The authors thank reviewer #1 for your constructive comments and evaluation on our study, here the point-to-point replies are provided in blue, the comments are in black, the modified texts for the manuscript are shown in orange.

Referee #1’s comments and replies:
This manuscript presents the latest edition of the IAP OHC data set, including a comprehensive description of methodological advancements and evaluation. The paper is informative for developers of similar data sets as well as users and will be a useful reference for the community. It is generally well written, but I have a number of comments and suggestions for clarification and improvement. In addition, the section on the sea level budget appears half-baked to me. That section requires more substantial revision and elaboration, or it could possibly be removed given the paper is already quite long.
Re: Thanks for the evaluation. We appreciate your helpful comments and suggestions. We have tried to address all of them. Please find the replies and the revisions introduced below. We are grateful that these comments helped improve our paper’s quality.

Regarding your specific concern about the sea level budget section, we have decided to maintain it as it provides useful metrics for evaluating the dataset. However, as we agree that the material needs major work, we have rewritten it to illustrate better the impact of IAPv4 on sea level budget closure.

Specific comments:
L44: The authors postulate consistency of IAP OHC data with EEI. Given the only moderate correlation and the only modest visual agreement in Fig. 17 the authors should specify based on which metric they conclude “consistency”.
Re: This sentence has been revised to be more specific for the consistency: “the trend of ocean warming rate (i.e., warming acceleration) is more consistent with the net energy imbalance at the top of the atmosphere than IAPv3”, so it mainly refers to the trend of EEI (trend of ocean warming rate)

L328-331: I understand that even post 2005 monthly data are actually based on 3-month windows. This is important to note more explicitly. It also has implications for the variance of the time series as presented in table 2 – in fact this method will reduce the monthly variance compared to other data sets which might represent truly monthly data. Regarding time- and depth varying windows: Could this be illustrated with a time-depth Hovmoeller diagram displaying the employed window length? Also, was the impact of time-varying window length on signals assessed with synthetic data?
Re: This is a good point, instead of the Hovmoeller diagram, we included this information as Supplementary Table 1 to list the time- and depth-varying windows. A table is used instead of a figure to increase the transparency.
This method will reduce the monthly variance in temperature and OHC time series, but it is an improvement compared with other datasets (we respectfully disagree with the statement that...
other data sets might represent truly monthly data). As noted in Trenberth et al. (2016) and other studies, the month-to-month in all OHC datasets explored in that study is likely spurious compared with CERES data. Boyer et al. (2016) and others (e.g. Meyssignac et al. 2019) also noted that the current observation system is still too sparse to monitor the physical month-to-month variability: too high noise level. Thus, it is desired to reduce the month-to-month variability. Besides, the increase of windows with depth is also physically meaningful because of the reduced temporal variability with depth. Furthermore, a careful investigation of inter-annual variability (ENSO) of OHC by Cheng et al. (2019) also indicates that the choices give reliable estimates of inter-annual variability compared with other data (e.g., Roemmich and Gilson 2011).

A sentence added in section 2.6 “The use of a time window will reduce the monthly variance compared to other datasets, which is likely too high compared with independent Earth’s Energy Imbalance data at the top of the atmosphere (Trenberth et al. 2016).”

References:

L343: Does that mean the influence radius changes with depth? Is this a physically based choice or is this pragmatic owing to data availability?
Re: The influencing radius changes with depth for the first iteration (2,000 km for the upper 700 m and 25,000 km at 700–6000 m), and no change for the second and third iteration (800 km and 300 km). This is based on a test provided by Cheng&Zhu (2016) paper (their Fig.3), which subsamples the recent decadal data based on past data locations to test the different choices of the influencing radius. The results show that a ~20-degree influencing radius can minimize the
reconstruction error for the upper 700m. The 700-2000m radius is further determined by Cheng et al. (2017) with the same approach. Although it is more of a statistical result, it is physically meaningful because the spatial decorrelation distance is longer in the deeper ocean than in the upper ocean, and the decadal to multi-decadal variability of ocean temperature is generally associated with large spatial patterns.

L345-346: “real forcings” is perhaps a bit overconfident. Better say something like “reconstructed”.

Re: You are right. We removed the “real forcings”, so the sentence reads as follows: “For each month, IAPv3 used 40 model simulations (historical runs) from the Coupled Model Intercomparison Project phase 5 (CMIP5) to provide a flow-dependent ensemble......”

L360: Please explain E_i and M. If “E” is instrumental error, is it meant to represent a bias (which could simply be subtracted) or random error?

Re: Good point. We have included an explanation and basic assumptions for this error: “E_i is the instrument’s precision for each individual observation, assuming random error (the basic assumption is that after bias correction, the systematic errors can be eliminated).”.

Table 1: Instead of saying doi: “YES” I suggest to simply state the doi.

Re: Done, doi provided here.

L416-423: As a reader I would like to see a number of how strong the effect of the VC on OHC trends is (especially as a number from earlier works is provided).

Re: Good point. The impact of VC on global and basin OHC is tested here. Some texts have been added in the revised manuscript: “Since the open ocean accounts for the vast majority of the global ocean volume, the influence of the VC method on the global OHC trend is small. For example, the upper 2000 m OHC trend with VC is ~0.15% (~0.45%) smaller than without VC from 1958-2023 (2005-2023) for IAPv4. However, it can significantly affect regional OHC estimates, especially in regions with complex topography. For example, the Maritime Continent region’s 0-2000 m OHC trend is reduced by 6.9% (4.2%) after applying VC from 1958-2023 (2005-2023) (Jin et al. 2024).

Moreover, a previous study (Jin et al. 2024) indicated that the VC could be very important for some data products, for instance, EN4, thus this correction is recommended, I quote from Jin et al. 2014: “The VC fixes the overestimated volume of EN4 and thereby reduces its OHC variability (Figure 1b; standard deviation adjusted from 2.50 to 1.73 ZJ), achieving a better agreement with those of IAP and Ishii (1.50 and 1.47 ZJ; Table S1 in Supporting Information S1). In this sense, the VC also reduces the uncertainty in OHC variability.”

Reference:
Fig. 6: Here and in other instances I suggest to bring in the Lyman and Johnson (2023; LJ2023) data (https://doi.org/10.1175/JTECH-D-22-0058.1) as they state generally improved quality over IAPv3 data. Good agreement with the LJ2023 data (which are derived in a different fashion than the IAP data) would strengthen the confidence in state of the art OHC data sets.

Re: Thanks for the suggestion; we have added Lyman and Johnson 2023 data into Fig.6 and also included some brief discussions about LJ2023 data.

“The annual cycle of the OHC above 2000 m of IAPv4 is compared with IAPv3, ISH, EN4, RG and RFROM (Fig. 6 and Fig. 7) for 2006–2020. There is a consistent annual cycle among different datasets for the global and hemispheric oceans. Globally, the ocean releases heat from boreal spring to autumn and accumulates heat from boreal autumn to spring, which is dominated by the southern hemisphere due to its larger ocean surface area (Fig. 6). The two hemispheres show opposite annual variations in OHC, associated with the annual change of solar radiation and different distribution of land and sea. For the global OHC above 2000 m, IAPv4 shows a positive peak in April and a dip in August, with the magnitude of OHC variation of 60.4 ZJ for IAPv4 (66.9 ZJ for IAPv3), consistent with other datasets: 53.2 ZJ for ISH, 58.1 ZJ for EN4, 69.2 ZJ for RG and 56.6 ZJ for RFROM (where 1 ZJ = 10^{21} J).”

![Figure 6: Annual cycle of OHC of upper 2000 m for (a) the global oceans, (b) the Southern Hemisphere, (c) the Northern Hemisphere and (d) the oceans north of 69.5°N. Six different data products are presented, including IAPv4 (red), IAPv3 (blue), ISH (purple), EN4 (green), RG (orange), and RFROM (pink).](image)

Fig. 7: IAPv4 clearly looks more plausible than v3, but it is still only qualitative. Is there a way to really validate the data, e.g., with data from ice-tethered profilers?
Re: This is difficult because we merged all available data into IAPv4, so the ice-tethered profilers are not independent. Nevertheless, we have done two additional checks:

1) compare the IAPv4 data with some independent data found in the central Labrador Sea. A paragraph is added: “Furthermore, the reconstruction of IAPv4 is compared with completely independent observations in the central Labrador Sea (see Data and Methods section for details; Yashayaev, 2007; Yashayaev and Loder, 2017) for the 200-2000 m mean temperature time series (Fig. 15). The direct observations show a substantial decadal variation in the central Labrador Sea, with negative anomalies 1970-2003 and 2015-2020, and positive anomalies 1963-1972 and 2004-2014. Reconstructed based on data from WOD, IAPv4 can well represent this decadal variability. The largest difference occurs in 1989, where direct observations show nearly zero anomaly while IAPv4 shows a big negative anomaly; this difference is likely caused by using a time window in IAPv4, which has a smoothing effect on the time series.”

![Figure 15: Comparison of IAPv4 data with independent observations in the central Labrador Sea (304-310 °E, 55-61 °N) from 1960 to 2020. The 200-2000 m averaged temperature anomaly time series is shown, and the baseline is 1960-2020. The inner box shows the locations of the independent observations in black dots (showing a total of 49849 profiles).](image)

2) Provide the gridded averaged observations without any interpolation and calculate the RMSE between IAPv4 and gridded averages, IAPv3 and gridded averages. This comparison is more quantitative. See the updated Fig.7. It is evident that IAPv4 shows smaller RMSE than IAPv3 in the polar regions.
Figure 7: Seasonal distribution of monthly mean upper 2000 m OHC anomalies and root mean square error (RMSE) of OHC 0-2000 m between gridded data and in situ observations. For OHC anomalies, four months are shown: March, June, September, and December. The OHC anomalies are relative to the 2006–2020 annual mean. The upper and lower panels are for IAPv3 and IAPv4 products, respectively. The panels in the last column are for annual RMSE for IAPv3 (upper) and IAPv4 (lower), respectively.

L575-584: Given that cooling SST trends in the eastern equatorial and south-eastern Pacific have received quite some attention recently, I suggest to discuss more potential causes of the non-existing cooling trend in that region in the IAP data.

Re: Thanks for the suggestion. We have explored a bit more the SST trends in the two regions you mentioned (Fig. X). From the time series, it appears that the tropical SST changes show substantial variability from inter-annual (mainly ENSO) to decadal (mainly PDV) scales. The cooling trends from the 1990s to the present are mostly associated with the PDV phase change. Thus, the long-term trends (e.g. from the 1950s to the present) are subtle: indeed, according to our calculation, the tropical SST trends within 1955-2020 are mostly not significant (based on our LOWESS-based approach in Cheng et al. 2023). Based on these results, we tried not to delve into the explanation of the trends in Fig.10, instead, we added a discussion suggesting that the trends are mostly not significant because of the strong inter-annual to decadal variability.
Fig. X2. SST time series (a, b) and trends (c) in two regions denoted in the boxes in (d). Two regions: Equatorial Eastern Pacific (EEP) and Southeast Pacific (SEP) are shown.

Fig. 11: This is a good figure, but in addition I would like to see a figure including other OHC data sets (similar to Fig. 9 for SST).

Re: A new figure has been created (Fig. 12) in the revised manuscript to compare the IAPv4 time series with other data based on the plot shown in the Cheng et al. 2022 review paper. Some data have been updated to 2023. It is evident that despite the differences in datasets, IAPv4 shows a stronger long-term trend since the 1960s than almost all datasets, showing the impacts of XBT/MBT/Bottle bias corrections. Also, stronger warming occurs for IAPv4 than IAPv3 and many other data, mainly because of the QC.
Figure 12: A comparison of annual mean OHC 0-2000 m time series from different data products. Solid and dashed lines represent direct and indirect estimates, respectively, and shading indicates the IAPv4 90% confidence interval (pink shading). OHC anomalies are relative to a 2005–2019 baseline. The plot is updated from Cheng et al. (2022a).

Table 2: The annual results suggest a variance ratio between IAPv4 and CERES of >2, while Lyman and Johnson (2023) get a ratio of 1.3 for their data. This should be mentioned. A reason for this might be the fact that LJ (2023) seem to actually apply a stronger than annual smoothing (their annual OHC variation is obtained by differencing subsequent annual means) to their data, but reading your lines 792-793 it appears you are doing the same for this comparison? Needs to be clarified.

Re: We have mentioned this issue in the revised manuscript “In addition, Lyman and Johnson’s (2013) data suggest a yearly variance ratio of 1.3 between annual RFROM and CERES data from 2008 to 2021. Using the yearly mean OHCT indicates a ratio of 1.4 at the same period between IAPv4 and CERES, which is similar to that of RFROM.”.

We mark here that in Table 1, we have applied a 12-month running smoother to all-time series, while Lyman and Johnson (2023) used an annual time series (for their 1.3 ratio result). That’s why we have made additional calculations using annual time series of IAPv4 and CERES data to derive the ratio, which is 1.4, similar to Lyman and Johnson 2023 data.

Table 2: Why is no CERES trend provided?

Re: OHC trend in CRESE record is adjusted by Johnson and Lyman dataset (0.71 Wm$^{-2}$ within 2005-2015) as described in Loeb et al., (2018). Here, we calculate the mean CERES net flux within
2005-2022, consistent with the period of other data, and assuming 90% of heat stored in the ocean. This number is added to the table as 0.77 Wm$^{-2}$. A sentence has been added in figure caption of the revised manuscript “The OHC trend for CERES is calculated as the mean of net TOA radiation flux within 2005–2022 multiplied by 0.9, assuming 90% of the EEI stored in the ocean.”

Fig. 13: Please comment why the eastern Pacific cooling signal in upper 300m OHC is so much more prominent than in SST?

Re: Thanks. That is because Figure 13 is for the 1991-2023 period, but the SST figure in Fig.10 is for a longer period of 1955-2022. The previous plot, Fig. X2, shows the big inter-annual and decadal-scale variability in SST, so the trends for different time periods are different. For OHC, there is also substantial inter-annual to decadal scale variability (Fig. X3, below), so if one calculates the 1991-2023 trend, the eastern Pacific shows a negative trend for OHC0-300m.
Fig. X3. OHC0-300m time series in the Equatorial Eastern Pacific (EEP) and Southeast Pacific (SEP) regions in (a) and (b) respectively. (c) shows the spatial trend map for OHC0-300m from 1991 to 2022.

L695: This is only true for the tropics, not for higher latitudes.
Re: Thanks, to avoid potential issue of the quantification, this sentence is modified to “The ocean meridional heat transport (MHT) is fundamental to maintaining the earth’s energy balance.”

L730ff: Please add “Pacific” everywhere (also when stating correlations) to be clear you are not discussing full zonal averages
Re: Done.

L759: add “based on our data”
Re: Done.

L768: to me “EEI” is a rate of change, not an accumulated value. So maybe better to add “accumulated” before “EEI”
Re: Yes, modified.

L772-773: validation method (1) does not appear very meaningful to me, as the integrated CERES value depends on the one-time global adjustment for the EBAF product. Changing this adjustment to match the IAPv4 average OHC increase (as apparently done by the authors) does enforce the agreement seen in Fig. 16. I am unconvinced this is a meaningful approach and recommend to only keep method (2).
Re: Yes, the trend of the accumulated EEI depends on the adjustment, but the variation of the accumulated EEI does not, that’s why the RMSE between accumulated EEI and IAPv4 time series is meaningful, which could be a useful metric for the EEI/OHC consistency in unit of ZJ (heat, not rate of change). This is the reason why we prefer to maintain both approaches. We believe this explanation makes things clearer.

L795: “consistency” in which sense? E.g., is the correlation significant?
Re: The sentence has been modified to “The IAPv4 and CERES estimates show inter-annual variability with a correlation of 0.44. The higher correlation of IAPv4 versus CERES than IAPv3 increases confidence for the new data (correlation of only ~0.15 for IAPv3).”

Fig. 17: The CERES series does not look de-trended.
Re: It is not de-trended. We stated in the figure caption that “The long–term mean is removed for all-time series.”, so the baseline is removed, but the trend remains.

L815ff a: The methods are not clear to me. In my understanding, only steric sea level can be derived from IAPv4 data. It would be useful to note how the conversion from T/S profiles to sea level is performed? A reference would be useful.
Re: This has been made clearer in the revised manuscript: “The updated IAPv4 data is used to assess the sea level budget for 1960-2023 in combination with other data, including IAP salinity data, glaciers, Greenland, Antarctic ice sheets mass loss from Frederikse et al. (2020) and altimetry sea level record (see Methods section for details).”.

And the description of the conversion from T/S to steric sea level is introduced in the Methods section: “To derive steric sea level, IAP salinity data is used (Cheng et al. 2020). The temperature and salinity data are converted to steric sea level based on the Thermodynamic Equation Of Seawater – 2010 (TEOS-10) standard (McDougall and Barkerv, 2011).”

L815ff b: It is confusing in table 3 that for all terms there is an IAPv4 entry, although everything but steric stems from other sources. Specifically, I understand that GMSL as well as “sum of contribution” (which itself should be explained better) are taken from Frederikse et al., but the values still differ. What is the reason for this? Is it only because of the different approach for trend computation? Can the authors provide the sensitivity to the trend estimation method based on IAP data?

Re: We agree that Table 3 is confusing. The sea level section has been rewritten and the Table 3 has been removed. In the revised manuscript, we have added two clean tests on the impact of IAPv4 on sea level budget closure: 1) we replace the steric sea level component in Frederikse et al. (2020) by IAPv4 and then test the residual error and RMSD; 2) we replace the thermosteric sea level component in IPCC-AR6 (Gulev et al. 2021, they do not have a halosteric sea level estimate) with IAPv4 and check the residual error and RMSD.

Because the other components are the same and the only difference is the steric sea level data, these two tests can isolate the impact of the new T/OHC data on sea level budget closure.

L815: 1991 or 1993?

Re: It is 1993, corrected.

L852-854: This is an important result, and it seems to suggest that the stronger warming in recent years as indicated by IAPv4 is more realistic. This should be stated more clearly. Also, here it would be useful to make a link to Fig. 11 or a potential new OHC figure including other OHC products.

Re: Great point, we added some discussion at the end of this paragraph “This suggests that the stronger warming in recent years, as indicated by IAPv4, is more realistic. As discussed in Section 3.4, the QC is mainly responsible for the increased warming of IAPv4 compared with IAPv3 since ~2015 (Fig. 11).

Many traditional QC procedures use a static climatological range check to filter out outliers, which does not account for the increase of extreme events with climate change and removes too many extreme (positive) values during the recent period. Thus, we strongly recommend that data product generation groups revisit the QC procedure. Furthermore, as the stronger long-term OHC trends since ~1960 in IAPv4 than in IAPv3 are mainly attributed to the bias corrections
for Nansen Bottle, MBT, and XBT data, it is also recommended that international groups to revisit the biases in ocean observations.”

L916: Is there a reference for the sampling bias of CERES on monthly time scales?
Re: A reference “Loeb et al., 2009” is added. The issue is the number of samples per day to get the diurnal cycle and hourly variations in clouds. It was clearly inadequate in the early days, with 2 samples per day. After 2002 or so, there were 4 per day, but that was also inadequate for clouds. They have a major imbalance that is not physical. Part of that may be a diurnal cycle, but part of it is likely errors in angular corrections, etc. Loeb et al. (2009) stated the issue, and later, the CERES group just used OHC for adjustment, but the bias is real.

Typos/edits:
L41: suggest replacing “first” with “uppermost”
Re: Modified
L107: “support the follow-on studies on climate assessments” – This does not read very smooth. Please rewrite.
Re: Modified to “Upgrading the product with new developments is important to better support the ocean/climate research and climate assessments.”.
L137: “this paper” à perhaps better say “the presented product”
Re: Modified
L222: is it a warm or cold bias?
Re: The XBT bias is generally positive but with time variation. The statement is modified to: “The XBT bias was found to be generally positive, as large as ~0.1 °C before 1980 on the global 0–700 m average, diminishing to less than 0.05 °C after 1990”.
L232: “systematic biases” is redundant: either say “biases” or “systematic errors”
Re: Revised to “biases”.
L243: here and in several other instances the references have the parentheses wrongly placed. Please revise.
Re: Corrected.
L270: I am not sure that “adjustive” exists
Re: Modified to “adjusted”.
L282: It is unclear what you mean by “such a choice”
Re: Sentence modified to “Recent developments from other groups, such as Li et al., (2022), include the choice of a short-period climatology.”.
L303-304: This alone is not necessarily a problem. But I assume salinity data are not always available?
Re: This sentence has been removed in the revised manuscript.
L435: I assume “monthly” climatology?
Re: Yes, “monthly” added here.

L462: please spell out “CERES-EBAF” once.

L663: Please add a reference to the subsection where this is explained

Re: Added.

L937: What is meant by “T/OC”? Do you mean T/OHC?

Re: Yes, corrected to “T/OHC”