

IAPv4 ocean temperature and ocean heat content gridded dataset

- 3 Lijing Cheng^{1,11*}, Yuying Pan^{1,11}, Zhetao Tan^{1,11}, Huayi Zheng^{1,11}, Yujing Zhu^{1,11}, Wangxu
- 4 Wei^{1,11}, Juan Du¹, Huifeng Yuan^{2,11}, Guancheng Li³, Hanlin Ye¹, Viktor Gouretski¹,
- 5 Yuanlong Li^{4,11}, Kevin E. Trenberth^{5,6}, John Abraham⁷, Yuchun Jin^{4,11}, Franco Reseghetti⁸,
- 6 Xiaopei Lin⁹, Bing Zhang^{4,11}, Gengxin Chen^{10,11}, Michael E. Mann¹², Jiang Zhu^{1,11}
- 7

8 ¹ Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China, 100029.

- 9 ² Computer Network Information Center, Chinese Academy of Sciences, Beijing, 100083.
- 10 ³ Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China
- 11 Sea Ecology and Environment Administration, Ministry of Ecology and Environment,
- 12 PRC, Guangzhou 510611, China.
- ⁴ Institute of Oceanography, Chinese Academy of Sciences, Qingdao, China.
- ⁵ National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307, USA.
- ⁶ University of Auckland, Auckland, New Zealand.
- 16 ⁷ University of St. Thomas, School of Engineering, 2115 Summit Ave., St Paul, MN
- 17 55105, USA.
- 18 ⁸ Italian National Agency for New Technologies, Energy and Sustainable Economic
- 19 Development, S. Teresa Research Center, Lerici 19032, Italy.
- ⁹ Frontier Science Center for Deep Ocean Multispheres and Earth System and Physical
- 21 Oceanography Laboratory, Ocean University of China, Qingdao, China.
- 22 ¹⁰ State Key Laboratory of Tropical Oceanography, South China Sea Institute of
- 23 Oceanology, Chinese Academy of Sciences, Guangzhou, China
- 24 ¹¹ University of Chinese Academy of Sciences, Beijing, China.
- ¹² Dept. of Earth and Environmental Science, University of Pennsylvania, Philadelphia PA,
- 26 USA
- 27
- 28 Correspondence to: Lijing Cheng (chenglij@mail.iap.ac.cn)
- 29

30	Abstract. Ocean observational gridded products are vital for climate monitoring, ocean
31	and climate research, model evaluation, and supporting climate mitigation and adaptation
32	measures. This paper describes the 4 th version of the Institute of Atmospheric Physics
33	(IAPv4) ocean temperature and ocean heat content (OHC) objective analysis product. It
34	accounts for recent developments in quality control (QC) procedures, climatology, bias
35	correction, vertical and horizontal interpolation, and mapping and is available for the upper
36	6000 m (119 levels) since 1940 (more reliable after ~1957) for monthly and $1^{\circ} \times 1^{\circ}$
37	temporal and spatial resolutions. The IAPv4 is compared with the previous version, IAPv3,
38	and to the other data products, sea surface temperatures (SSTs), and satellite observations.
39	It has a slightly stronger long-term upper 2000 m OHC increase than IAPv3 for 1955-
40	2023, mainly because of newly developed bias corrections. IAPv4 OHC 0-2000 m trend is
41	also higher during 2005-2023 than IAPv3. The first level of IAPv4 is consistent with
42	independent SST datasets. The month-to-month OHC variability for IAPv4 is desirably
43	less than IAPv3 and other OHC products investigated in this study; annual variations are
44	consistent with the net energy imbalance at the top of the atmosphere, and the sea level
45	budget can be closed within uncertainty. The gridded product is freely accessible at:
46	http://dx.doi.org/10.12157/IOCAS.20240117.002 for temperature data (Cheng et al.,
47	2024a) and http://dx.doi.org/10.12157/IOCAS.20240117.001 for ocean heat content data
48	(<u>Cheng et al., 2024b)</u> .
49	

50 **1. Introduction**

51 Observational gridded products are essential for understanding the ocean, the

52 atmosphere, and climate change; they support policy decisions and social-economy

53 developments (Abraham et al., 2022; Abraham and Cheng, 2022; Cheng et al., 2022a). For

54 instance, many of the climate indicators used in the Working Group I report of the 6th

55 Intergovernmental Panel on Climate Change (IPCC-AR6-WG1) are gridded products

56 (Gulev et al., 2021; IPCC, 2021), mainly because the raw oceanic data suffer from

57 inhomogeneous data quality and irregular and incomplete data coverage (Abraham et al.,

58 2013; Cheng et al., 2022a; Meyssignac et al., 2019).

2

59	As more than 90% of the Earth's energy imbalance (EEI) in the past half-century has
60	accumulated in the ocean, increasing ocean temperature (T) and ocean heat content (OHC)
61	are essential climate variables for monitoring, understanding, and projecting climate
62	change (Hansen et al., 2011; Trenberth, 2022; Trenberth et al., 2009; von Schuckmann et
63	al., 2020). OHC also impacts air-sea and ice-sea interactions and thus exerts a considerable
64	influence over the other components of the climate system. It provides critical feedback
65	through energy, water, and carbon cycles (Cheng et al., 2022a; Trenberth, 2022; von
66	Schuckmann et al., 2016). Substantial changes in ocean temperatures also profoundly
67	impact ocean biogeochemical processes and ecosystems and are critical for ocean health
68	and human society (Bindoff et al., 2019; Cheng et al., 2022a).
69	Many gridded T/OHC datasets have been produced by independent groups, and most
70	of them are updated annually or more frequently (Cheng et al., 2022a; Good et al., 2013;
71	Hosoda et al., 2008; Ishii et al., 2017; Levitus et al., 2012; Li et al., 2017; Meyssignac et
72	al., 2019; Roemmich and Gilson, 2009). Most widely-used products are at $1^{\circ} \times 1^{\circ}$
73	horizontal resolution and monthly temporal resolution from near-surface to at least 2000 m
74	depth. Some products utilize all available in situ observations and span at least half a
75	century, prominent examples being the data products compiled by the Institute of
76	Atmospheric Physics (IAP) (Cheng and Zhu, 2016; Cheng et al., 2017) from 1940-present;
77	Japan Meteorological Agency (JMA) (Ishii et al., 2017) from 1955-present; National
78	Centers for Environmental Information (NCEI), National Oceanic and Atmospheric
79	Administration (NOAA) from 1950-present (Levitus et al., 2012); and University of
80	California since 1949 (Bagnell and DeVries, 2021). As Argo data has achieved near-global
81	upper 2000 m open ocean coverage since ~2005, many Argo-based or Argo-only gridded
82	products are available. Examples include gridded products from SCRIPPS after 2004
83	(Roemmich and Gilson, 2009); China Argo Real-time Data Center since 2005 (Li et al.,
84	2017); and Copernicus since 2005 (von Schuckmann and Le Traon, 2011). These products
85	usually span from \sim 2005 to the present for the upper \sim 2000 m. These data benefit from the
86	high quality of Argo data but are not fully resolving polar regions, shallow waters, and
87	regions with complex topography.
88	In 2016, the IAP group provided its first gridded product for the upper 700 m ocean
89	(Cheng and Zhu, 2016) by merging all available observations since 1960. With a revised
90	mapping method and a thorough evaluation process with synthetic observations, an update
91	(IAP version 3, IAPv3) became available in 2017 for the upper 2000 m ocean with data

- 92 since the 1950s (Cheng et al., 2017). The IAPv3 has supported scientific research, climate
- 93 assessment reports, and monitoring practices (Bindoff et al., 2019; Gulev et al., 2021;
- 94 WMO, 2022).

95 After the release of IAPv3, there has been progress with observation data quality

- 96 control and new/updated techniques for temperature data processing and reconstruction.
- 97 For example, Gouretski et al. (2022) found that old Nansen cast bottle data contained
- 98 systematic biases that impacted the T/OHC data before 1990. Revisions are also available
- 99 to the bias corrections for the Mechanical Bathythermographs (MBT) and eXpendable
- 100 Bathythermographs (XBT) data (Cheng et al., 2014; Gouretski and Cheng, 2020), mainly
- 101 impacting the data within 1940–2005. Tan et al. (2023) developed a new quality-control
- 102 system that advances the detection of outliers after accounting for the non-Gaussian
- 103 distribution of local temperatures in determining the local climatological range. The impact
- 104 of inhomogeneous vertical resolution of temperature profiles has been recognized
- 105 previously (Cheng and Zhu, 2014) and received more attention recently (Li et al., 2020)
- 106 with a new vertical interpolation approach (Barker and McDougall, 2020). Upgrading the
- 107 product with new developments is important to better support the follow-on studies on
- 108 climate assessments.
- 109 This manuscript discusses the revisions to the IAP ocean objective analysis product
- 110 (IAPv4) since the publication of the IAPv3 (Cheng et al., 2017). The data and methods are
- 111 introduced in Section 2 and the results are presented in Section 3, with analyses of the
- 112 character of the IAPv4 on regional and global scales and at various time scales. The EEI
- and sea level budgets based on the new data product are also investigated. A summary and
- 114 discussion are provided in Section 4, with some remaining issues and outlooks being
- 115 discussed.
- 116

117 2. Data and Methods

- 118 2.1 Data source
- 119 The majority of the *in situ* measurements used to create the data product come from
- 120 the World Ocean Database (WOD), downloaded in September 2023. Data from all
- 121 instrument types are used, including XBTs (Goni et al., 2019), Argo (Argo 2000),
- 122 Conductivity/Temperature/Depth profilers (CTDs), MBTs, bottles, moorings, gliders,
- 123 Animal Borne Ocean Sensors (McMahon et al., 2021) and others (Boyer et al., 2018) (Fig.

- 124 1). There is a total of 17,634,865 temperature profiles from January 1940 to September
- 125 2023 (Fig. 1).
- 126 Argo data are processed following the recommendations of the Argo community.
- 127 Adjusted data are used where applicable. Both Delayed- and Real-Time Argo data have
- 128 been incorporated in IAPv4. As Real-Time Argo data have only passed automated, simple
- 129 QC tests in real-time, these data may still contain temperature, pressure, and salinity values
- 130 affected by unknown errors. However, through a sensitivity study, Cheng (2024) indicated
- 131 that including Real-Time Argo data does not bias the OHC calculation for the IAP
- 132 analysis. Nevertheless, IAP data are updated frequently (every 1-3 months): each time the
- 133 updated Argo data is used, the T/OHC fields are recalculated following the
- 134 recommendation by the Argo group (Wong et al., 2020). The data from the Argo floats in
- 135 the "grey list" have been removed from the calculation (<u>https://data-argo.ifremer.fr/</u>).
- 136 To complement the WOD with relatively less data in the Arctic and coastal regions of
- 137 the Northwest Pacific, this paper also uses data from other sources. There are a total of
- 138 85,990 additional temperature profiles, about 0.50% of the data, which is expected to
- 139 improve the reconstruction in these data-sparse regions (compared with IAPv3 and other
- 140 products).
- 141 The *in situ* data have been processed as described in a flow chart in Figure 2. In the 142 following sections, the key techniques of data processing are introduced.
- 143

151

1!

153 Figure 2: Flow chart of the IAP data reconstruction processes from the raw in situ

154 observations to gridded data (IAPv4) and OHC estimates. The ellipses indicate the data

155 (including data for error estimates), and the rectangle boxes show the techniques used to

- 156 process the data.
- 157

158 2.2 Data quality control

The quality control (QC) procedure aims to identify spurious measurements (including 159 160 outliers) and data with incorrect metadata through a set of quality checks and ensures the quality of the in situ dataset (Tan et al., 2022). There is growing evidence that QC is 161 critical for accurate temperature/OHC reconstruction, as shown by Tan et al., (2023) where 162 two different QC systems produced a difference of approximately 15 % (~7 %) in the OHC 163 164 0-2000 m trend from 1955 to 1990 (2005-2021). Unfortunately, the impact of QC on OHC estimates has not been evaluated in previous community-assessments on T/OHC 165 uncertainty (Boyer et al., 2016; Lyman et al., 2010). In this study, the QC procedure 166 167 follows the CAS-Ocean Data Center (CODC) Quality Control system, named CODC-QC (Tan et al., 2023), where only the "good" data (flag=0) are used. 168 169 The CODC-QC system (Tan et al., 2023) has the following strengths, which make it particularly suitable for T/OHC reconstruction: 170 1) A new local climatological range is defined in this CODC-QC system to identify 171 172 the outliers. Unlike many existing QC procedures, no assumption is made of a Gaussian distribution law in the new approach, as the oceanic variables (e.g., temperature and 173

salinity) are typically skewed. Instead, the 0.5 % and 99.5 % quantiles are used as 174 thresholds in CODC-QC to define the local climatological parameter ranges; 175 176 2) Local climatological ranges change with time to account for the long-term trends of 177 ocean temperature accompanied by more frequent extreme events. Previously, the use of 178 the static local ranges tended to remove too many "extreme events" associated with climate 179 change in recent years that were actually real, leading to a QC-procedure related bias in the 180 gridded dataset and OHC estimate (Tan et al., 2023); 181 3) In addition, local climatological ranges for the vertical temperature gradient are constructed to account for the variability of 'vertical shape', increasing the ability of the 182 183 scheme to identify spurious profiles; 184 4) The QC procedure is instrument-specific, accounting for characteristics inherent to 185 particular instrumentation types. For example, XBT digital recording systems are allowed 186 to continue to record beyond the rated terminal depth suggested by manufacturers (T7/DB probes below 760 m; T4/T6 below 460 m; T5 below 1830 m). Below the rated maximum 187 188 depth, the XBT wire often breaks, leading to a characteristic change in recorded 189 temperature values. The new QC procedure effectively identifies such profiles; 190 5) The thorough evaluation of the QC procedure performance and the application of the QC procedure to the manually QC-ed datasets demonstrated the effectiveness of the 191 192 proposed scheme in removing spurious data and minimizing the percentage of mistakenly 193 flagged good data. 194 Being applied to the entire temperature profile dataset the CODC-QC procedure 195 identifies 6.22 % of all temperature measurements as outliers. The rejection rates (definition follows Tan et al., 2023) vary among instrumentation types (3.73 % for CTD, 196 1.97 % for Argo, 12.06 % for XBT, 4.93 % for MBT, 6.54 % for bottle, 5.92 % for APB, 197 198 4.54 % for DRB, 2.55 % for MRB). The overall percentage of outliers decreases over time from ~5 % in the 1940s to ~2.5 % in the 2020s, reflecting the progressive improvement of 199 200 the instrumentation (Fig. 3). A rejection rate maximum (~12 %) during 2000~2010 is linked to the XBT data, which are especially abundant in the 800-1100m layer and are 201 202 characterized by higher rejection rate below the maximum depth (Tan et al., 2023). The 203 generally higher rejection rate below 4000 meters is related to the gross errors (such as 204 measurements cooler than -2°C, big spikes, etc.) and the occurrence of the constant values 205 (observations don't change with depth). For example, the higher rejection rate within 2008-206 2010 below 4000 meters is because of the gross errors in the glider data.

207

Figure 3: The rejection rate (%) after CODC-QC as a function of calendar year and
 depth.

210

211 **2.3 Bias correction**

212 It is well known that data from several instrument types can exhibit biases both in 213 temperature and depth. Temperature profiles obtained using XBTs and MBTs provide an 214 example of biased data, especially because of uncertainties in the depth of measurement. 215 Gouretski and Koltermann (2007) demonstrated their significant impact on the magnitude 216 and variability of the global OHC estimates. That study triggered a series of publications 217 where different bias correction schemes have been suggested for XBT (Gouretski and 218 Reseghetti, 2010; Abraham et al., 2013; Cheng et al., 2016; Levitus et al., 2009; Wijffels et al., 2008), MBT (Gouretski and Cheng 2020; Levitus et al., 2009) and other instruments 219 220 (Fig. 2). In the compilation of IAPv4, newly developed bias correction schemes are 221 applied. 222 The XBT bias was found to be as large as ~ 0.1 °C before 1980 on the global 0–700 m 223 average, diminishing to less than 0.05 °C after 1990 (Gouretski and Koltermann 2007; 224 Wijffels et al., 2008). Here, we use an updated XBT bias correction scheme (Cheng et al., 225 2014) to correct both depth and temperature biases in XBT data, following the community 226 recommendation (Cheng et al., 2016; Goni et al., 2019). The depth and temperature biases

227 depend on ocean temperature, probe type, and time. An inter-comparison among several

correction schemes rated the CH14 scheme the most successful (Cheng et al., 2018). Using 228 229 XBT and collocated CTD data, we updated the CH14 scheme by re-calculating bias corrections between 1966-2016 and extending them for the years 2017 to 2023. 230 231 Comparison with collocated reference CTD profiles recently revealed significant 232 systematic biases in the old hydrographic profiles obtained by means of Nansen bottle 233 casts (Gouretski et al., 2022). Both depth and temperature measurements of bottle casts 234 were found to be biased, and the proposed correction scheme was also implemented in 235 IAPv4. The thermal bias is related to the time needed to bring the mercury thermometers in 236 equilibrium with the ambient temperature after the completion of the hydrographic cast. 237 The depth bias indicates an overestimation of the bottle depth due to the wire's deviation 238 from the vertical position and is mostly related to the hydrographic casts where the 239 thermometrical method of sample depth determination was not used. The correction 240 scheme includes a constant thermal bias of -0.02 °C and a depth- and time-variable depth 241 bias. 242 The MBT bias is as large as 0.28 °C before 1980 for the global average and reduces to less than 0.18 °C after 1980 for the 0~200 m average. IAPv3 used (Ishii and Kimoto, 2009) 243 244 (IK09) scheme to correct MBT bias, while a new scheme proposed by (Gouretski and 245 Cheng, 2020) (GC20) is adopted in IAPv4. This shift is made because our assessment 246 indicates the under-correction of MBT bias by the IK09 scheme within the upper 120 m 247 and over-correction in the deeper layer, whereas GC20 corrects both depth and temperature biases. GC20 also found the MBT bias to be country-dependent, explained in terms of 248 different instrumentation characteristics and working procedures. Therefore, the time-249 250 varying bias corrections are applied separately for the MBT profiles obtained by ships 251 from the United States, Soviet Union/Russia, Japan, Canada, and Great Britain. Data from 252 all other countries are corrected using a globally averaged correction. 253 Finally, thermal biases were recently reported for the data obtained by different kinds of data loggers attached to marine mammals (APB). Gouretski et al., (2024) analysed 254 255 temperature profiles obtained between 2004 and 2019 in the high and moderate latitudes of 256 both hemispheres. Comparison with the collocated reference CTD and Argo float data 257 revealed a systematic negative thermal offset (average value -0.027 °C) for mammal 258 temperature profiles from SRDL (satellite-related data loggers). For the less accurate data 259 from TDR (Temperature-Depth-Recorders), the comparison revealed a small positive temperature bias of 0.02 °C and the depth (pressure) bias indicating depth overestimation. 260

261

262 2.4 Climatology

263	For IAP and other data product generators, horizontal interpolation (mapping) is
264	applied on a temperature anomaly field after removing a monthly climatology; thus, a pre-
265	defined climatology field with an annual cycle is mandatory (Fig. 2). The accuracy of the
266	climatology field is one of the key sources of uncertainty in reconstruction because the
267	error in climatology will propagate into the anomaly field, impact the spatial dynamical
268	consistency, and the accuracy of the reconstruction (Cheng and Zhu, 2015; Lyman and
269	Johnson, 2014).
270	In IAPv4, the adjustive mapping procedure (see below) has been applied to
271	reconstruct the climatology field (Table 1). The merit of using IAP mapping for
272	climatology is its ability to better represent the spatial anisotropy of temperature variability
273	(non-Gaussian distribution). Unlike IAPv3, where the 1990–2005 reference period was
274	used, IAPv4 uses data between 2006 and 2020 to construct 12 monthly climatologies,
275	taking advantage of more reliable data combined with better and more homogeneous
276	spatial and temporal coverage in the last two decades (Table 1). Following the
277	recommendation in Cheng and Zhu, (2015), a relatively short period of 15-year is used
278	because climatology constructed with longer period of data will result in different baselines
279	at different locations (i.e., the baseline shifted to earlier years in the middle latitudes of the
280	North Hemisphere and the baseline shifted to more recent years in the Southern
281	Hemisphere) and this inconsistency will violate the spatial structure of the anomaly field
282	(Cheng and Zhu, 2015). Such a choice has been adopted by recent developments from
283	other groups, such as Li et al., (2022).
284	IAPv4 used an 800 km influencing radii in climatology reconstruction, smaller than
285	the 20° for IAPv3, to more properly account for the rapid change of temperatures with
286	distance. There is a trade-off between data availability and the size of the influence radius.
287	Using radii smaller than 500 km does not ensure a global fractional coverage (defined as
288	the fraction of the total ocean area obtained by the mapping method) because of data
289	sparseness (Cheng, 2024). As our tests suggest, using 500~800 km results in very similar
290	reconstructions of climatology, therefore, 800 km is adopted.
291	

292 2.5 Vertical interpolation

293	The vertical resolution of ocean temperature profiles changed dramatically over time
294	associated with instrument evolution and the increase of data storage capability. For
295	instance, the global mean vertical resolution at 500 m level changed from ~ 100 m in the
296	1960s to less than 10 m during the 2010s (Li et al. 2020). Vertical interpolation of the raw
297	profiles on standard levels is a critical process (Fig. 2): Cheng and Zhu (2014) indicated
298	that the use of linear or spline vertical interpolation methods can bias the temperature
200	reconstruction and OHC estimation (Barker and McDougall 2020; Li et al. 2020; Li et al.
300	2022) IAPy3 used the (Reiniger and Ross 1968) (RR) method Recently Barker and
301	McDougall (2020) proposed a new approach using multiple Piecewise Cubic Hermite
303	Internolating Polynomials (PCHIPs) to minimize the formation of unrealistic water masses
202	by the interpolation procedure. The limitation of this method is that salinity data are
204	needed for interpolation
304	
305	Because the largest difference between interpolation methods is found mostly for the
306	low-resolution profiles (e.g., old Nansen casts), in practice, extremely low vertical
307	resolution profiles had to be removed to reduce the uncertainty in interpolation. In IAPv4,
308	this procedure is optimized compared to IAPv3, and only parts of profiles with a sufficient
309	vertical resolution are used. The thresholds for the vertical resolution are empirically set by
310	50 m in the upper 200m, 200m between 200 m and 1000 m, 500 m between 1000 m and
311	2000 m, and 600m between 2000 m and 6000 m. As no interpolation method can
312	adequately interpolate temperature for the vertical resolution beyond these thresholds,
313	interpolation is not performed in such cases to avoid errors (these extreme low-resolution
314	data are not used in further processing). Under this limitation for IAPv4, we still apply the
315	RR method for temperature profiles.
316	Finally, IAPv4 extends the set of standard vertical levels with a total of 119 levels
317	from 1 m to 6500 m (79 levels within the upper 2000 m) compared to 41 levels in IAPv3
318	between 1 m and 2000 m (Table 1). The increase in vertical resolution is critical for
319	accurately representing the mixed layer, as investigated below.
320	
321	2.6 Grid average and mapping
322	The anomaly profiles are obtained by subtracting the monthly climatology from the
323	vertically interpolated profiles. These anomalies are then averaged (arithmetic mean) into a
324	$1^{\circ} \times 1^{\circ}$ grid at each standard level ($1^{\circ} \times 1^{\circ}$ gridded average field) (Fig. 2). Due to the
325	general data sparsity variable time windows (larger than one month) are used for monthly

reconstructions to ensure a truly global analysis. This process takes advantage of the 326 327 persistence of anomalies, especially in the deep ocean, and thus is physically grounded. Specifically, after 2005, data within a three-month window are merged to provide a 328 329 monthly reconstruction for each layer of the upper 1950 m. Before 2005, a time-varying and depth-varying time window is used, and it is generally smaller in the upper ocean and 330 wider in the deeper ocean. Below 2000 m, a 5-year window is adopted. 331 Mapping interpolates the gridded (e.g., box-averaged) observations horizontally into a 332 333 spatially complete map (Fig. 2) because not all $1^{\circ} \times 1^{\circ}$ boxes are filled with data. (Fig. 2). IAPv4 adopted a similar mapping approach (Ensemble Optimal Interpolation with dynamic 334 335 ensemble: EnOI-DE) as in IAPv3 introduced in Cheng and Zhu (2016) and Cheng et al., 336 (2017) but with the following modifications: 337 1) the largest influence radius has changed from 20° in the upper 700 m (25° at 700– 338 2000 m) in IAPv3 to 2,000 km in the upper 700 m (25,000 km at 700-6000 m) in IAPv4, to account for the reduced distance between two longitudes from tropics to the polar 339 340 regions. This change mainly helps to improve the reconstruction in the high-latitude 341 regions; 2) The three iterative runs are taken to effectively bring in different scales of 342 343 variability with influencing radius changing from 2,000 km (25,000 km at 700-6000 m) to 344 800 km and 300 km, respectively; 345 3) For each month, IAPv3 used 40 model simulations (historical runs with real 346 forcings) from the Coupled Model Intercomparison Project phase 5 (CMIP5) to provide a 347 flow-dependent ensemble, which is then constrained by observations to provide optimized spatial covariance. IAP mapping uses model-based covariance because we argue that 348 spatial covariance can never be satisfactorily parametrized by some simple basic functions 349 350 (such as Gaussian) given its complexity. With model-based, flow-dependent, and dynamically-consistent covariance, the IAP mapping provides a more realistic 351 352 reconstruction than other approaches based on Gaussian-based parameterized covariance, 353 as evaluated by many studies (Cheng et al., 2017; Cheng et al., 2020; Dangendorf et al., 354 2021; Nerem et al., 2018). 355 4) The observation error variance (R), which represents the error of the observations, is updated in IAPv4 as follows. R consists of both the instrumental error (Re) due to 356 357 inaccuracy and the representativeness error (**Rr**) due to the need to represent the spatial (at

- 1° by 1° and 1 m standard grid depths) and temporal (1 month) averages from a limited
- numbered of observations (Cheng and Zhu, 2016):

360 **R**= **Re** + **Rr** = $(\sum_{1}^{M} Ei)/M + \sigma^{2}/M$,

where M observations exist for a given grid cell. Re in each grid cell is set to the mean 361 of the typical precision of the different instruments contributing data in the cell, which is 362 set according to IQuOD (International Quality-Controlled Ocean Database) specification 363 (Cowley et al., 2021). σ^2 represents the variance of the various temperature measurements 364 365 against the monthly mean value. The data from 2005 to 2022 are used to calculate σ^2 in 366 each grid because of greater data abundance and quality compared to earlier times. As the representativeness error (Rr) is expected to be flow-dependent (i.e., the error is 367 expected to be higher in areas with a large gradient of the flow speed and regions of higher 368 variability), more observations are required to represent the mean value. Figure 4 shows a 369 370 larger variance (σ^2) in the boundary-current regions and near the Antarctic Circumpolar 371 Current (ACC) in the upper ocean (e.g., 10 m, 200 m, 500 m). At 200 m, it shows a larger 372 σ^2 in the Western Pacific Ocean, corresponding to the large thermocline variations at this layer. Below 1000 m, larger σ^2 along the ACC frontal regions and in the North Atlantic 373 374 Ocean occur because of a stronger mixing and convection in these regions. 375 The uncertainty in the derived gridded reconstruction is also based on the EnOI 376 framework formulated by Cheng and Zhu, (2016). The uncertainty accounts for 377 instrumental, sampling and mapping errors. Other error sources, including the choice of climatology, vertical interpolation, bias corrections, and QC, are not considered in this 378 379 uncertainty estimate. Therefore, a more thorough uncertainty quantification method is 380 needed, and this is under development in a separate study.

Table 1. General information on IAPv4 and IAPv3 data products.

	IAPv3	IAPv4
Horizonal resolution	Global $(1^{\circ} \times 1^{\circ})$	Global $(1^{\circ} \times 1^{\circ})$
Vertical levels	41 levels from 1 m to 2000 m (1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 2000)	119 levels from 1 m to 6000 m (1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, 1300, 1350, 1400, 1450, 1500, 1550, 1600, 1650, 1700, 1750, 1800, 1850, 1900, 1950, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900, 4000, 4100, 4200, 4300, 4400, 4500, 4600,

		4700, 4800, 4900, 5000, 5100, 5200,	
		5300, 5400, 5500, 5600, 5700, 5800,	
		5900, 6000)	
Time period and	1940–2022 (reliable data after 1955),	1940-present (reliable data after 1955),	
resolution monthly		monthly	
Quality-control	WOD (Garcia et al., 2018)	CODC-QC (Tan et al., 2023)	
Vertical	RR (Reiniger and Ross, 1968)	RR (Reiniger and Ross, 1968)	
interpolation	interpolation	interpolation	
Climatology	IAP climatology: simple gridded average and then spatial interpolation with distance-weighted average	Improved IAP reconstruction with EnOI approach	
XBT bias correction	CH14 (updated in 2018)	CH14 (revised and updated in 2023)	
MBT bias correction	IK09 (Ishii and Kimoto, 2009)	GC20 (Gouretski and Cheng, 2020)	
APB bias None		GCR24 (Gouretski et al., 2024)	
Bottle bias None		GCT23 (Gouretski et al., 2022)	
Mapping	EnOI-DE with influencing radius of 20, 8, 3 degrees, iteratively.	EnOI-DE with influencing radius of 2000, 800, 300 km, iteratively. Representative error updated with 2005- 2022 observations.	
Uncertainty	Given by EnOI framework accounting for instrumental error and horizonal sampling/mapping error	Given by EnOI framework accounting for instrumental error and horizonal sampling/mapping error	
DOI	/	YES	

386

387 2.7 OHC calculation and volume correction

388	Based on the gridded temperature reconstruction (Table 1), OHC in each grid is
389	calculated as OHC $(x, y, z) = c_p \iiint_{V(x, y, z)} \rho T dV(x, y, z)$. following TEOS-10 standards,
390	where c_p is a constant of ~ 3991.9 J (kg K) ⁻¹ according to the new TEOS-10 standard
391	formulation as conservative temperature and absolute salinity are used, ρ is potential
392	density in kg m ⁻³ , and T is conservative temperature measured in degrees Celsius (here it
393	is anomaly relative to the 2006–2020 baseline) (Cheng et al., 2022a).
394	As OHC is an integrated metric over a specific ocean volume, properly identifying
395	ocean volume is critical, especially in shallow waters. Previous studies found a 10–20 $\%$

- difference in the OHC trend in recent decades between different land-ocean masks (von 396 Schuckmann and Le Traon, 2011). Specifically, in marginal sea areas with complex 397 topography, $1^{\circ} \times 1^{\circ} \times \Delta z$ grid boxes (where Δz is the depth range of the grid box) near 398 399 coasts and islands typically cover both ocean and land areas but are assigned to represent land or ocean only. Thus, the gridded ocean temperature datasets are subjected to errors 400 from inaccurate land-sea attribution. Here, we offer a volume correction (VC) for these 401 402 grid boxes to improve the OHC estimate, as follows. 403 For each $1^{\circ} \times 1^{\circ} \times \Delta z$ grid box, we introduce a VC factor (denoted as F_{VC}) to correct the OHC values: OHC_{VC} (x, y, z) = OHC (x, y, z) × F_{VC} (x, y, z). First, we assume the 404 seawater volume distribution in 1 arc-minute topographic data of ETOPO1 as "truth". No 405 correction is needed if a box is assigned to ocean according to ETOPO1 data, thus, $F_{VC}=1$. 406 If a fraction of a $1^{\circ} \times 1^{\circ} \times \Delta z$ grid box is land according to ETOPO1 and IAP data includes 407 T/OHC values, the Fvc is represented by the fraction of the ocean volume in this box 408 (illustrated in Fig. 5), and the volume for OHC calculations can be corrected with $F_{VC}(i)$. In 409 410 a grid box, if there is no IAP data (i.e., it is land according to the IAP mask), but this box contains some ocean volume according to ETOPO1 data, we define $F_{VC}(a)$ again as the 411 fraction of the ocean volume in this box, and then this Fvc(a) is added to the adjacent grid 412 413 boxes where there are values in IAP data. If all the adjacent grid boxes contain no data, the 414 volume is equally redistributed to the diagonal boxes (Fig. 5). The volume is discarded if 415 there is no data in all adjacent and diagonal boxes. With this approach, the VC factor in each grid box is a sum of two components: a 416 417 local adjustment $F_{VC}(i)$ and a redistribution from the adjacent grids:
- 418 $F_{VC}(a)$: $F_{VC} = F_{VC}(i) + F_{VC}(a)$,

To avoid misidentification of sea ice, we performed VC only on the global grid points within 60 °S to 60 °N. Eventually, we obtained a three-dimensional FVC that fits the IAP grids (119 × 360 ×180; depth coverage to 6000 m) and used it to compute OHC. The VC applied to ~15% of all the 1° × 1° × Δz grid boxes of IAPv4 ocean grid boxes (with F_{VC} \neq 1) for the entire 0-6000 m ocean and ~10% grid boxes of the upper 2000 m.

424

425 Figure 5: An example explaining the Volume Correction algorithm. (a) Bathymetry

426 derived from ETOPO1. (b) Bathymetry in IAPv4 analysis.

427

428 **2.8 Independent datasets for comparison and evaluation**

429 Four Sea Surface Temperature (SST) datasets are used to evaluate the upper-most

430 layer (1 m) of IAPv4, including Extended Reconstructed SST version 5 (ERSST5) (Huang

- 431 et al., 2017); Japan Meteorological Agency Centennial Observation-Based Estimates of
- 432 SSTs version 1 (COBE1) (Ishii et al., 2005), and its version 2: COBE2 (Hirahara et al.,
- 433 2014); Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST) (Rayner et
- 434 al., 2003). The anomalies relative to a 2006-2020 average were computed by removing the
- 435 climatology. Measurements of SST are made in situ by means of thermometers or retrieved
- 436 remotely from infrared and passive microwave radiometers on satellites (Kennedy 2014;
- 437 O'Carroll et al., 2019). Satellite SST observations began in the early 1980s. In situ SST

observations go back to the 19th century and involve many different measurement methods, 438 including wooden and later insulated metal buckets to collect water samples, engine room 439 440 inlet measurements, and sensors on moored and drifting buoys (Kennedy 2014). The 441 subsurface temperatures are collected as "profiles" which contain multiple measurements at discrete vertical levels. Because of the differences in observation systems, SSTs are 442 443 fundamentally different in their temporal and spatial coverage and temporal extent compared to subsurface observations on which OHC estimates rely. SST measurements 444 445 also have different uncertainty sources and error structures; thus, the two systems are 446 typically treated as independent data sources and have been used for cross-validation (Gouretski et al., 2012). 447 448 The capability of the new product to close the sea level budget and the Earth's energy budget also provides tools for validation. A superior dataset should be capable of closing 449 450 the sea level and the Earth's energy budgets. The total sea level change has been monitored 451 via satellite altimetry since 1993 (from the University of Colorado 452 https://sealevel.colorado.edu/). The ocean mass change is derived from JPL RL06.1Mv3 453 Mascon Solution GRACE and GRACE-FO data since 2002 (Watkins et al., 2015). For 454 long-term total sea level change since the 1950s, we use a tide-gauge-based reconstruction 455 (Frederikse et al., 2020). During the same period, the estimates of the Greenland ice sheet, 456 Antarctic ice sheet, land water storage, and glacier ice melt contributions from Frederikse 457 et al., (2020) are used to derive ocean mass change. 458 For the energy budget, the ice, land, and atmosphere heat content changes are from 459 (von Schuckmann et al., 2023) from 1960 to the present. Because of the less reliable data 460 before the 1990s for land, sea ice and ice sheets, the other set of land-atmosphere-ice data from 2005-19 is used as in Trenberth, (2022) to investigate the recent changes. The net 461 radiation change at the top of the atmosphere is based on CERES EBAF data from Loeb et 462 al., (2021) and Loeb et al., (2018) and Deep-C data from the University of Reading (Liu 463 464 and Allan, 2022; Liu et al., 2017). Several gridded ocean T/OHC gridded products are used here for inter-comparison, 465 including the IAPv3 (Cheng et al., 2017), the EN4 ocean objective analysis product from 466 the UK Met Office Hadley Centre (Good et al., 2013); the ocean objective analysis product 467 (Ishii et al., 2017) (termed "ISH" hereafter) from JMA, and an Argo-only gridded product 468 from SCRIPPS (Roemmich and Gilson, 2009) (termed "RG" hereafter). 469

470

2.9 Trend calculation and uncertainty estimates

472	The trends in this study have been estimated by a LOWESS approach (Cheng et al.,		
473	2022b), i.e., we apply a locally weighted scatterplot smoothing (LOWESS) to the time		
474	series (25-year window, equal to an effective 15-years smoothing), and then the OHC		
475	difference between the first and the end year is used to calculate the trend. This approach		
476	provides an effective method to quantify the local trend by minimizing the impact of year-		
477	to-year variability and start/end points.		
478	Throughout this paper, the 90 % confidence interval is shown. The uncertainty of		
479	trend also follows the approach in Cheng et al., (2022a) based on a Monte Carlo		
480	simulation. First, a surrogate OHC series is formed by simulating a new residual series		
481	(after removing the LOWESS smoothed time series) based on the AR(1) process and		
482	adding it to the LOWESS line. Then a LOWESS trendline is estimated for each surrogate.		
483	This process is repeated 1000 times, and 1000 trendlines are available. The 90 $\%$		
484	confidence interval for the trendline is calculated based on \pm 1.65 times the standard		
485	deviation of all 1000 trendlines of the surrogates. Secondly, the uncertainty in the rate of		
486	the OHC is estimated by the 1000 LOWESS trendlines: 1) calculating the rate based on the		
487	difference between the first and last annual mean value of the LOWESS trendline in a		
488	specific period; 2) calculating \pm 1.65 times the standard deviation of the 1000 rate values.		
489			
490	3. Results		
491	3.1 Climatological annual cycle		
492	The annual cycle of the OHC above 2000 m of IAPv4 is compared with IAPv3, ISH,		
493	EN4, and RG (Fig. 6 and Fig. 7) for 2006–2020. There is a consistent annual cycle among		
494	different datasets for the global and hemispheric oceans. Globally, the ocean releases heat		
495	from boreal spring to autumn and accumulates heat from boreal autumn to spring, which is		
496	dominated by the southern hemisphere due to its larger ocean area (Fig. 6). The two		
497	hemispheres show opposite annual variations in OHC, associated with the annual change		
498	of solar radiation and different distribution of land and sea. For the global OHC above		
499	2000 m, IAPv4 shows a positive peak in April and a dip in August, with the magnitude of		
500	OHC variation of 60.4 ZJ for IAPv4 (66.9 ZJ for IAPv3), consistent with other datasets:		

- 501 53.2 ZJ for ISH, 58.1 ZJ for EN4, 69.2 ZJ for RG (where $1 \text{ ZJ} = 10^{21} \text{ J}$).
- 502 There are some unphysical variations in the OHC annual variations for IAPv3 (blue
- 503 lines). For example, the global OHC shows large spikes in January and December, and a

- 504 big shift from September to October, by contrast, the other three data products show much
- 505 smoother changes (Fig. 6a). The IAPv3 Arctic OHC (north of 69.5 °N) shows different
- 506 phase change compared with the other datasets together with a big shift from September to
- 507 December, and the magnitude of variability is much larger in IAPv3 than other datasets
- 508 (Fig. 6d). The improvement in IAPv4 is mainly because of the methodology
- 509 improvements: IAPv3 used 1990-2005 data to construct climatology which suffered from
- 510 errors related to sparse data coverage, use of "degree distance" instead of "km distance",
- and other error sources. Therefore, the IAPv4 analysis presents a physically tenable OHC
- 512 seasonal variation.

- 517 **69.5°N.** Five different data products are presented, including IAPv4 (red), IAPv3 (blue),
- 518 ISH (purple), EN4 (green), and RG (orange).
- 519
- 520 IAPv4 OHC data shows significant improvements in the Arctic region, reflected in
- 521 both the spatial distribution and seasonal variation of OHC. In IAPv3, the maximum upper

- 522 2000 m OHC change occurs during December, however, for IAPv4, the maximum
- 523 amounts to 2.9 ZJ in October and decreases to a minimum of -3.4 ZJ in April. The spread
- 524 of the OHC annual cycle in the Arctic region across different datasets is reduced from 5.2
- 525 ZJ to 2.5 ZJ, indicating a smaller uncertainty. The spatial OHC anomaly distribution in the
- 526 Arctic region of the IAPv4 is more spatially homogeneous than IAPv3, which seems not
- 527 physical (Fig. 7). IAPv4 displays a consistent seasonal variation north of 69.5 °N mainly
- 528 because of the changes of the influencing radius from "degrees" to "kilometers".

530 531

Figure 7: Seasonal distribution of monthly OHC anomalies in the upper 2000 m in March, June, September, and December relative to the 2006 – 2020 annual mean.

The top and lower panels are for IAPv3 and IAPv4 products, respectively.

532 533

534 3.2 Mixed layer depth

535 Mixed layer depth (MLD) provides a crucial parameter of upper ocean dynamics 536 relevant for upper-deeper ocean and air-sea interactions. Spatial distributions of the MLD 537 in January and July are shown in Fig. 8 for IAPv4, based on criteria of $\Delta T = 0.2$ °C 538 temperature for the 10 m depth temperature. As expected, the seasonal variations of the 539 MLD are generally opposite in the northern and southern hemispheres. The MLD shows a

- much stronger seasonal variation in the subtropics and midlatitudes than in other regions 540 (including the tropics), which is manifested as shallower MLD (~20 m) in summer due to 541 strong surface heating that increases stratification, and deeper MLD in winter (>70 m) 542 543 because of surface cooling and increased surface wind creating stronger mixing. In the north hemisphere, the maximum MLD occurs during the wintertime in the 544 subpolar North Atlantic deep water formation regions (40 °N ~ 65 °N), with values over 545 500 m in the Norway Sea. In comparison, in the midlatitudes, the maximum of MLD is 546 generally less than 125 m in the wintertime. The MLD minimum in the north hemisphere is 547 in the summertime, and the values are mostly within 20 m depth. In the Southern 548 549 Hemisphere, the MLD maximum values (deeper than 300 m) occur between 45 °S and 60 °S of the Southern Ocean (north of the Antarctic Circumpolar Current) in the boreal 550 summer where the year-round intense westerly winds are located. The minimum MLD in 551 this region in the boreal winter is less than 70 m.. The seasonal variation of the MLD is 552 553 well established by previous studies (Chu and Fan, 2023; de Boyer Montégut et al., 2004; Holte et al., 2017), and this evaluation confirms that IAPv4 temperature data is capable of 554
- 555 reasonably representing the MLD.

10 20 30 40 50 60 70 80 100 125 150 200 300 500 >500 m

557Figure 8: Spatial pattern of the climatological mean MLD (left panels) and zonal558mean MLD (right panels) in January (top) and July (bottom) estimated from the559IAPv4. Here, the MLD is calculated using the temperature difference criterion of $\Delta T =$ 5600.02 °C between the surface and 10-meter depth.

561

562 **3.3 Sea surface temperature**

IAPv4 and IAPv3 temperature time series at 1 m depth (Fig. 9) are compared with four independent SST data products (ERSST5, HadISST, COBE1, and COBE2). All data products show robust sea surface warming in the global ocean and four main basins, and IAPv4 shows a quantitatively consistent warming rate since 1955 (Fig. 9). Since the HadISST and COBE2 data did not include the year 2023, we compare the long-term SST trend during 1955–2022 using these products (Fig. 9f). The global-mean IAPv4 SST rate between 1955 and 2022 is 1.01 ± 0.15 °C century⁻¹ (90 % CI), which is within the range of

- 570 the SST products (ranging from 0.78 to 1.05 °C century⁻¹). The 1955–2022 trend of IAPv4
- 571 SST is slightly weaker than IAPv3 for the global ocean $(1.11 \pm 0.16 \text{ °C century}^{-1})$ and all
- 572 the ocean basins. The largest difference between IAPv4 and other SST products comes
- 573 mainly from the Pacific and the Southern Ocean before 1980, associated with sparser
- 574 observations.
- 575 The spatial distribution of long-term SST trends over the 1955–2022 period provides
- 576 insights into the data consistencies and differences. First, IAPv4 shows a pattern of SST
- 577 consistent with other datasets (Fig. 10). More rapid warming is found in the poleward
- 578 western boundary currents regions, such as the East Australian Current and the Gulf
- 579 Stream. The warmer ocean in the upwelling areas, such as the Tropical Eastern Pacific and
- 580 Gulf of Guinea, are identified by all data products. The surface warming in the South
- 581 Indian for IAPv4 data is weaker than for IAPv3, ERSST5, and COBE2 but is more
- 582 consistent with HadISST and COBE1. The surface cooling in the south of 60 °S can also
- 583 be found in all the datasets but with some discrepancies in magnitude and locations related
- to data sparsity.

593

594

Figure 10: Spatial maps of the SST long-term trends during the 1955–2022 period. (a) IAPv4, (b) IAPv3, (c) ERSST5, (d) HadISST, (e) COBE1 and (f) COBE2 (units: 10^{-2} °C yr⁻¹). The contour line interval is 0.5×10^{-2} °C yr⁻¹. The stippling indicates the regions with signals that are not statistically significant (90 % CI).

599

600 3.4 Global OHC time series

Global OHC time series for 0–700 m, 700–2000 m, 0–2000 m, and 2000–6000 m layers of IAPv4 (Fig. 11) for 1955–2023 versus IAPv3 show a robust ocean warming, with a linear warming rate of 4.4 ± 0.2 ZJ yr⁻¹ (0–700 m), 2.0 ± 0.1 ZJ yr⁻¹ (700–2000 m), and 6.4 ± 0.3 ZJ yr⁻¹ (0–2000 m). The long-term warming revealed by IAPv4 is greater than IAPv3 (4.1 ± 0.2 ZJ yr⁻¹ for 0–700 m, 1.9 ± 0.1 ZJ yr⁻¹ for 700–2000 m and 6.0 ± 0.3

506 ZJ yr⁻¹ for 0–2000 m). Before ~1980, bottle bias correction reduces the time-varying

607 systematic warm bias in Nansen bottle data and leads to a stronger warming rate from

- 608 1955–1990. The updated MBT and XBT corrections are mainly responsible for the
- 609 difference between 1980 and 2000. Data QC impacts the month-to-month variation of the
- 610 OHC time series.

611 From 2005–2023, the new IAPv4 product shows stronger warming than IAPv3. The mean upper 2000 m warming rate is 10.7 ± 1.0 ZJ yr⁻¹ for IAPv4 and 9.6 ± 1.1 ZJ yr⁻¹ for 612 613 IAPv3 (Fig. 11), mainly because of the replacement of the WOD-QC system by the new 614 CODC-QC system in IAPv4. Tan et al., (2023) indicated that the WOD-QC system had 615 removed more extreme higher temperature values in the regions of warm eddies and marine heat waves than CODC-QC. The IAPv3 700-2000 m OHC shows a much bigger 616 617 drop in 2018 than IAPv4 (Fig. 11b), while the IAPv4 indicates an approximately linear 700-2000 m warming since 2005, resulting in stronger 700-2000 m warming in IAPv4 618 619 $(3.6 \pm 0.5 \text{ ZJ yr}^{-1})$ than in IAPv3 $(2.9 \pm 0.5 \text{ ZJ yr}^{-1})$. 620 Since the 1990s, the World Ocean Circulation Experiment (WOCE) provided a global 621 network of abyssal ocean observations, sustained by repeated hydrological lines and a deep-Argo program (Katsumata et al., 2022; Roemmich et al., 2019; Sloyan et al., 2019). 622 623 These high-quality data provide an opportunity to estimate deep OHC changes below 2000 624 m. IAPv4 provides a new OHC estimate below 2000 m by collecting 5 years of data 625 centered on each month. The result (Fig. 11d) indicates a robust abyssal (2000-6000 m) 626 ocean warming trend since ~1993 of 2.0 ± 0.3 ZJ yr⁻¹. This is higher (within the

 $\,$ 627 $\,$ uncertainty range) than the previous estimate of $1.17\pm$ 0.5 ZJ yr^{-1} in Purkey and Johnson $\,$

628 (2010) but consistent with the recent assessment showing the acceleration of deep ocean

629 warming in the Southwest Pacific Ocean (Johnson et al., 2019).

630

634 indicates the 90 % confidence interval. The vertical scales are different for different panels.

The unit is ZJ.

635 636

Another feature of IAPv4 is the suppression of month-to-month noise compared to 637 638 many available data products. Trenberth et al. (2016) noted that the month-to-month 639 variation (quantified by the standard deviation of the monthly dOHC/dt time series) in all 640 in situ-based OHC records is much larger than implied by the CERES records, suggesting 641 that the OHC variation on this time scale is most likely spurious. Therefore, the magnitude 642 of the month-to-month variation in the OHC record can be used as a benchmark of the data quality. The standard deviation of the CERES record is 0.67 Wm⁻² from 2005 to 2023 643 644 (Loeb et al., 2018). While IAPv4, IAPv3, ISH, EN4, BOA, NCEI, and SIO data show a

29

645	standard deviation of dOHC/dt time series of 3.52, 3.52, 7.49, 8.79, 10.05, 11.29, 10.00
646	Wm ⁻² , respectively (Table 2). Note that differentiation to get the rate of change amplifies
647	noise, and applying a 12-month running smoother significantly knocks down the noise so
648	that the IAPv4 standard deviation becomes 0.75 Wm ⁻² , the smallest among the datasets
649	investigated in this study (Table 2) and is the most physically plausible time series from
650	this noise-level perspective.

651 652

Table 2. Characteristics of Month-to-month variation of OHCT compared with

653 **CERES.** Comparisons of different ocean gridded products: the monthly standard deviation

(std dev) of the monthly rates of change of OHC (Wm⁻²); the corresponding standard

deviation of the 12-month running mean (13-points are used, with start-point and endpoint

weighted by 0.5), and the linear trend with 90% confidence limits (Wm⁻²) (global surface

656 657

area). The values are for 2005–2022.

Source	Std dev	Std dev (12 month)	Trend
IAPv4	3.52	0.75	0.66 ± 0.04
IAPv3	3.52	0.79	0.56 ± 0.03
ISH	7.49	1.35	0.63 ± 0.05
EN4	8.79	1.03	0.67 ± 0.04
BOA	10.05	1.16	0.60 ± 0.07
NECI	11.29	1.11	0.61 ± 0.07
SIO	10.00	1.24	0.56 ± 0.08
CERES	0.67	0.33	

658

659 3.5 Regional OHC trends

660 For 1960–2023 (Fig. 12), the IAPv4 trends are slightly weaker than IAPv3 in the

661 Pacific Ocean but slightly higher in the Atlantic Ocean (Fig. 12), with more than 95 % of

the ocean area showing a warming trend. The polar regions also show remarkable

663 differences compared to IAPv3, mainly because of the change of covariance, which

664 improves the spatial reconstruction in the polar regions. The IAPv4 shows stronger

665 warming near the boundary currents regions, mainly because of the improved QC that does

666 not flag high-temperature anomalies. Nevertheless, the pattern of trends is very similar in

the two versions of data, indicating the robustness of the ocean warming pattern. The

668 Atlantic Ocean (within 50 °S–50 °N) and the Southern Ocean store more heat than the

- other basins, probably associated with the deep convection and subduction processes
- 670 effectively transporting heat into the deep layers (Cheng et al., 2022a). The cold spots
- 671 mainly include the Northwest Pacific and subpolar North Atlantic Ocean. In particular, the
- 672 so-called "warming hole" in the subpolar North Atlantic Ocean can extend to at least 800
- 673 m and is responsible for decreased OHC in this region. Some studies have linked this
- 674 fingerprint to the slowdown of AMOC (Rahmstorf et al, 2015; Caesar et al., 2018).

- 677 700–2000 m from 1960 to 2023. The left panels show IAPv3, the middle panels are
 678 IAPv4; the right panels are the difference between IAPv4 and IAPv3.
- 679 For 1991–2023 (Fig. 13), the IAPv4 and IAPv3 pattern is also consistent. A La Niña-
- 680 like trend appears in the Pacific for the 0–300 m, 0–700 m, and 0–2000 m OHCs. There is

- a contrast between the warming trend of the tropical western Pacific and the cooling trend
- 682 of the tropical eastern Pacific. Some studies have linked this pattern to the natural climate
- 683 mode (Pacific Decadal Variability) (England et al., 2014), but some suggest it is a forced
- change driven by greenhouse gas increases (Fasullo and Nerem, 2018; Mann, 2021).
- Below 700 m, the 1960–2023 and 1991–2023 trend patterns are similar because deep
- 686 ocean warming mainly occurs after 1990. Broad warming in most regions, but subtropical
- 687 oceans in the West Pacific and South Indian oceans show a cooling, which is likely related
- to the subtropical gyre expansion and intensification (Zhang et al., 2014).

- Figure 13: Spatial pattern of the OHC trends for 0–300 m, 0–700 m, 0–2000 m and
 700–2000 m from 1991 to 2023. The left panels show IAPv3, the middle panels are
- 692 IAPv4; the right panels are the difference between IAPv4 and IAPv3.

693

694 **3.6 Ocean meridional heat transport**

- 695 The ocean accounts for about one-third of the meridional heat transport (MHT). Thus,
- 696 its change and stability are key to the climate system and its variability. The direct
- 697 observations of ocean MHT are only possible in several cross-basin sections such as
- 698 RAPID. The ocean MHT can be derived indirectly from the OHC and air-sea heat flux data
- 699 (Trenberth and Fasullo, 2017; Trenberth et al., 2019). The comparison between OHC-
- 700 derived MHT and RAPID data allows one to check the consistency among various
- 701 observations. Here, we calculate the Atlantic MHT from April 2004 to December 2022
- vising IAPv4 OHC and air-sea net heat flux data (Fs) derived by TOA net energy flux and
- atmospheric heat divergence (Fig. 14). F_S is an average of three available products
- including MAYER2021 (Mayer et al., 2021) TF2018 (Trenberth et al., 2019) and the
- 705 DEEP-C Version 5.0 from Reading University (Liu and Allan, 2022; Liu et al., 2020). The
- data are adjusted following Trenberth et al., (2019) approach to ensure zero MHT on the
- 707 Antarctica coast. The inferred time series of MHT at 26.5 °N from other OHC data sets
- 708 (IAPv3, Ishii, and EN4) are also shown in Fig. 14, compared with the RAPID observations
- 709 (Johns et al., 2023).
- 710 The Inferred long-term mean (April 2004—December 2022) MHT from the updated
- 711 IAPv4 OHCT (solid red line with the mean transport of 1.18 PW) is identical to the
- 712 RAPID observation of 1.18 ± 0.19 PW. Different OHC datasets cause different inter-
- annual variability in the MHT. It is shown that, from 2008 to 2020, the RAPID MHT
- agrees best with the IAPv4 estimates with a correlation of 0.52. By comparison, the
- 715 correlation coefficients between RAPID and IAPv3, EN4, and Ishii are 0.33, 0.51, and
- 716 0.49, respectively. Over the entire period of 2005~2022, the IAPv4 lies mostly within the
- 717 RAPID uncertainty envelope.

Figure 14: Derived Meridional heat transport at 26.5 °N. The 12-month running mean
 northward MHT across 26.5 °N of different data sets compared with results from the
 RAPID array in PW. The error bars for RAPID in grey are 1.64 σ.

722

718

723 3.7 Inter-annual variability

The year-to-year variation of OHC is strongly influenced by ENSO from global to 724 725 regional scales (Cheng et al., 2019; Roemmich and Gilson, 2011). To demonstrate the 726 change of OHC associated ENSO, Figure 15 shows a Hovmöller diagram of the zonal upper 2000 m OHC and its change (time derivative of OHC: d(OHC)/dt) in the tropical 727 Pacific Ocean from 1985 to 2023, compared with the Oceanic Niño Index (ONI). It is 728 evident that both OHC and OHCT are closely correlated with ENSO. 729 730 Before the onset of El Niño events, there is an accumulation of heat (d(OHC)/dt > 0)in the southern and equatorial tropical ocean region (20 $^{\circ}$ S— 5 $^{\circ}$ N). The positive tropical 731 732 dOHC/dt leads ONI by ~15 months (with peak correlation >0.5), making it a precursor of El Niño (Cane and Zebiak 1985; McPhaden, 2012; Lian et al., 2023). In contrast, heat is 733 734 released (d(OHC)/dt < 0) from the tropics (20 °S – 5 °N) to the North Hemisphere (5 °N – 25 °N) during and after El Niño (Cheng et al., 2019), with a maximum correlation >0.8 at 5 735 736 months after the El Niño peak. The magnitude of the prominent change can reach up to 50 737 Wm⁻² during the 1997–1998 and 2015–2016 extreme El Niño events. For the other moderate El Nino events, the regional OHC change varies around 10-20 Wm⁻² (Mayer et 738 al., 2018). This typical heat recharge-discharge paradigm is crucial in ENSO evolution 739 740 (Jin, 1997). Correspondingly, the zonal OHC anomalies show a warming state (OHC > 0) 741 between ~ 20 °N and ~ 5 °S before the peak of El Niño events (with peak correlation >0.7 at 5 months before El Niño peak), followed by a period of cooling (OHC < 0) after the peak 742

- 743 of El Niño (with peak correlation >0.7 at 12 months after El Niño peak). These variations
- are all physically meaningful and indicate that IAPv4 represents regional inter-annual
- 745 variability, especially associated with ENSO.

Figure 15: Hovmöller diagrams illustrating the zonal mean (top) upper 2000 m d(OHC)/dt
(Wm⁻²) and (bottom) OHC (ZJ) in each 1 ° latitude band within 25 °S ~ 25 °N in the
tropical Pacific basin using IAPv4 data. The ONI is shown in green. Vertical dashed lines
denote the peak time of each Niño event.

751

752 **3.8 Ocean and Earth Energy Budget**

The EEI provides a critical quantifier of the Earth's energy flow and climate change.
It is also policy-relevant because it clearly shows the need to stabilize the climate system.
With new T/OHC data, we re-assess the Earth's energy inventory since 1960. The land,
atmosphere, and ice contributions are from the estimates obtained by von Schuckmann et
al. (2023) for 1960-2023 and by Trenberth (2022) for 2015-2019.

758	It is evident that the earth has been accumulating heat since 1960. The Earth's heat
759	inventory is 512.9 \pm 65.0 ZJ from 1960 to 2023 and 251.5 \pm 14 ZJ from 2005–2023. The
760	upper 700 m ocean, 700-2000 m, 2000 m-bottom, land, ice, and atmosphere contribute to
761	56.5%, 25.7%, 9.2%, 4.8%, 2.7%, and 1.1% of the total EEI, respectively, since 1960. The
762	relative contribution has changed with time; for instance, since 1993, the contributions are
763	55.2% (0-700 m ocean), 22.1% (700-2000 m ocean), 11.7% (2000 m-bottom ocean),
764	3.7% (land), 2.8% (ice), and 1.0% (atmosphere). The land and ice contribution has
765	increased in the recent two decades because of accelerated land and sea ice melting
766	(Comiso et al., 2017; Hugonnet et al., 2021; Minière et al., 2024). From 2005–2019, more
767	reliable land-atmosphere-ice datasets in Trenberth (2022) suggest a non-ocean
768	contribution of 13.4 ZJ. Combined with the results for OHC with IAPv4, the EEI is 188.7
769	ZJ with the ocean heat uptake of 175.3±11 for 2005–19, consistent with the value of
770	192.2±12 ZJ using the non-ocean contribution data by von Schuckmann et al. (2023).
771	The derived energy inventory has been compared with satellite-based observations at
772	the top of the atmosphere (TOA). Two comparisons are made: (1). integrate the TOA EEI
773	to compare with the energy inventory (Fig. 16); (2) take the time derivative of the annual
774	OHC to compare it with the TOA net radiation flux (Fig. 17).
775	The first approach avoids calculating the time derivative of OHC, which exacerbates
776	noise in the time series. The net CERES change has been adjusted to 0.71 Wm ⁻² within
777	2005-2015, here we adjust the trend of the integrated CERES data to the IAPv4 OHC
778	trend to make it consistent and then compare the variability difference (Fig. 16). The
779	RMSE between DeepC and IAP-OHC is 18.3 ZJ and 16.1 ZJ for CERES versus IAP-
780	OHC. The comparison also indicates that the heat inventory shows a stronger heat increase
781	from 2000 to 2005 but too slow heat accumulation during 2005-2010 compared with
782	DeepC and CERES (Fig. 16). This might be due to the data gaps before the Argo network
783	was fully established. DeepC and CERES show stronger heat accumulation since ~ 2015
784	than the heat inventory, probably associated with the accelerated abyssal ocean warming
785	found by the Deep-Argo program (Johnson et al., 2019). Furthermore, IAPv4 OHC shows
786	a slightly higher (but consistent within the uncertainty range) Earth's heat uptake compared
787	to von Schuckmann et al. (2023) results by 33.5 ZJ from 1960 to 2020, mainly because the
788	correction of Nansen bottle biases and the updates of XBT and MBT biases in IAPv4 data.
789	The second approach to compare OHC with satellite-based EEI is to calculate the
790	time derivative of OHC. To suppress the month-to-month noises, we estimate annual

- 791 OHC based on one-year data centered on June (Fig. 17a) and December (Fig. 17b)
- reprint separately, and then dOHC/dt is calculated with a forward derivative approach based on
- 793 the annual time series. The annual mean of EEI time series is also used here for
- comparison (Fig. 17). The IAPv4 and CERES estimates show consistent inter-annual
- variability with a correlation of 0.44. The consistency gives higher confidence for the new
- 796 IAPv4 data than IAPv3 (correlation of only ~ 0.15). The trend of dOHC/dt is 0.36 Wm⁻²
- dec⁻¹ from 2005 to 2023, within the uncertainty range of the CERES record (0.50 ± 0.47
- 798 $Wm^{-2} dec^{-1}$ in Loeb et al., 2021). However, it should be noted that the calculation of
- 799 dOHC/dt is sensitive to the choices of methods, data products, and time periods because of
- 800 the noises and variability in the OHC time series. A careful analysis of the trend of
- 801 dOHC/dt (and EEI) is a research priority.

Global Energy Inventory

802

Figure 16: The global energy budget from 1960 to 2023. The Atmosphere, land, and ice
heat inventory is from von Schuckmann et al., (2023). Integrated EEI from DEEP–C
(1985–2018) (Liu and Allan, 2022) and CERES (2001–2022) (Loeb et al., 2021) dataset
are presented by dashed lines for comparison, with the trend adjusted to the IAP estimate
to account for the arbitrary choice of integration constant.

813

814 **3.9 Steric sea level and sea level budget**

815 The updated IAP data is used to re-assess the sea level budget for 1960–2022, 1991– 2018, and 2002–2023. From 1960 to 2022, the sum of individual components (1.91 ± 0.07) 816 817 mm yr⁻¹) is consistent with the tide-gauge-based reconstruction $(2.08 \pm 0.10 \text{ mm yr}^{-1})$ of 818 the global mean sea level (GMSL) (Fig 18). Based on our estimate, the steric sea level, 819 Antarctic ice sheet, Greenland ice sheet, glaciers, and land water storage contribute to the total sea level with 48.2%, 9.4%, 19.4%, 27.2%, and -3.7%, respectively (Table 3). 820 821 From 1971 to 2018 (an assessment period for GMSL in IPCC-AR6), the sum of 822 individual components $(2.13 \pm 0.06 \text{ mm yr}^{-1})$ is consistent with a tide-gauge-based 823 reconstruction $(2.34 \pm 0.08 \text{ mm yr}^{-1})$ of global mean sea level (GMSL) (Fig. 18), with a difference of 0.21 mm yr⁻¹, a better closure than IPCC-AR6 (the residual is 0.33 mm yr⁻¹) 824 825 (Table 3). 826 After 1993, when GMSL can be directly observed by altimetry, the sum of sea level components is 3.11 ± 0.11 mm yr⁻¹ (1993–2018), again, consistent with the altimetry-based 827 sea level $(3.26 \pm 0.16 \text{ mm yr}^{-1})$ considering the uncertainty (Fig. 18). The residual of the 828 budget is 0.16 mm yr⁻¹, smaller than 1971-2018. Altimetry records suggest an acceleration 829 of sea level rise from 1993 to 2018, ranging from 0.0535 (Frederikse et al., 2020) to 0.094 830

- ± 0.012 mm yr⁻² (IPCC 2021; Nerem et al., 2018), and the difference might reveal the
- uncertainty in bias correction and data processing for altimetry data. Here, the sum of
- contributions shows a similar acceleration of 0.0592 ± 0.0196 mm yr⁻² (1993–2018),
- 834 indicating a robust acceleration of sea level rise since the 1990s.
- 835
- 836 Table 3. Sea level budget is based on IAPv4 and previous studies. The trends of IPCC
- AR6 and (Frederikse et al., 2020) are based on least-squares fit. The trend of IAPv4 is
- based on LOWESS method (Cheng et al., 2022b). The uncertainty of IPCC AR6 and
- 839 Frederikse et al. (2020) is given by the 90% confidence interval. The uncertainty of IAPv4
- 840 is based on a 90% confidence interval through the Monte Carlo method. The unit is mm yr
- 841

1

	1971-2018	1993-2018
GMSL		
IPCC AR6	2.33 [1.55, 3.12]	3.25 [2.88, 3.61]
(Frederikse et al., 2020)		3.35 [2.91, 3.82]
IAPv4	2.34 ± 0.08	3.26 ± 0.16
Steric		
IPCC AR6	1.01 [0.73, 1.29]	1.31 [0.95, 1.66]
(Frederikse et al., 2020)		1.19 [0.99, 1.44]
IAPv4	0.97 ± 0.05	1.27 ± 0.09
Sum of contribution		
IPCC AR6	2.00 [1.52, 2.49]	2.85 [2.41, 3.29]
(Frederikse et al., 2020)		3.16 [2.78, 3.57]
IAPv4	2.13 ± 0.06	3.11 ± 0.11
Residual		
IPCC AR6	0.33	0.40
(Frederikse et al., 2020)		0.19
IAPv4	0.21	0.15

842

After 2002, the GRACE satellite supported direct observation of barystatic sea level, which is the sum of the sea level change due to the land water storage, Antarctica ice sheet, Greenland ice sheet, and glaciers. The sea level budget can be obtained by comparing altimetry-based GMSL with the barystatic sea level observed by GRACE and the steric sea level. It is evident that the sea level budget can be closed between 2002 and 2015 with ± 5 mm residual errors (Fig. 18b). However, after ~2015, the sum of steric and barystatic sea level is smaller than the total sea level rise for all ocean temperature products. Previous

- 850 studies have attributed this misclosure to salinity data biases (Barnoud et al., 2021),
- altimetry data errors (Barnoud et al., 2023), and GRACE data errors (Wang et al., 2021).
- 852 The steric sea level inferred from IAPv4 showed lower residual (~5 mm) between 2005-
- 853 2023 than ISH and EN4 data (10~20 mm), indicating that the temperature data might be
- partly responsible for lack of closure of sea level budget since ~2015.

856

Figure 18: (a) The sea level budget from 1960 to 2021. Observed global mean sea level for 1960–2021 and the individual contributions from land water storage, Antarctica,

859	Greenland and Glaciers (Frederikse et al., 2020). The budget is relative to a 1959~1961
860	baseline. Here, the Antarctica, Greenland, and Glaciers data are through 2018, and a linear
861	extrapolation is made for 2019-2021. Land water storage is estimated by GRACE after
862	2018. Altimetry sea level is shown in yellow dashed line for comparison. (b) Sea level
863	budget residual time series since 2005. The residual of GMSL minus barystatic and steric
864	sea level. The seasonal cycle is reduced based on 2005-2015 climatology. A 6-month
865	lowpass filter is applied to reduce the noise.
866	
867	4. Data availability
868	IAPv4 global ocean temperature product is available at
869	http://dx.doi.org/10.12157/IOCAS.20240117.002 (Cheng et al., 2024a) and
870	http://www.ocean.iap.ac.cn/.
871	IAPv4 global ocean heat content product is available at
872	http://dx.doi.org/10.12157/IOCAS.20240117.001 (Cheng et al., 2024b) and
873	http://www.ocean.iap.ac.cn/.
874	The code used in this paper includes data quality control, and the resultant dataset is
875	available at http://www.ocean.iap.ac.cn/.
876	
877	The data used in this study (but not generated by this work) are listed below. IAP data are
878	available at http://www.ocean.iap.ac.cn/. The NCEI/NOAA data are available at
879	$(https://www.ncei.noaa.gov/products/climate-data-records/global-ocean-heat-content). \ ISH the second sec$
880	data from (https://climate.mri-jma.go.jp/pub/ocean/ts/v7.2/). The EN4 data
881	(https://www.metoffice.gov.uk/hadobs/en4/index.html) For SST: ERSSTv5
882	(https://www1.ncdc.noaa.gov/pub/data/cmb/ersst/v5/netcdf/); COBE2
883	(https://psl.noaa.gov/data/gridded/data.cobe2.html); and HadSST3
884	(https://www.metoffice.gov.uk/hadobs/hadsst3/data/download.html). For sea level data:
885	AVISO+ GMSL (https://www.aviso.altimetry.fr/en/data/products/ocean-indicators-
886	products/mean-sea-level.html#c15723), CSR GRACE
887	(https://www2.csr.utexas.edu/grace/), the data in Frederikse et al., (2020) from
888	(https://zenodo.org/records/3862995). The data in von Schuckmann et al., (2023)
889	(https://www.wdc-climate.de/ui/entry?acronym=GCOS_EHI_1960-2020). Argo data were
890	collected and made freely available by the International Argo Program and the national
891	programs that contribute to it (https://argo.ucsd.edu, https://www.ocean-ops.org). DEEP-C

- 892 data from https://doi.org/10.17864/1947.000347; CERES data (https://ceres-
- tool.larc.nasa.gov/ord-tool/jsp/EBAFTOA41Selection.jsp); PIOMAS ice volume data from
- 894 (http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volumeanomaly/). SCRIPPS data
- 895 from (http://sio-argo.ucsd.edu/RG_Climatology.html); BOA data from
- 896 (https://argo.ucsd.edu/data/argo-data-products/).
- 897

898 5. Summary and Discussion

899 This paper introduced a new version of the ocean temperature and heat content 900 gridded products and described the data source and data processing techniques in detail. 901 The key technical advances include the new QC, new or updated XBT/MBT/Bottle/APB 902 bias corrections, new ocean temperature climatology, improved mapping approach, and 903 grid-cell ocean volume corrections. These data and technical advances allow a better 904 estimate of long-term ocean temperature and heat content changes since the mid-1950s 905 from the sea surface down to 2000 m. We show that the new data product could better 906 close the sea level and energy budgets than IAPv3. For rates of change, compared with 907 CERES, the IAPv4 also shows a better correlation from 2005 to 2023 than IAPv3. 908 Despite several marked improvements, issues needing further investigation remain. 909 Although inter-annual and decadal-scale changes of satellite-based EEI and observational 910 OHC are generally consistent, a mismatch remains between EEI and OHC for their month-911 to-month variation, as the monthly variation of OHC is still much larger than implied by 912 EEI. There are several possibilities, in our opinion: first, there is substantial heat storage 913 and release for land and ice monthly, which needs to be accurately quantified; second, the 914 accuracy of OHC estimate on a monthly basis still needs to be improved for month-to-915 month variation because of the limited data coverage; third, the EEI observed by CERES also suffers from sampling biases on a monthly basis. Thus, a better understanding of the 916 monthly variation of OHC and EEI is still a research priority. Besides, the failure to close 917 918 the 2015-2023 sea level budget indicates that the underlying data still has bias problems, 919 which need to be explored and resolved. 920 Second, the application of CODC-QC in IAPv4 leads to a stronger ocean warming 921 rate in the past decade than WOD-QC used in IAPv3 because WOD-QC removes more

- 922 positive temperature anomalies than CODC-QC. This could imply that the rate of increase
- 923 in OHC is still slightly underestimated and deserves an in-depth investigation. Several
- 924 fundamental questions must be answered: first, are there still real temperature extremes

925 being removed by CODC-QC, such as in small warm eddies? Are the extremes well 926 sampled by the current observation system? If not, what is the impact? Moreover, it is clear 927 that the high latitudes where sea ice occurs are not well sampled and need more attention. 928 Third, during the development of the data product, we discovered that much metadata 929 relating to the profiles in the World Ocean Database is missing and that much existing 930 metadata is incorrect, also giving rise to duplicate profiles, putting a strain on the overall 931 quality of a database of oceanic observations. More than ever, long-term concerted efforts 932 are needed to eliminate duplicate profiles and identify and correct missing metadata using 933 statistical methods, expert control, or machine learning techniques. For example, the 934 International Quality-Controlled Database (iQuOD) group is coordinating some activities 935 related to data processing techniques, uncertainty quantification, and improving the overall 936 quality of ocean data (Cowley et al., 2021). 937 Furthermore, the quantification of uncertainty for *in situ* measurements, gridded T/OC 938 values, and the global OHC estimates need to be improved. IAPv4 only accounts for the

instrumental error and sampling/mapping error. In the future, comprehensive quantification
of other uncertainty sources will be made, including the choice of climatology, vertical
interpolation, XBT/MBT/APB/Bottle corrections, etc. It is also necessary to analyze the
correlation between these error sources. This also helps to understand regions with larger
uncertainty for OHC estimates, which supports the design of the global ocean observing

944 system.

945

946 Author contributions. L.C. has worked on this study's conceptualization, coordination, 947 methodologies, and writing the manuscript. Z.T. worked on in situ observation collections, 948 metadata format, and the automated quality control procedure (CODC-QC) development. 949 Y.P. has worked on calculating and comparing the OHC annual cycle, the mixed layer depth, and the MHT among different data sets. V.G. worked on bias correction schemes for 950 951 MBT, APB, and bottle data and on developing the automated quality control procedure. 952 H.Y. worked on the analysis of inter-annual variability. J.D. has worked on OHC trend 953 calculation and analysis. G.L. worked on SST calculation and its analysis. H. Z. worked on 954 global energy and sea level budget calculations and analyses. Y.L. and Y.J. worked on the 955 volume correction. All authors have contributed to formal analysis, data validation, and 956 editing of the original draft.

957

43

- Acknowledgement and Funding. The IAP/CAS analysis is supported by the National 958 959 Natural Science Foundation of China (Grant no. 42122046, 42076202, 42206208, 42261134536), Strategic Priority Research Program of the Chinese Academy of Sciences 960 961 (Grant no. XDB42040402), the new Cornerstone Science Foundation through the 962 XPLORER PRIZE, DAMO Academy Young Fellow, Youth Innovation Promotion Association, Chinese Academy of Sciences, National Key Scientific and Technological 963 964 Infrastructure project "Earth System Science Numerical Simulator Facility" (EarthLab), 965 the Young Talent Support Project of Guangzhou Association for Science and Technology. 966 The calculations in this study were carried out on the ORISE Supercomputer. Some data were collected onboard of R/V Shiyan 6 implementing the Open Research Cruise 967 968 NORC2022-10+NORC2022-303 supported by NSFC Shiptime Sharing Projects 42149910. NCAR is sponsored by the US National Science Foundation. We acknowledge 969 970 the World Climate Research Programme's Working Group on Coupled Modelling, which 971 is responsible for CMIP, and we thank the climate modeling groups for producing and 972 making their model output available through the Earth System Grid Federation. The Argo 973 Program is part of the Global Ocean Observing System.
- 974
- 975 Competing interests. The contact author has declared that none of the authors has any976 competing interests.
- 977

978 References

979 Abraham, J. P., Cheng, L., Mann, M. E., Trenberth, K., and von Schuckmann, K.: The

980 ocean response to climate change guides both adaptation and mitigation efforts.

981 Atmospheric and Oceanic Science Letters, 15, 100221,

982 https://doi.org/10.1016/j.aosl.2022.100221, 2022.

- Abraham, J. P., and Cheng, L.: Intersection of Climate Change, Energy, and Adaptation.
 Energies. 15(16), 5886; https://doi.org/10.3390/en15165886, 2022.
- 985 Abraham, J. P., Baringer, M., Bindoff, N. L., Boyer, T., Cheng, L. J., Church, J. A.,
- 986 Conroy, J. L., Domingues, C. M., Fasullo, J. T., Gilson, J., Goni, G., Good, S. A.,
- 987 Gorman, J. M., Gouret- ski, V., Ishii, M., Johnson, G. C., Kizu, S., Lyman, J. M.,
- 988 Macdonald, A. M., Minkowycz, W. J., Moffitt, S. E., Palmer, M. D., Piola, A. R.,
- 989 Reseghetti, F., Schuckmann, K., Trenberth, K. E., Velicogna, I., and Willis, J. K.: A

990	review of global ocean temperature observations: Implications for ocean heat content
991	estimates and climate change, Rev. Geophys., 51, 450-483,
992	https://doi.org/10.1002/rog.20022, 2013.
993	Argo: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC).
994	SEANOE, 2000.
995	Bagnell, A., and DeVries, T.: 20(th) century cooling of the deep ocean contributed to
996	delayed acceleration of Eart's energy imbalance. Nat. Comm., 12, 4604,
997	https://doi.org/10.1038/s41467-021-24472-3, 2021.
998	Barker, P. M., and McDougall, T. J.: Two Interpolation Methods Using Multiply-Rotated
999	Piecewise Cubic Hermite Interpolating Polynomials. J. Atmos. Ocean Technol., 37,
1000	605-619, https://doi.org/10.1175/JTECH-D-19-0211.1, 2020.
1001	Barnoud, A., Pfeffer, J., Cazenave, A., Fraudeau, R., Rousseau, V., and Ablain, M.:
1002	Revisiting the global mean ocean mass budget over 2005–2020. Ocean Science, 19,
1003	321-334, https://doi.org/10.5194/os-19-321-2023, 2023.
1004	Barnoud, A., Pfeffer, J., Guérou, A., Frery, ML., Siméon, M., Cazenave, A., Chen, J.,
1005	Llovel, W., Thierry, V., Legeais, JF., and Ablain, M.: Contributions of Altimetry
1006	and Argo to Non-Closure of the Global Mean Sea Level Budget Since 2016.
1007	Geophys Res Lett, 48, e2021GL092824, https://doi.org/10.1029/2021GL092824,
1008	2021.
1009	Bindoff, N. L., Cheung, W. W. L., Kairo, J. G., Arístegui, J., Guinder, V. A., Hallberg, R.,
1010	Hilmi, N., Jiao, N., and Karim, M. S.: Changing Ocean, Marine Ecosystems, and
1011	Dependent Communities. In IPCC Special Report on the Ocean and Cryosphere in a
1012	Changing Climate [HO. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M.
1013	Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold,
1014	B. Rama, N.M. Weyer (eds.)], Cambridge University Press, Cambridge, UK and
1015	New York, NY, USA, pp. 447–587. https://doi.org/10.1017/9781009157964.007,
1016	2019.
1017	Boyer, T., Domingues, C. M., Good, S. A., Johnson, G. C., Lyman, J. M., Ishii, M.,
1018	Gouretski, V., Willis, J. K., Antonov, J., Wijffels, S., Church, J. A., Cowley, R., and
1019	Bindoff, N. L .: Sensitivity of Global Upper Ocean Heat Content Estimates to
1020	Mapping Methods, XBT Bias Corrections, and Baseline Climatologies, J. Climate,
1021	29, 4817–4842, https://doi.org/10.1175/JCLI-D-15-0801.1, 2016.

1022	Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G., and Saba, V.: Observed fingerprint of
1023	a weakening Atlantic Ocean overturning circulation. Nature, 556, 191-196,
1024	https://doi.org/10.1038/s41586-018-0006-5, 2018.
1025	Cane, M. A., and Zebiak, S. E.: A theory for El Niño and the southern oscillation. Science,
1026	228, 1085-1087, https://doi.org/10.1126/science.228.4703.1085, 1985.
1027	Cheng, L.: Sensitivity of Ocean Heat Content to Various Instrumental Platforms in Global
1028	Ocean Observing System. Ocean-Land-Atmosphere Research, 0,
1029	https://doi.org/10.34133/olar.0037, 2024a.
1030	Cheng, L., and Zhu, J.: Uncertainties of the Ocean Heat Content Estimation Induced by
1031	Insufficient Vertical Resolution of Historical Ocean Subsurface Observations. J.
1032	Atmos. Ocean Technol., 31, 1383-1396, https://doi.org/10.1175/JTECH-D-13-
1033	00220.1, 2014.
1034	Cheng, L., and Zhu, J.: Influences of the Choice of Climatology on Ocean Heat Content
1035	Estimation. J. Atmos. Ocean Technol., 32, 388-394, https://doi.org/10.1175/JTECH-
1036	D-14-00169.1, 2015.
1037	Cheng, L., and Zhu, J.: Benefits of CMIP5 Multimodel Ensemble in Reconstructing
1038	Historical Ocean Subsurface Temperature Variations. J. Climate, 29, 5393-5416,
1039	https://doi.org/10.1175/JCLI-D-15-0730.1, 2016.
1040	Cheng, L., Zhu, J., Cowley, R., Boyer, T., and Wijffels, S.: Time, Probe Type, and
1041	Temperature Variable Bias Corrections to Historical Expendable Bathythermograph
1042	Observations. J. Atmos. Ocean. Technol., 31, 1793-1825,
1043	https://doi.org/10.1175/jtech-d-13-00197.1, 2014.
1044	Cheng, L., Abraham, J., Goni, G., Boyer, T., Wijffels, S., Cowley, R., Gouretski, V.,
1045	Reseghetti, F., Kizu, S., Dong, S., Bringas, F., Goes, M., Houpert, L., Sprintall, J.,
1046	and Zhu, J.: XBT Science: Assessment of Instrumental Biases and Errors, B. Am.
1047	Meteorol. Soc., 97, 924–933, https://doi.org/10.1175/BAMS-D-15-00031.1, 2016.
1048	Cheng, L., Trenberth, K. E., Fasullo, J., Boyer, T., Abraham, J., and Zhu, J.: Improved
1049	estimates of ocean heat content from 1960 to 2015. Sci. Adv., 3, e1601545,
1050	https://doi.org/10.1126/sciadv.1601545, 2017.
1051	Cheng, L., Trenberth, K. E., Fasullo, J. T., Mayer, M., Balmaseda, M., and Zhu, J.:
1052	Evolution of Ocean Heat Content Related to ENSO. J. Climate, 32, 3529-3556,
1053	https://doi.org/10.1175/jcli-d-18-0607.1, 2019.
1054	Cheng, L., Trenberth, K. E., Gruber, N., Abraham, J. P., Fasullo, J. T., Li, G., Mann, M. E.,
1055	Zhao, X., and Zhu, J.: Improved Estimates of Changes in Upper Ocean Salinity and

1056	the Hydrological Cycle. J. Climate, 33, 10357-10381, https://doi.org/10.1175/JCLI-
1057	D-20-0366.1, 2020.
1058	Cheng, L., von Schuckmann, K., Abraham, J. P., Trenberth, K. E., Mann, M. E., Zanna, L.,
1059	England, M. H., Zika, J. D., Fasullo, J. T., Yu, Y., Pan, Y., Zhu, J., Newsom, E. R.,
1060	Bronselaer, B., and Lin, X.: Past and future ocean warming. Nat. Rev. Earth Env., 3,
1061	776-794, https://doi.org/10.1038/s43017-022-00345-1, 2022a.
1062	Cheng, L., Foster, G., Hausfather, Z., Trenberth, K. E., and Abraham, J.: Improved
1063	quantification of the rate of ocean warming. J. Climate, 35, 4827-4840,
1064	https://doi.org/10.1175/jcli-d-20-0366.1, 2022b.
1065	Cheng, L., Tan, Z., Pan, Y., Zheng, H., Zhu, Y., Wei, W., Du, J., Li, G., Ye, H., Gourteski,
1066	V.: IAP temperature 1° gridded analysis product (IAPv4),
1067	http://dx.doi.org/10.12157/IOCAS.20240117.002, 2024a.
1068	Cheng, L., Tan, Z., Pan, Y., Zheng, H., Zhu, Y., Wei, W., Du, J., Li, G., Ye, H., Gourteski,
1069	V.: IAP global ocean heat content 1° gridded analysis product (IAPv4),
1070	http://dx.doi.org/10.12157/IOCAS.20240117.001, 2024b.
1071	Chu, P. C., and Fan, C.: Global climatological data of ocean thermohaline parameters
1072	derived from WOA18. Scientific Data, 10, 408, https://doi.org/10.1038/s41597-023-
1073	02308-7, 2023.
1074	Comiso, J. C., Meier, W. N., and Gersten, R.: Variability and trends in the Arctic Sea ice
1075	cover: Results from different techniques. J. Geophys. Res Oceans, 122, 6883-6900,
1076	https://doi.org/10.1002/2017JC012768, 2017.
1077	Cowley, R., Killick, R. E., Boyer, T., Gouretski, V., Reseghetti, F., Kizu, S., Palmer, M.
1078	D., Cheng, L., Storto, A., Le Menn, M., Simoncelli, S., Macdonald, A. M., &
1079	Domingues, C. M.: International Quality-Controlled Ocean Database (iQuOD) v0.1:
1080	The Temperature Uncertainty Specification. Front. Mar. Sci., 8,
1081	https://doi.org/10.3389/fmars.2021.689695, 2021.
1082	Dangendorf, S., Frederikse, T., Chafik, L., Klinck, J. M., Ezer, T., and Hamlington, B. D.:
1083	Data-driven reconstruction reveals large-scale ocean circulation control on coastal
1084	sea level. Nat. Clim. Change, 11, 514-520, https://doi.org/10.1038/s41558-021-
1085	01046-1, 2021.
1086	de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and Iudicone, D.: Mixed
1087	layer depth over the global ocean: An examination of profile data and a profile-based
1088	climatology. J. Geophys. Res Oceans, 109, https://doi.org/10.1029/2004JC002378,
1089	2004.

1090	England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai, W.,
1091	Gupta, A. S., McPhaden, M. J., Purich, A., & Santoso, A.: Recent intensification of
1092	wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim.
1093	Change, 4, 222-227, https://doi.org/10.1038/nclimate2106, 2014.
1094	Fasullo, J. T., and Nerem, R. S.: Altimeter-era emergence of the patterns of forced sea-
1095	level rise in climate models and implications for the future. P. Natl. Acad. Sci., 115,
1096	12944-12949, https://doi.org/10.1073/pnas.1813233115, 2018.
1097	Frederikse, T., Landerer, F., Caron, L., Adhikari, S., Parkes, D., Humphrey, V. W.,
1098	Dangendorf, S., Hogarth, P., Zanna, L., Cheng, L., and Wu, YH.: The causes of sea
1099	level rise since 1900. Nature, 584, 393-397, https://doi.org/10.1038/s41586-020-
1100	2591-3, 2020.
1101	Garcia, H. E., Boyer, T. P., Locarnini, R. A., Baranova, O. K., and Zweng, M. M.: World
1102	Ocean Database 2018: User's Manual., T. E. A.V. Mishonov, NOAA, Silver Spring,
1103	MD., Ed. , 2018
1104	Goni, G. J., Sprintall, J., Bringas, F., Cheng, L., Cirano, M., Dong, S., Domingues, R.,
1105	Goes, M., Lopez, H., Morrow, R., Rivero, U., Rossby, T., Todd, R. E., Trinanes, J.,
1106	Zilberman, N., Baringer, M., Boyer, T., Cowley, R., Domingues, Hutchinson, K.,
1107	Kramp, M., Mata, M. M., Reseghetti, F., Sun, C., Bhaskar Tvs U., Volkov, D.: More
1108	Than 50 Years of Successful Continuous Temperature Section Measurements by the
1109	Global Expendable Bathythermograph Network, Its Integrability, Societal Benefits,
1110	and Future. Fron. Mar. Sci., 6, http://dx.doi.org/10.3389/fmars.2019.00452, 2019.
1111	Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality controlled ocean temperature
1112	and salinity profiles and monthly objective analyses with uncertainty estimates. J.
1113	Geophys. Res. Oceans, 118, 6704-6716, https://doi.org/10.1002/2013jc009067, 2013.
1114	Gouretski, V., and Koltermann, K. P.: How much is the ocean really warming? Geophys.
1115	Res. Lett., 34, L01610, https://doi.org/10.1029/2006GL027834, 2007.
1116	Gouretski, V. and Reseghetti, F.: On depth and temperature biases in bathythermograph
1117	data: Development of a new correction scheme based on analysis of a global ocean
1118	database, Deep Sea Res., 57, 6, 812-833, https://doi.org/10.1016/j.dsr.2010.03.011,
1119	2010.
1120	Gouretski, V., and Cheng, L.: Correction for Systematic Errors in the Global Dataset of
1121	Temperature Profiles from Mechanical Bathythermographs. J. Atmos. Ocean.
1122	Technol., 37, 841-855, https://doi.org/10.1175/jtech-d-19-0205.1, 2020.

1123	Gouretski, V., Cheng, L., and Boyer, T.: On the Consistency of the Bottle and CTD Profile
1124	Data. J. Atmos. Ocean Technol., 39, 1869-1887, https://doi.org/10.1175/JTECH-D-
1125	22-0004.1, 2022.
1126	Gouretski, V., Roquet, F., and Cheng, L.: Measurement biases in ocean temperature
1127	profiles from marine mammal data loggers. J. Atmos. Ocean Technol., submitted,
1128	2024.
1129	Gouretski, V., Kennedy, J., Boyer, T., and Köhl, A.: Consistent near-surface ocean
1130	warming since 1900 in two largely independent observing networks. Geophys. Res.
1131	Lett., 39, https://doi.org/10.1029/2012GL052975, 2012.
1132	Gulev, S. K., Thorne, P. W., Ahn, J., Dentener, F. J., Domingues, C. M., Gerland, S.,
1133	Gong, D., Kaufman, D. S., Nnamchi, H. C., Quaas, J., Rivera, J. A., Sathyendranath,
1134	S., Smith, S. L., Trewin, B., Schuckmann, K. von, and Vose, R. S.: Changing State
1135	of the Climate System Supplementary Material, in: Climate Change 2021: The
1136	Physical Science Basis. Contribution of Working Group I to the Sixth Assessment
1137	Report of the Intergovernmental Panel on Climate Change, edited by: Masson-
1138	Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N.,
1139	Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews,
1140	J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B.,
1141	Cambridge University Press, Cambridge, United Kingdom and New York, NY,
1142	USA, 287-422, https://doi.org/10.1017/9781009157896.004, 2021.
1143	Hakuba, M. Z., Frederikse, T., and Landerer, F. W.: Earth's Energy Imbalance From the
1144	Ocean Perspective (2005–2019), Geophys. Res. Lett., 48, e2021GL093624,
1145	https://doi.org/10.1029/2021GL093624, 2021.
1146	Hansen, J., Sato, M., Kharecha, P., and von Schuckmann, K.: Eart's energy imbalance and
1147	implications. Atmos. Chem. Phys., 11, 13421-13449, https://doi.org/10.5194/acp-11-
1148	13421-2011, 2011.
1149	Hirahara, S., Ishii, M., and Fukuda, Y.: Centennial-Scale Sea Surface Temperature
1150	Analysis and Its Uncertainty. J. Climate, 27, 57-75, https://doi.org/10.1175/JCLI-D-
1151	12-00837.1, 2014.
1152	Holte, J., Talley, L. D., Gilson, J., and Roemmich, D.: An Argo mixed layer climatology
1153	and database. Geophys. Res. Lett., 44, 5618-5626,
1154	https://doi.org/10.1002/2017GL073426, 2017.

1155	Hosoda, S., Ohira, T., and Nakamura, T.: Monthly mean dataset of global oceanic
1156	temperature and salinity derived from Argo float observations. JAMSTEC Report of
1157	Research and Development, 8, https://doi.org/10.5918/jamstecr.8.47, 2008.
1158	Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H.,
1159	Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, HM.: Extended Reconstructed
1160	Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and
1161	Intercomparisons. J. Climate, 30, 8179-8205, https://doi.org/10.1175/JCLI-D-16-
1162	0836.1, 2017.
1163	Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., Farinotti, D.,
1164	Huss, M., Dussaillant, I., Brun, F., and Kääb, A.: Accelerated global glacier mass
1165	loss in the early twenty-first century. Nature, 592, 726-731,
1166	https://doi.org/10.1038/s41586-021-03436-z, 2021.
1167	IPCC: Annex I: Observational Products [Trewin, B. (ed.)], pp. 2061-2086 pp. , 2021
1168	Ishii, M., and Kimoto, M.: Reevaluation of historical ocean heat content variations with
1169	time-varying XBT and MBT depth bias corrections. J. Oceanogr., 65, 287-299,
1170	https://doi.org/10.1007/s10872-009-0027-7, 2009.
1171	Ishii, M., Shouji, A., Sugimoto, S., and Matsumoto, T.: Objective analyses of sea-surface
1172	temperature and marine meteorological variables for the 20th century using ICOADS
1173	and the Kobe Collection. Int. J. Climatol., 25, 865-879,
1174	https://doi.org/10.1002/joc.1169, 2005.
1175	Ishii, M., Y. Fukuda, S. Hirahara, S. Yasui, T. Suzuki, and K. Sato: Accuracy of Global
1176	Upper Ocean Heat Content Estimation Expected from Present Observational Data
1177	Sets. Sola, 13, 163-167, https://doi.org/10.2151/sola.2017-030, 2017.
1178	Jin, FF.: An Equatorial Ocean Recharge Paradigm for ENSO. Part I: Conceptual Model.
1179	J. Atmos. Sci., 54, 811-829, https://doi.org/10.1175/1520-
1180	0469(1997)054%3C0811:AEORPF%3E2.0.CO;2, 1997.
1181	Johns, W. E., Elipot, S., Smeed, D. A., Moat, B., King, B, Volkov, D. L., and Smith, R. H.:
1182	Towards two decades of Atlantic Ocean mass and heat transports at 26.5° N.
1183	Philosophical Transactions of the Royal Society A: Mathematical, Physical and
1184	Engineering Sciences, 381, 20220188, 2023.
1185	Johnson, G. C., Purkey, S. G., Zilberman, N. V., and Roemmich, D.: Deep Argo Quantifies
1186	Bottom Water Warming Rates in the Southwest Pacific Basin. Geophys. Res. Lett.,
1187	46, 2662-2669, https://doi.org/10.1098/rsta.2022.0188, 2019.

1188	Katsumata, K., Purkey, S. G., Cowley, R., Sloyan, B. M., Diggs, S. C., Moore, T. S.,
1189	Talley, L. D., and Swift, J. H.: GO-SHIP Easy Ocean: Gridded ship-based
1190	hydrographic section of temperature, salinity, and dissolved oxygen. Scientific Data,
1191	9, 103, https://doi.org/10.1038/s41597-022-01212-w, 2022.
1192	Kennedy, J.: A review of uncertainty in in situ measurements and data sets of sea surface
1193	temperature. Rev. Geophys., 52, 1-32, https://doi.org/10.1002/2013RG000434, 2014.
1194	Levitus, S., Antonov, J. I., Boyer, T. P., Locarnini, R. A., Garcia, H. E., and Mishonov, A.
1195	V.: Global ocean heat content 1955-2008 in light of recently revealed
1196	instrumentation problems. Geophys. Res. Lett., 36,
1197	https://doi.org/10.1029/2008GL037155, 2009
1198	Levitus, S., Antonov, J. I., Boyer, T. P., Baranova, O. K., Garcia, H. E., Locarnini, R. A.,
1199	Mishonov, A. V, Reagan, J. R., Seidov, D., Yarosh, E. S., and Zweng, M. M.: World
1200	ocean heat content and thermosteric sea level change (0-2000 m), 1955-2010,
1201	Geophys. Res. Lett., 39, L10603, https://doi.org/10.1029/2012GL051106, 2012.
1202	Li, G., Cheng, L., Zhu, J., Trenberth, K. E., Mann, M. E., and Abraham, J. P.: Increasing
1203	ocean stratification over the past half-century. Nat. Clim. Change, 10, 1116-1123,
1204	https://doi.org/10.1038/s41558-020-00918-2, 2020.
1205	Li, H., Xu, F., Zhou, W., Wang, D., Wright, J. S., Liu, Z., and Lin, Y.: Development of a
1206	global gridded Argo data set with Barnes successive corrections. J. Geophys. Res.
1207	Oceans, 122, 866-889, https://doi.org/10.1002/2016JC012285, 2017.
1208	Li, Y., Church, J. A., McDougall, T. J., and Barker, P. M.: Sensitivity of Observationally
1209	Based Estimates of Ocean Heat Content and Thermal Expansion to Vertical
1210	Interpolation Schemes. Geophys. Res. Lett., 49, e2022GL101079,
1211	https://doi.org/10.1029/2022GL101079, 2022.
1212	Lian, T., Wang, J., Chen, D., Liu, T. and Wang, D.: A Strong 2023/24 El Niño is Staged by
1213	Tropical Pacific Ocean Heat Content Buildup. Ocean-Land-Atmosphere Research, 2,
1214	0011, https://doi.org/10.34133/olar.0011, 2023.
1215	Liu, C., and Allan, R.: Reconstructions of the radiation fluxes at the top of atmosphere and
1216	net surface energy flux: DEEP-C version 5.0 a. A. University of Reading Dataset,
1217	Ed., https://doi.org/10.17864/1947.000347, 2022
1218	Liu, C., Allan, R. P., Mayer, M., Hyder, P., Loeb, N. G., Roberts, C. D., Valdivieso, M.,
1219	Edwards, J. M., and Vidale, PL.: Evaluation of satellite and reanalysis-based global
1220	net surface energy flux and uncertainty estimates. J. Geophys. Res Atmospheres,
1221	122, 6250-6272, https://doi.org/10.1002/2017JD026616, 2017.

1222	Liu, C., Allan, R. P., Mayer, M., Hyder, P., Desbruyères, D., Cheng, L., Xu, J., Xu, F., and
1223	Zhang, Y.: Variability in the global energy budget and transports 1985-2017, Clim.
1224	Dynam., 55, 3381-3396, https://doi.org/10.1007/s00382-020-05451-8, 2020.
1225	Loeb, N. G., Johnson, G. C., Thorsen, T. J., Lyman, J. M., Rose, F. G., and Kato, S.:
1226	Satellite and Ocean Data Reveal Marked Increase in Earth's Heating Rate. Geophys.
1227	Res. Lett., 48, https://doi.org/10.1029/2021gl093047, 2021.
1228	Loeb, N. G., Thorsen, T. J., Norris, J. R., Wang, H., and Su, W.: Changes in Earth's energy
1229	budget during and after the "Pause" in global warming: An observational
1230	perspective, Climate, 6, 62, https://doi.org/10.3390/cli6030062, 2018.
1231	Lyman, J. M., and Johnson, G. C.: Estimating Global Ocean Heat Content Changes in the
1232	Upper 1800 m since 1950 and the Influence of Climatology Choice. J. Climate, 27,
1233	1945-1957, https://doi.org/10.1175/JCLI-D-12-00752.1, 2014.
1234	Lyman, J. M., Good, S. A., Gouretski, V. V., Ishii, M., Johnson, G. C., Palmer, M. D.,
1235	Smith, D. M., and Willis, J. K.: Robust warming of the global upper ocean. Nature,
1236	465, 334-337, https://doi.org/10.1038/nature09043, 2010.
1237	Mann, M.E., Beyond the Hockey Stick: Climate Lessons from The Common Era, Proc.
1238	Natl. Acad. Sci., 118 (39) e2112797118, https://doi.org/10.1073/pnas.2112797118,
1239	2021.
1240	Mayer, J., Mayer, M., and Haimberger, L.: Consistency and Homogeneity of Atmospheric
1241	Energy, Moisture, and Mass Budgets in ERA5. J. Climate, 34, 3955-3974,
1242	https://doi.org/10.1175/JCLI-D-20-0676.1, 2021.
1243	Mayer, M., Alonso Balmaseda, M., and Haimberger, L.: Unprecedented 2015/2016 Indo-
1244	Pacific Heat Transfer Speeds Up Tropical Pacific Heat Recharge. Geophys. Res.
1245	Lett., 45, 3274-3284, https://doi.org/10.1002/2018GL077106, 2018.
1246	McPhaden, M. J.: A 2 ^{1st} century shift in the relationship between enso sst and warm water
1247	volume anomalies. Geophys. Res. Lett., 39, 9706,
1248	https://doi.org/10.1029/2012GL051826, 2012.
1249	McMahon, C. R., Roquet, F., Baudel, S., Belbeoch, M., Bestley, S., Blight, C., Boehme,
1250	L., Carse, F., Costa, D. P., Fedak, M. A., Guinet, C., Harcourt, R., Heslop, E.,
1251	Hindell, M. A., Hoenner, X., Holland, K., Holland, M., Jaine, F. R. A., Jeanniard du
1252	Dot, T., Woodward: Animal Borne Ocean Sensors – AniBOS – An Essential
1253	Component of the Global Ocean Observing System. Front. Mar. Sci., 8,
1254	https://doi.org/10.3389/fmars.2021.751840, 2021.

1255	Meyssignac, B., Boyer, T., Zhao, Z., Hakuba, M. Z., Landerer, F. W., Stammer, D., Köhl,
1256	A., Kato, S., L'Ecuyer, T., Ablain, M., Abraham, J. P., Blazquez, A., Cazenave, A.,
1257	Church, J. A., Cowley, R., Cheng, L., Domingues, C. M., Giglio, D., Gouretski, V.,
1258	Ishii, M., Johnson, G. C., Killick, R. E., Legler, D., Llovel, W., Lyman, J., Palmer,
1259	M. D., Piotrowicz, S., Purkey, S. G., Roemmich, D., Roca, R., Savita, A.,
1260	Schuckmann, K. von, Speich, S., Stephens, G., Wang, G., Wijffels, S. E., and
1261	Zilberman, N.: Measuring Global Ocean Heat Content to Es- timate the Earth Energy
1262	Imbalance, Front. Mar. Sci., 6, 432, https://doi.org/10.3389/fmars.2019.00432, 2019.
1263	Minière, A., von Schuckmann, K., Sallée, JB., and Vogt, L.: Robust acceleration of Earth
1264	system heating observed over the past six decades. Sci. Rep., 13, 22975,
1265	https://doi.org/10.1038/s41598-023-49353-1, 2024
1266	Nerem, R. S., Beckley, B. D., Fasullo, J. T., Hamlington, B. D., Masters, D., and Mitchum,
1267	G. T.: Climate-change-driven accelerated sea-level rise detected in the altimeter era.
1268	P. Natl. Acad. Sci., 115, 2022-2025, https://doi.org/10.1073/pnas.1717312115, 2018.
1269	O'Carroll, A. G., Armstrong, E. M., Beggs, H. M., Bouali, M., Casey, K. S., Corlett, G. K.,
1270	Dash, P., Donlon, C. J., Gentemann, C. L., Høyer, J. L., Ignatov, A., Kabobah, K.,
1271	Kachi, M., Kurihara, Y., Karagali, I., Maturi, E., Merchant, C. J., Marullo, S.,
1272	Minnett, P. J., Pennybacker, M., Ramakrishnan, B., Ramsankaran, R. Santoleri, R.,
1273	Sunder, S., Saux Picart, S. Vázquez-Cuervo, J., Wimmer, W.: Observational Needs
1274	of Sea Surface Temperature. Front. Mar. Sci., 6,
1275	https://doi.org/10.3389/fmars.2019.00420, 2019.
1276	Purkey, S. G., and Johnson, G. C.: Warming of Global Abyssal and Deep Southern Ocean
1277	Waters between the 1990s and 2000s: Contributions to Global Heat and Sea Level
1278	Rise Budgets. J. Climate, 23, 6336-6351, https://doi.org/10.1175/2010jcli3682.1,
1279	2010.
1280	Rahmstorf, S., Box, J., Feulner, G., Mann, M.E., Robinson, A., Rutherford, S.,
1281	Schaffernicht, E. Exceptional 20th-Century slowdown in Atlantic Ocean
1282	overturning, Nature Climate Change, 5, 475-480, 2015.
1283	Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D.
1284	P., Kent, E. C., and Kaplan, A.: Global analyses of sea surface temperature, sea ice,
1285	and night marine air temperature since the late nineteenth century. J. Geophys. Res
1286	Atmospheres, 108, https://doi.org/https://doi.org/10.1029/2002JD002670, 2003.

1287	Reiniger, R. F., and Ross, C. K.: A method of interpolation with application to
1288	oceanographic data. Deep Sea Research, 15, 185-193, https://doi.org/10.1016/0011-
1289	7471(68)90040-5, 1968.
1290	Roemmich, D., and Gilson, J.: The 2004–2008 mean and annual cycle of temperature,
1291	salinity, and steric height in the global ocean from the Argo Program. Prog.
1292	Oceanogr., 82, 81-100, https://doi.org/10.1016/j.pocean.2009.03.004, 2009.
1293	Roemmich, D., and Gilson, J.: The global ocean imprint of ENSO. Geophys. Res. Lett., 38,
1294	https://doi.org/10.1029/2011GL047992, 2011.
1295	Roemmich, D., Alford, M. H., Claustre, H., Johnson, K., King, B., Moum, J., Oke, P.,
1296	Owens, W. B., Pouliquen, S., Purkey, S., Scanderbeg, M., Suga, T., Wijffels, S.,
1297	Zilberman, N., Bakker, D., Baringer, M., Belbeoch, M., Bittig, H. C., Boss, E.,
1298	Yasuda, I.: On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary Array.
1299	Front. Mar. Sci., 6, 2019.
1300	Sloyan, B. M., Wanninkhof, R., Kramp, M., Johnson, G. C., Talley, L. D., Tanhua, T.,
1301	McDonagh, E., Cusack, C., O'Rourke, E., McGovern, E., Katsumata, K., Diggs, S.,
1302	Hummon, J., Ishii, M., Azetsu-Scott, K., Boss, E., Ansorge, I., Perez, F. F., Mercier,
1303	H., Campos, E.: The Global Ocean Ship-Based Hydrographic Investigations
1304	Program (GO-SHIP): A Platform for Integrated Multidisciplinary Ocean Science.
1305	Front. Mar. Sci., 6, 2019.
1306	Tan, Z., Zhang, B., Wu, X., Dong, M., and Cheng, L.: Quality control for ocean
1307	observations: From present to future. Science China Earth Sciences, 65, 215-233,
1308	https://doi.org/10.1007/s11430-021-9846-7, 2022.
1309	Tan, Z., Cheng, L., Gouretski, V., Zhang, B., Wang, Y., Li, F., Liu, Z., & Zhu, J.: A new
1310	automatic quality control system for ocean profile observations and impact on ocean
1311	warming estimate. Deep Sea Research Part I: Oceanographic Research Papers, 194,
1312	103961, https://doi.org/10.1016/j.dsr.2022.103961, 2023.
1313	Trenberth, K. E.: The Changing Flow of Energy Through the Climate System.
1314	Cambridge University Press., https://doi.org/10.1017/9781108979030, 2022.
1315	Trenberth, K. E., and Fasullo, J. T.: Atlantic meridional heat transports computed from
1316	balancing Earth's energy locally. Geophys. Res. Lett., 44, 1919-1927,
1317	https://doi.org/10.1002/2016g1072475, 2017.
1318	Trenberth, K. E., Fasullo, J. T., and Kiehl, J.: Earth's Global Energy Budget Bull. Am.
1319	Meteorol. Soc., 90, 311-324, https://doi.org/10.1175/2008bams2634.1, 2009.

1320	Trenberth, K. E., Fasullo, J. T., Von Schuckmann, K., and Cheng, L.: Insights into Earth's
1321	Energy Imbalance from Multiple Sources. J. Climate, 29, 7495-7505,
1322	https://doi.org/10.1175/jcli-d-16-0339.1, 2016.
1323	Trenberth, K. E., Zhang, Y., Fasullo, J. T., and Cheng, L.: Observation-Based Estimates of
1324	Global and Basin Ocean Meridional Heat Transport Time Series. J. Climate, 32,
1325	4567-4583, https://doi.org/10.1175/jcli-d-18-0872.1, 2019.
1326	von Schuckmann, K., and Le Traon, P. Y.: How well can we derive Global Ocean
1327	Indicators from Argo data? Ocean Sci., 7, 783-791, https://doi.org/10.5194/os-7-783-
1328	2011, 2011.
1329	von Schuckmann, K., Cheng, L., Palmer, M. D., Hansen, J., Tassone, C., Aich, V.,
1330	Adusumilli, S., Beltrami, H., Boyer, T., Cuesta-Valero, F. J., Desbruyères, D.,
1331	Domingues, C., García-García, A., Gentine, P., Gilson, J., Gorfer, M., Haim- berger,
1332	L., Ishii, M., Johnson, G. C., Killick, R., King, B. A., Kirchengast, G.,
1333	Kolodziejczyk, N., Lyman, J., Marzeion, B., Mayer, M., Monier, M., Monselesan, D.
1334	P., Purkey, S., Roemmich, D., Schweiger, A., Seneviratne, S. I., Shepherd, A., Slater,
1335	D. A., Steiner, A. K., Straneo, F., Timmermans, ML., and Wijffels, S. E.: Heat
1336	stored in the Earth system: where does the energy go?, Earth Syst. Sci. Data, 12,
1337	2013-2041, https://doi.org/10.5194/essd-12-2013-2020, 2020.
1338	von Schuckmann, K., Palmer, M. D., Trenberth, K. E., Cazenave, A., Chambers, D.,
1339	Champollion, N., Hansen, J., Josey, S. A., Loeb, N., Mathieu, PP., Meyssignac, B.,
1340	and Wild, M.: An imperative to monitor Earth's energy imbalance, Nat. Clim.
1341	Change, 6, 138–144, https://doi.org/10.1038/nclimate2876, 2016.
1342	von Schuckmann, K. Minière, A. Gues, F. Cuesta-Valero, F. J. Kirchengast, G.
1343	Adusumilli, S. Straneo, F. Ablain, M. Allan, R. P. Barker, P. M. Beltrami, H.
1344	Blazquez, A. Boyer, T. Cheng, L. Church, J. Desbruyeres, D. Dolman, H.
1345	Domingues, C. M. García-García, A. Giglio, D. Gilson, J. E. Gorfer, M. Haimberger,
1346	L. Hakuba, M. Z. Hendricks, S. Hosoda, S. Johnson, G. C. Killick, R. King, B.
1347	Kolodziejczyk, N. Korosov, A. Krinner, G. Kuusela, M. Landerer, F. W. Langer, M.
1348	Lavergne, T. Lawrence, I. Li, Y. Lyman, J. Marti, F. Marzeion, B. Mayer, M.
1349	MacDougall, A. H. McDougall, T. Monselesan, D. P. Nitzbon, J. Otosaka, I. Peng, J.
1350	Purkey, S. Roemmich, D. Sato, K. Sato, K. Savita, A. Schweiger, A. Shepherd, A.
1351	Seneviratne, S. I. Simons, L. Slater, D. A. Slater, T. Steiner, A. K. Suga, T. Szekely,
1352	T. Thiery, W. Timmermans, M. L. Vanderkelen, I. Wjiffels, S. E. Wu, T. Zemp, M.:

1353	Heat stored in the Earth system 1960-2020: where does the energy go? Earth Syst.
1354	Sci. Data, 15, 1675-1709, https://doi.org/10.5194/essd-15-1675-2023, 2023.
1355	Wang, F., Shen, Y., Chen, Q., and Sun, Y.: Reduced misclosure of global sea-level budget
1356	with updated Tongji-Grace2018 solution. Sci Rep-Uk, 11, 17667,
1357	https://doi.org/10.1038/s41598-021-96880-w, 2021.
1358	Watkins, M. M., Wiese, D. N., Yuan, D. N., Boening, C., and Landerer, F. W.: Improved
1359	methods for observing Earth's time variable mass distribution with GRACE using
1360	spherical cap mascons. J. Geophys. Res Solid Earth, 120, 2648-2671,
1361	https://doi.org/10.1002/2014JB011547, 2015.
1362	Wijffels, S. E., Willis, J., Domingues, C. M., Barker, P., White, N. J., Gronell, A.,
1363	Ridgway, K., and Church, J. A.: Changing Expendable Bathythermograph Fall Rates
1364	and Their Impact on Estimates of Thermosteric Sea Level Rise. J. Climate, 21, 5657-
1365	5672, https://doi.org/10.1175/2008jcli2290.1, 2008.
1366	WMO: State of the Global Climate 2021, WMO-No. 1290, 2022.
1367	Wong, A. P. S., Wijffels, S. E., Riser, S. C., et al.: Argo Data 1999–2019: Two Million
1368	Temperature-Salinity Profiles and Subsurface Velocity Observations From a Global
1369	Array of Profiling Floats, https://doi.org/10.3389/fmars.2020.00700, 2020.
1370	Zhang, X., Church, J. A., Platten, S. M., and Monselesan, D.: Projection of subtropical
1371	gyre circulation and associated sea level changes in the Pacific based on CMIP3
1372	climate models. Clim. Dyn., 43, 131-144, https://doi.org/10.1007/s00382-013-1902-
1373	x, 2014.
1374	