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Abstract. Ocean observational gridded products are vital for climate monitoring, ocean 29 

and climate research, model evaluation, and supporting climate mitigation and adaptation 30 

measures. This paper describes the 4th version of the Institute of Atmospheric Physics 31 

(IAPv4) ocean temperature and ocean heat content (OHC) objective analysis product. It 32 

accounts for recent developments in quality control (QC) procedures, climatology, bias 33 

correction, vertical and horizontal interpolation, and mapping and is available for the upper 34 

6000 m (119 levels) since 1940 (more reliable after ~1957) for monthly and 1° × 1° 35 

temporal and spatial resolutions. The IAPv4 is compared with the previous version, IAPv3, 36 

and to the other data products, sea surface temperatures (SSTs), and satellite observations. 37 

It has a slightly stronger long-term upper 2000 m OHC increase than IAPv3 for 1955-38 

2023, mainly because of newly developed bias corrections. IAPv4 OHC 0-2000 m trend is 39 

also higher during 2005-2023 than IAPv3. The uppermost level of IAPv4 is consistent with 40 

independent SST datasets. The month-to-month OHC variability for IAPv4 is desirably 41 

less than IAPv3 and other OHC products investigated in this study, the trend of ocean 42 

warming rate (i.e., warming acceleration) is more consistent with the net energy imbalance 43 

at the top of the atmosphere than IAPv3, and the sea level budget can be closed within 44 

uncertainty. The gridded product is freely accessible at: 45 

http://dx.doi.org/10.12157/IOCAS.20240117.002 for temperature data (Cheng et al., 46 

2024a) and http://dx.doi.org/10.12157/IOCAS.20240117.001 for ocean heat content data 47 

(Cheng et al., 2024b). 48 

 49 

1. Introduction 50 

Observational gridded products are essential for understanding the ocean, the 51 

atmosphere, and climate change; they support policy decisions and social-economy 52 

developments (Abraham et al., 2022; Abraham and Cheng, 2022; Cheng et al., 2022a). For 53 

instance, many of the climate indicators used in the Working Group I report of the 6th 54 

Intergovernmental Panel on Climate Change (IPCC-AR6-WG1) are based on gridded 55 

products (Gulev et al., 2021; IPCC, 2021), mainly because the raw oceanic data suffer 56 

from inhomogeneous data quality and irregular and incomplete data coverage (Abraham et 57 

al., 2013; Boyer et al., 2016; Cheng et al., 2022a; Meyssignac et al., 2019). 58 
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As more than 90% of the Earth’s energy imbalance (EEI) in the past half-century has 59 

accumulated in the ocean, increasing ocean temperature (T) and ocean heat content (OHC) 60 

are essential climate variables for monitoring, understanding, and projecting climate 61 

change (e.g., Rhein et al., 2013; Hansen et al., 2011; Trenberth, 2022; Trenberth et al., 62 

2009; von Schuckmann et al., 2020; Cheng et al., 2022). OHC also impacts air-sea and ice-63 

sea interactions and thus exerts a considerable influence over the other components of the 64 

climate system. It provides critical feedback through energy, water, and carbon cycles 65 

(Cheng et al., 2022a; Trenberth, 2022; von Schuckmann et al., 2016). Substantial changes 66 

in ocean temperatures also profoundly impact ocean biogeochemical processes and 67 

ecosystems and are critical for ocean health and human society (Bindoff et al., 2019; 68 

Cheng et al., 2022a). 69 

Many gridded T/OHC datasets have been produced by independent groups, and most 70 

of them are updated annually or more frequently (Cheng et al., 2022a; Good et al., 2013; 71 

Hosoda et al., 2008; Ishii et al., 2017; Levitus et al., 2012; Li et al., 2017; Meyssignac et 72 

al., 2019; Roemmich and Gilson, 2009). Most widely-used products are at 1° × 1° 73 

horizontal resolution and monthly temporal resolution from near-surface to at least 2000 m 74 

depth. Some products utilize all available in situ observations and span at least half a 75 

century, prominent examples being the data products compiled by the Institute of 76 

Atmospheric Physics (IAP) (Cheng and Zhu, 2016; Cheng et al., 2017) from 1940-present; 77 

Japan Meteorological Agency (JMA) (Ishii et al., 2017) from 1955-present; National 78 

Centers for Environmental Information (NCEI), National Oceanic and Atmospheric 79 

Administration (NOAA) from 1950-present (Levitus et al., 2012); and University of 80 

California since 1949 (Bagnell and DeVries, 2021). As Argo data has achieved near-global 81 

upper 2000 m open ocean coverage since ~2005, many Argo-based or Argo-only gridded 82 

products are available. Examples include gridded products from SCRIPPS after 2004 83 

(Roemmich and Gilson, 2009); China Argo Real-time Data Center since 2005 (Li et al., 84 

2017); and Copernicus since 2005 (von Schuckmann and Le Traon, 2011). These products 85 

usually span from ~2005 to the present for the upper ~2000 m. These data benefit from the 86 

high quality of Argo data but are not fully resolving polar regions, shallow waters, and 87 

regions with complex topography. 88 

In 2016, the IAP group provided its first gridded product for the upper 700 m ocean 89 

(Cheng and Zhu, 2016) by merging all available observations since 1960. With a revised 90 

mapping method and a thorough evaluation process with synthetic observations, an update 91 
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(IAP version 3, IAPv3) became available in 2017 for the upper 2000 m ocean with data 92 

since the 1950s (Cheng et al., 2017). The IAPv3 has supported scientific research, climate 93 

assessment reports, and monitoring practices (Bindoff et al., 2019; Gulev et al., 2021; 94 

WMO, 2022).  95 

After the release of IAPv3, there has been progress with observation data quality 96 

control and new/updated techniques for temperature data processing and reconstruction. 97 

For example, Gouretski et al. (2022) found that old Nansen cast bottle data contained 98 

systematic biases that impacted the T/OHC data before 1990. Revisions are also available 99 

to the bias corrections for the Mechanical Bathythermographs (MBT) and eXpendable 100 

Bathythermographs (XBT) data (Cheng et al., 2014; Gouretski and Cheng, 2020), mainly 101 

impacting the data within 1940–2005. Tan et al. (2023) developed a new quality-control 102 

system that advances the detection of outliers after accounting for the non-Gaussian 103 

distribution of local temperatures in determining the local climatological range. The impact 104 

of inhomogeneous vertical resolution of temperature profiles has been recognized 105 

previously (Cheng and Zhu, 2014) and received more attention recently (Li et al., 2020) 106 

with a new vertical interpolation approach (Barker and McDougall, 2020). Upgrading the 107 

product with new developments is important to better support the ocean/climate research 108 

and climate assessments.  109 

This manuscript discusses the revisions to the IAP ocean objective analysis product 110 

(IAPv4) since the publication of the IAPv3 (Cheng et al., 2017). The data and methods are 111 

introduced in Section 2 and the results are presented in Section 3, with analyses of the 112 

character of the IAPv4 on regional and global scales and at various time scales. The EEI 113 

and sea level budgets based on the new data product are also investigated. A summary and 114 

discussion are provided in Section 4, with some remaining issues and outlooks being 115 

discussed. 116 

 117 

2. Data and Methods 118 

2.1 Data source 119 

The majority of the in situ measurements used to create the data product come from 120 

the World Ocean Database (WOD), downloaded in September 2023. Data from all 121 

instrument types are used, including XBTs (Goni et al., 2019), Argo (Argo 2000), 122 

Conductivity/Temperature/Depth profilers (CTDs), MBTs, bottles, moorings, gliders, 123 

Animal Borne Ocean Sensors (McMahon et al., 2021) and others (Boyer et al., 2018) (Fig. 124 
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1). There is a total of 17,634,865 temperature profiles from January 1940 to September 125 

2023 (Fig. 1a). MBT, XBT, Nansen Bottle and CTD data are the major instruments before 126 

2000 (Fig. 1a, b). The spatial coverage of these data increased to >30% in 1960 and >70% 127 

in the late 1960s for 1° × 1° × 1-year resolution. After 2005, there is a huge number of 128 

GLD and APB data, and as they are mainly distributed in the polar regions (APB) and 129 

coastal regions (GLD) (Fig. 1a), their spatial coverage is usually less than 5% for 1° × 1° × 130 

1 year resolution. By contrast, the Argo data cover most of the global open ocean since 131 

~2005 (Fig. 1b). 132 

Argo data are processed following the recommendations of the Argo community. 133 

Adjusted data are used where applicable. Both Delayed- and Real-Time Argo data have 134 

been incorporated in IAPv4. As Real-Time Argo data have only passed automated, simple 135 

QC tests in real-time, these data may still contain temperature, pressure, and salinity values 136 

affected by unknown errors. However, through a sensitivity study, Cheng (2024) indicated 137 

that including Real-Time Argo data does not bias the OHC calculation for the IAP 138 

analysis. Nevertheless, IAP data are updated frequently (every 1-3 months): each time the 139 

updated Argo data is used, the T/OHC fields are recalculated following the 140 

recommendation by the Argo group (Wong et al., 2020). The data from the Argo floats in 141 

the “grey list” have been removed from the calculation (https://data-argo.ifremer.fr/). 142 

To complement the WOD with relatively less data in the Arctic and coastal regions of 143 

the Northwest Pacific, this presented product also uses data from other sources. The 144 

majority of these data are from the Chinese Academy of Sciences Ocean Science Data 145 

Center (Zhang et al., 2024), and some data are rescued from the old documents of marine 146 

surveys. All these data will be publicly available. There are a total of 85,990 additional 147 

temperature profiles, about 0.50% of the data, which is expected to improve the 148 

reconstruction in these data-sparse regions (compared with IAPv3 and other products). 149 

The in situ data have been processed as described in a flow chart in Figure 2. In the 150 

following sections, the key techniques of data processing are introduced.  151 

 152 
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Figure 1: (a) Yearly number of temperature casts for different instruments; (b) 154 

percentage coverage (%) of ocean data for each instrument, calculated as the ratio 155 

between the number of 1° × 1° × 1 year grid cells observed by each instrument and 156 

the total number of ocean grids; (c) number of subsurface temperature casts in 1-157 

degree grid boxes from 1940 to 2023 collected by different instruments: CTD 158 

(Conductivity/Temperature/Depth), XBT (eXpendable BathyThermographs), MBT 159 

(Mechanical BathyThermograph), Bottle, APB (Animal mounted Pinniped Borne), PFL 160 

(Profiling Floats, i.e. Argo), GLD (Glider), MRB (Moored Buoy), and DRB (Drifting 161 

Buoy). 162 

 163 

 164 

Figure 2: Flow chart of the IAP data reconstruction processes from the raw in situ 165 

observations to gridded data (IAPv4) and OHC estimates. The ellipses indicate the data 166 

(including data for error estimates), and the rectangle boxes show the techniques used to 167 

process the data. 168 

 169 

2.2 Data quality control 170 

The quality control (QC) procedure aims to identify spurious measurements (including 171 

outliers) and data with incorrect metadata through a set of quality checks and ensures the 172 

quality of the in situ dataset (Tan et al., 2022). There is growing evidence that QC is 173 

critical for accurate temperature/OHC reconstruction, as shown by Tan et al., (2023) where 174 

two different QC systems produced a difference of approximately 15 % (~7 %) in the OHC 175 

0-2000 m trend from 1955 to 1990 (2005-2021). Unfortunately, the impact of QC on OHC 176 
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estimates has not been evaluated in previous community-assessments on T/OHC 177 

uncertainty (Boyer et al., 2016; Lyman et al., 2010). In this study, the QC procedure 178 

follows the CAS-Ocean Data Center (CODC) Quality Control system, named CODC-QC 179 

(Tan et al., 2023), where only the “good” data (flag=0) are used.  180 

The CODC-QC system (Tan et al., 2023) has the following strengths, which make it 181 

particularly suitable for T/OHC reconstruction: 182 

1) A new local climatological range is defined in this CODC-QC system to identify 183 

the outliers. Unlike many existing QC procedures, no assumption is made of a Gaussian 184 

distribution law in the new approach, as the oceanic variables (e.g., temperature and 185 

salinity) are typically skewed. Instead, the 0.5 % and 99.5 % quantiles are used as 186 

thresholds in CODC-QC to define the local climatological parameter ranges. 187 

2) Local climatological ranges change with time to account for the long-term trends of 188 

ocean temperature accompanied by more frequent extreme events (e.g., Oliver et al., 2018; 189 

Sun et al., 2023). Previously, the use of the static local ranges tended to remove too many 190 

“extreme values” (at the tails of the temperature distributions) associated with climate 191 

change in recent years that were actually real, leading to a QC-procedure related bias in the 192 

gridded dataset and OHC estimate (Tan et al., 2023). 193 

3) In addition, local climatological ranges for the vertical temperature gradient are 194 

constructed to account for the variability of ‘vertical shape’, increasing the ability of the 195 

scheme to identify spurious profiles. 196 

4) The QC procedure is instrument-specific, accounting for characteristics inherent to 197 

particular instrumentation types. For example, XBT digital recording systems are allowed 198 

to continue to record beyond the rated terminal depth suggested by manufacturers (T7/DB 199 

probes below 760 m; T4/T6 below 460 m; T5 below 1830 m). Below the rated maximum 200 

depth, the XBT wire often breaks, leading to a characteristic change in recorded 201 

temperature values. The new QC procedure effectively identifies such profiles. 202 

5) The thorough evaluation of the QC procedure performance and the application of 203 

the QC procedure to the manually QC-ed datasets (Thresher et al., 2008; Gouretski and 204 

Koltermann, 2004) demonstrated the effectiveness of the proposed scheme in removing 205 

spurious data and minimizing the percentage of mistakenly flagged good data. 206 

Being applied to the entire temperature profile dataset the CODC-QC procedure 207 

identifies 6.22 % of all temperature measurements as outliers. The rejection rates 208 

(definition follows Tan et al., 2023) vary among instrumentation types (3.73 % for CTD, 209 
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1.97 % for Argo, 12.06 % for XBT, 4.93 % for MBT, 6.54 % for bottle, 5.92 % for APB, 210 

4.54 % for DRB, 2.55 % for MRB). The overall percentage of outliers decreases over time 211 

from ~5 % in the 1940s to ~2.5 % in the 2020s, reflecting the progressive improvement of 212 

the instrumentation (Fig. 3). A rejection rate maximum (~12 %) during 2000~2010 is 213 

linked to the XBT data, which are especially abundant in the 800–1100m layer and are 214 

characterized by higher rejection rate below the maximum depth (Tan et al., 2023). The 215 

generally higher rejection rate below 4000 meters is related to the gross errors (such as 216 

measurements cooler than -2°C, big spikes, etc.) and the occurrence of the constant values 217 

(recorded values don’t change with depth). For example, the higher rejection rate within 218 

2008-2009 below 4000 meters is because of the gross errors in the CTD data. 219 

 220 

Figure 3: The rejection rate (%) after CODC-QC as a function of calendar year and 221 

depth.  222 

 223 

2.3 Bias correction 224 

It is well known that data from several instrument types can exhibit biases both in 225 

temperature and depth. Temperature profiles obtained using XBTs and MBTs provide an 226 

example of biased data, especially because of uncertainties in the depth of measurement. 227 

Gouretski and Koltermann (2007) demonstrated their significant impact on the magnitude 228 

and variability of the global OHC estimates. That study triggered a series of publications 229 

where different bias correction schemes have been suggested for XBT (Gouretski and 230 
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Reseghetti, 2010; Abraham et al., 2013; Cheng et al., 2016; Levitus et al., 2009; Wijffels et 231 

al., 2008), MBT (Gouretski and Cheng 2020; Levitus et al., 2009) and other instruments 232 

(Fig. 2). In the compilation of IAPv4, newly developed bias correction schemes are 233 

applied. 234 

The XBT temperature bias was found to be generally positive, as large as ~0.1 °C 235 

before 1980 on the global 0–700 m average, diminishing to less than 0.05 °C after 1990 236 

(Gouretski and Koltermann 2007; Wijffels et al., 2008). Here, we use an updated XBT bias 237 

correction scheme (Cheng et al., 2014) to correct both depth and temperature biases in 238 

XBT data, following the community recommendation (Cheng et al., 2016; Goni et al., 239 

2019). The depth and temperature biases depend on ocean temperature, probe type, and 240 

time. An inter-comparison among several correction schemes rated the CH14 scheme the 241 

most successful (Cheng et al., 2018). Using XBT and collocated CTD data, we updated the 242 

CH14 scheme by re-calculating bias corrections between 1966-2016 and extending them 243 

for the years 2017 to 2023.  244 

Comparison with collocated reference CTD profiles recently revealed significant 245 

biases in the old hydrographic profiles obtained by means of Nansen bottle casts 246 

(Gouretski et al., 2022). Both depth and temperature measurements of bottle casts were 247 

found to be biased, and the proposed correction scheme was also implemented in IAPv4. 248 

The thermal bias is related to the time needed to bring the mercury thermometers in 249 

equilibrium with the ambient temperature after the completion of the hydrographic cast. 250 

The depth bias indicates an overestimation of the bottle depth due to the wire's deviation 251 

from the vertical position and is mostly related to the hydrographic casts where the 252 

thermometrical method of sample depth determination was not used. The correction 253 

scheme includes a constant thermal bias of -0.02 °C and a depth- and time-variable depth 254 

bias.  255 

The MBT bias is as large as 0.28 °C before 1980 for the global average and reduces to 256 

less than 0.18 °C after 1980 for the 0~200 m average. IAPv3 used Ishii and Kimoto, (2009) 257 

(IK09) scheme to correct MBT bias, while a new scheme proposed by Gouretski and 258 

Cheng, (2020) (GC20) is adopted in IAPv4. This shift is made because our assessment 259 

indicates the under-correction of MBT bias by the IK09 scheme within the upper 120 m 260 

and over-correction in the deeper layer, whereas GC20 corrects both depth and temperature 261 

biases. GC20 also found the MBT bias to be country-dependent, explained in terms of 262 

different instrumentation characteristics and working procedures. Therefore, the time-263 
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varying bias corrections are applied separately for the MBT profiles obtained by ships 264 

from the United States, Soviet Union/Russia, Japan, Canada, and Great Britain. Data from 265 

all other countries are corrected using a globally averaged correction. 266 

Finally, thermal biases were recently reported for the data obtained by different kinds 267 

of data loggers attached to marine mammals (APB). Gouretski et al. (2024) analysed 268 

temperature profiles obtained between 2004 and 2019 in the high and moderate latitudes of 269 

both hemispheres. Comparison with the collocated reference CTD and Argo float data 270 

revealed a systematic negative thermal offset (average value -0.027 °C) for mammal 271 

temperature profiles from SRDL (satellite-related data loggers). For the less accurate data 272 

from TDR (Temperature-Depth-Recorders), the comparison revealed a small positive 273 

temperature bias of 0.02 °C and the depth (pressure) bias indicating depth overestimation. 274 

 275 

2.4 Climatology 276 

For IAP and other data product generators, horizontal interpolation (mapping) is 277 

applied on a temperature anomaly field after removing a monthly climatology; thus, a pre-278 

defined climatology field with an annual cycle is mandatory (Fig. 2). The accuracy of the 279 

climatology field is one of the key sources of uncertainty in reconstruction because the 280 

error in climatology will propagate into the anomaly field, impact the spatial dynamical 281 

consistency, and the accuracy of the reconstruction (Cheng and Zhu, 2015; Lyman and 282 

Johnson, 2014; Boyer et al., 2016).  283 

In IAPv4, the adjusted mapping procedure (see below) has been applied to reconstruct 284 

the climatology field (Table 1). The merit of using IAP mapping for climatology is its 285 

ability to better represent the spatial anisotropy of temperature variability (non-Gaussian 286 

distribution). Unlike IAPv3, where the 1990–2005 reference period was used, IAPv4 uses 287 

data between 2006 and 2020 to construct 12 monthly climatologies, taking advantage of 288 

more reliable data combined with better and more homogeneous spatial and temporal 289 

coverage in the last two decades (Table 1). Following the recommendation in Cheng and 290 

Zhu, (2015), a relatively short period of 15-year is used because climatology constructed 291 

with longer period of data will result in different baselines at different locations (i.e., the 292 

baseline shifted to earlier years in the middle latitudes of the North Hemisphere and the 293 

baseline shifted to more recent years in the Southern Hemisphere) and this inconsistency 294 

will violate the spatial structure of the anomaly field (Cheng and Zhu, 2015). Recent 295 
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developments from other groups, such as Li et al., (2022), include the choice of a short-296 

period climatology. 297 

IAPv4 used an 800 km influencing radii in climatology reconstruction, smaller than 298 

the 20° for IAPv3, to more properly account for the rapid change of temperatures with 299 

distance. There is a trade-off between data availability and the size of the influence radius. 300 

Using radii smaller than 500 km does not ensure a global fractional coverage (defined as 301 

the fraction of the total ocean area obtained by the mapping method) because of data 302 

sparseness (Cheng, 2024). As our tests suggest, using 500~800 km results in very similar 303 

reconstructions of climatology, therefore, 800 km is adopted. 304 

 305 

2.5 Vertical interpolation 306 

The vertical resolution of ocean temperature profiles changed dramatically over time 307 

associated with instrument evolution and the increase of data storage capability. For 308 

instance, the global mean vertical resolution at 500 m level changed from ~100 m in the 309 

1960s to less than 10 m during the 2010s (Li et al., 2020). Vertical interpolation of the raw 310 

profiles on standard levels is a critical process (Fig. 2): Cheng and Zhu (2014) indicated 311 

that the use of linear or spline vertical interpolation methods can bias the temperature 312 

reconstruction and OHC estimation (Barker and McDougall, 2020; Li et al., 2020; Li et al., 313 

2022). IAPv3 used the (Reiniger and Ross, 1968) (RR) method. Recently, Barker and 314 

McDougall (2020) proposed a new approach using multiple Piecewise Cubic Hermite 315 

Interpolating Polynomials (PCHIPs) to minimize the formation of unrealistic water masses 316 

by the interpolation procedure.  317 

Because the largest difference between interpolation methods is found mostly for the 318 

low-resolution profiles (e.g., old Nansen casts), in practice, extremely low vertical 319 

resolution profiles had to be removed to reduce the uncertainty in interpolation. In IAPv4, 320 

this procedure is optimized compared to IAPv3, and only parts of profiles with a sufficient 321 

vertical resolution are used. The thresholds for the vertical resolution are set by 50 m in the 322 

upper 200m, 200m between 200 m and 1000 m, 500 m between 1000 m and 2000 m, and 323 

600m between 2000 m and 6000 m. As no interpolation method can adequately interpolate 324 

temperature for the vertical resolution beyond these thresholds, interpolation is not 325 

performed in such cases to avoid errors (these extreme low-resolution data are not used in 326 

further processing). Under this limitation for IAPv4, we still apply the RR method for 327 

temperature profiles. 328 
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Finally, IAPv4 extends the set of standard vertical levels with a total of 119 levels 329 

from 1 m to 6500 m (79 levels within the upper 2000 m) compared to 41 levels in IAPv3 330 

between 1 m and 2000 m (Table 1). The increase in vertical resolution is critical for 331 

accurately representing the mixed layer, as investigated below. 332 

 333 

2.6 Grid average and mapping 334 

The anomaly profiles are obtained by subtracting the monthly mean climatology from 335 

the vertically interpolated profiles. These anomalies are then averaged (arithmetic mean) 336 

into a 1° × 1° grid at each standard level (1° × 1° gridded average field) (Fig. 2). Due to the 337 

general data sparsity, variable time windows (larger than one month) are used for monthly 338 

reconstructions to ensure a truly global analysis (Supplementary Table 1). This process 339 

takes advantage of the larger persistence of anomalies (generally smaller monthly and 340 

inter-annual variability) in the deep ocean than in the upper ocean and thus is physically 341 

grounded. Specifically, after 2005, data within a three-month window are merged to 342 

provide a monthly reconstruction for each layer of the upper 1950 m. Before 2005, a time-343 

varying and depth-varying time window is used, and it is generally smaller in the upper 344 

ocean and wider in the deeper ocean (Supplementary Table 1). Below 2000 m, a 5-year 345 

(60-month) window is adopted. The use of a time window will reduce the monthly 346 

variance compared to other datasets, which is likely too high compared with independent 347 

Earth’ s Energy Imbalance data at the top of the atmosphere (Trenberth et al., 2016). 348 

Mapping interpolates the gridded (e.g., box-averaged) observations horizontally into a 349 

spatially complete map (Fig. 2) because not all 1° × 1° boxes are filled with data. (Fig. 2). 350 

IAPv4 adopted a similar mapping approach (Ensemble Optimal Interpolation with dynamic 351 

ensemble: EnOI-DE) as in IAPv3 introduced in Cheng and Zhu (2016) and Cheng et al., 352 

(2017) but with the following modifications:  353 

1) the largest influence radius has changed from 20° in the upper 700 m (25° at 700–354 

2000 m) in IAPv3 to 2,000 km in the upper 700 m (2,500 km at 700–6000 m) in IAPv4, to 355 

account for the reduced distance between two longitudes from tropics to the polar regions. 356 

This change mainly helps to improve the reconstruction in the high-latitude regions; 357 

2) The three iterative runs are taken to effectively bring in different scales of 358 

variability with influencing radius changing from 2,000 km (2,500 km at 700–6000 m) to 359 

800 km and 300 km, respectively, based on the tests presented in Cheng and Zhu (2016) 360 

and Cheng et al., (2017);  361 
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3) For each month, IAPv3 used 40 model simulations (historical runs) from the 362 

Coupled Model Intercomparison Project phase 5 (CMIP5) to provide a flow-dependent 363 

ensemble, which is then constrained by observations to provide optimized spatial 364 

covariance. IAP mapping uses model-based covariance because we argue that spatial 365 

covariance can never be satisfactorily parametrized by some simple basic functions (such 366 

as Gaussian) given its complexity. With model-based, flow-dependent, and dynamically-367 

consistent covariance, the IAP mapping provides a more realistic reconstruction than other 368 

approaches based on Gaussian-based parameterized covariance, as evaluated by many 369 

studies (Cheng et al., 2017; Cheng et al., 2020; Dangendorf et al., 2021; Nerem et al., 370 

2018).  371 

4) The observation error variance (R), which represents the error of the observations, 372 

is updated in IAPv4 as follows. R consists of both the instrumental error (Re) due to 373 

inaccuracy and the representativeness error (Rr) due to the need to represent the spatial (at 374 

1° by 1° and 1 m standard grid depths) and temporal (1 month) averages from a limited 375 

numbered of observations (Cheng and Zhu, 2016):  376 

R= Re + Rr = (∑ 𝑬𝒊!
" )/M +σ2/M, 377 

where M observations exist for a given grid cell. Ei is the instrument's precision for 378 

each individual observation, assuming random error (the basic assumption is that after bias 379 

correction, the systematic errors can be eliminated). Re in each grid cell is set to the mean 380 

of the typical precision of the different instruments contributing data in the cell, which is 381 

set according to IQuOD (International Quality-Controlled Ocean Database) specification 382 

(Cowley et al., 2021). σ2 represents the variance of the various temperature measurements 383 

against the monthly mean value. The data from 2005 to 2022 are used to calculate σ2 in 384 

each grid because of greater data abundance and quality compared to earlier times.  385 

As the representativeness error (Rr) is expected to be flow-dependent (i.e., the error is 386 

expected to be higher in areas with a large gradient of the flow speed and regions of higher 387 

variability), more observations are required to represent the mean value. Figure 4 shows a 388 

larger variance (σ2) in the boundary-current regions and near the Antarctic Circumpolar 389 

Current (ACC) in the upper ocean (e.g., 10 m, 200 m, 500 m). At 200 m, it shows a larger 390 

σ2 in the Western Pacific Ocean, corresponding to the large thermocline variations at this 391 

layer. Below 1000 m, larger σ2 along the ACC frontal regions and in the North Atlantic 392 

Ocean occur because of a stronger mixing and convection in these regions. 393 
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The uncertainty in the derived gridded reconstruction is also based on the EnOI 394 

framework formulated by Cheng and Zhu, (2016). The uncertainty accounts for 395 

instrumental, sampling and mapping errors. Other error sources, including the choice of 396 

climatology, vertical interpolation, bias corrections, and QC, are not considered in this 397 

uncertainty estimate. Therefore, a more thorough uncertainty quantification method is 398 

needed, and this is under development in a separate study. 399 

 400 

Figure 4: Variance (σ2) of ocean temperature at several representative layers. (a) 401 

10 m, (b) 200 m, (c) 500 m and (d) 1000 m. The unit is °C2. 402 

 403 

Table 1. General information on IAPv4 and IAPv3 data products. 404 

 IAPv3 IAPv4 
Horizonal 
resolution Global (1° × 1°) Global (1° × 1°) 

Vertical levels 

41 levels from 1 m to 2000 m (1, 5, 10, 
20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 
140, 160, 180, 200, 250, 300, 350, 400, 
450, 500, 550, 600, 650, 700, 750, 800, 

850, 900, 1000, 1100, 1200, 1300, 
1400, 1500, 1600, 1700, 1800, 2000) 

119 levels from 1 m to 6000 m (1, 5, 10, 
15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 

70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 
140, 150, 160, 170, 180, 190, 200, 220, 
240, 260, 280, 300, 320, 340, 360, 380, 
400, 425, 450, 475, 500, 525, 550, 575, 
600, 625, 650, 675, 700, 750, 800, 850, 

900, 950, 1000, 1050, 1100, 1150, 1200, 
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1250, 1300, 1350, 1400, 1450, 1500, 
1550, 1600, 1650, 1700, 1750, 1800, 
1850, 1900, 1950, 2000, 2100, 2200, 
2300, 2400, 2500, 2600, 2700, 2800, 
2900, 3000, 3100, 3200, 3300, 3400, 
3500, 3600, 3700, 3800, 3900, 4000, 
4100, 4200, 4300, 4400, 4500, 4600, 
4700, 4800, 4900, 5000, 5100, 5200, 
5300, 5400, 5500, 5600, 5700, 5800, 

5900, 6000) 
Time period and 

resolution 
1940–2022 (reliable data after 1955), 

monthly 
1940–present (reliable data after 1955), 

monthly 
Quality-control WOD (Garcia et al., 2018) CODC-QC (Tan et al., 2023) 

Vertical 
interpolation 

RR (Reiniger and Ross, 1968) 
interpolation 

RR (Reiniger and Ross, 1968)  
interpolation 

Climatology 
IAP climatology: simple gridded 

average and then spatial interpolation 
with distance-weighted average 

Improved IAP reconstruction with EnOI 
approach 

XBT bias 
correction 

CH14 (updated in 2018) CH14 (revised and updated in 2023) 

MBT bias 
correction IK09 (Ishii and Kimoto, 2009) GC20 (Gouretski and Cheng, 2020) 

APB bias 
correction None GCR24 (Gouretski et al., 2024) 

Bottle bias 
correction None GCT22 (Gouretski et al., 2022) 

Mapping EnOI-DE with influencing radius of 
20, 8, 3 degrees, iteratively. 

EnOI-DE with influencing radius of 
2000, 800, 300 km, iteratively. 

Representative error updated with 2005-
2022 observations. The radius of 
influence does not cross the land. 

Uncertainty 
Given by EnOI framework accounting 

for instrumental error and horizonal 
sampling/mapping error 

Given by EnOI framework accounting for 
instrumental error and horizonal 

sampling/mapping error 

DOI / 

http://dx.doi.org/10.12157/IOCAS.20240
117.002 for temperature data (Cheng et 

al., 2024a) and 
http://dx.doi.org/10.12157/IOCAS.20240

117.001 for ocean heat content data 
(Cheng et al., 2024b) 

 405 
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2.7 OHC calculation and volume correction 406 

Based on the gridded temperature reconstruction (Table 1), OHC in each grid is 407 

calculated as OHC (x, y, z) = 𝑐#∭ 𝜌𝑇𝑑𝑉(𝑥, 𝑦, 𝑧)$(&,(,)) . following TEOS-10 standards, 408 

where 𝑐# is a constant of ~ 3991.9 J (kg K)-1 according to the new TEOS-10 standard 409 

formulation as conservative temperature and absolute salinity are used, 𝜌 is potential 410 

density in kg m-3, and 𝑇 is conservative temperature measured in degrees Celsius (here it 411 

is anomaly relative to the 2006–2020 baseline) (Cheng et al., 2022a).  412 

As OHC is an integrated metric over a specific ocean volume, properly identifying 413 

ocean volume is critical, especially in shallow waters. Previous studies found a 10–20 % 414 

difference in the OHC trend in recent decades between different land-ocean masks (von 415 

Schuckmann and Le Traon, 2011; Meyssignac et al., 2019; Savita et al., 2022). 416 

Specifically, in marginal sea areas with complex topography, 1° × 1° × ∆z grid boxes 417 

(where ∆z is the depth range of the grid box) near coasts and islands typically cover both 418 

ocean and land areas but are assigned to represent land or ocean only. Thus, the gridded 419 

ocean temperature datasets are subjected to errors from inaccurate land-sea attribution. 420 

Here, we offer a volume correction (VC) for these grid boxes to improve the OHC 421 

estimate, as follows. 422 

For each 1° × 1° × ∆z grid box, we introduce a VC factor (denoted as FVC) to correct 423 

the OHC values: OHCVC (x, y, z) = OHC (x, y, z) × FVC (x, y, z). First, we assume the 424 

seawater volume distribution in 1 arc-minute topographic data of ETOPO1 as “truth”. No 425 

correction is needed if a box is assigned to ocean according to ETOPO1 data, thus, FVC=1. 426 

If a fraction of a 1° × 1° × ∆z grid box is land according to ETOPO1 and IAP data includes 427 

T/OHC values, the FVC is represented by the fraction of the ocean volume in this box 428 

(illustrated in Fig. 5), and the volume for OHC calculations can be corrected with FVC(i). In 429 

a grid box, if there is no IAP data (i.e., it is land according to the IAP mask), but this box 430 

contains some ocean volume according to ETOPO1 data, we define FVC (a) again as the 431 

fraction of the ocean volume in this box, and then this FVC(a) is added to the adjacent grid 432 

boxes where there are values in IAP data. If all the adjacent grid boxes contain no data, the 433 

volume is equally redistributed to the diagonal boxes (Fig. 5). The volume is discarded if 434 

there is no data in all adjacent and diagonal boxes.  435 
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With this approach, the VC factor in each grid box is a sum of two components: a 436 

local adjustment FVC(i) and a redistribution from the adjacent grids:  437 

FVC(a)): FVC = FVC (i) + FVC(a), 438 

To avoid misidentification of sea ice, we performed VC only on the global grid points 439 

within 60 °S to 60 °N. Eventually, we obtained a three-dimensional FVC that fits the IAP 440 

grids (119 × 360 ×180; depth coverage to 6000 m) and used it to compute OHC. The VC 441 

applied to ~15% of all the 1° × 1° × ∆z grid boxes of IAPv4 ocean grid boxes (with FVC ≠ 442 

1) for the entire 0-6000 m ocean and ~10% grid boxes of the upper 2000 m. Since the open 443 

ocean accounts for the vast majority of the global ocean volume, the influence of the VC 444 

method on the global OHC trend is small. For example, the upper 2000 m OHC trend with 445 

VC is ~0.15% (~0.45%) smaller than without VC from 1958-2023 (2005-2023) for IAPv4. 446 

However, it can significantly affect regional OHC estimates, especially in regions with 447 

complex topography. For example, the Maritime Continent region's 0-2000 m OHC trend 448 

is reduced by 6.9% (4.2%) after applying VC from 1958-2023 (2005-2023) (Jin et al., 449 

2024). 450 
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 451 

Figure 5: An example explaining the Volume Correction algorithm. (a) Bathymetry 452 

derived from ETOPO1. (b) Bathymetry in IAPv4 analysis. 453 

 454 

2.8 Independent datasets for comparison and evaluation 455 

Four Sea Surface Temperature (SST) datasets are used to evaluate the upper-most 456 

layer (1 m) of IAPv4, including Extended Reconstructed SST version 5 (ERSST5) (Huang 457 

et al., 2017); Japan Meteorological Agency Centennial Observation-Based Estimates of 458 

SSTs version 1 (COBE1) (Ishii et al., 2005), and its version 2: COBE2 (Hirahara et al., 459 

2014); Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST) (Rayner et 460 

al., 2003). The anomalies relative to a 2006-2020 average were computed by removing the 461 

monthly climatology. Measurements of SST are made in situ by means of thermometers or 462 

retrieved remotely from infrared and passive microwave radiometers on satellites 463 

(Kennedy, 2014; O’Carroll et al., 2019). Satellite SST observations began in the early 464 
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1980s. In situ SST observations go back to the 19th century and involve many different 465 

measurement methods, including wooden and later insulated metal buckets to collect water 466 

samples, engine room inlet measurements, and sensors on moored and drifting buoys 467 

(Kennedy, 2014). The subsurface temperatures are collected as “profiles” which contain 468 

multiple measurements at discrete vertical levels. Because of the differences in observation 469 

systems, SSTs are fundamentally different in their temporal and spatial coverage and 470 

temporal extent compared to subsurface observations on which OHC estimates rely. SST 471 

measurements also have different uncertainty sources and error structures; thus, the two 472 

systems are typically treated as independent data sources and have been used for cross-473 

validation (Gouretski et al., 2012).  474 

An independent in situ observation dataset in the Labrador Sea is used to evaluate 475 

IAPv4. This dataset, provided by the Bedford Institute of Oceanography (BIO) 476 

(Yashayaev, 2007; Yashayaev and Loder, 2017), includes independently validated and 477 

bias-corrected data from multi-section hydrological surveys (i.e., AR7W) in the Labrador 478 

Sea, spanning from 1896 to 2020 (this study used 1960-2020 data). These data have not 479 

been incorporated into the WOD.   480 

The capability of the new product to close the sea level budget and the Earth’s energy 481 

budget also provides tools for validation. A superior dataset should be capable of closing 482 

the sea level and the Earth’s energy budgets. The total sea level change has been monitored 483 

via satellite altimetry since 1993 (from the University of Colorado 484 

https://sealevel.colorado.edu/). The ocean mass change is derived from JPL RL06.1Mv3 485 

Mascon Solution GRACE and GRACE-FO data since 2002 (Watkins et al., 2015). For 486 

long-term total sea level change since the 1950s, we use a tide-gauge-based reconstruction 487 

(Frederikse et al., 2020). During the same period, the estimates of the Greenland ice sheet, 488 

Antarctic ice sheet, land water storage, and glacier ice melt contributions from Frederikse 489 

et al., (2020) are used to derive ocean mass change. To derive steric sea level, IAP salinity 490 

data is used (Cheng et al. 2020). The temperature and salinity data are converted to steric 491 

sea level based on the Thermodynamic Equation Of Seawater – 2010 (TEOS-10) standard 492 

(McDougall and Barker, 2011). 493 

For the energy budget, the ice, land, and atmosphere heat content changes are from 494 

(von Schuckmann et al., 2023) from 1960 to the present. Because of the less reliable data 495 

before the 1990s for land, sea ice and ice sheets, the other set of land–atmosphere–ice data 496 

from 2005–19 is used as in Trenberth, (2022) to investigate the recent changes. The net 497 
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radiation change at the top of the atmosphere is based on Clouds and Earth's Radiant 498 

Energy Systems (CERES) Energy Balanced and Filled (EBAF) data from Loeb et al., 499 

(2021) and Loeb et al., (2018) and Deep-C data from the University of Reading (Liu and 500 

Allan, 2022; Liu et al., 2017).  501 

Several gridded ocean T/OHC gridded products are used here for inter-comparison, 502 

including the IAPv3 (Cheng et al., 2017), the EN4 ocean objective analysis product from 503 

the UK Met Office Hadley Centre (Good et al., 2013); the ocean objective analysis product 504 

(Ishii et al., 2017) (termed “ISH” hereafter) from JMA, an Argo-only gridded product from 505 

SCRIPPS (Roemmich and Gilson, 2009) (termed “RG” hereafter), and an OHC product 506 

based on random forest regressions (termed “RFROM” hereafter) using in situ training 507 

data from Argo and other sources on a 7-day × 1/4° × 1/4° grid with latitude, longitude, 508 

time, SSH, and SST as predictors (Lyman and Johnson, 2023). Several datasets available 509 

in IPCC-AR6 (Gulev et al., 2023) are used for comparison, including: the PMEL product 510 

from Lyman and Johnson, (2014); Machine learning based reconstruction of OHC by 511 

Bagnell and DeVries, (2021); BOA product based on refined Barnes successive corrections 512 

by the China Argo Real-time Data Center (Li et al., 2017); International Pacific Research 513 

Center (IPRC) (2005-2020), von Schuckmann and Le Traon 2011 (KvS11); Green function 514 

based OHC estimate derived from SST (Zanna et al., 2019). 515 

 516 

2.9 Trend calculation and uncertainty estimates 517 

The trends in this study have been estimated by a LOWESS approach (Cheng et al., 518 

2022b), i.e., we apply a locally weighted scatterplot smoothing (LOWESS) to the time 519 

series (25-year window, equal to an effective 15-years smoothing), and then the OHC 520 

difference between the first and the end year is used to calculate the trend. This approach 521 

provides an effective method to quantify the local trend by minimizing the impact of year-522 

to-year variability and start/end points. 523 

Throughout this paper, the 90 % confidence interval is shown. The uncertainty of 524 

trend also follows the approach in Cheng et al., (2022a) based on a Monte Carlo 525 

simulation. First, a surrogate OHC series is formed by simulating a new residual series 526 

(after removing the LOWESS smoothed time series) based on the AR(1) process and 527 

adding it to the LOWESS line. Then a LOWESS trendline is estimated for each surrogate. 528 

This process is repeated 1000 times, and 1000 trendlines are available. The 90 % 529 

confidence interval for the trendline is calculated based on ± 1.65 times the standard 530 
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deviation of all 1000 trendlines of the surrogates. Secondly, the uncertainty in the rate of 531 

the OHC is estimated by the 1000 LOWESS trendlines: 1) calculating the rate based on the 532 

difference between the first and last annual mean value of the LOWESS trendline in a 533 

specific period; 2) calculating ± 1.65 times the standard deviation of the 1000 rate values.  534 

 535 

3. Results 536 

3.1 Climatological annual cycle 537 

The annual cycle of the OHC above 2000 m of IAPv4 is compared with IAPv3, ISH, 538 

EN4, RG and RFROM (Fig. 6 and Fig. 7) for 2006–2020. There is a consistent annual 539 

cycle among different datasets for the global and hemispheric oceans. Globally, the ocean 540 

releases heat from boreal spring to autumn and accumulates heat from boreal autumn to 541 

spring, which is dominated by the southern hemisphere due to its larger ocean surface area 542 

(Fig. 6). The two hemispheres show opposite annual variations in OHC, associated with 543 

the annual change of solar radiation and different distribution of land and sea. For the 544 

global OHC above 2000 m, IAPv4 shows a positive peak in April and a dip in August, 545 

with the magnitude of OHC variation of 60.4 ZJ for IAPv4 (66.9 ZJ for IAPv3), consistent 546 

with other datasets: 53.2 ZJ for ISH, 58.1 ZJ for EN4, 69.2 ZJ for RG and 56.6 ZJ for 547 

RFROM (where 1 ZJ = 1021 J). 548 

There are some unphysical variations in the OHC annual variations for IAPv3 (blue 549 

lines). For example, the global OHC shows large spikes in January and December, and a 550 

big shift from September to October, by contrast, the other three data products show much 551 

smoother changes (Fig. 6a). The IAPv3 Arctic OHC (north of 69.5 °N) shows different 552 

phase change compared with the other datasets together with a big shift from September to 553 

December, and the magnitude of variability is much larger in IAPv3 than other datasets 554 

(Fig. 6d). The improvement in IAPv4 is mainly because of the methodology 555 

improvements: IAPv3 used 1990–2005 data to construct climatology which suffered from 556 

errors related to sparse data coverage, use of “degree distance” instead of “km distance”, 557 

and other error sources. Therefore, the IAPv4 analysis presents a physically tenable OHC 558 

seasonal variation. 559 
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 560 

 561 

Figure 6: Annual cycle of OHC of upper 2000 m for (a) the global oceans, (b) the 562 

Southern Hemisphere, (c) the Northern Hemisphere and (d) the oceans north of 563 

69.5°N. Five different data products are presented, including IAPv4 (red), IAPv3 (black), 564 

ISH (purple), EN4 (green), RG (orange), and RFROM (pink). 565 

 566 

IAPv4 OHC data shows significant improvements in the Arctic region, reflected in 567 

both the spatial distribution and seasonal variation of OHC. In IAPv3, the maximum upper 568 

2000 m OHC occurs in December, and the minimum OHC occurs in August. However, for 569 

IAPv4, the maximum amounts to 2.9 ZJ in October and decreases to a minimum of −3.4 ZJ 570 

in April. The spread of the OHC annual cycle in the Arctic region across different datasets 571 

is reduced from 5.2 ZJ to 2.5 ZJ, indicating a smaller uncertainty. The spatial OHC 572 

anomaly distribution in the Arctic region of the IAPv4 is more spatially homogeneous than 573 

IAPv3, and IAPv3 appears as rays emerging from the pole which are not physical (Fig. 7). 574 

IAPv4 displays a consistent seasonal variation north of 69.5 °N mainly because of the 575 

changes of the influencing radius from “degrees” to “kilometers”.  576 
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 577 

Figure 7: Seasonal distribution of monthly mean upper 2000 m OHC anomalies 578 

and root mean square error (RMSE) of OHC 0-2000 m between gridded data and in 579 

situ observations. For OHC anomalies, four months are shown: March, June, 580 

September, and December. The OHC anomalies are relative to the 2006 – 2020 581 

annual mean. The upper and lower panels are for IAPv3 and IAPv4 products, 582 

respectively. The panels in the last column are for annual RMSE for IAPv3 (upper) and 583 

IAPv4 (lower), respectively. 584 

 585 

3.2 Mixed layer depth 586 

Mixed layer depth (MLD) provides a crucial parameter of upper ocean dynamics 587 

relevant for upper-deeper ocean and air-sea interactions. Spatial distributions of the MLD 588 

in March and August are shown in Fig. 8 for IAPv4, based on criteria of ∆T = 0.2 °C 589 

temperature for the 10 m depth temperature. As expected, the seasonal variations of the 590 

MLD are generally opposite in the northern and southern hemispheres. The MLD shows a 591 

much stronger seasonal variation in the subtropics and midlatitudes (for example, 20°~70° 592 

in both hemispheres) than in other regions (including the tropics, for example, 593 

20°S~20°N), which is manifested as shallower MLD (~20 m) in summer due to strong 594 

surface heating that increases stratification, and deeper MLD in winter (>70 m) because of 595 

surface cooling and increased surface wind creating stronger mixing.  596 

In the north hemisphere, the maximum MLD occurs during the wintertime in the 597 

subpolar North Atlantic deep water formation regions (40 °N ~ 65 °N), with values over 598 
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500 m in the Iceland Basin. In comparison, in the midlatitudes, the maximum of MLD is 599 

generally less than 125 m in the wintertime. The MLD minimum in the north hemisphere is 600 

in the summertime, and the values are mostly within 20 m depth. In the Southern 601 

Hemisphere, the MLD maximum values (deeper than 300 m) occur between 45 °S and 602 

60 °S of the Southern Ocean (north of the Antarctic Circumpolar Current) in the boreal 603 

summer where the year-round intense westerly winds are located. The minimum MLD in 604 

this region in the boreal winter is less than 70 m. The seasonal variation of the MLD is 605 

well established by previous studies (Chu and Fan, 2023; de Boyer Montégut et al., 2004; 606 

Holte et al., 2017), and this evaluation confirms that IAPv4 temperature data is capable of 607 

reasonably representing the MLD. However, as pointed out by de Boyer Montégut (2004), 608 

the MLD estimated from the average temperature profiles might lead to an underestimation 609 

of MLD by ~25% compared to the MLD computed from individual profiles based on the 610 

same 0.2 °C criterion method. This potential issue needs further investigation. 611 

 612 

Figure 8: Spatial pattern of the climatological mean MLD (left panels) and zonal 613 

mean MLD (right panels) in March (top) and August (bottom) estimated from the 614 
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IAPv4. Here, the MLD is calculated using the temperature difference criterion of ΔT = 615 

0.2 ℃ between the surface and 10-meter depth. 616 

 617 

3.3 Sea surface temperature 618 

IAPv4 and IAPv3 temperature time series at 1 m depth (Fig. 9) are compared with 619 

four independent SST data products (ERSST5, HadISST, COBE1, and COBE2). All data 620 

products including IAPv4 show robust sea surface warming in the global ocean and four 621 

main basins since 1955 (Fig. 9). Since the HadISST and COBE2 data did not include the 622 

year 2023, we compare the long-term SST trend during 1955–2022 using these products 623 

(Fig. 9f). The global-mean IAPv4 SST rate between 1955 and 2022 is 1.01 ± 0.15 °C 624 

century−1 (90 % CI), which is within the range of the SST products (ranging from 0.78 to 625 

1.05 °C century−1). The 1955–2022 trend of IAPv4 SST is slightly weaker than IAPv3 for 626 

the global ocean (1.11 ± 0.16 °C century−1) and all the ocean basins. The largest difference 627 

between IAPv4 and other SST products comes mainly from the Pacific and the Southern 628 

Ocean before 1980, associated with sparser in situ observations for both SST and 629 

subsurface temperature data.  630 

The spatial distribution of long-term SST trends over the 1955–2022 period provides 631 

insights into the data consistencies and differences. First, IAPv4 shows a pattern of SST 632 

consistent with other datasets (Fig. 10). More rapid warming is found in the poleward 633 

western boundary currents regions, such as the East Australian Current and the Gulf 634 

Stream. The warmer ocean in the upwelling areas, such as the Tropical Eastern Pacific and 635 

Gulf of Guinea, are identified by all data products. The surface warming in the South 636 

Indian for IAPv4 data is weaker than for IAPv3, ERSST5, and COBE2 but is more 637 

consistent with HadISST and COBE1. The surface cooling to the south of 60 °S can also 638 

be found in all the datasets but with some discrepancies in magnitude and locations related 639 

to data sparsity. The tropical Pacific SST trends are mostly insignificant in the eastern and 640 

south-eastern Pacific Ocean because of the strong inter-annual and decadal fluctuations 641 

(Figure not shown). 642 
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 643 

Figure 9: Global and basin time series of SST change for IAPv4, compared with 644 

ERSST/HadISST/COBE1/COBE2 and IAPv3 from 1955 to present. (a) Global, (b) 645 

Pacific, (c) Atlantic, (d) Indian and (e) Southern oceans (South of 30 °S) (units: °C). (f) 646 

shows the warming rate from 1955 to 2022 The pink thin line is the monthly time series of 647 

IAPv4 SST and other time series are annual time series of different datasets. The vertical 648 

scales are different for different panels. All anomaly time series are relative to a 2006–649 

2020 baseline. 650 

 651 
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 652 

Figure 10: Spatial maps of the SST long-term trends during the 1955–2022 period. (a) 653 

IAPv4, (b) IAPv3, (c) ERSST5, (d) HadISST, (e) COBE1 and (f) COBE2 (units: 10−2 °C 654 

yr−1). The contour line interval is 0.5×10-2 °C yr-1. The stippling indicates the regions with 655 

signals that are not statistically significant (90 % CI).  656 

 657 

3.4 Global OHC time series 658 

Global OHC time series for 0–700 m, 700–2000 m, 0–2000 m, and 2000-–6000 m 659 

layers of IAPv4 (Fig. 11) for 1955–2023 versus IAPv3 show a robust ocean warming, with 660 

a linear warming rate of 4.4 ± 0.2 ZJ yr−1 (0–700 m), 2.0 ± 0.1 ZJ yr−1 (700–2000 m), and 661 

6.4 ± 0.3 ZJ yr−1 (0–2000 m). The long-term warming revealed by IAPv4 is greater than 662 

IAPv3 (4.1 ± 0.2 ZJ yr−1 for 0–700 m, 1.9 ± 0.1 ZJ yr−1 for 700–2000 m and 6.0 ± 0.3 663 

ZJ yr−1 for 0–2000 m). Before ~1980, bottle bias correction reduces the time-varying 664 

systematic warm bias in Nansen bottle data and leads to a stronger warming rate from 665 

1955–1990. The updated MBT and XBT corrections are mainly responsible for the 666 
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difference between 1980 and 2000 (Cheng et al., 2014; Gouretski and Cheng, 2020). Data 667 

QC impacts the intra-seasonal and inter-annual variation of the OHC time series (Tan et 668 

al., 2023). Also, because of the application of Bottle/XBT/MBT corrections, IAPv4 shows 669 

a stronger upper 2000 m ocean warming trend than most of the other available products 670 

assessed in Fig. 12. 671 

From 2005–2023, the new IAPv4 product shows stronger warming than IAPv3. The 672 

mean upper 2000 m warming rate is 10.7 ± 1.0 ZJ yr−1 for IAPv4 and 9.6 ± 1.1 ZJ yr−1 for 673 

IAPv3 (Fig. 11), mainly because of the replacement of the WOD-QC system by the new 674 

CODC-QC system in IAPv4. Tan et al., (2023) indicated that the WOD-QC system had 675 

removed more extreme higher temperature values in the regions of warm eddies and 676 

marine heat waves than CODC-QC. The IAPv3 700–2000 m OHC shows a much bigger 677 

drop in 2018 than IAPv4 (Fig. 11b), while the IAPv4 indicates an approximately linear 678 

700–2000 m warming since 2005, resulting in stronger 700–2000 m warming in IAPv4 679 

(3.6 ± 0.5 ZJ yr−1) than in IAPv3 (2.9 ± 0.5 ZJ yr−1). Compared with other available 680 

products shown in Fig. 12, IAPv4 shows a similar OHC 0–2000 m trend to RFROM from 681 

2005–2023, but with stronger warming trends than the two Argo-based products (BOA and 682 

SCRIPPS). From 1993–2023, IAPv4 showed a stronger OHC 0–2000 m trend than NCEI, 683 

Ishii, OPEN, and Zanna data and a slightly weaker trend than PMEL and RFROM (Fig. 684 

12). 685 

Since the 1990s, the World Ocean Circulation Experiment (WOCE) provided a global 686 

network of abyssal ocean observations, sustained by repeated hydrological lines and a 687 

deep-Argo program (Katsumata et al., 2022; Roemmich et al., 2019; Sloyan et al., 2019). 688 

These high-quality data provide an opportunity to estimate deep OHC changes below 2000 689 

m in this study. IAPv4 provides a new OHC estimate below 2000 m by collecting 5 years 690 

of data centered on each month. The result (Fig. 11d) indicates a robust abyssal (2000–691 

6000 m) ocean warming trend since ~1993 of 2.0 ± 0.3 ZJ yr−1. This is higher (within the 692 

uncertainty range) than the previous estimate of 1.17± 0.5 ZJ yr−1 in Purkey and Johnson 693 

(2010) but consistent with the recent assessment showing the acceleration of deep ocean 694 

warming in the Southwest Pacific Ocean (Johnson et al., 2019). 695 

 696 
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 697 

Figure 11: Global OHC time series for 0–700 m (a), 700–2000 m (b), 0–2000 m (c) and 698 

2000–6000 m (d). All-time series are relative to a 1981–2010 baseline. The shading 699 

indicates the 90 % confidence interval. The vertical scales are different for different panels. 700 

The unit is ZJ. 701 

 702 
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 703 

Figure 12: A comparison of annual mean OHC 0-2000 m time series from different 704 

data products. Solid and dashed lines represent direct and indirect estimates, respectively, 705 

and shading indicates the IAPv4 90% confidence interval (pink shading). OHC anomalies 706 

are relative to a 2005–2019 baseline. The plot is updated from Cheng et al. (2022a). 707 

 708 

Another feature of IAPv4 is the suppression of month-to-month noise compared to 709 

many available data products. Trenberth et al. (2016) noted that the month-to-month 710 

variation (quantified by the standard deviation of the monthly dOHC/dt time series) in all 711 

in situ-based OHC records is much larger than implied by the CERES records, suggesting 712 

that the OHC variation on this time scale is most likely spurious. Therefore, the magnitude 713 

of the month-to-month variation in the OHC record can be used as a benchmark of the data 714 

quality. The standard deviation of the CERES record is 0.67 Wm-2 from 2005 to 2023 715 

(Loeb et al., 2018). While IAPv4, IAPv3, ISH, EN4, BOA, NCEI, and SIO data show a 716 

standard deviation of dOHC/dt time series of 3.52, 3.52, 7.49, 8.79, 10.05, 11.29, 10.00 717 

Wm-2, respectively for the upper 2000 m (Table 2). Note that differentiation to get the rate 718 

of change amplifies noise, and applying a 12-month running smoother significantly knocks 719 

down the noise so that the IAPv4 standard deviation becomes 0.75 Wm-2, the smallest 720 

among the datasets investigated in this study (Table 2) and is the most physically plausible 721 

time series from this noise-level perspective. In addition, Lyman and Johnson's (2013) data 722 



 32 

suggest a yearly variance ratio of 1.3 between annual RFROM and CERES data from 2008 723 

to 2021. Using the yearly mean OHCT indicates a ratio of 1.4 at the same period between 724 

IAPv4 and CERES, which is similar to that of RFROM. 725 

 726 

Table 2. Characteristics of Month-to-month variation of OHCT compared with 727 

CERES. Comparisons of different ocean gridded products: the monthly standard deviation 728 

(std dev) of the monthly rates of change of OHC (W m-2); the corresponding standard 729 

deviation of the 12-month running mean (13-points are used, with start-point and endpoint 730 

weighted by 0.5), and the linear trend with 90% confidence limits (Wm-2) (global surface 731 

area). The values are for 2005–2022. The OHC trend for CERES is calculated as the mean 732 

of net TOA radiation flux within 2005–2022 multiplied by 0.9, assuming 90% of the EEI 733 

stored in the ocean. 734 

Source Std dev Std dev 
(12 month) 

OHC Trend 
(2005–2022) 

IAPv4 3.52 0.75 0.66 ± 0.04 
IAPv3 3.52 0.79 0.56 ± 0.03 
ISH 7.49 1.35 0.63 ± 0.05 
EN4 8.79 1.03 0.67 ± 0.04 
BOA 10.05 1.16 0.60 ± 0.07 
NECI 11.29 1.11 0.61 ± 0.07 
SIO 10.00 1.24 0.56 ± 0.08 
CERES 0.67 0.33 0.77 

 735 

3.5 Regional OHC trends 736 

For 1960–2023 (Fig. 13), the IAPv4 trends are slightly weaker than IAPv3 in the 737 

Pacific Ocean but slightly higher in the Atlantic Ocean (Fig. 13), with more than 95 % of 738 

the ocean area showing a warming trend. The polar regions also show remarkable 739 

differences compared to IAPv3 (Section 3.1), mainly because of the change of covariance, 740 

which improves the spatial reconstruction in the polar regions. The IAPv4 shows stronger 741 

warming near the boundary currents regions, mainly because of the improved QC that does 742 

not flag high-temperature anomalies. Nevertheless, the pattern of trends is very similar in 743 

the two versions of data, indicating the robustness of the ocean warming pattern. The 744 

Atlantic Ocean (within 50 °S–50 °N) and the Southern Ocean store more heat than the 745 

other basins, probably associated with the deep convection and subduction processes 746 
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effectively transporting heat into the deep layers (Cheng et al., 2022a). The cold spots 747 

mainly include the Northwest Pacific and subpolar North Atlantic Ocean. In particular, the 748 

so-called “warming hole” in the subpolar North Atlantic Ocean can extend to at least 800 749 

m and is responsible for decreased OHC in this region. Some studies have linked this 750 

fingerprint to the slowdown of AMOC (Rahmstorf et al, 2015; Caesar et al., 2018).  751 

 752 

Figure 13: Spatial pattern of the OHC trends for 0–300 m, 0–700 m and 0–2000 m, 753 

700–2000 m from 1960 to 2023. The left panels show IAPv3, the middle panels are 754 

IAPv4; the right panels are the difference between IAPv4 and IAPv3. 755 

For 1991–2023 (Fig. 14), the IAPv4 and IAPv3 pattern is also consistent. A trend 756 

pattern mimicing a negative Pacific Decadal Variability (PDV) phase appears in the Pacific 757 

for the 0–300 m, 0–700 m, and 0–2000 m OHCs. There is a contrast between the warming 758 
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trend of the tropical western Pacific and the cooling trend of the tropical eastern Pacific. 759 

Some studies have linked this pattern to the natural climate mode (PDV) (England et al., 760 

2014), but some suggest it is a forced change driven by greenhouse gas increases (Fasullo 761 

and Nerem, 2018; Mann, 2021). Below 700 m, the 1960–2023 and 1991–2023 trend 762 

patterns are similar because deep ocean warming mainly occurs after 1990. Broad warming 763 

in most regions, but subtropical oceans in the West Pacific and South Indian oceans show a 764 

cooling, which is likely related to the subtropical gyre intensification in the North but a 765 

spin-down in the North Pacific Ocean (Zhang et al., 2014). 766 

 767 

Figure 14: Spatial pattern of the OHC trends for 0–300 m, 0–700 m, 0–2000 m and 768 

700–2000 m from 1991 to 2023. The left panels show IAPv3, the middle panels are 769 

IAPv4; the right panels are the difference between IAPv4 and IAPv3. 770 
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Furthermore, the reconstruction of IAPv4 is compared with completely independent 771 

observations in the central Labrador Sea (see Data and Methods section for details; 772 

Yashayaev, 2007; Yashayaev and Loder, 2017) for the 200-2000 m mean temperature time 773 

series (Fig. 15). The direct observations show a substantial decadal variation in the central 774 

Labrador Sea, with negative anomalies 1970-2003 and 2015-2020, and positive anomalies 775 

1963-1972 and 2004-2014. Reconstructed based on data from WOD, IAPv4 can well 776 

represent this decadal variability. The largest difference occurs in 1989, where direct 777 

observations show nearly zero anomaly while IAPv4 shows a big negative anomaly; this 778 

difference is likely caused by using a time window in IAPv4, which has a smoothing effect 779 

on the time series. 780 

 781 

Figure 15: Comparison of IAPv4 data with independent observations in the central 782 

Labrador Sea (304 -310 °E, 55-61 °N) from 1960 to 2020. The 200-2000 m averaged 783 

temperature anomaly time series is shown, and the baseline is 1960-2020. The inner box 784 

shows the locations of the independent observations in black dots (showing a total of 785 

49,849 profiles). 786 

 787 

3.6 Ocean meridional heat transport  788 

The ocean meridional heat transport (MHT) is fundamental to maintaining the earth’s 789 

energy balance. Thus, its change and stability are key to the climate system and its 790 

variability. The direct observations of ocean MHT are only possible in several cross-basin 791 

sections such as RAPID. The ocean MHT can be derived from the OHC and air-sea heat 792 
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flux data (Trenberth and Fasullo, 2017; Trenberth et al., 2019) as follows: we integrate the 793 

OHC and air-sea heat flux from the North Pole southward in the Atlantic Ocean, and solve 794 

the energy budget question, the residual at each latitude is the MHT, i.e., 795 

𝑀𝐻𝑇(𝜑) = 	5 6𝐹𝑠 +
𝑑𝑂𝐻𝐶
𝑑𝑡 = 𝑎	𝑑𝜑

+,

-
 796 

Where 𝑎 is the Earth’s radius, 𝜑 is latitude, 𝐹𝑠	is net surface heat flux. Both 𝐹𝑠 797 

and OHC are important for the MHT derivation: the integrated air-sea heat flux dominates 798 

the magnitude of the MHT, while the OHC dominates the variability of the MHT (Liu et 799 

al., 2020). 800 

The comparison between OHC-derived MHT and RAPID data allows one to check 801 

the consistency among various observations. Here, we calculate the Atlantic MHT from 802 

April 2004 to December 2022 using IAPv4 OHC and air-sea net heat flux data (FS) derived 803 

by TOA net energy flux and atmospheric heat divergence (Fig. 16). FS is an average of 804 

three available products including MAYER2021 (Mayer et al., 2021) TF2018 (Trenberth et 805 

al., 2019) and the DEEP-C Version 5.0 from Reading University (Liu and Allan, 2022; Liu 806 

et al., 2020). The data are adjusted following Trenberth et al. (2019) approach to ensure 807 

zero MHT on the Antarctica coast. The inferred time series of MHT at 26.5 °N from other 808 

OHC data sets (IAPv3, Ishii, and EN4) are also shown in Fig. 16, compared with the 809 

RAPID observations (Johns et al., 2023). 810 

The Inferred long-term mean (April 2004－December 2022) MHT from the updated 811 

IAPv4 OHCT (solid red line with the mean transport of 1.18 PW) is identical to the 812 

RAPID observation of 1.18 ± 0.19 PW. Different OHC datasets cause different inter-813 

annual variability in the MHT. It is shown that, from 2008 to 2020, the RAPID MHT 814 

agrees best with the IAPv4 estimates with a correlation of 0.52. By comparison, the 815 

correlation coefficients between RAPID and IAPv3, EN4, and Ishii are 0.33, 0.51, and 816 

0.49, respectively. Over the entire period of 2005~2022, the IAPv4 lies mostly within the 817 

RAPID uncertainty envelope. 818 
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 819 

Figure 16: Derived Meridional heat transport at 26.5 °N. The 12-month running mean 820 

northward MHT across 26.5 °N of different data sets compared with results from the 821 

RAPID array in PW. The error bars for RAPID in grey are 1.64 σ. 822 

 823 

3.7 Inter-annual variability  824 

The year-to-year variation of OHC is strongly influenced by ENSO from global to 825 

regional scales (Cheng et al., 2019; Roemmich and Gilson, 2011). To demonstrate the 826 

change of OHC associated ENSO, Figure 17 shows a Hovmöller diagram of the zonal 827 

upper 2000 m OHC and its change (time derivative of OHC: d(OHC)/dt) in the tropical 828 

Pacific Ocean from 1985 to 2023, compared with the Oceanic Niño Index (ONI). It is 829 

evident that both OHC and OHCT are closely correlated with ENSO.  830 

Before the onset of El Niño events, there is an accumulation of heat (d(OHC)/dt > 0) 831 

in the southern and equatorial tropical Pacific ocean region (20 °S–- 5 °N). The positive 832 

tropical Pacific dOHC/dt leads ONI by ~15 months (with peak correlation >0.5), making it 833 

a precursor of El Niño (Cane and Zebiak 1985; McPhaden, 2012; Lian et al., 2023). In 834 

contrast, heat is redistributed (d(OHC)/dt < 0) from the tropical Pacific (20 °S – 5 °N) to 835 

the North Pacific (5 °N – 25 °N) during and after El Niño (Cheng et al., 2019), with a 836 

maximum correlation >0.8 at 5 months after the El Niño peak. The magnitude of the 837 

prominent change can reach up to 50 Wm-2 during the 1997–1998 and 2015–2016 extreme 838 

El Niño events. For the other moderate El Nino events, the regional Pacific OHC change 839 

varies around 10–20 Wm-2 (Mayer et al., 2018). This typical heat recharge-discharge 840 

paradigm is crucial in ENSO evolution (Jin, 1997). Correspondingly, the zonal OHC 841 

anomalies in the Pacific Ocean show a warming state (OHC > 0) between ~20 °N and 842 

~5 °S before the peak of El Niño events (with peak correlation >0.7 at 5 months before El 843 
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Niño peak), followed by a period of cooling (OHC < 0) after the peak of El Niño (with 844 

peak correlation >0.7 at 12 months after El Niño peak). These variations are all physically 845 

meaningful and indicate that IAPv4 represents regional inter-annual variability, especially 846 

associated with ENSO. 847 

 848 

Figure 17: Hovmöller diagrams illustrating the zonal mean (top) upper 2000 m d(OHC)/dt 849 

(Wm-2) and (bottom) OHC (ZJ) in each 1 ° latitude band within 25 °S ~ 25 °N in the 850 

tropical Pacific basin using IAPv4 data. The ONI is shown in green. Vertical dashed lines 851 

denote the peak time of each Niño event.  852 

 853 

3.8 Ocean and Earth Energy Budget  854 

The EEI provides a critical quantifier of the Earth’s energy flow and climate change. 855 

It is also policy-relevant because it clearly shows the need to stabilize the climate system. 856 

With new T/OHC data, we re-assess the Earth’s energy inventory since 1960. The land, 857 

atmosphere, and ice contributions are from the estimates obtained by von Schuckmann et 858 

al. (2023) for 1960-2023 and by Trenberth (2022) for 2015-2019. 859 
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It is evident that the earth has been accumulating heat since 1960. The Earth’s heat 860 

inventory is 524.0 ± 95.6 ZJ from 1960 to 2023 and 260.3 ± 25.3 ZJ from 2005–2023 861 

based on our data. The upper 700 m ocean, 700–2000 m, 2000 m-bottom, land, ice, and 862 

atmosphere contribute to 59.3%, 24.1%, 7.4%, 5.2%, 2.9%, and 1.1% of the total EEI, 863 

respectively, since 1960. The relative contribution has changed with time; for instance, 864 

since 1993, the contributions are 53.7% (0–700 m ocean), 24.8% (700–2000 m ocean), 865 

12.8% (2000 m–bottom ocean), 4.1% (land), 3.2% (ice), and 1.4% (atmosphere). The land 866 

and ice contribution has increased in the recent two decades because of accelerated land 867 

and sea ice melting (Comiso et al., 2017; Hugonnet et al., 2021; Minière et al., 2024). 868 

From 2005–2019, more reliable land–atmosphere–ice datasets in Trenberth (2022) suggest 869 

a non–ocean contribution of 13.4 ZJ. Combined with the results for OHC with IAPv4, the 870 

accumulated EEI is 182.5 ZJ with the ocean heat uptake of 169.1 ± 19.7 for 2005–19, 871 

consistent with the value of 186.4 ±23.1 ZJ using the non–ocean contribution data by von 872 

Schuckmann et al. (2023).  873 

The derived energy inventory has been compared with satellite–based observations at 874 

the top of the atmosphere (TOA). Two comparisons are made: (1). integrate the TOA EEI 875 

to compare with the energy inventory (Fig. 18); (2) take the time derivative of the annual 876 

OHC to compare it with the TOA net radiation flux (Fig. 19). Here we always assume 90% 877 

of EEI is stored in the ocean and leads to an increase of OHC (Trenberth et al. 2009; 878 

Hansen et al., 2011; von Schuckmann et al., 2020). 879 

The first approach avoids calculating the time derivative of OHC, which exacerbates 880 

noise in the time series. The net CERES change has been adjusted to 0.71 Wm-2 within 881 

2005–2015, here we adjust the trend of the integrated CERES data to the IAPv4 OHC 882 

trend to make it consistent and then compare the variability difference (Fig. 18). The 883 

RMSE between DeepC and IAPv4 is 17.9 ZJ and 15.5 ZJ between CERES and IAPv4. The 884 

comparison also indicates that the heat inventory shows a stronger heat increase from 2000 885 

to 2005 but too slow heat accumulation during 2005–2010 compared with DeepC and 886 

CERES (Fig. 18). This might be due to the data gaps before the Argo network was fully 887 

established. DeepC and CERES show stronger heat accumulation since ~2015 than the 888 

heat inventory, probably associated with the accelerated abyssal ocean warming found by 889 

the Deep-Argo program (Johnson et al., 2019). Furthermore, IAPv4 OHC shows a slightly 890 

higher (but consistent within the uncertainty range) Earth’s heat uptake compared to von 891 
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Schuckmann et al. (2023) results by 76.2 ZJ from 1960 to 2020, mainly because the 892 

correction of Nansen bottle biases and the updates of XBT and MBT biases in IAPv4 data. 893 

The second approach to compare OHC with satellite–based EEI is to calculate the 894 

time derivative of OHC. To suppress the month–to–month noises, we estimate annual 895 

OHC based on one–year data centered on June (Fig. 19a) and December (Fig. 19b) 896 

separately, and then dOHC/dt is calculated with a forward derivative approach based on 897 

the annual time series. The annual mean of EEI time series is also used here for 898 

comparison (Fig. 19). The IAPv4 and CERES estimates show inter–annual variability with 899 

a correlation of 0.44. The higher correlation of IAPv4 versus CERES than IAPv3 increases 900 

confidence for the new data (correlation of only ~0.15 for IAPv3). The trend of dOHC/dt is 901 

0.36 Wm-2 dec-1 from 2005 to 2023, within the uncertainty range of the CERES record 902 

(0.50 ± 0.47 Wm−2 dec−1 in Loeb et al., 2021). However, it should be noted that the 903 

calculation of dOHC/dt is sensitive to the choices of methods, data products, and time 904 

periods because of the noises and variability in the OHC time series. A careful analysis of 905 

the trend of dOHC/dt (and EEI) is a research priority. 906 

 907 

Figure 18: The global energy budget from 1960 to 2023. The Atmosphere, land, and ice 908 

heat inventory is from von Schuckmann et al., (2023). Integrated EEI from DEEP–C 909 

(1985–2018) (Liu and Allan, 2022) and CERES (2001–2023) (Loeb et al., 2021) dataset 910 
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are presented by dashed lines for comparison, with the trend adjusted to the IAP estimate 911 

to account for the arbitrary choice of integration constant. 95% Confidence Interval is 912 

presented assuming the independency of different budget components. 913 

 914 

 915 

Figure 19: Annual ocean heating rate compared with CERES data. Both annual OHC 916 

and CERES EEI data are centred in June. The long–term mean is removed for all-time 917 

series. 918 

 919 

3.9 Steric sea level and sea level budget  920 

The updated IAPv4 data is used to assess the sea level budget for 1960-2023 in 921 

combination with other data, including IAP salinity data, glaciers, Greenland, Antarctic ice 922 

sheets mass loss from Frederikse et al. (2020) and altimetry sea level record (see Methods 923 

section for details). From 1960 to 2023, the observed GMSL rise is 2.07 ! 0.55 mm yr-1, 924 

and the sum of contributions yields a mean sea level rise of 1.87 ! 0.42 mm yr-1. Thus, 925 

the sea level budget can be closed within a 90% confidence interval. This updated estimate 926 

indicates that the steric sea level, Antarctic ice sheet, Greenland ice sheet, glaciers, and 927 

land water storage contribute to the total sea level with 47.3%, 8.6%, 18.0%, 29.1%, and -928 

3.1%, respectively for 1960-2023. 929 

To isolate the contribution of the IAPv4 to the sea level budget, we replace the steric 930 

sea level estimate in Frederikse et al., (2020) with IAPv4 and re-assess the sea level budget 931 

for 1960-2018, 1993-2018 and 2005-2018, and the other components are identical to 932 

Frederikse et al. (2020). Two metrics are used to quantify the performance of sea level 933 
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budget closure: the mean residual error and the root mean square error (RMSD) between 934 

the observed GMSL and the sum of contributions. We find that the residual sea level 935 

budget based on IAPv4 is 0.20 ! 0.53, 0.11 ± 0.34, 0.47 ± 0.56 mm yr-1 for 1960-2018, 936 

1993-2018 and 2005-2018, respectively. These mean residual errors are all smaller than 937 

presented in Frederikse et al., (2020), which showed a residual error of 0.29 ± 0.57, 0.20 ± 938 

0.34 and 0.54 ± 0.58 mm yr-1 for 1960-2018, 1993-2018 and 2005-2018, respectively. The 939 

RMSD using IAPv4 (or using steric sea level in Frederikse et al., 2020) is 5.59 (5.35), 4.89 940 

(5.33) and 4.21 (4.51) mm for the above-mentioned three periods, respectively. Therefore, 941 

both metrics show that IAPv4 data improves the sea level budget in three typical periods.  942 

 A similar test is done with the IPCC-AR6 sea level budget estimate (Gulev et al., 943 

2021): the thermosteric sea level estimate in IPCC-AR6 is replaced by IAPv4, and the sea 944 

level budget is re-assessed for 1993-2018. IAPv4 suggests a larger thermosteric sea level 945 

rise of 1.43 ± 0.16 for 1993-2018 than IPCC (1.31±0.36 mm yr-1) from 1993-2018. 946 

Replacing the thermosteric sea level estimate by IAPv4 reduces the mean residual error 947 

from 0.40 ± 0.57 to 0.28 ± 0.48 mm yr-1. This suggests again that the stronger warming 948 

since the 1993 revealed by IAPv4, seems more realistic. 949 

After 2002, the GRACE satellite supported the direct observation of barystatic sea 950 

level, which is the sum of the sea level change due to the land water storage, Antarctica ice 951 

sheet, Greenland ice sheet, and glaciers. The sea level budget can be obtained by 952 

comparing altimetry-based GMSL with the barystatic sea level observed by GRACE and 953 

the steric sea level. It is evident that the sea level budget can be closed between 2002 and 954 

2015 with ±5 mm residual errors (Fig. 20b). However, after ~2015, the sum of steric and 955 

barystatic sea level is smaller than the total sea level rise for all ocean temperature 956 

products. Previous studies have attributed this misclosure to salinity data biases (Barnoud 957 

et al., 2021), altimetry data errors (Barnoud et al., 2023), and GRACE data errors (Wang et 958 

al., 2021). The steric sea level inferred from IAPv4 showed a lower residual (~5 mm) 959 

between 2005–2023 than ISH and EN4 data (10~20 mm), indicating that the temperature 960 

data might be partly responsible for lack of closure of sea level budget since ~2015. This 961 

suggests that the stronger warming in recent years, as indicated by IAPv4, is more realistic. 962 

As discussed in Section 3.4, the QC is mainly responsible for the increased warming of 963 

IAPv4 compared with IAPv3 since ~2015 (Fig. 11).  964 

Many traditional QC procedures use a static climatological range check to filter out 965 

outliers, which does not account for the increase of extreme events with climate change 966 
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and removes too many extreme (positive) values during the recent period. Thus, we 967 

strongly recommend that data product generation groups revisit the QC procedure. 968 

Furthermore, as the stronger long-term OHC trends since ~1960 in IAPv4 than in IAPv3 969 

are mainly attributed to the bias corrections for Nansen Bottle, MBT, and XBT data, it is 970 

also recommended that international groups to revisit the biases in ocean observations. 971 

 972 

 973 

Figure 20: (a) The sea level budget from 1960 to 2023. Observed global mean sea level 974 

for 1960–2023 and the individual contributions from land water storage, Antarctica, 975 

Greenland and Glaciers (Frederikse et al., 2020). The budget is relative to a 1960 baseline. 976 

Here, the land water storage and Glaciers data are through 2018, and a linear extrapolation 977 
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is made for 2019–2023. Antarctica ice sheet and Greenland ice sheet changes are estimated 978 

by GRACE after 2018. Tide gauge after 2018 are updated by altimetry. Altimetry sea level 979 

is shown in red dashed line for comparison. (b) Sea level budget residual time series since 980 

2005. The residual of GMSL minus barystatic and steric sea level. The seasonal cycle is 981 

reduced based on 2005–2015 climatology. A 6–month running smooth is applied to reduce 982 

the noise. 983 

 984 

4. Data availability 985 

IAPv4 global ocean temperature product is available at 986 

http://dx.doi.org/10.12157/IOCAS.20240117.002 (Cheng et al., 2024a) and 987 

http://www.ocean.iap.ac.cn/.  988 

IAPv4 global ocean heat content product is available at 989 

http://dx.doi.org/10.12157/IOCAS.20240117.001 (Cheng et al., 2024b) and 990 

http://www.ocean.iap.ac.cn/.  991 

The code used in this paper includes data quality control, and the resultant dataset is 992 

available at http://www.ocean.iap.ac.cn/.   993 

 994 

The data used in this study (but not generated by this work) are listed below. IAP data are 995 

available at http://www.ocean.iap.ac.cn/. The NCEI/NOAA data are available at 996 

(https://www.ncei.noaa.gov/products/climate-data-records/global-ocean-heat-content). ISH 997 

data from (https://climate.mri-jma.go.jp/pub/ocean/ts/v7.2/). The EN4 data 998 

(https://www.metoffice.gov.uk/hadobs/en4/index.html) For SST: ERSSTv5 999 

(https://www1.ncdc.noaa.gov/pub/data/cmb/ersst/v5/netcdf/); COBE2 1000 

(https://psl.noaa.gov/data/gridded/data.cobe2.html); and HadSST3 1001 

(https://www.metoffice.gov.uk/hadobs/hadsst3/data/download.html). For sea level data: 1002 

AVISO+ GMSL (https://www.aviso.altimetry.fr/en/data/products/ocean-indicators-1003 

products/mean-sea-level.html#c15723), JPL GRACE (https://grace.jpl.nasa.gov/data/get-1004 

data/jpl_global_mascons/), the data in Frederikse et al., (2020) from 1005 

(https://zenodo.org/records/3862995). The data in von Schuckmann et al., (2023) 1006 

(https://www.wdc-climate.de/ui/entry?acronym=GCOS_EHI_1960-2020). Argo data were 1007 

collected and made freely available by the International Argo Program and the national 1008 

programs that contribute to it (https://argo.ucsd.edu, https://www.ocean-ops.org). DEEP-C 1009 

data from https://doi.org/10.17864/1947.000347; CERES data (https://ceres-1010 
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tool.larc.nasa.gov/ord-tool/jsp/EBAFTOA41Selection.jsp); PIOMAS ice volume data from 1011 

(http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volumeanomaly/). SCRIPPS data 1012 

from (http://sio-argo.ucsd.edu/RG_Climatology.html); BOA data from 1013 

(https://argo.ucsd.edu/data/argo-data-products/).  1014 

 1015 

5. Summary and Discussion 1016 

This paper introduces a new version of the ocean temperature and heat content 1017 

gridded products and describes the data source and data processing techniques in detail. 1018 

The key technical advances include the new QC, new or updated XBT/MBT/Bottle/APB 1019 

bias corrections, new ocean temperature climatology, improved mapping approach, and 1020 

grid-cell ocean volume corrections. These data and technical advances allow a better 1021 

estimate of long-term ocean temperature and heat content changes since the mid-1950s 1022 

from the sea surface down to 2000 m. We show that the new data product could better 1023 

close the sea level and energy budgets than IAPv3. For rates of change, compared with 1024 

CERES, the IAPv4 also shows a better correlation from 2005 to 2023 than IAPv3. 1025 

Despite several marked improvements, issues needing further investigation remain. 1026 

Although inter-annual and decadal-scale changes of satellite-based EEI and observational 1027 

OHC are generally consistent, a mismatch remains between EEI and OHC for their month-1028 

to-month variation, as the monthly variation of OHC is still much larger than implied by 1029 

EEI. There are several possibilities, in our opinion: first, there is substantial heat storage 1030 

and release for land and ice monthly, which needs to be accurately quantified; second, the 1031 

accuracy of OHC estimate on a monthly basis still needs to be improved for month-to-1032 

month variation because of the limited data coverage; third, the EEI observed by CERES 1033 

also suffers from sampling biases on a monthly basis (Loeb et al., 2009). Thus, a better 1034 

understanding of the monthly variation of OHC and EEI is still a research priority. Besides, 1035 

the failure to close the 2015-2023 sea level budget indicates that the underlying data still 1036 

has bias problems, which need to be explored and resolved. 1037 

Second, the application of CODC-QC in IAPv4 leads to a stronger ocean warming 1038 

rate in the past decade than WOD-QC used in IAPv3 because WOD-QC removes more 1039 

positive temperature anomalies than CODC-QC. This could imply that the rate of increase 1040 

in OHC is still slightly underestimated and deserves an in-depth investigation. Several 1041 

fundamental questions must be answered: first, are there still real temperature extremes 1042 

being removed by CODC-QC, such as in small warm/cold eddies? Are the extremes well 1043 
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sampled by the current observation system? If not, what is the impact? Moreover, it is clear 1044 

that the high latitudes where sea ice occurs are not well sampled and need more attention. 1045 

Third, during the development of the data product, we discovered that much metadata 1046 

relating to the profiles in the World Ocean Database is missing and that much existing 1047 

metadata is incorrect, also giving rise to duplicate profiles, putting a strain on the overall 1048 

quality of a database of oceanic observations. More than ever, long-term concerted efforts 1049 

are needed to eliminate duplicate profiles and identify and correct missing metadata using 1050 

statistical methods, expert control, or machine learning techniques. For example, the 1051 

International Quality-Controlled Database (IQuOD) group is coordinating some activities 1052 

related to data processing techniques, uncertainty quantification, and improving the overall 1053 

quality of ocean data (Cowley et al., 2021). 1054 

Fourth, the deep ocean changes below 2000 m are estimated based on the currently 1055 

available data, including data from hydrological sections and Deep-Argo. IAP mapping 1056 

technique is applied. Because of the lack of independent observations with global ocean 1057 

coverage, evaluating the deep ocean change estimate is still dicey. Thus, the below-2000 m 1058 

estimate should be used with caution, as also indicated in previous estimates (Purkey and 1059 

Johnson, 2010; Desbruyères et al., 2017; Good et al., 2013). A community-agreed 1060 

evaluation approach for the deep ocean changes is critically needed. Besides, other 1061 

mapping techniques deserving further investigation include interpolation on isopycnal 1062 

surfaces (Palmer and Haines, 2009).  1063 

Furthermore, the quantification of uncertainty for in situ measurements, gridded 1064 

T/OHC values, and the global OHC estimates need to be improved. IAPv4 only accounts 1065 

for the instrumental error and sampling/mapping error. In the future, comprehensive 1066 

quantification of other uncertainty sources will be made, including the choice of 1067 

climatology, vertical interpolation, XBT/MBT/APB/Bottle corrections, etc. It is also 1068 

necessary to analyze the correlation between these error sources. This also helps to 1069 

understand regions with larger uncertainty for OHC estimates, which supports the design 1070 

of the global ocean observing system. 1071 
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