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Abstract. This study presents the water column temperature data collected during several cruises on 19 

board the Italica, Araon and Laura Bassi research vessels, in the framework of the Climatic Long-20 

term Interaction for the Mass balance in Antarctica (CLIMA), Southern Ocean Chokepoints Italian 21 

Contribution (SOChIC), and Marine Observatory of the Ross Sea (MORSea) projects, funded by the 22 

Italian National Antarctic Research Program (PNRA). Data were collected between New Zealand and 23 

the Ross Sea during the austral summers from 1994/1995 to 2023/2024. Across this chokepoint of 24 

the Antarctic Circumpolar Current, XBT Sippican T7 probes were launched with a regular 20 km 25 

sampling, providing temperature profiles with a vertical resolution of 65 cm and a maximum nominal 26 

depth of 760 m. All temperature profiles underwent a rigorous quality control, including a general 27 

malfunctioning verification, the removal of spikes, the consistency check of adjacent profiles, the 28 

comparison to regional oceanographic features and satellite altimetry observations, and a final visual 29 

check by operator. Data quality checks led us to discard about 12% of acquired XBT measurements. 30 

This dataset contributes to the improvement of our understanding of Southern Ocean features, being 31 

highly valuable for studies focusing on climate variability, especially across the Antarctic 32 

Circumpolar Current and its fronts. Furthermore, we expect that the collected XBT data will serve as 33 

a useful tool for the calibration and validation of recent satellite observations and for the improvement 34 

of Southern Ocean oceanographic simulations. 35 
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1 Introduction 36 

The temperature of the ocean is one of the key parameters identified by the Global Climate Observing 37 

System (GCOS) as being essential for climate studies (World Meteorological Organization, 2016). 38 

Together with salinity values, ocean temperatures are necessary to identify and trace the main water 39 

masses and monitor their evolution at different spatial and temporal scales.  40 

On the larger scales, collecting oceanic temperature and salinity data is of paramount importance to 41 

the study of the global thermohaline circulation, which plays a pivotal role in Earth’s climate system. 42 

The Southern Ocean (SO) plays a fundamental role in this circulation (Gille, 1994; Rintoul, 2018), 43 

as some of the global thermohaline circulation “engines” are located near the Antarctic coast, 44 

associated with polynya areas (Morales Maqueda et al., 2004; Aulicino & Wadhams, 2022). At 45 

smaller scales, temperature data can be used to describe the vertical structure of the ocean (e.g., the 46 

thermocline depth and its variability), to locate fronts between different water masses, determine the 47 

ocean heat content and volume transport, and to identify meso- and sub-mesoscale ocean dynamics. 48 

The main current in the SO is the Antarctic Circumpolar Current (ACC), which is its primary source 49 

of heat, nutrients and momentum (Sokolov & Rintoul, 2009a, 2009b). The ACC is one of the largest 50 

currents on the planet, flowing from west to east and isolating the Antarctic continent, which makes 51 

it strongly dependent on the SO conditions. Additionally, the Antarctic ecosystem is very fragile and 52 

temperature-dependent, which highlights the importance of monitoring physical changes in the ocean 53 

that surrounds it (Convey & Peck, 2019). Therefore, monitoring the SO and its temperature is 54 

essential for improving our knowledge of the processes driving the Antarctic variability and the global 55 

climate balance (Rintoul, 2018; Armour et al., 2016). 56 

Despite its importance, SO has consistently faced a scarcity of in situ observations due to its remote 57 

location and the extreme weather conditions, which often hinder research activities to be carried out 58 

on site. The measurements are further limited by the seasonal sea ice presence that inhibits the 59 

navigation and the data collection. Additionally, in situ data collection is often conducted with 60 

instruments and probes used from ships travelling at their normal speed (e.g., Expendable 61 

BathyThermographs – XBT), without the possibility to perform classical full depth CTD casts that 62 

require ship stops. The advent of the international ARGO program increased significantly the number 63 

of hydrographic observations available in the SO throughout all seasons (Roemmich et al., 2022). 64 

However, Lagrangian floats do not allow the collection of information along repeated monitoring 65 

lines. 66 

Accordingly, many steps have been taken over time to obtain ocean temperature data through remote 67 

sensing. Satellite data provide valuable insights about the upper ocean, especially when considering 68 

that the surface layer is closely related to fundamental phenomena (e.g., ocean-atmosphere physical 69 
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and biogeochemical interactions, fronts, currents, meanders, eddies) impacting the large-scale 70 

circulation and the meso- and small-scale characteristics of the ocean (e.g., McGillicuddy, 2016; 71 

Cotroneo et al., 2016; Seo et al., 2023). Additional information about the water column can also be 72 

retrieved from numerical models (e.g., Downes et al., 2015) and 3D reconstructions inferred through 73 

machine learning and statistical techniques applied to satellite observations, such as sea surface 74 

temperature (e.g., Buongiorno Nardelli et al., 2020). Nonetheless, in situ measurements are 75 

indispensable for achieving the necessary precision and depth coverage. In addition, they provide 76 

critical ground-truth for the calibration and validation of satellite retrievals of surface variables, and 77 

the improvement of data acquisition algorithms (Aulicino et al., 2022). It is therefore evident that the 78 

collection of in situ data is essential for monitoring ocean temperature. 79 

The Global Ocean Observing System (GOOS) Ship Of Opportunity Program (SOOP), and the related 80 

Ship of Opportunity Program Implementation Panel (SOOPIP), address scientific and operational 81 

(standardization, maintenance, and advancement of the instruments and techniques) goals, 82 

respectively, to building a sustained ocean observing system, e.g., supplementing dedicated research 83 

vessels in the collection of upper ocean in situ XBT data through the use of ships that are already 84 

traversing the world's oceans (Legler et al., 2015; Goni et al., 2019).  85 

In this scenario, the University of Naples Parthenope has been taking part since 1994 in the 86 

organization and execution of several oceanographic campaigns along the PX36 monitoring line in 87 

the Pacific sector of the SO, i.e., between New Zealand and the Ross Sea, in the framework of the 88 

Italian National Antarctic Research Program (PNRA). During each expedition, XBT launches were 89 

carried out, collecting ocean temperature data from surface to a maximum of about 760m depth (Falco 90 

et al., 2022). This study presents the collected XBT dataset, which significantly contributes to the 91 

accessibility of extensive ocean temperature data.   92 

In this paper, the methodologies used for data collection and quality control (QC) are described in 93 

Section 2; the results and the discussion are reported in Section 3; the data record details and the 94 

conclusions are summarized in Section 4.  95 

  96 
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2 Data and methods 97 

2.1 The XBT dataset 98 

An XBT system is composed of several key components: an expendable ballistic probe that descends 99 

into seawater; a data acquisition device that records an electrical signal and converts it into usable 100 

numerical data (with the support of a computer unit); a double copper wire that connects the falling 101 

probe to the acquisition device (Goni et al., 2019; Parks et al., 2022; Simoncelli et al., 2024). As the 102 

probe descends through the water column, temperature measurements are acquired using a Negative 103 

Temperature Coefficient (NTC) thermistor mounted on the probe zinc nose, which alters its resistance 104 

in response to the seawater temperature it comes into contact with. The insulated copper wire is 105 

unwound simultaneously by two spools, i.e., clockwise on the ship and counterclockwise in the falling 106 

probe. This technique decouples the XBT vertical descent through the seawater from the ship 107 

translational motion (Simoncelli et al., 2024). Data recording continues until the wire breaks or the 108 

recording is terminated by the operator. The depth associated with a temperature measurement is not 109 

sensed directly because XBT probes do not contain pressure sensors. Instead, it is estimated using a 110 

phenomenological Fall Rate Equation (FRE) provided by the manufacturer, with coefficients that 111 

vary based on the probe type and year. These coefficients, along with details about the data acquisition 112 

systems, are typically included in the metadata associated with each XBT cast. 113 

The uncertainties on temperature and pressure values make the XBT probe accuracy be generally 114 

rated to ± 0.10°C (Parks et al., 2022), although differences can be retrieved depending on the 115 

manufacturer and the manufacturing date of different devices (Cowley et al., 2013). Consequently, 116 

some crucial information should be always provided with any XBT dataset for subsequent optimal 117 

use of the measurements, including a complete description of the system characteristics in the 118 

metadata (e.g., probe type, fall rate coefficients, data originator, platform). 119 

We present here the dataset of water column temperatures collected in the Pacific sector of the 120 

Southern Ocean through XBT casts during several research cruises on board the Italian research 121 

vessels “Italica” and “Laura Bassi” and the Korean icebreaker “Araon” (see Table 1). These activities 122 

were carried out in the framework of the Italian PNRA by several scientific projects, e.g., Climatic 123 

Long-term Interaction for the Mass balance in Antarctica (CLIMA), Southern Ocean observing 124 

system and Chokepoints Italian Contribution (SOChIC) and Marine Observatory in the Ross Sea 125 

(MORSea). 126 

The XBT casts were carried out during the austral summers between 1994/1995 and 2023/2024, 127 

mainly in January and February (Figure 1), using Sippican T7 probes providing temperature profiles 128 

with a vertical resolution of 65 cm and a maximum nominal depth of 760 m. Only during the 129 

1994/1995 (PNRA_X) and 1995/1996 (PNRA_XI) cruises some Sippican T5 probes were used, 130 
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reaching a maximum depth of 1830 m, as reported in the campaign metadata information (Table 2). 131 

The majority of transects were completed in 5-6 days and provide a synoptic picture of the thermal 132 

structure of the upper SO across its Pacific Sector (Figure 2). A regular 20 km sampling interval was 133 

adopted with occasional increased sampling frequency over the main frontal regions of the ACC.  134 

 135 

Table 1. List of scientific cruises included in this dataset carried out between November 1994 and January 2024 136 

Cruise name  R/V Start date  End date  Latitude  Longitude  

PNRA_X  ITALICA  03 November 1994  02 March 1995  47.00 - 74.99°S  172.02°E - 175.90°W  

PNRA_XI  ITALICA  07 January 1996  18 February 1996  48.66 - 72.01°S  173.56°E - 179.79°E  

PNRA_XII  ITALICA  26 January 1997  19 February 1997  46.17 - 74.69°S  166.24°E - 179.82°E  

PNRA_XIII  ITALICA  23 November 1997  06 March 1998  46.25 - 72.71°S  171.39°E - 179.43°W  

PNRA_XIV  ITALICA  05 January 1999  11 January 1999  48.07 - 69.00°S  173.70°E -178.55°E  

PNRA_XV  ITALICA  07 January 2000  18 February 2000  49.17 - 69.83°S  173.13°E - 178.41°E  

PNRA_XVI  ITALICA  06 January 2001  26 February 2001  48.75 - 75.94°S  170.59°E - 179.72°E  

PNRA_XVII  ITALICA  24 December 2001  31 December 2001  48.50 - 69.30°S  160.39°E - 178.01°E  

PNRA_XVIII  ITALICA  06 January 2003  11 January 2003  48.00 - 71.26°S  172.93°E - 177.47°E  

PNRA_XIX  ITALICA  24 December 2003  28 December 2003  46.36 - 66.17°S  173.81°E - 179.99°E  

PNRA_XX  ITALICA  01 January 2005  06 January 2005  48.03 - 70.49°S  174.22°E - 178.38°E  

PNRA_XXI  ITALICA  01 January 2006  04 January 2006  48.03 - 66.50°S  174.59°E - 179.93°E  

PNRA_XXII  ITALICA  05 February 2007  10 February 2007  47.23 - 71.99°S  170.86°E - 174.26°E  

PNRA_XXIII  ITALICA  16 January 2008  21 January 2008  47.50 - 68.99°S  174.18°E - 178.63°E  

PNRA_XXV  ITALICA  25 January 2010  29 January 2010  46.38 - 70.00°S  173.63°E - 178.00°E  

PNRA_XXVII  ITALICA  13 January 2012  19 January 2012  47.85 - 65.96°S  172.03°E - 176.54°E  

PNRA_XXVIII  ARAON  24 January 2013  06 February 2013  47.20 - 68.5°S  158.30°E - 177.00°E  

PNRA_XXIX  ITALICA  30 December 2013  18 February 2014  48.01 - 78.83°S  167.07°E - 175.84°W  

PNRA_XXX  ARAON  02 January 2015  10 January 2015  47.99 - 73.22°S  157.02°E - 173.81°E  

PNRA_XXXI  ITALICA  16 January 2016  28 January 2016  47.49 - 72.40°S  171.56°E - 175.00°E  

PNRA_XXXII  ITALICA  31 December 2016  05 January 2017  48.01 - 68.77°S  174.09°E - 179.85°W  

PNRA_XXXIV  ARAON  08 February 2019  12 February 2019  47.99 - 69.75°S  166.79°E - 170.87°E  

PNRA_XXXV  LAURA BASSI  07 January 2020  12 January 2020  48.01 - 69.25°S  172.97°E - 178.84°E  

PNRA_XXXVI  LAURA BASSI  25 December 2020  02 January 2021  46.96 - 73.39°S  172.82°E - 175.89°E  

PNRA_XXXVII  LAURA BASSI  08 January 2022  26 January 2022  47.54 - 76.35°S  171.20°E - 177.58°W  

PNRA_XXXVIII  LAURA BASSI  06 January 2023  12 January 2023  46.56 - 72.27°S  169.40°E - 178.70°E  

PNRA_XXXIX LAURA BASSI 07 January 2024  12 January 2024  48.20 - 70.00 °S 166.30 °E – 176.40°E 

 137 
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138 

Figure 1. Temporal distribution of the oceanographic campaigns conducted along the New Zealand-Antarctica 139 

“chokepoint” between 1994 and 2024. 140 

141 

Table 2. Characteristics of the different XBT probes used in this study: nominal depth guaranteed by Sippican; maximum 142 

ship speed suggested by Sippican for an optimal drop; amount of ZAMAK (a zinc-based alloy enriched with aluminium, 143 

magnesium, and copper), copper and plastic for each probe type (adapted from Simoncelli et al., 2024) 144 

145 

Probe type Max rated 

depth (m) 

Max ship 

speed (knots) 

ZAMAK 

(kg) 

Plastic 

(kg) 

Copper 

(kg) 

Sippican T5 1830 6 0.613 0.125 0.357 

Sippican T7 760 15 0.576 0.052 0.240 

146 

147 

148 

149 
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150 

151 

Figure 2. a) Map of the Southern Ocean area between New Zealand and Antarctica. The black dots represent the position 152 

of all XBT launches carried out between December 1994 and January 2024. b) An example of temperature vertical profiles 153 

collected through XBT across the New Zealand – Ross Sea chokepoint during the XXXV Italian Antarctic Expedition. 154 

155 

156 

2.2 Quality Control 157 

Various types of malfunctions can affect XBT measurements and result in inaccurate temperature 158 

readings within the temperature profile. These faults can appear as a spike in a single recorded value 159 

or affect the temperature across a range of depths. Moreover, some issues can create errors that mimic 160 

real phenomena, such as temperature inversions or fronts (Parks et al., 2022; Cowley and Krummel, 161 

2022). Sometimes, profiles can be corrected by deleting or filtering sections of the original data. 162 

However, an accurate quality control procedure must be implemented before any data is discarded or 163 

manipulated. Additionally, a flagging scheme is generally applied to provide XBT dataset users with 164 

quality indicators of the oceanographic data.  165 

Quality flags (QFs) are essential for enabling users to filter the XBT dataset according to the specific 166 

quality requirements for the intended use. Several flagging scheme exist in agreement with 167 

recommendations provided by the Intergovernmental Oceanographic Commission of UNESCO 168 

(IOC, 2013). In this study we follow the suggestions provided by the Global Temperature and Salinity 169 

Profile Program (GTSPP) of the NOAA-NCEI (https://www.ncei.noaa.gov/products/global-170 

temperature-and-salinity-profile-programme) resulting in the flagging scheme summarized in Table 171 

3 for indicating the quality of each temperature and depth data point.  172 

173 
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Table 3. The Quality Flags (QF) assigned to the XBT data 174 

QF Quality Description 

0 No QC No quality control has been performed on this data. 

1 Good data 
The data is good. 

 No malfunctions have been identified and consistency with real phenomena has been verified. 

2 Probably good data 
Minor malfunctions present which are small or correctable without affecting overall data quality. 

Some features (probably real) are present but these are unconfirmed. 

3 Probably bad data 
Data are suspect and present unusual features which are inconsistent with real phenomena, 

Data remains potentially correctable.  

4 Bad data 
The data appears erroneous. 

Evident errors are identified and there is no likelihood of correction. 

175 

176 

The assignment of QFs is the result of a series of quality control (QC) tests for both temperature and 177 

depth data which are used to get a reliable quality check of the temperature measurements collected 178 

through our XBTs and of the retrieved depths. Results of each test allowed to insert the relative flag 179 

to the corresponding measurement according to the scheme shown in Table 3. QF=1 is assigned when 180 

all the tests pass and QF=4 when at least one test fails. For temperature, more detailed checks are 181 

performed, including a final visual check, allowing us to introduce QF=2 and QF=3 for probably 182 

good and probably bad data, respectively (as detailed below).  183 

Overall, the QC procedures applied to our dataset follow recommendations previously suggested by 184 

NOAA, developed and refined in the last three decades (Bailey et al., 1994; Daneshzadeh et al.,1995; 185 

Cowley and Krummel, 2022; Parks et al., 2022; Tan et al., 2023). These procedures include several 186 

steps undertaken in a top-down manner, as temperature data are measured from the surface down, 187 

and faults that occur at a given depth may impact on deeper data (Parks et al., 2022).  188 

First, each XBT profile was tested for invalid metadata information, such as the correct time, cast 189 

position and any other possible operator errors, using a sequence of independent checks. All identified 190 

errors in date and time were corrected accordingly, with the support of the XBT launch log sheets 191 

provided by operators on board. No errors were found concerning the position of the casts after the 192 

comparison of latitudes and longitudes against gridded GEBCO 2 x 2 minutes bathymetry (GEBCO 193 

Compilation Group, 2023). The check of unrealistic positions was also performed using the 194 

calculation of vessel speed from profile date and time and an upper general threshold of 20 knots 195 

(since most of the launches are realized by ships travelling in the range of 10/15 knots). Additionally, 196 

the depth values of each XBT profile were compared to the last good depth value provided by the 197 

operators (QF=1 is assigned to shallower depth values, otherwise they are flagged as QF=4).  198 
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Then, all the vertical temperature profiles were checked for nominal maximum depth (760 m), and 199 

carefully inspected to identify malfunctions, coherence to regional oceanographic features, drop-to-200 

drop consistency along the cruise track, and presence of unusual features. In this context, the main 201 

difficulty is usually found in distinguishing a common malfunction from a regional oceanographic 202 

feature (i.e., unexpected increase of temperature southward or along the water column). 203 

Consequently, unusual features were cross-validated by comparison to repeated (within 15 minutes) 204 

or neighbouring profiles from the same voyage and eventually to available Austral summer ARGO 205 

observations over the study area. To this aim, we took again advantage of XBT launch log sheets, in 206 

which operators notified any instrument malfunctions, adverse weather conditions, sea ice presence 207 

and local bottom depth. In particular, the bottom depth was relevant to constraining XBT data profiles 208 

at the right depth, especially when approaching shallow waters (QF=1 is assigned to values shallower 209 

than bottom depth, otherwise they are flagged as QF=4). When the log sheet was unavailable, we 210 

relied instead on the GEBCO 2 x 2 minutes bathymetry (GEBCO et al., 2023), which closely 211 

corresponded to the in situ reported depths over the area and period of study. Additionally, a gross 212 

filter was applied to all the XBT profiles using temperature ranges that vary on four vertical layers, 213 

as reported in Table 4. The ranges were defined through the use of ARGO data collected in the study 214 

area between 2004 and 2023. QF=4 was applied to data exceeding the thresholds of ±0.5°C.  215 

216 

Table 4. Temperature ranges applied to XBT profiles, defined in four levels. 217 

Depth range (m) 
Temperature 

minimum (°C) 

Temperature 

maximum (°C) 

0 - 100 -1.866 14.698 

100 - 250 -1.865 11.093 

250 - 500  0.068  8.717 

500 - 760  0.826  8.266 

218 

219 

Several studies assess that the XBT measurements near the sea surface may be considered unreliable 220 

due to the stabilization of motion and thermal adaptation to the surrounding environment (e.g. Bailey 221 

et al., 1994; Cowley and Krummel, 2022; Simoncelli et al., 2024). They also suggest that the first 222 

acceptable value is at about 4 m depth and that the data user must be carefully informed in order to 223 

exclude suspect surface values from scientific analyses. Here, we opted for providing all the original 224 

measurements annotating their quality, as resulting from a dedicated test on the initial part of each 225 

profile. This test calculates the differences between the value recorded at time t = 0.6 s (about 4 m 226 

depth) and shallower measurements, classifying them based on the standard uncertainty on 227 
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temperature attributable to an XBT probe (0.10 °C) as a metric (Simoncelli et al., 2024). Therefore, 228 

temperature data are assigned QF=1 if the difference is less than or equal to standard deviation (std); 229 

QF=2 if it is comprised between std and 2*std; QF=3 if it is comprised between 2*std and 3*std; and 230 

QF=4 if it is higher than 3*std. 231 

Then, the XBT profiles were examined for the presence of spikes, unrealistic oscillations and unusual 232 

gradients in temperature data, as well as sharp variations toward negative or higher values, which 233 

could be caused by copper wire breaks. Data are mostly flagged as good (QF=1) or bad (QF=4) 234 

values. Nonetheless, suspect data are compared with neighbouring profiles and ARGO climatology 235 

over the study area (obtained from products available at https://www.coriolis.eu.org/Data-236 

Products/Data-selection), eventually assigning QF=1, QF=2 and QF=3 attributes. For example, QF=2 237 

is used when an XBT profile presents a step-like feature that is not confirmed by a neighbouring 238 

profile but is consistent with similar features previously observed in the study region. QF=3 is used, 239 

instead, when XBT values exhibit suspect temperature values that cannot be confirmed by a 240 

neighbouring profile and occur in areas where there is no evidence of mesoscale structures (e.g., 241 

eddies or fronts).  242 

Nevertheless, an increase or decrease in temperature over large depth ranges compared to 243 

neighbouring profiles, can be also associated to an eddy, a frontal area or an intense current system. 244 

Therefore, QF=1 is applied when repeated profiles showing similar temperatures or archive data can 245 

confirm the feature. The larger scale description of ocean dynamics obtained through satellite 246 

altimetry was also used for controversial results to identify the presence of eddies and frontal systems 247 

affecting the temperature data.  248 

However, some profiles might exhibit anomalous features that the described QC procedure could not 249 

detect as erroneous values. Therefore, an additional visual check was carried out for each individual 250 

cruise track and each vertical temperature profile to verify the assigned QF=2 and QF=3 flags and 251 

identify any residual anomalies in the positioning of the XBT launches or outliers in the data 252 

collection. This control was performed using the Ocean Data View (ODV) software (Schlitzer, 2023). 253 

Overall, the entire QC led us to discard about 12% of acquired XBT observations, which were flagged 254 

as bad or probably bad data (Figure 3). 255 
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256 

Figure 3. a) XBT observations collected between December 1994 and January 2024 over the New Zealand – Ross Sea 257 

chokepoint before (blue) and after (red) the quality check; b) An example of the quality check on the XBT data collected 258 

during the PNRA_XXXV cruise. 259 

260 

261 

2.3 XBT data biases correction 262 

Previous studies assessed that temperature biases and depth errors, due to inaccurate time conversion 263 

to depth through FRE, may affect XBT observations (e.g., Gouretski and Reseghetti, 2010; Cowley 264 

et al., 2013). Although a full comprehension of the origins of these issues is still pending, several 265 

experiments tried to quantify this bias by comparing XBT profiles with co-located CTD observations, 266 

demonstrating that XBT temperatures are usually warmer than reality (Gouretski and Reseghetti 267 

2010; Cheng et al., 2014). Different possible causes of biases emerged, including mechanical (e.g., 268 

probe type, manufacturer, year), external (e.g., launch height, meteo-marine conditions) and electrical 269 

(e.g., thermistor, wire) factors (Seaver and Kuleshov 1982; Green, 1984; Reverdin et al. 2009). 270 

Additionally, a decrease in fall rate was observed in cooler waters because of increased viscosity 271 

(Gouretski and Reseghetti 2010), making FRE corrections in the Southern Ocean extremely important 272 

(Cheng et al., 2014).273 

To address these problems, several correction schemes have been proposed over the past few decades. 274 

A comprehensive list of related papers is available at https://www.ncei.noaa.gov/products/xbt-275 

corrections. Taking advantage of more than 220,000 XBT-CTD side-by-side pairs, Cheng et al. 276 

(2014) examined and compared existing methodologies, proposing a new correction scheme for 277 

historical XBT data for nine independent probe-type groups. Their study confirmed that depth error 278 

and pure temperature bias are temperature-dependent and may be influenced by the data acquisition 279 

and recording system. Moreover, the resulting scheme also considers that some biases affecting the 280 
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XBT-derived temperature profiles vary with manufacturer/probe type and have been shown to be 281 

time dependent, and that depth correction varies with depth (Cheng et al. 2016).  282 

In our dataset, we apply this methodology, which includes corrections for both temperature and depth 283 

values based on calendar year, water temperature, and probe type, to provide bias-corrected XBT 284 

measurements (Cheng et al., 2014). To this aim, we use the Hanawa et al. (1995) coefficients (i.e., 285 

A=6.691, B=0.00225) in the Fall Rate Equation D(t) = At - Bt2 to derive temperature measurement 286 

depths starting from the time elapsed since the probe’s release and, consequently, the bias-corrected 287 

depth and temperature values. A full description of the methodology is available at 288 

https://www.ncei.noaa.gov/products/xbt-corrections (see CH Correction Method); the update tables 289 

of the applied coefficients are available at 290 

http://www.ocean.iap.ac.cn/ftp/images_files/CH14_description/CH14_table1_update2023.txt and 291 

http://www.ocean.iap.ac.cn/ftp/images_files/CH14_description/CH14_table2_update2023.txt. 292 

293 

294 

3. Results and discussion295 

We believe this exceptional temperature dataset provides a valuable reservoir of high-resolution, 296 

independent, and trustworthy information. The dataset assumes notable significance, representing an 297 

extensive temporal series of data collected nearly every austral summer over the last 30 years, within 298 

the same oceanic sector of the SO and along the same monitoring transect (PX36). We exploited this 299 

information to provide 36 vertical sections of the ocean temperature, from the surface to about 800 m 300 

depth, along the New Zealand–Antarctica “chokepoint”. Figures representing the latitudinal sections 301 

of corrected XBT temperatures during each leg are available in the supplementary information 302 

(Figures S1-S36). All the temperature sections presented in Figures 4, 6, and S1-S36, were realized 303 

using ODV software and applying consistent interpolation parameters. The adopted zonal 304 

interpolation is based on a spatial weighting model that incorporates three temperature profiles (a 305 

central reference profile, an upstream profile, and a downstream profile), considering a maximum 306 

influence range of 60 km along the zonal direction and 20 m along depth. 307 

The repeated temperature sections significantly enhance our understanding of ACC fronts and their 308 

evolution over the last three decades. A first application of the dataset is shown in Figure 4 where 309 

XBT observations collected during the PNRA_XVIII expedition are used for the identification of the 310 

main ACC fronts positions: Northern Sub Antarctic Front (NSAF); Southern Sub Antarctic Front 311 

(SSAF); Polar Front (PF); Southern Antarctic Circumpolar Current (sACCf). The criteria used for 312 

identifying the fronts (Table 5) follow Budillon and Rintoul (2003), which compiles several 313 

hydrographic definitions (Botnikov, 1963; Belkin, 1990; Orsi et al., 1995; Rintoul et al., 1997). The 314 
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Southern boundary of the ACC, usually described as the maximum southern extent of vertical 315 

maximum of T>1.5°C at about 200 m (Orsi et al., 1995), is not described in this sector as its position 316 

is coincident with the sACCf position in most of the available temperature sections.  317 

The ACC fronts positions retrieved through XBT data also serve as ground truth for the validation of 318 

those retrieved through satellite altimetry (e.g., Sokolov and Rintoul 2009a, 2009b; Graham et al., 319 

2012; Chapman, 2017), thereby enhancing the identification process of fronts within the SO. This is 320 

highly desirable in regions significantly influenced by topographic steering, such as the area south of 321 

New Zealand, where the presence of the Campbell Plateau strongly affects the ACC path (Figure 5). 322 

323 

324 

325 

326 

Figure 4. a) Map of the position (blue dots) of all XBT launches carried out during the PNRA_XVIII expedition along 327 

the New Zealand–Antarctica “chokepoint” (6-11 January 2003). b) Temperature vertical section from XBT data in a) in 328 

which the vertical black lines represent the XBT casts and the red ones the ACC main fronts positions: Northern Sub 329 

Antarctic Front (NSAF); Southern Sub Antarctic Front (SSAF); Polar Front (PF); Southern Antarctic Circumpolar Front 330 

(SACCF). The black mask represents the bathymetry. Figures are produced through Ocean Data View. 331 

332 
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Table 5. Criteria for front definitions (Adapted from Budillon & Rintoul, 2003) 333 

Front Definition Reference 

Southern Antarctic Circumpolar 

Current Front (sACCf)  

T > 1.8°C along the Tmax at depth > 

500 m, farther north; T < 0°C along the 

Tmin at depth < 150 m, farther south.  

Orsi et al. 1995. 

Polar Front (PF) T < 2°C at 200 m, farther south. Botnikov 1963, Orsi et al. 1995. 

Subantarctic Front (SAF) Maximum temperature gradient in the 

range 3–8°C at 300 m.  

Belkin 1990. 

Northern Sub-Antarctic Front (NSAF) Maximum temperature gradient in the 

range 4–7°C at 300 m.  

Rintoul et al. 1997. 

Southern Sub-Antarctic Front (SSAF) Maximum temperature gradient in the 

range 3–4°C at 300 m.  

Rintoul et al. 1997. 

334 

335 

To point out differences and similarities between ACC fronts positions identified through XBT and 336 

satellite observations, in Figure 5 we present a Sea Surface Height (SSH) map of the study area, 337 

averaged over the period covered by the temperature section in Figure 4 (about 7 days). To identify 338 

the ACC fronts from satellite data, we applied the SSH isolines methodology that associates a specific 339 

value of SSH with each front. For the selection of these values, we relied on previous studies (Sokolov 340 

and Rintoul 2007, 2009a, 2009b) proving that the multiple jets of ACC fronts are consistently aligned 341 

with streamlines identified by nearly constant circumpolar values of SSH contours. 342 

Furthermore, ACC fronts exhibit instabilities that give rise to the generation of eddies. 343 

Eddies, characterized as vortices pervading the ocean, assume a pivotal role, particularly within the 344 

SO, contributing significantly to the transfer of heat, nutrients, and momentum (e.g., Chelton et al. 345 

2011a; Falco and Zambianchi, 2011; Cotroneo et al., 2013; Trani et al., 2014; Rintoul, 2018; Menna 346 

et al., 2020). While altimetry proves valuable in gaining insights into surface eddy dynamics, it cannot 347 

provide information regarding vertical temperature variations within the eddy structure. Through the 348 

temperature sections derived from XBT data, we can discern the presence or absence of an eddy and 349 

get basic observations for the analysis of its heat content.  350 

An example is provided in Figure 6 where we present the latitudinal section of temperatures observed 351 

during the return leg of the 2013-2014 Italian Antarctic expedition (PNRA_XXIX). This section 352 

shows the intrusion of a cold core eddy at about 53°S, next to the Campbell Plateau edge. The eddy 353 

is characterized by a maximum negative temperature anomaly (eddy’s core) of about -4°C compared 354 

to the surrounding water. This negative anomaly results in the formation of a depression in the SSH, 355 

also detectable in satellite imagery. In the SSH map shown in Figure 7, the cold core eddy is identified 356 

as a closed circle of the blue isoline associated with the SSAF.  357 

358 

359 
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360 

Figure 5. Altimetric map of SSH mediated throughout the PNRA_XVIII expedition along the PX36 monitoring line. 361 

Contours of different colours identify the position of the main fronts of the ACC retrieved through SSH: NSAF in cyan; 362 

SSAF in blue; PF in red and sACCf in yellow. White crosses represent the position of the fronts derived from XBT data. 363 

The ship's route is represented by the black line.  364 

365 

Generally, the combined use of in situ observations and satellite data is crucial as it prevents errors 366 

in front positioning and eddy identification. Strong horizontal temperature gradients, often linked to 367 

eddies, could be misinterpreted as ACC fronts. Similarly, this approach allows us to distinguish eddies 368 

from other mesoscale structures, a difficult task when relying only on altimetry. XBT and satellite 369 

information are also complementary in providing valid terms of comparison, at different temporal 370 

and spatial scales (XBT at fine-scale; altimetry at meso- and large-scale), for numerical model 371 

products representing ocean circulation and eddies dynamics (e.g., Chen X. et al., 2024; Chen Z. et 372 

al., 2024).  373 

374 

375 
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376 

377 

Figure 6. a) Map of the position (blue dots) of all XBT launches carried out during the PNRA_XXIX expedition along 378 

the New Zealand–Antarctica “chokepoint” (30 December 2013 – 18 February 2014). b) Temperature vertical section 379 

from XBT data in a) in which the vertical black lines represent the XBT casts and the red box identifies the position of 380 

an ACC’s cold core eddy. The black mask represents the bathymetry. Figures are produced through Ocean Data View. 381 

382 
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383 

Figure 7. Altimetric map of SSH mediated throughout the PNRA_XXIX expedition along the PX36 monitoring line. 384 

Contours of different colours identify the position of the main fronts of the ACC retrieved through SSH: NSAF in cyan; 385 

SSAF in blue; PF in red and sACCf in yellow. White crosses represent the position of the fronts derived from XBT data. 386 

The ship's route is represented by the black line. The black arrow indicates the observed cold core eddy. 387 

388 

4. Data availability389 

390 

391 

392 

393 

394 

395 

396 

397 

398 

399 

400 

401 

402 

403 

The full XBT dataset presented here is publicly accessible as text format files at 

https://doi.org/10.5281/zenodo.14848849. Individual cruise data files are also available 

through the National Oceanic and Atmospheric Administration (NOAA) National Centers for 

Environmental Information (NCEI) unrestricted repositories, as listed in Table 6. NCEI serves as the 

official archive for data, metadata, and products collected and provided by NOAA scientists. 

Additionally, NCEI hosts quality checked data from non-NOAA scientists, which must go through 

a scientific appraisal process before being accepted into the archive. For this reason, our XBT data 

underwent a thorough review and improvement process (see sections 2.2 and 2.3) prior to 

publication, resulting in the version-3 products. Nevertheless, as noted above, the full dataset 

presented here is also available through the Zenodo repository, providing an alternative access 

point in case of difficulties retrieving the single-cruise information from NCEI.  

Each XBT file includes the main variables summarized in Table 7, the relative EMODNet-compliant 

metadata (i.e., about probe type, software, manufacturer, data originator, scientific project, platform, 

uncertainties, QF code), detailed information about the FRE coefficients used for temperature and 

depth bias correction described in section 2.3, and a short description of the dataset. The manufacturer 404 
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FRE coefficients are also provided in the metadata, allowing anyone who wishes to recalculate the 405 

corrections in a different way than using Cheng et al. (2014). 406 

One file is created for each research cruise. The naming convention is xbt_cruise, where cruise is the 407 

identification “cruise name” of the PNRA research expedition, as in Table 1. Please note that the 408 

format and labels of the provided XBT text files are ODV-compliant to facilitate ease of use.  409 

Additionally, a Python code for basic XBT data visualization is included in supplemental material 410 

S37 (such as shown for scatter plots of vertical temperature profiles and latitudinal temperature 411 

sections in Figures S38 and S39). 412 

 413 

Table 6. XBT data repository list 414 

Data set  DOI Reference 

PNRA_X – 1st leg https://doi.org/10.7289/v5rf5s9v Cotroneo et al., 2018a 

PNRA_X – 2nd leg  https://doi.org/10.7289/v53r0r5z  Cotroneo et al., 2018b 

PNRA_XI https://doi.org/10.7289/v5x065b9  Cotroneo et al., 2018c 

PNRA_XII https://doi.org/10.7289/v5kd1w6b  Cotroneo et al., 2018d 

PNRA_XIII https://doi.org/10.7289/v50863mf Cotroneo et al., 2018e 

PNRA_XIV https://doi.org/10.7289/v5mg7mtc  Cotroneo et al., 2018f 

PNRA_XV https://doi.org/10.7289/v56d5r8p  Cotroneo et al., 2018g 

PNRA_XVI https://doi.org/10.7289/v5s75dpg Cotroneo et al., 2018h 

PNRA_XVII https://doi.org/10.7289/v5ng4nzr  Cotroneo et al., 2018i 

PNRA_XVIII https://doi.org/10.7289/v5qz289c  Cotroneo et al., 2018j 

PNRA_XIX https://doi.org/10.7289/v5vq3113  Cotroneo et al., 2018k 

PNRA_XX https://doi.org/10.7289/v5vh5m45  Cotroneo et al., 2018l 

PNRA_XXI https://dx.doi.org/10.25921/hzcp-d813  Cotroneo et al., 2019 

PNRA_XXII https://doi.org/10.25921/c8bm-xh74   Cotroneo et al., 2018m 

PNRA_XXIII https://doi.org/10.25921/q29v-c980  Cotroneo et al., 2018n 

PNRA_XXV https://doi.org/10.7289/v50r9mmm   Cotroneo et al., 2017a 

PNRA_XXVII https://doi.org/10.7289/v54j0cbw  Cotroneo et al., 2017b 

PNRA_XXVIII https://doi.org/10.25921/9YTS-P771  Cotroneo et al., 2018o 

PNRA_XXIX  https://doi.org/10.25921/220j-b370  Cotroneo et al., 2024a 

PNRA_XXX  https://doi.org/10.25921/9ph6-c102  Cotroneo et al., 2024b 

PNRA_XXXI  https://doi.org/10.25921/zf04-ch06  Cotroneo et al., 2024c 

PNRA_XXXII  https://doi.org/10.25921/vvmp-rr55  Cotroneo et al., 2024d 

PNRA_XXXIV  https://doi.org/10.25921/jeee-zf77  Cotroneo et al., 2024e 

PNRA_XXXV  https://doi.org/10.25921/1ysg-dw94  Cotroneo et al., 2024f 

PNRA_XXXVI https://doi.org/10.25921/aeg5-hw87  Cotroneo et al., 2024g 

PNRA_XXXVII https://doi.org/10.25921/3mmd-tj60  Cotroneo et al., 2024h 

PNRA_XXXVIII https://doi.org/10.25921/kte7-d058  Cotroneo et al., 2024i 

PNRA_XXXIX https://doi.org/10.25921/jc13-ek97   Cotroneo et al., 2024l 

 415 
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Table 7. Name and description of the main variables included in the XBT text files. 416 

Name of variable  Unit Description 

Cruise  Cruise name 

Station  Identifier number of XBT deployment 

Type  Instrument type 

Date dd/mm/yyyy Date of XBT deployment 

Time hh:mm Time of XBT deployment 

Latitude [degrees_north] Decimal degrees Latitude of XBT deployment 

Longitude [degrees_east] Decimal degrees Longitude of XBT deployment 

Bot. Depth [m] Meters Maximum depth reached by the XBT probe 

Elapsed Time [s] Seconds Time elapsed since the release of the XBT probe 

Depth 1 [m] Meters 
Depth derived from the elapsed time using the 

Manufacturer Fall Rate Equation Coefficients 

Depth 2 [m] Meters 
Depth derived from the elapsed time using the Hanawa 

et al. (1995) Fall Rate Equation Coefficients 

Depth 3 [m] Meters 
Depth 2 corrected following Cheng et al. (2014) with 

Hanawa et al. (1995) Fall Rate Equation Coefficients 

Temperature 1 [°C] Celsius degrees Temperature measured by the XBT probe 

Temperature 2 [°C] Celsius degrees 

Temperature corrected following Cheng et al. (2014) 

with Hanawa et al. (1995) Fall Rate Equation 

Coefficients 

QF 0 – 4 Quality flags of XBT measurements 

 417 

5. Conclusions 418 

The SO is a key place for atmosphere–ocean physical and biogeochemical interactions at different 419 

spatial and temporal scales (Falco and Zambianchi, 2011; Cerrone et al., 2017a, b; Buongiorno 420 

Nardelli et al., 2017). However, despite their importance, processes in many areas of the SO are still 421 

poorly known due to the scarcity of in situ measurements. This is particularly true for the ACC region 422 

and its fronts, which are characterized by complex dynamics and intense eddy activity (Trani et al., 423 

2011; Cotroneo et al., 2013; Frenger et al., 2015, Menna et al., 2020; Ferola et al., 2023). To fill this 424 

gap, all available measurements provide a significant contribution and should be shared within the 425 

oceanographic community. 426 

To this goal, here we present 36 vertical sections of XBT ocean temperature data collected between 427 

New Zealand and the Ross Sea (PX36 line) during the Austral summers from 1994/1995 to 428 

2022/2023. This dataset provides direct insights into the 0-800 m thermal characteristics of the Pacific 429 

sector of the SO and complements data sourced from observing networks, drifters, ARGO floats and 430 

glider fleets. It is also suitable to be combined with enhanced spatial and temporal scale remotely 431 

sensed observations and numerical simulations. This comprehensive dataset lays a robust foundation 432 

for a nuanced analysis of the key mechanisms governing thermohaline circulation in the SO and for 433 

improving our knowledge of the physical and biogeochemical characteristics of the four-dimensional 434 

ocean. 435 



20 

 

The continuation of this XBT collection over time, in the framework of the Italian PNRA research 436 

expeditions to Antarctica, is particularly important due to the inherent challenges associated with data 437 

acquisition in the SO and promises an increasingly comprehensive and detailed understanding of 438 

thermal variations in this specific maritime region.  439 
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