020) with a new vertical interpolation approach (Barker and McDougall, 2020). Upgrading the product with new developments is important to better support the follow-on studies on climate assessments.

This manuscript discusses the revisions to the IAP ocean objective analysis product (IAPv4) since the publication of the IAPv3 (Cheng et al., 2017). The data and methods are introduced in Section 2 and the results are presented in Section 3, with analyses of the character of the IAPv4 on regional and global scales and at various time scales. The EEI and sea level budgets based on the new data product are also investigated. A summary and discussion are provided in Section 4, with some remaining issues and outlooks being discussed.

2. Data and Methods
2.1 Data source

The majority of the in situ measurements used to create the data product come from the World Ocean Database (WOD), downloaded in September 2023. Data from all instrument types are used, including XBTs (Goni et al., 2019), Argo (Argo 2000), Conductivity/Temperature/Depth profilers (CTDs), MBTs, bottles, moorings, gliders, Animal Borne Ocean Sensors (McMahon et al., 2021) and others (Boyer et al., 2018) (Fig.
1). There is a total of 17,634,865 temperature profiles from January 1940 to September 2023 (Fig. 1).

Argo data are processed following the recommendations of the Argo community. Adjusted data are used where applicable. Both Delayed- and Real-Time Argo data have been incorporated in IAPv4. As Real-Time Argo data have only passed automated, simple QC tests in real-time, these data may still contain temperature, pressure, and salinity values affected by unknown errors. However, through a sensitivity study, Cheng (2024) indicated that including Real-Time Argo data does not bias the OHC calculation for the IAP analysis. Nevertheless, IAP data are updated frequently (every 1-3 months): each time the updated Argo data is used, the T/OHC fields are recalculated following the recommendation by the Argo group (Wong et al., 2020). The data from the Argo floats in the “grey list” have been removed from the calculation (https://data-argo.ifremer.fr/).

To complement the WOD with relatively less data in the Arctic and coastal regions of the Northwest Pacific, this paper also uses data from other sources. There are a total of 85,990 additional temperature profiles, about 0.50% of the data, which is expected to improve the reconstruction in these data-sparse regions (compared with IAPv3 and other products).

The in situ data have been processed as described in a flow chart in Figure 2. In the following sections, the key techniques of data processing are introduced.
Figure 1: (a) Yearly number of temperature casts for different instruments; (b) number of subsurface temperature casts in 1-degree grid box from 1940 to 2023 collected by different instruments: CTD (Conductivity/Temperature/Depth), XBT (eXpendable BathyThermographs), MBT (Mechanical BathyThermograph), Bottle, APB (Animal mounted Pinniped Borne), PFL (Profiling Floats, i.e. Argo), Glider, MRB (Moored Buoy), and DRB (Drifting Buoy).
Figure 2: Flow chart of the IAP data reconstruction processes from the raw in situ observations to gridded data (IAPv4) and OHC estimates. The ellipses indicate the data (including data for error estimates), and the rectangle boxes show the techniques used to process the data.

2.2 Data quality control

The quality control (QC) procedure aims to identify spurious measurements (including outliers) and data with incorrect metadata through a set of quality checks and ensures the quality of the in situ dataset (Tan et al., 2022). There is growing evidence that QC is critical for accurate temperature/OHC reconstruction, as shown by Tan et al., (2023) where two different QC systems produced a difference of approximately 15 % (~7 %) in the OHC 0-2000 m trend from 1955 to 1990 (2005-2021). Unfortunately, the impact of QC on OHC estimates has not been evaluated in previous community-assessments on T/OHC uncertainty (Boyer et al., 2016; Lyman et al., 2010). In this study, the QC procedure follows the CAS-Ocean Data Center (CODC) Quality Control system, named CODC-QC (Tan et al., 2023), where only the “good” data (flag=0) are used.

The CODC-QC system (Tan et al., 2023) has the following strengths, which make it particularly suitable for T/OHC reconstruction:

1) A new local climatological range is defined in this CODC-QC system to identify the outliers. Unlike many existing QC procedures, no assumption is made of a Gaussian distribution law in the new approach, as the oceanic variables (e.g., temperature and
salinity) are typically skewed. Instead, the 0.5 % and 99.5 % quantiles are used as thresholds in CODC-QC to define the local climatological parameter ranges;

2) Local climatological ranges change with time to account for the long-term trends of ocean temperature accompanied by more frequent extreme events. Previously, the use of the static local ranges tended to remove too many “extreme events” associated with climate change in recent years that were actually real, leading to a QC-procedure related bias in the gridded dataset and OHC estimate (Tan et al., 2023);

3) In addition, local climatological ranges for the vertical temperature gradient are constructed to account for the variability of ‘vertical shape’, increasing the ability of the scheme to identify spurious profiles;

4) The QC procedure is instrument-specific, accounting for characteristics inherent to particular instrumentation types. For example, XBT digital recording systems are allowed to continue to record beyond the rated terminal depth suggested by manufacturers (T7/DB probes below 760 m; T4/T6 below 460 m; T5 below 1830 m). Below the rated maximum depth, the XBT wire often breaks, leading to a characteristic change in recorded temperature values. The new QC procedure effectively identifies such profiles;

5) The thorough evaluation of the QC procedure performance and the application of the QC procedure to the manually QC-ed datasets demonstrated the effectiveness of the proposed scheme in removing spurious data and minimizing the percentage of mistakenly flagged good data.

Being applied to the entire temperature profile dataset the CODC-QC procedure identifies 6.22 % of all temperature measurements as outliers. The rejection rates (definition follows Tan et al., 2023) vary among instrumentation types (3.73 % for CTD, 1.97 % for Argo, 12.06 % for XBT, 4.93 % for MBT, 6.54 % for bottle, 5.92 % for APB, 4.54 % for DRB, 2.55 % for MRB). The overall percentage of outliers decreases over time from ~5 % in the 1940s to ~2.5 % in the 2020s, reflecting the progressive improvement of the instrumentation (Fig. 3). A rejection rate maximum (~12 %) during 2000–2010 is linked to the XBT data, which are especially abundant in the 800–1100m layer and are characterized by higher rejection rate below the maximum depth (Tan et al., 2023). The generally higher rejection rate below 4000 meters is related to the gross errors (such as measurements cooler than -2°C, big spikes, etc.) and the occurrence of the constant values (observations don’t change with depth). For example, the higher rejection rate within 2008-2010 below 4000 meters is because of the gross errors in the glider data.
2.3 Bias correction

It is well known that data from several instrument types can exhibit biases both in temperature and depth. Temperature profiles obtained using XBTs and MBTs provide an example of biased data, especially because of uncertainties in the depth of measurement. Gouretski and Koltermann (2007) demonstrated their significant impact on the magnitude and variability of the global OHC estimates. That study triggered a series of publications where different bias correction schemes have been suggested for XBT (Gouretski and Reseghetti, 2010; Abraham et al., 2013; Cheng et al., 2016; Levitus et al., 2009; Wijffels et al., 2008), MBT (Gouretski and Cheng 2020; Levitus et al., 2009) and other instruments (Fig. 2). In the compilation of IAPv4, newly developed bias correction schemes are applied.

The XBT bias was found to be as large as ~0.1 °C before 1980 on the global 0–700 m average, diminishing to less than 0.05 °C after 1990 (Gouretski and Koltermann 2007; Wijffels et al., 2008). Here, we use an updated XBT bias correction scheme (Cheng et al., 2014) to correct both depth and temperature biases in XBT data, following the community recommendation (Cheng et al., 2016; Goni et al., 2019). The depth and temperature biases depend on ocean temperature, probe type, and time. An inter-comparison among several
correction schemes rated the CH14 scheme the most successful (Cheng et al., 2018). Using XBT and collocated CTD data, we updated the CH14 scheme by re-calculating bias corrections between 1966-2016 and extending them for the years 2017 to 2023.

Comparison with collocated reference CTD profiles recently revealed significant systematic biases in the old hydrographic profiles obtained by means of Nansen bottle casts (Gouretski et al., 2022). Both depth and temperature measurements of bottle casts were found to be biased, and the proposed correction scheme was also implemented in IAPv4. The thermal bias is related to the time needed to bring the mercury thermometers in equilibrium with the ambient temperature after the completion of the hydrographic cast. The depth bias indicates an overestimation of the bottle depth due to the wire's deviation from the vertical position and is mostly related to the hydrographic casts where the thermometrical method of sample depth determination was not used. The correction scheme includes a constant thermal bias of -0.02 °C and a depth- and time-variable depth bias.

The MBT bias is as large as 0.28 °C before 1980 for the global average and reduces to less than 0.18 °C after 1980 for the 0–200 m average. IAPv3 used (Ishii and Kimoto, 2009) (IK09) scheme to correct MBT bias, while a new scheme proposed by (Gouretski and Cheng, 2020) (GC20) is adopted in IAPv4. This shift is made because our assessment indicates the under-correction of MBT bias by the IK09 scheme within the upper 120 m and over-correction in the deeper layer, whereas GC20 corrects both depth and temperature biases. GC20 also found the MBT bias to be country-dependent, explained in terms of different instrumentation characteristics and working procedures. Therefore, the time-varying bias corrections are applied separately for the MBT profiles obtained by ships from the United States, Soviet Union/Russia, Japan, Canada, and Great Britain. Data from all other countries are corrected using a globally averaged correction.

Finally, thermal biases were recently reported for the data obtained by different kinds of data loggers attached to marine mammals (APB). Gouretski et al., (2024) analysed temperature profiles obtained between 2004 and 2019 in the high and moderate latitudes of both hemispheres. Comparison with the collocated reference CTD and Argo float data revealed a systematic negative thermal offset (average value -0.027 °C) for mammal temperature profiles from SRDL (satellite-related data loggers). For the less accurate data from TDR (Temperature-Depth-Recorders), the comparison revealed a small positive temperature bias of 0.02 °C and the depth (pressure) bias indicating depth overestimation.
2.4 Climatology

For IAP and other data product generators, horizontal interpolation (mapping) is applied on a temperature anomaly field after removing a monthly climatology; thus, a pre-defined climatology field with an annual cycle is mandatory (Fig. 2). The accuracy of the climatology field is one of the key sources of uncertainty in reconstruction because the error in climatology will propagate into the anomaly field, impact the spatial dynamical consistency, and the accuracy of the reconstruction (Cheng and Zhu, 2015; Lyman and Johnson, 2014).

In IAPv4, the adjustive mapping procedure (see below) has been applied to reconstruct the climatology field (Table 1). The merit of using IAP mapping for climatology is its ability to better represent the spatial anisotropy of temperature variability (non-Gaussian distribution). Unlike IAPv3, where the 1990–2005 reference period was used, IAPv4 uses data between 2006 and 2020 to construct 12 monthly climatologies, taking advantage of more reliable data combined with better and more homogeneous spatial and temporal coverage in the last two decades (Table 1). Following the recommendation in Cheng and Zhu, (2015), a relatively short period of 15-year is used because climatology constructed with longer period of data will result in different baselines at different locations (i.e., the baseline shifted to earlier years in the middle latitudes of the North Hemisphere and the baseline shifted to more recent years in the Southern Hemisphere) and this inconsistency will violate the spatial structure of the anomaly field (Cheng and Zhu, 2015). Such a choice has been adopted by recent developments from other groups, such as Li et al., (2022).

IAPv4 used an 800 km influencing radii in climatology reconstruction, smaller than the 20° for IAPv3, to more properly account for the rapid change of temperatures with distance. There is a trade-off between data availability and the size of the influence radius. Using radii smaller than 500 km does not ensure a global fractional coverage (defined as the fraction of the total ocean area obtained by the mapping method) because of data sparseness (Cheng, 2024). As our tests suggest, using 500–800 km results in very similar reconstructions of climatology, therefore, 800 km is adopted.

2.5 Vertical interpolation
The vertical resolution of ocean temperature profiles changed dramatically over time associated with instrument evolution and the increase of data storage capability. For instance, the global mean vertical resolution at 500 m level changed from ~100 m in the 1960s to less than 10 m during the 2010s (Li et al., 2020). Vertical interpolation of the raw profiles on standard levels is a critical process (Fig. 2): Cheng and Zhu (2014) indicated that the use of linear or spline vertical interpolation methods can bias the temperature reconstruction and OHC estimation (Barker and McDougall 2020; Li et al., 2020; Li et al., 2022). IAPv3 used the (Reiniger and Ross, 1968) (RR) method. Recently, Barker and McDougall (2020) proposed a new approach using multiple Piecewise Cubic Hermite Interpolating Polynomials (PCHIPs) to minimize the formation of unrealistic water masses by the interpolation procedure. The limitation of this method is that salinity data are needed for interpolation.

Because the largest difference between interpolation methods is found mostly for the low-resolution profiles (e.g., old Nansen casts), in practice, extremely low vertical resolution profiles had to be removed to reduce the uncertainty in interpolation. In IAPv4, this procedure is optimized compared to IAPv3, and only parts of profiles with a sufficient vertical resolution are used. The thresholds for the vertical resolution are empirically set by 50 m in the upper 200m, 200m between 200 m and 1000 m, 500 m between 1000 m and 2000 m, and 600m between 2000 m and 6000 m. As no interpolation method can adequately interpolate temperature for the vertical resolution beyond these thresholds, interpolation is not performed in such cases to avoid errors (these extreme low-resolution data are not used in further processing). Under this limitation for IAPv4, we still apply the RR method for temperature profiles.

Finally, IAPv4 extends the set of standard vertical levels with a total of 119 levels from 1 m to 6500 m (79 levels within the upper 2000 m) compared to 41 levels in IAPv3 between 1 m and 2000 m (Table 1). The increase in vertical resolution is critical for accurately representing the mixed layer, as investigated below.

2.6 Grid average and mapping

The anomaly profiles are obtained by subtracting the monthly climatology from the vertically interpolated profiles. These anomalies are then averaged (arithmetic mean) into a 1° × 1° grid at each standard level (1° × 1° gridded average field) (Fig. 2). Due to the general data sparsity variable time windows (larger than one month) are used for monthly
reconstructions to ensure a truly global analysis. This process takes advantage of the persistence of anomalies, especially in the deep ocean, and thus is physically grounded. Specifically, after 2005, data within a three-month window are merged to provide a monthly reconstruction for each layer of the upper 1950 m. Before 2005, a time-varying and depth-varying time window is used, and it is generally smaller in the upper ocean and wider in the deeper ocean. Below 2000 m, a 5-year window is adopted.

Mapping interpolates the gridded (e.g., box-averaged) observations horizontally into a spatially complete map (Fig. 2) because not all 1° × 1° boxes are filled with data. (Fig. 2). IAPv4 adopted a similar mapping approach (Ensemble Optimal Interpolation with dynamic ensemble: EnOI-DE) as in IAPv3 introduced in Cheng and Zhu (2016) and Cheng et al., (2017) but with the following modifications:

1) the largest influence radius has changed from 20° in the upper 700 m (25° at 700–2000 m) in IAPv3 to 2,000 km in the upper 700 m (25,000 km at 700–6000 m) in IAPv4, to account for the reduced distance between two longitudes from tropics to the polar regions. This change mainly helps to improve the reconstruction in the high-latitude regions;

2) The three iterative runs are taken to effectively bring in different scales of variability with influencing radius changing from 2,000 km (25,000 km at 700–6000 m) to 800 km and 300 km, respectively;

3) For each month, IAPv3 used 40 model simulations (historical runs with real forcings) from the Coupled Model Intercomparison Project phase 5 (CMIP5) to provide a flow-dependent ensemble, which is then constrained by observations to provide optimized spatial covariance. IAP mapping uses model-based covariance because we argue that spatial covariance can never be satisfactorily parametrized by some simple basic functions (such as Gaussian) given its complexity. With model-based, flow-dependent, and dynamically-consistent covariance, the IAP mapping provides a more realistic reconstruction than other approaches based on Gaussian-based parameterized covariance, as evaluated by many studies (Cheng et al., 2017; Cheng et al., 2020; Dangendorf et al., 2021; Nerem et al., 2018).

4) The observation error variance (R), which represents the error of the observations, is updated in IAPv4 as follows. R consists of both the instrumental error (Re) due to inaccuracy and the representativeness error (Rr) due to the need to represent the spatial (at
1° by 1° and 1 m standard grid depths) and temporal (1 month) averages from a limited number of observations (Cheng and Zhu, 2016):

\[R = R_e + R_r = \left(\sum_i f E_i \right) / M + \sigma^2 / M, \]

where \(M \) observations exist for a given grid cell. \(R_e \) in each grid cell is set to the mean of the typical precision of the different instruments contributing data in the cell, which is set according to IQuOD (International Quality-Controlled Ocean Database) specification (Cowley et al., 2021). \(\sigma^2 \) represents the variance of the various temperature measurements against the monthly mean value. The data from 2005 to 2022 are used to calculate \(\sigma^2 \) in each grid because of greater data abundance and quality compared to earlier times.

As the representativeness error (\(R_r \)) is expected to be flow-dependent (i.e., the error is expected to be higher in areas with a large gradient of the flow speed and regions of higher variability), more observations are required to represent the mean value. Figure 4 shows a larger variance (\(\sigma^2 \)) in the boundary-current regions and near the Antarctic Circumpolar Current (ACC) in the upper ocean (e.g., 10 m, 200 m, 500 m). At 200 m, it shows a larger \(\sigma^2 \) in the Western Pacific Ocean, corresponding to the large thermocline variations at this layer. Below 1000 m, larger \(\sigma^2 \) along the ACC frontal regions and in the North Atlantic Ocean occur because of a stronger mixing and convection in these regions.

The uncertainty in the derived gridded reconstruction is also based on the EnOI framework formulated by Cheng and Zhu, (2016). The uncertainty accounts for instrumental, sampling and mapping errors. Other error sources, including the choice of climatology, vertical interpolation, bias corrections, and QC, are not considered in this uncertainty estimate. Therefore, a more thorough uncertainty quantification method is needed, and this is under development in a separate study.
Figure 4: Variance (σ^2) of ocean temperature at several representative layers. (a) 10 m, (b) 200 m, (c) 500 m and (d) 1000 m. The unit is degree Celsius.

Table 1. General information on IAPv4 and IAPv3 data products.

<table>
<thead>
<tr>
<th></th>
<th>IAPv3</th>
<th>IAPv4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal resolution</td>
<td>Global ($1^\circ \times 1^\circ$)</td>
<td>Global ($1^\circ \times 1^\circ$)</td>
</tr>
<tr>
<td></td>
<td>41 levels from 1 m to 2000 m (1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 2000)</td>
<td>119 levels from 1 m to 6000 m (1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, 1300, 1350, 1400, 1450, 1500, 1550, 1600, 1650, 1700, 1750, 1800, 1850, 1900, 1950, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900, 4000, 4100, 4200, 4300, 4400, 4500, 4600, 4700, 4800, 4900, 5000, 5100, 5200, 5300, 5400, 5500, 5600, 5700, 5800, 5900, 6000)</td>
</tr>
<tr>
<td>Time period and resolution</td>
<td>1940–2022 (reliable data after 1955), monthly</td>
<td>1940–present (reliable data after 1955), monthly</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Quality-control</td>
<td>WOD (Garcia et al., 2018)</td>
<td>CODC-QC (Tan et al., 2023)</td>
</tr>
<tr>
<td>Vertical interpolation</td>
<td>RR (Reiniger and Ross, 1968) interpolation</td>
<td>RR (Reiniger and Ross, 1968) interpolation</td>
</tr>
<tr>
<td>Climatology</td>
<td>IAP climatology: simple gridded average and then spatial interpolation with distance-weighted average</td>
<td>Improved IAP reconstruction with EnOI approach</td>
</tr>
<tr>
<td>XBT bias correction</td>
<td>CH14 (updated in 2018)</td>
<td>CH14 (revised and updated in 2023)</td>
</tr>
<tr>
<td>MBT bias correction</td>
<td>IK09 (Ishii and Kimoto, 2009)</td>
<td>GC20 (Gouretski and Cheng, 2020)</td>
</tr>
<tr>
<td>APB bias correction</td>
<td>None</td>
<td>GCR24 (Gouretski et al., 2024)</td>
</tr>
<tr>
<td>Bottle bias correction</td>
<td>None</td>
<td>GCT23 (Gouretski et al., 2022)</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>Given by EnOI framework accounting for instrumental error and horizontal sampling/mapping error</td>
<td>Given by EnOI framework accounting for instrumental error and horizontal sampling/mapping error</td>
</tr>
<tr>
<td>DOI</td>
<td>/</td>
<td>YES</td>
</tr>
</tbody>
</table>

2.7 OHC calculation and volume correction

Based on the gridded temperature reconstruction (Table 1), OHC in each grid is calculated as OHC \((x, y, z) = c_p \iiint_V \rho T dV(x, y, z)\). Following TEOS-10 standards, where \(c_p\) is a constant of \(\approx 3991.9\) J (kg K\(^{-1}\)), \(\rho\) is potential density in kg m\(^{-3}\), and \(T\) is conservative temperature measured in degrees Celsius (here it is anomaly relative to the 2006–2020 baseline) (Cheng et al., 2022a).

As OHC is an integrated metric over a specific ocean volume, properly identifying ocean volume is critical, especially in shallow waters. Previous studies found a 10–20%
difference in the OHC trend in recent decades between different land-ocean masks (von Schuckmann and Le Traon, 2011). Specifically, in marginal sea areas with complex topography, \(1^\circ \times 1^\circ \times \Delta z\) grid boxes (where \(\Delta z\) is the depth range of the grid box) near coasts and islands typically cover both ocean and land areas but are assigned to represent land or ocean only. Thus, the gridded ocean temperature datasets are subjected to errors from inaccurate land-sea attribution. Here, we offer a volume correction (VC) for these grid boxes to improve the OHC estimate, as follows.

For each \(1^\circ \times 1^\circ \times \Delta z\) grid box, we introduce a VC factor (denoted as \(F_{VC}\)) to correct the OHC values:

\[
OHC_{VC}(x, y, z) = OHC(x, y, z) \times F_{VC}(x, y, z)
\]

First, we assume the seawater volume distribution in 1 arc-minute topographic data of ETOPO1 as “truth”. No correction is needed if a box is assigned to ocean according to ETOPO1 data, thus, \(F_{VC}=1\).

If a fraction of a \(1^\circ \times 1^\circ \times \Delta z\) grid box is land according to ETOPO1 and IAP data includes T/OHC values, the \(F_{VC}\) is represented by the fraction of the ocean volume in this box (illustrated in Fig. 5), and the volume for OHC calculations can be corrected with \(F_{VC}(i)\). In a grid box, if there is no IAP data (i.e., it is land according to the IAP mask), but this box contains some ocean volume according to ETOPO1 data, we define \(F_{VC}(a)\) again as the fraction of the ocean volume in this box, and then this \(F_{VC}(a)\) is added to the adjacent grid boxes where there are values in IAP data. If all the adjacent grid boxes contain no data, the volume is equally redistributed to the diagonal boxes (Fig. 5). The volume is discarded if there is no data in all adjacent and diagonal boxes.

With this approach, the VC factor in each grid box is a sum of two components: a local adjustment \(F_{VC}(i)\) and a redistribution from the adjacent grids:

\[
F_{VC}(a) = F_{VC} - F_{VC}(i) + F_{VC}(a),
\]

To avoid misidentification of sea ice, we performed VC only on the global grid points within 60 °S to 60 °N. Eventually, we obtained a three-dimensional FVC that fits the IAP grids (119 \(\times 360 \times 180\); depth coverage to 6000 m) and used it to compute OHC. The VC applied to \(~15\%\) of all the \(1^\circ \times 1^\circ \times \Delta z\) grid boxes of IAPv4 ocean grid boxes (with \(F_{VC} \neq 1\)) for the entire 0-6000 m ocean and \(~10\%\) grid boxes of the upper 2000 m.
Figure 5: An example explaining the Volume Correction algorithm. (a) Bathymetry derived from ETOPO1. (b) Bathymetry in IAPv4 analysis.

2.8 Independent datasets for comparison and evaluation

Four Sea Surface Temperature (SST) datasets are used to evaluate the upper-most layer (1 m) of IAPv4, including Extended Reconstructed SST version 5 (ERSST5) (Huang et al., 2017); Japan Meteorological Agency Centennial Observation-Based Estimates of SSTs version 1 (COBE1) (Ishii et al., 2005), and its version 2: COBE2 (Hirahara et al., 2014); Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST) (Rayner et al., 2003). The anomalies relative to a 2006-2020 average were computed by removing the climatology. Measurements of SST are made *in situ* by means of thermometers or retrieved remotely from infrared and passive microwave radiometers on satellites (Kennedy 2014; O’Carroll et al., 2019). Satellite SST observations began in the early 1980s. *In situ* SST
observations go back to the 19th century and involve many different measurement methods, including wooden and later insulated metal buckets to collect water samples, engine room inlet measurements, and sensors on moored and drifting buoys (Kennedy 2014). The subsurface temperatures are collected as “profiles” which contain multiple measurements at discrete vertical levels. Because of the differences in observation systems, SSTs are fundamentally different in their temporal and spatial coverage and temporal extent compared to subsurface observations on which OHC estimates rely. SST measurements also have different uncertainty sources and error structures; thus, the two systems are typically treated as independent data sources and have been used for cross-validation (Gouretski et al., 2012).

The capability of the new product to close the sea level budget and the Earth’s energy budget also provides tools for validation. A superior dataset should be capable of closing the sea level and the Earth’s energy budgets. The total sea level change has been monitored via satellite altimetry since 1993 (from the University of Colorado https://sealevel.colorado.edu/). The ocean mass change is derived from JPL RL06.1Mv3 Mascon Solution GRACE and GRACE-FO data since 2002 (Watkins et al., 2015). For long-term total sea level change since the 1950s, we use a tide-gauge-based reconstruction (Frederikse et al., 2020). During the same period, the estimates of the Greenland ice sheet, Antarctic ice sheet, land water storage, and glacier ice melt contributions from Frederikse et al., (2020) are used to derive ocean mass change.

For the energy budget, the ice, land, and atmosphere heat content changes are from (von Schuckmann et al., 2023) from 1960 to the present. Because of the less reliable data before the 1990s for land, sea ice and ice sheets, the other set of land–atmosphere–ice data from 2005–19 is used as in Trenberth, (2022) to investigate the recent changes. The net radiation change at the top of the atmosphere is based on CERES EBAF data from Loeb et al., (2021) and Loeb et al., (2018) and Deep-C data from the University of Reading (Liu and Allan, 2022; Liu et al., 2017).

Several gridded ocean T/OHC gridded products are used here for inter-comparison, including the IAPv3 (Cheng et al., 2017), the EN4 ocean objective analysis product from the UK Met Office Hadley Centre (Good et al., 2013); the ocean objective analysis product (Ishii et al., 2017) (termed “ISH” hereafter) from JMA, and an Argo-only gridded product from SCRIPPS (Roemmich and Gilson, 2009) (termed “RG” hereafter).
2.9 Trend calculation and uncertainty estimates

The trends in this study have been estimated by a LOWESS approach (Cheng et al., 2022b), i.e., we apply a locally weighted scatterplot smoothing (LOWESS) to the time series (25-year window, equal to an effective 15-years smoothing), and then the OHC difference between the first and the end year is used to calculate the trend. This approach provides an effective method to quantify the local trend by minimizing the impact of year-to-year variability and start/end points.

Throughout this paper, the 90 % confidence interval is shown. The uncertainty of trend also follows the approach in Cheng et al., (2022a) based on a Monte Carlo simulation. First, a surrogate OHC series is formed by simulating a new residual series (after removing the LOWESS smoothed time series) based on the AR(1) process and adding it to the LOWESS line. Then a LOWESS trendline is estimated for each surrogate. This process is repeated 1000 times, and 1000 trendlines are available. The 90 % confidence interval for the trendline is calculated based on ± 1.65 times the standard deviation of all 1000 trendlines of the surrogates. Secondly, the uncertainty in the rate of the OHC is estimated by the 1000 LOWESS trendlines: 1) calculating the rate based on the difference between the first and last annual mean value of the LOWESS trendline in a specific period; 2) calculating ± 1.65 times the standard deviation of the 1000 rate values.

3. Results

3.1 Climatological annual cycle

The annual cycle of the OHC above 2000 m of IAPv4 is compared with IAPv3, ISH, EN4, and RG (Fig. 6 and Fig. 7) for 2006–2020. There is a consistent annual cycle among different datasets for the global and hemispheric oceans. Globally, the ocean releases heat from boreal spring to autumn and accumulates heat from boreal autumn to spring, which is dominated by the southern hemisphere due to its larger ocean area (Fig. 6). The two hemispheres show opposite annual variations in OHC, associated with the annual change of solar radiation and different distribution of land and sea. For the global OHC above 2000 m, IAPv4 shows a positive peak in April and a dip in August, with the magnitude of OHC variation of 60.4 ZJ for IAPv4 (66.9 ZJ for IAPv3), consistent with other datasets: 53.2 ZJ for ISH, 58.1 ZJ for EN4, 69.2 ZJ for RG (where 1 ZJ = 10^{21} J).

There are some unphysical variations in the OHC annual variations for IAPv3 (blue lines). For example, the global OHC shows large spikes in January and December, and a
big shift from September to October, by contrast, the other three data products show much smoother changes (Fig. 6a). The IAPv3 Arctic OHC (north of 69.5 °N) shows different phase change compared with the other datasets together with a big shift from September to December, and the magnitude of variability is much larger in IAPv3 than other datasets (Fig. 6d). The improvement in IAPv4 is mainly because of the methodology improvements: IAPv3 used 1990–2005 data to construct climatology which suffered from errors related to sparse data coverage, use of “degree distance” instead of “km distance”, and other error sources. Therefore, the IAPv4 analysis presents a physically tenable OHC seasonal variation.

Figure 6: Annual cycle of OHC of upper 2000 m for (a) the global oceans, (b) the Southern Hemisphere, (c) the Northern Hemisphere and (d) the oceans north of 69.5°N. Five different data products are presented, including IAPv4 (red), IAPv3 (blue), ISH (purple), EN4 (green), and RG (orange).

IAPv4 OHC data shows significant improvements in the Arctic region, reflected in both the spatial distribution and seasonal variation of OHC. In IAPv3, the maximum upper
2000 m OHC change occurs during December, however, for IAPv4, the maximum amounts to 2.9 ZJ in October and decreases to a minimum of −3.4 ZJ in April. The spread of the OHC annual cycle in the Arctic region across different datasets is reduced from 5.2 ZJ to 2.5 ZJ, indicating a smaller uncertainty. The spatial OHC anomaly distribution in the Arctic region of the IAPv4 is more spatially homogeneous than IAPv3, which seems not physical (Fig. 7). IAPv4 displays a consistent seasonal variation north of 69.5 °N mainly because of the changes of the influencing radius from “degrees” to “kilometers”.

Figure 7: Seasonal distribution of monthly OHC anomalies in the upper 2000 m in March, June, September, and December relative to the 2006 – 2020 annual mean.

The top and lower panels are for IAPv3 and IAPv4 products, respectively.

3.2 Mixed layer depth

Mixed layer depth (MLD) provides a crucial parameter of upper ocean dynamics relevant for upper-deeper ocean and air-sea interactions. Spatial distributions of the MLD in January and July are shown in Fig. 8 for IAPv4, based on criteria of ∆T = 0.2 °C temperature for the 10 m depth temperature. As expected, the seasonal variations of the MLD are generally opposite in the northern and southern hemispheres. The MLD shows a
much stronger seasonal variation in the subtropics and midlatitudes than in other regions (including the tropics), which is manifested as shallower MLD (~20 m) in summer due to strong surface heating that increases stratification, and deeper MLD in winter (>70 m) because of surface cooling and increased surface wind creating stronger mixing.

In the north hemisphere, the maximum MLD occurs during the wintertime in the subpolar North Atlantic deep water formation regions (40 °N ~ 65 °N), with values over 500 m in the Norway Sea. In comparison, in the midlatitudes, the maximum of MLD is generally less than 125 m in the wintertime. The MLD minimum in the north hemisphere is in the summertime, and the values are mostly within 20 m depth. In the Southern Hemisphere, the MLD maximum values (deeper than 300 m) occur between 45 °S and 60 °S of the Southern Ocean (north of the Antarctic Circumpolar Current) in the boreal summer where the year-round intense westerly winds are located. The minimum MLD in this region in the boreal winter is less than 70 m. The seasonal variation of the MLD is well established by previous studies (Chu and Fan, 2023; de Boyer Montégut et al., 2004; Holte et al., 2017), and this evaluation confirms that IAPv4 temperature data is capable of reasonably representing the MLD.
Figure 8: Spatial pattern of the climatological mean MLD (left panels) and zonal mean MLD (right panels) in January (top) and July (bottom) estimated from the IAPv4. Here, the MLD is calculated using the temperature difference criterion of $\Delta T = 0.02 \, ^\circ\text{C}$ between the surface and 10-meter depth.

3.3 Sea surface temperature

IAPv4 and IAPv3 temperature time series at 1 m depth (Fig. 9) are compared with four independent SST data products (ERSST5, HadISST, COBE1, and COBE2). All data products show robust sea surface warming in the global ocean and four main basins, and IAPv4 shows a quantitatively consistent warming rate since 1955 (Fig. 9). Since the HadISST and COBE2 data did not include the year 2023, we compare the long-term SST trend during 1955–2022 using these products (Fig. 9f). The global-mean IAPv4 SST rate between 1955 and 2022 is $1.01 \pm 0.15 \, ^\circ\text{C} \, \text{century}^{-1}$ (90 % CI), which is within the range of...
the SST products (ranging from 0.78 to 1.05 °C century\(^{-1}\)). The 1955–2022 trend of IAPv4 SST is slightly weaker than IAPv3 for the global ocean (1.11 ± 0.16 °C century\(^{-1}\)) and all the ocean basins. The largest difference between IAPv4 and other SST products comes mainly from the Pacific and the Southern Ocean before 1980, associated with sparser observations.

The spatial distribution of long-term SST trends over the 1955–2022 period provides insights into the data consistencies and differences. First, IAPv4 shows a pattern of SST consistent with other datasets (Fig. 10). More rapid warming is found in the poleward western boundary currents regions, such as the East Australian Current and the Gulf Stream. The warmer ocean in the upwelling areas, such as the Tropical Eastern Pacific and Gulf of Guinea, are identified by all data products. The surface warming in the South Indian for IAPv4 data is weaker than for IAPv3, ERSST5, and COBE2 but is more consistent with HadISST and COBE1. The surface cooling in the south of 60 °S can also be found in all the datasets but with some discrepancies in magnitude and locations related to data sparsity.
Figure 9: Global and basin time series of SST change for IAPv4, compared with ERSST/HadISST/COBE1/COBE2 and IAPv3 from 1955 to present. (a) Global, (b) Pacific, (c) Atlantic, (d) Indian and (e) Southern oceans (South of 30°S) (units: °C). (f) shows the warming rate from 1955 to 2022. The pink thin line is the monthly time series of IAPv4 SST and other time series are annual time series of different datasets. The vertical scales are different for different panels. All anomaly time series are relative to a 2006–2020 baseline.
Figure 10: Spatial maps of the SST long-term trends during the 1955–2022 period. (a) IAPv4, (b) IAPv3, (c) ERSST5, (d) HadISST, (e) COBE1 and (f) COBE2 (units: 10⁻² °C yr⁻¹). The contour line interval is 0.5×10⁻² °C yr⁻¹. The stippling indicates the regions with signals that are not statistically significant (90% CI).

3.4 Global OHC time series

Global OHC time series for 0–700 m, 700–2000 m, 0–2000 m, and 2000–6000 m layers of IAPv4 (Fig. 11) for 1955–2023 versus IAPv3 show a robust ocean warming, with a linear warming rate of 4.4 ± 0.2 ZJ yr⁻¹ (0–700 m), 2.0 ± 0.1 ZJ yr⁻¹ (700–2000 m), and 6.4 ± 0.3 ZJ yr⁻¹ (0–2000 m). The long-term warming revealed by IAPv4 is greater than IAPv3 (4.1 ± 0.2 ZJ yr⁻¹ for 0–700 m, 1.9 ± 0.1 ZJ yr⁻¹ for 700–2000 m and 6.0 ± 0.3 ZJ yr⁻¹ for 0–2000 m). Before ~1980, bottle bias correction reduces the time-varying systematic warm bias in Nansen bottle data and leads to a stronger warming rate from...

From 2005–2023, the new IAPv4 product shows stronger warming than IAPv3. The mean upper 2000 m warming rate is 10.7 ± 1.0 ZJ yr$^{-1}$ for IAPv4 and 9.6 ± 1.1 ZJ yr$^{-1}$ for IAPv3 (Fig. 11), mainly because of the replacement of the WOD-QC system by the new CODC-QC system in IAPv4. Tan et al., (2023) indicated that the WOD-QC system had removed more extreme higher temperature values in the regions of warm eddies and marine heat waves than CODC-QC. The IAPv3 700–2000 m OHC shows a much bigger drop in 2018 than IAPv4 (Fig. 11b), while the IAPv4 indicates an approximately linear 700–2000 m warming since 2005, resulting in stronger 700–2000 m warming in IAPv4 (3.6 ± 0.5 ZJ yr$^{-1}$) than in IAPv3 (2.9 ± 0.5 ZJ yr$^{-1}$).

Since the 1990s, the World Ocean Circulation Experiment (WOCE) provided a global network of abyssal ocean observations, sustained by repeated hydrological lines and a deep-Argo program (Katsumata et al., 2022; Roemmich et al., 2019; Sloyan et al., 2019). These high-quality data provide an opportunity to estimate deep OHC changes below 2000 m. IAPv4 provides a new OHC estimate below 2000 m by collecting 5 years of data centered on each month. The result (Fig. 11d) indicates a robust abyssal (2000–6000 m) ocean warming trend since ~1993 of 2.0 ± 0.3 ZJ yr$^{-1}$. This is higher (within the uncertainty range) than the previous estimate of 1.17 ± 0.5 ZJ yr$^{-1}$ in Purkey and Johnson (2010) but consistent with the recent assessment showing the acceleration of deep ocean warming in the Southwest Pacific Ocean (Johnson et al., 2019).
Figure 11: Global OHC time series for 0–700 m (a), 700–2000 m (b), 0–2000 m (c) and 2000–6000 m (d). All-time series are relative to a 1981–2010 baseline. The shading indicates the 90 % confidence interval. The vertical scales are different for different panels. The unit is ZJ.

Another feature of IAPv4 is the suppression of month-to-month noise compared to many available data products. Trenberth et al. (2016) noted that the month-to-month variation (quantified by the standard deviation of the monthly dOHC/dt time series) in all in situ-based OHC records is much larger than implied by the CERES records, suggesting that the OHC variation on this time scale is most likely spurious. Therefore, the magnitude of the month-to-month variation in the OHC record can be used as a benchmark of the data quality. The standard deviation of the CERES record is 0.67 Wm\(^{-2}\) from 2005 to 2023 (Loeb et al., 2018). While IAPv4, IAPv3, ISH, EN4, BOA, NCEI, and SIO data show a
standard deviation of dOHC/dt time series of 3.52, 3.52, 7.49, 8.79, 10.05, 11.29, 10.00 Wm\(^{-2}\), respectively (Table 2). Note that differentiation to get the rate of change amplifies noise, and applying a 12-month running smoother significantly knocks down the noise so that the IAPv4 standard deviation becomes 0.75 Wm\(^{-2}\), the smallest among the datasets investigated in this study (Table 2) and is the most physically plausible time series from this noise-level perspective.

Table 2. Characteristics of Month-to-month variation of OHCT compared with CERES. Comparisons of different ocean gridded products: the monthly standard deviation (std dev) of the monthly rates of change of OHC (Wm\(^{-2}\)); the corresponding standard deviation of the 12-month running mean (13-points are used, with start-point and endpoint weighted by 0.5), and the linear trend with 90% confidence limits (Wm\(^{-2}\)) (global surface area). The values are for 2005–2022.

<table>
<thead>
<tr>
<th>Source</th>
<th>Std dev</th>
<th>Std dev (12 month)</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAPv4</td>
<td>3.52</td>
<td>0.75</td>
<td>0.66 ± 0.04</td>
</tr>
<tr>
<td>IAPv3</td>
<td>3.52</td>
<td>0.79</td>
<td>0.56 ± 0.03</td>
</tr>
<tr>
<td>ISH</td>
<td>7.49</td>
<td>1.35</td>
<td>0.63 ± 0.05</td>
</tr>
<tr>
<td>EN4</td>
<td>8.79</td>
<td>1.03</td>
<td>0.67 ± 0.04</td>
</tr>
<tr>
<td>BOA</td>
<td>10.05</td>
<td>1.16</td>
<td>0.60 ± 0.07</td>
</tr>
<tr>
<td>NECI</td>
<td>11.29</td>
<td>1.11</td>
<td>0.61 ± 0.07</td>
</tr>
<tr>
<td>SIO</td>
<td>10.00</td>
<td>1.24</td>
<td>0.56 ± 0.08</td>
</tr>
<tr>
<td>CERES</td>
<td>0.67</td>
<td>0.33</td>
<td></td>
</tr>
</tbody>
</table>

3.5 Regional OHC trends

For 1960–2023 (Fig. 12), the IAPv4 trends are slightly weaker than IAPv3 in the Pacific Ocean but slightly higher in the Atlantic Ocean (Fig. 12), with more than 95% of the ocean area showing a warming trend. The polar regions also show remarkable differences compared to IAPv3, mainly because of the change of covariance, which improves the spatial reconstruction in the polar regions. The IAPv4 shows stronger warming near the boundary currents regions, mainly because of the improved QC that does not flag high-temperature anomalies. Nevertheless, the pattern of trends is very similar in the two versions of data, indicating the robustness of the ocean warming pattern. The Atlantic Ocean (within 50 °S–50 °N) and the Southern Ocean store more heat than the
other basins, probably associated with the deep convection and subduction processes effectively transporting heat into the deep layers (Cheng et al., 2022a). The cold spots mainly include the Northwest Pacific and subpolar North Atlantic Ocean. In particular, the so-called “warming hole” in the subpolar North Atlantic Ocean can extend to at least 800 m and is responsible for decreased OHC in this region. Some studies have linked this fingerprint to the slowdown of AMOC (Rahmstorf et al., 2015; Caesar et al., 2018).

Figure 12: Spatial pattern of the OHC trends for 0–300 m, 0–700 m and 0–2000 m, 700–2000 m from 1960 to 2023. The left panels show IAPv3, the middle panels are IAPv4; the right panels are the difference between IAPv4 and IAPv3.

For 1991–2023 (Fig. 13), the IAPv4 and IAPv3 pattern is also consistent. A La Niña-like trend appears in the Pacific for the 0–300 m, 0–700 m, and 0–2000 m OHCs. There is
a contrast between the warming trend of the tropical western Pacific and the cooling trend of the tropical eastern Pacific. Some studies have linked this pattern to the natural climate mode (Pacific Decadal Variability) (England et al., 2014), but some suggest it is a forced change driven by greenhouse gas increases (Fasullo and Nerem, 2018; Mann, 2021).

Below 700 m, the 1960–2023 and 1991–2023 trend patterns are similar because deep ocean warming mainly occurs after 1990. Broad warming in most regions, but subtropical oceans in the West Pacific and South Indian oceans show a cooling, which is likely related to the subtropical gyre expansion and intensification (Zhang et al., 2014).

Figure 13: Spatial pattern of the OHC trends for 0–300 m, 0–700 m, 0–2000 m and 700–2000 m from 1991 to 2023. The left panels show IAPv3, the middle panels are IAPv4; the right panels are the difference between IAPv4 and IAPv3.
3.6 Ocean meridional heat transport

The ocean accounts for about one-third of the meridional heat transport (MHT). Thus, its change and stability are key to the climate system and its variability. The direct observations of ocean MHT are only possible in several cross-basin sections such as RAPID. The ocean MHT can be derived indirectly from the OHC and air-sea heat flux data (Trenberth and Fasullo, 2017; Trenberth et al., 2019). The comparison between OHC-derived MHT and RAPID data allows one to check the consistency among various observations. Here, we calculate the Atlantic MHT from April 2004 to December 2022 using IAPv4 OHC and air-sea net heat flux data (FS) derived by TOA net energy flux and atmospheric heat divergence (Fig. 14). FS is an average of three available products including MAYER2021 (Mayer et al., 2021) TF2018 (Trenberth et al., 2019) and the DEEP-C Version 5.0 from Reading University (Liu and Allan, 2022; Liu et al., 2020). The data are adjusted following Trenberth et al., (2019) approach to ensure zero MHT on the Antarctica coast. The inferred time series of MHT at 26.5 °N from other OHC data sets (IAPv3, Ishii, and EN4) are also shown in Fig. 14, compared with the RAPID observations (Johns et al., 2023).

The inferred long-term mean (April 2004—December 2022) MHT from the updated IAPv4 OHCT (solid red line with the mean transport of 1.18 PW) is identical to the RAPID observation of 1.18 ± 0.19 PW. Different OHC datasets cause different inter-annual variability in the MHT. It is shown that, from 2008 to 2020, the RAPID MHT agrees best with the IAPv4 estimates with a correlation of 0.52. By comparison, the correlation coefficients between RAPID and IAPv3, EN4, and Ishii are 0.33, 0.51, and 0.49, respectively. Over the entire period of 2005–2022, the IAPv4 lies mostly within the RAPID uncertainty envelope.
Figure 14: Derived Meridional heat transport at 26.5 °N. The 12-month running mean northward MHT across 26.5 °N of different data sets compared with results from the RAPID array in PW. The error bars for RAPID in grey are 1.64 σ.

3.7 Inter-annual variability

The year-to-year variation of OHC is strongly influenced by ENSO from global to regional scales (Cheng et al., 2019; Roemmich and Gilson, 2011). To demonstrate the change of OHC associated ENSO, Figure 15 shows a Hovmöller diagram of the zonal upper 2000 m OHC and its change (time derivative of OHC: d(OHC)/dt) in the tropical Pacific Ocean from 1985 to 2023, compared with the Oceanic Niño Index (ONI). It is evident that both OHC and OHCT are closely correlated with ENSO.

Before the onset of El Niño events, there is an accumulation of heat (d(OHC)/dt > 0) in the southern and equatorial tropical ocean region (20 °S – 5 °N). The positive tropical dOHC/dt leads ONI by ~15 months (with peak correlation >0.5), making it a precursor of El Niño (Cane and Zebiak 1985; McPhaden, 2012; Lian et al., 2023). In contrast, heat is released (d(OHC)/dt < 0) from the tropics (20 °S – 5 °N) to the North Hemisphere (5 °N – 25 °N) during and after El Niño (Cheng et al., 2019), with a maximum correlation >0.8 at 5 months after the El Niño peak. The magnitude of the prominent change can reach up to 50 Wm⁻² during the 1997–1998 and 2015–2016 extreme El Niño events. For the other moderate El Niño events, the regional OHC change varies around 10–20 Wm⁻² (Mayer et al., 2018). This typical heat recharge-discharge paradigm is crucial in ENSO evolution (Jin, 1997). Correspondingly, the zonal OHC anomalies show a warming state (OHC > 0) between ~20 °N and ~5 °S before the peak of El Niño events (with peak correlation >0.7 at 5 months before El Niño peak), followed by a period of cooling (OHC < 0) after the peak.
of El Niño (with peak correlation >0.7 at 12 months after El Niño peak). These variations are all physically meaningful and indicate that IAPv4 represents regional inter-annual variability, especially associated with ENSO.

Figure 15: Hovmöller diagrams illustrating the zonal mean (top) upper 2000 m d(OHC)/dt (Wm⁻²) and (bottom) OHC (ZJ) in each 1 ° latitude band within 25 °S – 25 °N in the tropical Pacific basin using IAPv4 data. The ONI is shown in green. Vertical dashed lines denote the peak time of each Niño event.

3.8 Ocean and Earth Energy Budget

The EEI provides a critical quantifier of the Earth’s energy flow and climate change. It is also policy-relevant because it clearly shows the need to stabilize the climate system.

With new T/OHC data, we re-assess the Earth’s energy inventory since 1960. The land, atmosphere, and ice contributions are from the estimates obtained by von Schuckmann et al. (2023) for 1960-2023 and by Trenberth (2022) for 2015-2019.
It is evident that the earth has been accumulating heat since 1960. The Earth’s heat inventory is 512.9 ± 65.0 ZJ from 1960 to 2023 and 251.5 ± 14 ZJ from 2005–2023. The upper 700 m ocean, 700–2000 m, 2000 m-bottom, land, ice, and atmosphere contribute to 56.5%, 25.7%, 9.2%, 4.8%, 2.7%, and 1.1% of the total EEI, respectively, since 1960. The relative contribution has changed with time; for instance, since 1993, the contributions are 55.2% (0–700 m ocean), 22.1% (700–2000 m ocean), 11.7% (2000 m–bottom ocean), 3.7% (land), 2.8% (ice), and 1.0% (atmosphere). The land and ice contribution has increased in the recent two decades because of accelerated land and sea ice melting (Comiso et al., 2017; Hugonnet et al., 2021; Minière et al., 2024). From 2005–2019, more reliable land–atmosphere–ice datasets in Trenberth (2022) suggest a non–ocean contribution of 13.4 ZJ. Combined with the results for OHC with IAPv4, the EEI is 188.7 ZJ with the ocean heat uptake of 175.3 ± 11 for 2005–19, consistent with the value of 192.2±12 ZJ using the non–ocean contribution data by von Schuckmann et al. (2023).

The derived energy inventory has been compared with satellite–based observations at the top of the atmosphere (TOA). Two comparisons are made: (1). integrate the TOA EEI to compare with the energy inventory (Fig. 16); (2) take the time derivative of the annual OHC to compare it with the TOA net radiation flux (Fig. 17).

The first approach avoids calculating the time derivative of OHC, which exacerbates noise in the time series. The net CERES change has been adjusted to 0.71 Wm$^{-2}$ within 2005–2015, here we adjust the trend of the integrated CERES data to the IAPv4 OHC trend to make it consistent and then compare the variability difference (Fig. 16). The RMSE between DeepC and IAP–OHC is 18.3 ZJ and 16.1 ZJ for CERES versus IAP–OHC. The comparison also indicates that the heat inventory shows a stronger heat increase from 2000 to 2005 but too slow heat accumulation during 2005–2010 compared with DeepC and CERES (Fig. 16). This might be due to the data gaps before the Argo network was fully established. DeepC and CERES show stronger heat accumulation since ~2015 than the heat inventory, probably associated with the accelerated abyssal ocean warming found by the Deep-Argo program (Johnson et al., 2019). Furthermore, IAPv4 OHC shows a slightly higher (but consistent within the uncertainty range) Earth’s heat uptake compared to von Schuckmann et al. (2023) results by 33.5 ZJ from 1960 to 2020, mainly because the correction of Nansen bottle biases and the updates of XBT and MBT biases in IAPv4 data.

The second approach to compare OHC with satellite–based EEI is to calculate the time derivative of OHC. To suppress the month–to–month noises, we estimate annual
OHC based on one–year data centered on June (Fig. 17a) and December (Fig. 17b) separately, and then dOHC/dt is calculated with a forward derivative approach based on the annual time series. The annual mean of EEI time series is also used here for comparison (Fig. 17). The IAPv4 and CERES estimates show consistent inter–annual variability with a correlation of 0.44. The consistency gives higher confidence for the new IAPv4 data than IAPv3 (correlation of only ~0.15). The trend of dOHC/dt is 0.36 Wm\(^{-2}\) dec\(^{-1}\) from 2005 to 2023, within the uncertainty range of the CERES record (0.50 ± 0.47 Wm\(^{-2}\) dec\(^{-1}\) in Loeb et al., 2021). However, it should be noted that the calculation of dOHC/dt is sensitive to the choices of methods, data products, and time periods because of the noises and variability in the OHC time series. A careful analysis of the trend of dOHC/dt (and EEI) is a research priority.

Figure 16: The global energy budget from 1960 to 2023. The Atmosphere, land, and ice heat inventory is from von Schuckmann et al., (2023). Integrated EEI from DEEP–C (1985–2018) (Liu and Allan, 2022) and CERES (2001–2022) (Loeb et al., 2021) dataset are presented by dashed lines for comparison, with the trend adjusted to the IAP estimate to account for the arbitrary choice of integration constant.
Figure 17: Annual ocean heating rate compared with CERES data. Both annual OHC and CERES EEI data are centered on June. The long–term mean is removed for all-time series.

3.9 Steric sea level and sea level budget

The updated IAP data is used to re-assess the sea level budget for 1960–2022, 1991–2018, and 2002–2023. From 1960 to 2022, the sum of individual components (1.91 ± 0.07 mm yr⁻¹) is consistent with the tide-gauge-based reconstruction (2.08 ± 0.10 mm yr⁻¹) of the global mean sea level (GMSL) (Fig 18). Based on our estimate, the steric sea level, Antarctic ice sheet, Greenland ice sheet, glaciers, and land water storage contribute to the total sea level with 48.2%, 9.4%, 19.4%, 27.2%, and -3.7%, respectively (Table 3).

From 1971 to 2018 (an assessment period for GMSL in IPCC-AR6), the sum of individual components (2.13 ± 0.06 mm yr⁻¹) is consistent with a tide-gauge-based reconstruction (2.34 ± 0.08 mm yr⁻¹) of global mean sea level (GMSL) (Fig. 18), with a difference of 0.21 mm yr⁻¹, a better closure than IPCC-AR6 (the residual is 0.33 mm yr⁻¹) (Table 3).

After 1993, when GMSL can be directly observed by altimetry, the sum of sea level components is 3.11 ± 0.11 mm yr⁻¹ (1993–2018), again, consistent with the altimetry-based sea level (3.26 ± 0.16 mm yr⁻¹) considering the uncertainty (Fig. 18). The residual of the budget is 0.16 mm yr⁻¹, smaller than 1971-2018. Altimetry records suggest an acceleration of sea level rise from 1993 to 2018, ranging from 0.0535 (Frederikse et al., 2020) to 0.094
and the difference might reveal the uncertainty in bias correction and data processing for altimetry data. Here, the sum of contributions shows a similar acceleration of $0.0592 \pm 0.0196 \text{ mm yr}^{-2}$ (1993–2018), indicating a robust acceleration of sea level rise since the 1990s.

Table 3. Sea level budget is based on IAPv4 and previous studies. The trends of IPCC AR6 and (Frederikse et al., 2020) are based on least-squares fit. The trend of IAPv4 is based on LOWESS method (Cheng et al., 2022b). The uncertainty of IPCC AR6 and Frederikse et al. (2020) is given by the 90% confidence interval. The uncertainty of IAPv4 is based on a 90% confidence interval through the Monte Carlo method. The unit is mm yr$^{-1}$.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GMSL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPCC AR6</td>
<td>2.33 [1.55, 3.12]</td>
<td>3.25 [2.88, 3.61]</td>
</tr>
<tr>
<td>(Frederikse et al., 2020)</td>
<td>3.35 [2.91, 3.82]</td>
<td></td>
</tr>
<tr>
<td>IAPv4</td>
<td>2.34 ± 0.08</td>
<td>3.26 ± 0.16</td>
</tr>
<tr>
<td>Steric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPCC AR6</td>
<td>1.01 [0.73, 1.29]</td>
<td>1.31 [0.95, 1.66]</td>
</tr>
<tr>
<td>(Frederikse et al., 2020)</td>
<td>1.19 [0.99, 1.44]</td>
<td></td>
</tr>
<tr>
<td>IAPv4</td>
<td>0.97 ± 0.05</td>
<td>1.27 ± 0.09</td>
</tr>
<tr>
<td>Sum of contribution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPCC AR6</td>
<td>2.00 [1.52, 2.49]</td>
<td>2.85 [2.41, 3.29]</td>
</tr>
<tr>
<td>(Frederikse et al., 2020)</td>
<td>3.16 [2.78, 3.57]</td>
<td></td>
</tr>
<tr>
<td>IAPv4</td>
<td>2.13 ± 0.06</td>
<td>3.11 ± 0.11</td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPCC AR6</td>
<td>0.33</td>
<td>0.40</td>
</tr>
<tr>
<td>(Frederikse et al., 2020)</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>IAPv4</td>
<td>0.21</td>
<td>0.15</td>
</tr>
</tbody>
</table>

After 2002, the GRACE satellite supported direct observation of barystatic sea level, which is the sum of the sea level change due to the land water storage, Antarctica ice sheet, Greenland ice sheet, and glaciers. The sea level budget can be obtained by comparing altimetry-based GMSL with the barystatic sea level observed by GRACE and the steric sea level. It is evident that the sea level budget can be closed between 2002 and 2015 with ±5 mm residual errors (Fig. 18b). However, after ~2015, the sum of steric and barystatic sea level is smaller than the total sea level rise for all ocean temperature products. Previous
studies have attributed this misclosure to salinity data biases (Barnoud et al., 2021), altimetry data errors (Barnoud et al., 2023), and GRACE data errors (Wang et al., 2021).

The steric sea level inferred from IAPv4 showed lower residual (~5 mm) between 2005–2023 than ISH and EN4 data (10–20 mm), indicating that the temperature data might be partly responsible for lack of closure of sea level budget since ~2015.

Figure 18: (a) The sea level budget from 1960 to 2021. Observed global mean sea level for 1960–2021 and the individual contributions from land water storage, Antarctica,
Greenland and Glaciers (Frederikse et al., 2020). The budget is relative to a 1959–1961 baseline. Here, the Antarctica, Greenland, and Glaciers data are through 2018, and a linear extrapolation is made for 2019–2021. Land water storage is estimated by GRACE after 2018. Altimetry sea level is shown in yellow dashed line for comparison. (b) Sea level budget residual time series since 2005. The residual of GMSL minus barystatic and steric sea level. The seasonal cycle is reduced based on 2005–2015 climatology. A 6–month lowpass filter is applied to reduce the noise.

4. Data availability

IAPv4 global ocean temperature product is available at http://dx.doi.org/10.12157/IOCAS.20240117.002 (Cheng et al., 2024a) and http://www.ocean.iap.ac.cn/.

IAPv4 global ocean heat content product is available at http://dx.doi.org/10.12157/IOCAS.20240117.001 (Cheng et al., 2024b) and http://www.ocean.iap.ac.cn/.

The code used in this paper includes data quality control, and the resultant dataset is available at http://www.ocean.iap.ac.cn/.

5. Summary and Discussion

This paper introduced a new version of the ocean temperature and heat content gridded products and described the data source and data processing techniques in detail. The key technical advances include the new QC, new or updated XBT/MBT/Bottle/APB bias corrections, new ocean temperature climatology, improved mapping approach, and grid-cell ocean volume corrections. These data and technical advances allow a better estimate of long-term ocean temperature and heat content changes since the mid-1950s from the sea surface down to 2000 m. We show that the new data product could better close the sea level and energy budgets than IAPv3. For rates of change, compared with CERES, the IAPv4 also shows a better correlation from 2005 to 2023 than IAPv3.

Despite several marked improvements, issues needing further investigation remain. Although inter-annual and decadal-scale changes of satellite-based EEI and observational OHC are generally consistent, a mismatch remains between EEI and OHC for their month-to-month variation, as the monthly variation of OHC is still much larger than implied by EEI. There are several possibilities, in our opinion: first, there is substantial heat storage and release for land and ice monthly, which needs to be accurately quantified; second, the accuracy of OHC estimate on a monthly basis still needs to be improved for month-to-month variation because of the limited data coverage; third, the EEI observed by CERES also suffers from sampling biases on a monthly basis. Thus, a better understanding of the monthly variation of OHC and EEI is still a research priority. Besides, the failure to close the 2015-2023 sea level budget indicates that the underlying data still has bias problems, which need to be explored and resolved.

Second, the application of CODC-QC in IAPv4 leads to a stronger ocean warming rate in the past decade than WOD-QC used in IAPv3 because WOD-QC removes more positive temperature anomalies than CODC-QC. This could imply that the rate of increase in OHC is still slightly underestimated and deserves an in-depth investigation. Several fundamental questions must be answered: first, are there still real temperature extremes
being removed by CODC-QC, such as in small warm eddies? Are the extremes well
sampled by the current observation system? If not, what is the impact? Moreover, it is clear
that the high latitudes where sea ice occurs are not well sampled and need more attention.

Third, during the development of the data product, we discovered that much metadata
relating to the profiles in the World Ocean Database is missing and that much existing
metadata is incorrect, also giving rise to duplicate profiles, putting a strain on the overall
quality of a database of oceanic observations. More than ever, long-term concerted efforts
are needed to eliminate duplicate profiles and identify and correct missing metadata using
statistical methods, expert control, or machine learning techniques. For example, the
International Quality-Controlled Database (iQuOD) group is coordinating some activities
related to data processing techniques, uncertainty quantification, and improving the overall
quality of ocean data (Cowley et al., 2021).

Furthermore, the quantification of uncertainty for in situ measurements, gridded T/OC
values, and the global OHC estimates need to be improved. IAPv4 only accounts for the
instrumental error and sampling/mapping error. In the future, comprehensive quantification
of other uncertainty sources will be made, including the choice of climatology, vertical
interpolation, XBT/MBT/APB/Bottle corrections, etc. It is also necessary to analyze the
correlation between these error sources. This also helps to understand regions with larger
uncertainty for OHC estimates, which supports the design of the global ocean observing
system.

Author contributions. L.C. has worked on this study’s conceptualization, coordination,
methodologies, and writing the manuscript. Z.T. worked on in situ observation collections,
metadata format, and the automated quality control procedure (CODC-QC) development.
Y.P. has worked on calculating and comparing the OHC annual cycle, the mixed layer
depth, and the MHT among different data sets. V.G. worked on bias correction schemes for
MBT, APB, and bottle data and on developing the automated quality control procedure.
H.Y. worked on the analysis of inter-annual variability. J.D. has worked on OHC trend
calculation and analysis. G.L. worked on SST calculation and its analysis. H. Z. worked on
global energy and sea level budget calculations and analyses. Y.L. and Y.J. worked on the
volume correction. All authors have contributed to formal analysis, data validation, and
editing of the original draft.
Acknowledgement and Funding. The IAP/CAS analysis is supported by the National Natural Science Foundation of China (Grant no. 42122046, 42076202, 42206208, 42261134536), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant no. XDB42040402), the new Cornerstone Science Foundation through the XPLORER PRIZE, DAMO Academy Young Fellow, Youth Innovation Promotion Association, Chinese Academy of Sciences, National Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility” (EarthLab), the Young Talent Support Project of Guangzhou Association for Science and Technology. The calculations in this study were carried out on the ORISE Supercomputer. Some data were collected onboard of R/V Shiyan 6 implementing the Open Research Cruise NORC2022-10+NORC2022-303 supported by NSFC Shiptime Sharing Projects 42149910. NCAR is sponsored by the US National Science Foundation. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making their model output available through the Earth System Grid Federation. The Argo Program is part of the Global Ocean Observing System.

Competing interests. The contact author has declared that none of the authors has any competing interests.

References

Argo: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC).

Gupta, A. S., McPhaden, M. J., Purich, A., & Santoso, A.: Recent intensification of
Fasullo, J. T., and Nerem, R. S.: Altimeter-era emergence of the patterns of forced sea-
level rise in climate models and implications for the future. P. Natl. Acad. Sci., 115,
Frederikse, T., Landerer, F., Caron, L., Adhikari, S., Parkes, D., Humphrey, V. W.,
level rise since 1900. Nature, 584, 393-397, https://doi.org/10.1038/s41586-020-
Ocean Database 2018: User’s Manual., T. E. A.V. Mishonov, NOAA, Silver Spring,
MD., Ed., 2018
Goni, G. J., Sprintall, J., Bringas, F., Cheng, L., Cirano, M., Dong, S., Domingues, R.,
Goes, M., Lopez, H., Morrow, R., Rivero, U., Rossby, T., Todd, R. E., Trinanes, J.,
Zilberman, N., Baringer, M., Boyer, T., Cowley, R., Domingues, Hutchinson, K.,
Than 50 Years of Successful Continuous Temperature Section Measurements by the
Global Expendable Bathythermograph Network, Its Integrability, Societal Benefits,
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality controlled ocean temperature
and salinity profiles and monthly objective analyses with uncertainty estimates. J.
Gouretski, V. and Reseghetti, F.: On depth and temperature biases in bathythermograph
data: Development of a new correction scheme based on analysis of a global ocean
2010.
Gouretski, V., and Cheng, L.: Correction for Systematic Errors in the Global Dataset of
Temperature Profiles from Mechanical Bathythermographs. J. Atmos. Ocean.

