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Abstract. High-resolution urban climate modeling has faced substantial challenges due to the absence of a globally 

consistent, spatially continuous, and accurate dataset to represent the spatial heterogeneity of urban surfaces and their 

biophysical properties. This deficiency has long obstructed the development of urban-resolving Earth System Models 20 

(ESMs) and ultra-high-resolution urban climate modeling, particularly at large scales. Here, we present a first-of-its-

kind 1km-resolution present-day (circa-2020) global continuous urban surface parameter dataset – U-Surf. Using the 

urban canopy model (UCM) in the Community Earth System Model as a base model for developing dataset 

requirements, U-Surf leverages the latest advances in remote sensing, machine learning, and cloud computing to 

provide the most relevant urban surface biophysical parameters, including radiative, morphological, and thermal 25 

properties, for UCMs at the facet- and canopy-level. Generated using a systematically unified workflow, U-Surf 

ensures internal consistency among key surface property parameters, making it the first globally coherent urban 

canopy parameter dataset. Our high-resolution U-Surf dataset significantly improves the representation of the urban 

land heterogeneity both within and across cities globally. U-Surf provides essential, high-fidelity surface biophysical 

constraints to urban-resolving ESMs, enables detailed city-to-city comparisons across the globe, and supports the next-30 

generation kilometer-resolution Earth system modeling across scales. U-Surf parameters can be easily converted or 

adapted to various types of UCMs, such as those embedded in weather and regional climate models, as well as air 

quality models. The fundamental urban surface constraints provided by U-Surf are also relevant as features for 

machine learning models and can have other broad-scale applications for socioeconomic, public health, and urban 

planning contexts. We expect U-Surf to promote the research frontier on urban systems science, climate-sensitive 35 

urban design, and coupled human-Earth systems in the future. The dataset is publicly available at 

https://doi.org/10.5281/zenodo.14695837 (Cheng et al., 2024). 

https://doi.org/10.5281/zenodo.14695837
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1 Introduction 

Urban areas are the global hotspots of climate hazards (Intergovernmental Panel On Climate Change, 2023; Robinson 

et al., 2021; Tabari, 2020; van der Wiel and Bintanja, 2021; Zhao et al., 2021), exposure (Chen et al., 2023; Li et al., 40 

2019; Yang et al., 2023), and vulnerability (Ajjur and Al-Ghamdi, 2021; Lobo et al., 2023), due to the uniqueness of 

local urban climates (Baklanov et al., 2018; Cao et al., 2016; Chakraborty et al., 2023; Li and Bou-Zeid, 2013; Zhan 

et al., 2023, p.201; Zhao et al., 2014, 2018), concentration of population, infrastructure, and capital assets (Gao and 

Bukovsky, 2023; Masson et al., 2020; Shu et al., 2023), and mixture of diverse communities and socio-ethnic groups 

(Islam and Winkel, 2017; Kim et al., 2021). With an additional 2.5 billion people projected to reside in urban areas 45 

by 2050 (United Nations, 2018), these climate-driven risks are expected to be exacerbated in future warmer climates 

(Intergovernmental Panel On Climate Change, 2014). This inevitable urbanization coupled with climate change will 

expose cities and their residents to greater risks across the world (Feng et al., 2021; Gao and Bukovsky, 2023; Scheuer 

et al., 2017; Sjöstrand, 2022), but also presents a historic and time-sensitive opportunity to mitigate and adapt to the 

negative climate impacts (Krayenhoff et al., 2018; Zhao, 2018; Zhao et al., 2017). To address this grand challenge, it 50 

is urgent to better understand urbanization and its complex two-way interactions with climate across spatiotemporal 

scales. Achieving this goal, however, requires advanced data and tools that realistically resolve urban land in models 

such as mesoscale weather models, Earth system models (ESMs), and Earth System Digital Twins (Li et al., 2023a), 

both to better understand cities and their impacts and for planning effective climate adaptation and mitigation strategies 

(Krayenhoff et al., 2021). 55 

 

In light of the increasingly recognized importance of urban climatic implications, substantial efforts on representing 

urban landscapes in local-to-regional climate models have been reported in the past decade, including improved urban-

scale process representations (Chen et al., 2011; Conigliaro et al., 2021; Jongen et al., 2024; Langendijk et al., 2024; 

Lipson et al., 2024) and surface input datasets (Ching et al., 2018; He et al., 2023; Qi et al., 2024; Sun et al., 2021). 60 

Urban representation in global-scale models, however, is significantly lagging. This is because an urban canopy model 

(UCM) is largely missing in most state-of-the-art ESMs or global climate models (Hertwig et al., 2021; Zhao et al., 

2021; Zheng et al., 2021). This omission will become an even more critical issue in the future, as next-generation 

ESMs are expected to run at kilometric scales (Schär et al., 2020, 2021; Wang et al., 2022; Yuan et al., 2023), at which 

resolving urban areas, their unique biophysical properties, changes over time, and interactions with broader-scale 65 

systems will inevitably be required (Chakraborty and Qian, 2024; Grimmond et al., 2011; Sharma et al., 2021). One 

primary roadblock that has prevented the development of “urban-resolving” ESMs and accurate global urban climate 

modeling for decades is the lack of globally consistent estimates of urban surface properties, which are critical model 

inputs, especially at fine resolutions.  

 70 

Currently, there is no global and spatially continuous urban dataset that can provide all relevant biophysical parameters 

for UCMs that can be used in state-of-the-art ESMs across scales (Masson et al., 2020). Unlike local- and regional-

scale studies using mesoscale UCMs, for which the urban surface parameters usually rely on either simple look-up 

tables or user-supplied locally-defined physical description of the study area, common UCMs embedded in ESMs 
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need a complete, fine-resolution, globally and internally consistent, and spatially explicit urban surface parameters. 75 

These parameters are required at the facet and canopy level, and therefore, are dramatically challenging to produce at 

the global scale. 

 

An urban surface data created by Jackson et al., 2010 (hereafter referred as J2010) is, to our knowledge, the only 

available global dataset to date that can provide the required UCM parameters for Earth system modeling in a globally 80 

consistent manner. It was developed by synthesizing population density estimates, satellite data, existing literature, 

building codes, and municipal documentation. This dataset and its updated version (Oleson and Feddema, 2020) serve 

as the default urban surface property input for the Community Earth System Model version 2 (CESM2) (Danabasoglu 

et al., 2020) and Energy Exascale Earth System Model (E3SM) (Golaz et al., 2022). Compiled at a time when fine-

resolution geospatial data were very scarce, J2010 is coarse-grained, spatially discontinuous, and somewhat outdated 85 

(valid for circa-2000), and hence poorly constrains the spatial heterogeneity of urban properties within cities and 

across the world. J2010 clusters the global urban areas into 33 distinct regions of similar climates, socio-economic 

characteristics, and architectural practices (Figure S1), with properties defined within each region for up to four urban 

density classes: low density (LD), medium density (MD), high density (HD), and tall building district (TBD). These 

density classes are classified based on morphological features (including building height, pervious areal fraction, 90 

canyon height-to-width ratio, and typical building type) and population density. The dataset then prescribes uniform 

surface properties to each density type within a region. These simplistic, coarse-grained, and region-based urban 

property constraints impede its application in resolving the true heterogeneity of cities and their interactions with 

background climate, especially relevant for high-resolution urban climate modeling. 

 95 

Recent development of the Local Climate Zone (LCZ) typology framework (Stewart and Oke, 2012) provides another 

potential means to supply spatially explicit urban parameters to regional and global models. LCZ standardizes a 

common descriptive methodology to classify land surfaces into 10 built and 7 natural land cover types, each associated 

with some prescribed ranges of values for a subset of (mostly morphological) parameters. Compared to the widely 

used conventional land cover maps, LCZs are a step forward for representing the spatial heterogeneity of urban 100 

landscapes (Demuzere et al., 2022a). Many high-resolution regional (Demuzere et al., 2021; Huang et al., 2021; Qi et 

al., 2024) and global (Demuzere et al., 2022a) LCZ raster maps have been produced in recent years, greatly advancing 

the description of urban areas at large scales in a “universal” way. However, a critical gap that remains is how to 

determine the urban canopy parameters based on the LCZ raster maps. A common approach currently relies on 

referring to the predefined value ranges from the original LCZ typology (Demuzere et al., 2022b; Stewart and Oke, 105 

2012; Sun et al., 2021), which essentially remains a look-up-table method. Similar to J2010, the inherent assumption 

of uniformity within each zone, i.e. cities located in different countries and diverse climate regimes will be assigned 

the same set of parameters if classified as one LCZ type, oversimplifies the complexity and heterogeneity of urban 

surfaces. In addition, LCZs, by their very nature, largely describe typologies of urban morphology, but other 

characteristics such as radiative properties and construction materials are less well defined and subject to large 110 

uncertainties (Hidalgo et al., 2019; Masson et al., 2020). More importantly, these properties can be frequently 
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decoupled from that morphology, meaning the complete set of parameters used as model inputs are not internally 

consistent.  

 

To address this long-standing urban representation challenge at large scales and to facilitate next-generation kilometer-115 

scale (k-scale) urban-resolving Earth system modeling, we develop a first-of-its-kind global high-resolution (1 km) 

urban surface dataset, namely U-Surf, to support urban climate modeling across scales. The development of U-Surf is 

enabled by latest advances in high-resolution remote sensing measurements from recent satellite missions, new 

algorithms to derive satellite-derived products, building footprint estimates from global scale image segmentation 

methods, and advancements in hybrid cloud supercomputing. We use the urban scheme in CESM2’s land model 120 

(Community Land Model or CLM) as the base model to develop the dataset, as it is one of the very few state-of-the-

art ESMs with an urban canopy representation. Nevertheless, the derived parameters in U-Surf can be easily adapted 

to other mesoscale weather or global climate models such as The Weather Research and Forecasting Model (WRF) 

and E3SM, the latter using a UCM identical to that in CLM version 4.5. The U-Surf data does not rely on any coarse-

graining (clustering), but instead estimates the facet- and canyon-level surface properties in a spatially continuous 125 

manner at 1 km resolution. Therefore, the final U-Surf product provides a global, internally consistent and 

comprehensive set of urban surface input for UCMs, captures the fine-scale spatial heterogeneity both within and 

across cities, and markedly advances the potential for urban representation in weather and climate models across scales. 

In addition to its applications in climate modeling, U-Surf could be used directly as input features for machine learning 

models, and can also be leveraged for other non-climatic modeling exercises, analyses, or applications in the energy, 130 

geography, and socioeconomic fields. 

 

This paper is organized as follows. Section 2 details the data sources and methodology employed in developing the 

dataset. Section 3 presents the spatial distributions of the newly created 1km-resolution dataset, highlighting selected 

parameters across various scales. Sections 4 and 5 discuss the broad implications of the dataset, the current limitations, 135 

and potential future work. Section 6 provides information and links on accessing the dataset in different formats and 

associated Google Earth Engine (GEE) web application, while section 7 provides concluding remarks. 

2 Data and methods 

2.1 Urban representation in CESM2 

The current version of the U-Surf dataset is based on the urban parameterization scheme embedded in the CESM2 for 140 

two reasons. First, CESM2 is one of the very few state-of-the-art ESMs with a physically based UCM – the 

Community Land Model Urban (CLMU) (Lawrence et al., 2019; Oleson and Feddema, 2020). CLMU has been 

evaluated against site observations and satellite measurements across the world with consistently reasonable 

agreement (Demuzere et al., 2008, 2013, 2014, 2017; Fitria et al., 2019; Li et al., 2024a, b; Lin et al., 2016; Oleson et 

al., 2008a, b; Zhang et al., 2023a; Zhao et al., 2014, 2021) and has also demonstrated high credibility among various 145 

UCMs in the recent multi-model comparison project Urban-PLUMBER (Lipson et al., 2024). Second, the urban 
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canopy concept that CLMU uses is widely adopted in various UCMs embedded in weather models and RCMs. 

Therefore, a dataset developed based on this conceptual representation can be easily extended to other UCMs or 

climate models.  

 150 

The urban canopy representation used in CLMU and many other UCMs is called an “urban canyon” schema where 

the urban landscape at a given location is conceptualized as an infinite “urban canyon” (Figure 1). This canyon 

hypothesis assumes a geometry of an infinitely long street bordered by two building walls with identical height. An 

“urban canyon” consists of five facets: building roof, impervious (e.g., roads, parking lots, sidewalks) and pervious 

(e.g., lawns, street trees, parks) canyon floors, and sunlit and sun-shaded walls (Oleson et al., 2008a). This conceptual 155 

representation reduces the considerable complexity of urban surfaces into a single urban canyon, and yet provides an 

essential base to represent key urban biogeophysical processes effectively. The UCMs using this approach therefore 

require sets of properties at both facet- and canopy-level to represent urban landscapes and model their interactions 

with the lower atmosphere in climate/weather simulations. These properties can be generally grouped into three 

categories: morphological (e.g., canyon height-to-street width ratio, roof fraction, average building height, and 160 

pervious canyon floor fraction), radiative (e.g., facet-level albedo and emissivity), and thermal (e.g., heat capacity and 

thermal conductivity) (Figure 1 and Table 1). These surface properties characterize the “urban areas” and are critical 

for constraining their surface energy budget, and thus the near-surface microclimate, in weather and climate models. 

More details about the CLMU parameterization scheme and its evolution over the years can be found in Jackson et 

al., (2010), Lawrence et al., (2019), Li et al., (2024a), Oleson et al., (2008a, b), Oleson and Feddema, (2020). 165 
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Figure 1. Conceptual schematic of an urban canyon to represent urban landscape in CLMU (adapted from Oleson et al., 
2008a). Properties are color-coded: blue for radiative, orange for thermal and green for morphological. Note that roof and wall 
thickness (despite being related to urban morphology) are considered thermal properties, as they are primarily used as weighting 170 
factors to calculate conduction fluxes into and out of canyon surfaces in CLMU (Lawrance et al., 2018; Oleson et al., 2010).  

 

Table 1. Data sources and retrieval methods for each urban parameter in U-Surf and the CLMU dataset.  

 
 175 

 

 

Table 1: Method comparison

Category Urban Parameters U-Surf CLMU

R
ad

ia
tiv

e

Roof Emissivity • Source: 100m ASTER v3 emissivity product (Hulley et 
al., 2015) and broadband emissivity algorithm (Malakar 
et al., 2018; Ogawa et al., 2008)

• Time span: static, representing 2000-2008
• Spatial resolution: 1km

• Source: local building codes, municipal 
documentation, literature, satellite 
imageries (Jackson et al., 2010; Oleson 
and Feddema, 2020)

• Time span: 1966-2007
• Spatial resolution: Regional-level, density-

class-specific

Impervious Canyon Floor Emissivity
Pervious Canyon Floor Emissivity
Wall Emissivity*
Roof Albedo • Source: 10m Sentinel2 albedo product (Lin et al., 2022) 

and narrow-to-broadband algorithm (Bonafoni & 
Sekertekin, 2020)

• Time span: 2019-2022
• Spatial resolution: 1km

Impervious Canyon Floor Albedo
Pervious Canyon Floor Albedo
Wall Albedo*

M
or

ph
ol

og
ic

al

Building Height

• Source: 3D-GloBFP (Che et al., 2024) and 3D building 
structure (Li et al., 2022)

• Time span: 2014-2023 and circa 2015
• Spatial resolution: 1km

• Source: local building codes, municipal 
documentation, literature, satellite 
imageries (Jackson et al., 2010; Oleson 
and Feddema, 2020)

• Time span: 2000-2007
• Spatial resolution: Regional-level, density-

class-specific

Canyon Height-to-width Ratio
• Source: infinite canyon street model (Masson et al., 2020)
• Time span: 2014-2021
• Spatial resolution: 1km

Roof Fraction

• Source: Microsoft global building footprints (Microsoft, 
2022), East Asia building footprints (Shi et al., 2024)

• Time span: 2014-2021
• Spatial resolution: 1km

Pervious Canyon Floor Fraction
• Source: 10m ESA Worldcover v200 (Zanaga et al., 2022)
• Time span: 2021-2022
• Spatial resolution: 1km

Urban Percentage

• Source: building footprints (Microsoft, 2022, Shi et al., 
2024) and ESA (Zanaga et al., 2022)

• Time span: 2014-2021
• Spatial resolution: 1km

• Source: LandScan global population 
database (Bright et al., 2005)

• Time span: 2004
• Spatial resolution: 1km

T
he

rm
al

Air Conditioning Penetration Rate
• Source: global AC penetration rate and constant 

maximum interior building temperature of 300K (Li et al., 
2024a)

• Time span: present-day, loosely defined as 2010-2020
• Spatial resolution: national and sub-national level

AC penetration rate is not explicitly modeled 
in CLMU as of CLM5 (Oleson and 
Feddema, 2020), maximum interior building 
temperature is varied by regions and density 
classes.

Maximum Interior Building Temperature

Number of Impervious Canyon Layers

• Source: local building codes, municipal documentation, literature, satellite imageries (Jackson et al., 
2010; Oleson and Feddema, 2020)

• Time span: 1966-2007
• Resolution: Regional-level, density-class-specific**

Roof Thickness
Wall Thickness
Minimum Interior Building Temperature
Roof Thermal Conductivity
Impervious Canyon Thermal Conductivity
Wall Thermal Conductivity
Roof Volumetric Heat Capacity
Impervious Canyon Volumetric Heat Capacity
Wall Volumetric Heat Capacity

*Wall emissivity and albedo are derived leveraging the remote sensing data and CESM2 default J2010 radiative data which was based on building materials.
**Although thermal properties in U-Surf are provided at a 1 km resolution, the values are derived from regional-level and density-class-specific propertiesfrom Oleson and Feddema (2020).
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2.2 Development of the U-Surf urban parameters 

 
Figure 2. Overview of data synthesis workflow, including individual data sources and examples of final data product layers. 180 
The satellite images are from © Google Earth Engine. 

 

The new urban surface parameter dataset, U-Surf, describes the global urban areas in a spatially continuous manner, 

providing all the required parameters in three categories (radiative, morphological, and thermal) that are compatible 

with the urban canyon representation in CLMU and potentially also for other UCMs. We developed a multi-step 185 

federated workflow that leverages four key categories of data: segmented land use/land cover map, 3D building 

footprints, high-resolution satellite observations, and thermal properties of construction materials. Utilizing these, we 

first generated segmented urban imagery, which distinguishes among different facets. Then we integrated this imagery 

with satellite observations to derive facet-level radiative properties and fractional parameters. From there we 

synthesized multiple data sources to construct the 3D urban canyon morphological attributes. Finally, we incorporated 190 

existing databases to produce thermal properties (Figure 2). 

2.2.1 Radiative parameters 

To derive facet-level radiative properties, we first needed to identify individual facets such as building roofs, 

impervious and pervious ground within each 1 km grid. Here in this study, we use the open-source vector-based 

Microsoft Global Building Footprints dataset (hereafter referred to as MS-BFP; Microsoft, 2022) in conjunction with 195 

the East-Asia building footprints (hereafter referred to as EA-BFP) from Shi et al., (2024) and Che et al., (2024) to 

identify building roofs. The additional East-Asia dataset is necessary due to the insufficient building vectors in the 

current version of MS-BFP for that region. We then combined this data with the European Space Agency (ESA) 

WorldCover (Zanaga et al., 2022), a 10 m resolution global land cover product based on Sentinel-1 and 2 data, to 
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characterize impervious and pervious canyon floors. We choose the ESA WorldCover instead of other available global 200 

10 m land cover products since its ‘built-up’ class is definitionally consistent with the impervious surfaces in CLMU 

(Chakraborty et al., 2024). Accordingly, the impervious canyon floor was estimated by subtracting the roof pixels 

(derived from the MS-BFP and EA-BFP vectors) from areas classified as “built-up” class; whereas pervious surfaces 

are estimated by aggregating the “tree cover”, “shrubland”, “grassland”, and “bare or sparsely vegetated” areas 

identified in the ESA WorldCover. This process results in a segmented global urban facet image that serves as the 205 

foundation for our subsequent derivation of facet- and canopy-level radiative and morphological parameters. 

 

This facet-segmented image was then applied to the Advanced Spaceborne Thermal Emission and Reflection (ASTER) 

Global Emissivity Dataset 100 m V003 product (hereafter referred as ASTER GEDv3; Hulley et al., 2015) and the 

Sentinel-2 land surface albedo data (Lin et al., 2022) to extract the emissivity and albedo of building roof, and 210 

impervious and pervious ground. The static emissivity imagery is composited from clear-sky (cloud free) pixels for 

all available ASTER data from 2000 to 2008 (Hulley et al., 2015) to represent the emissivity climatology over this 

period. We use a linear spectral-to-broadband algorithm (Malakar et al., 2018) to estimate the broadband emissivity 

from ASTER GEDv3 bands (Eq. 1): 

                                 𝜀! = 0.128 + 0.014𝜀"#$ + 0.145𝜀"## + 0.241𝜀"#% + 0.467𝜀"#& + 0.004𝜀"#'                                       (1)           215 

where 𝜀! is the broadband emissivity, 𝜀"#$ to 𝜀"#' denote the ASTER mean emissivity of bands 10 to 14, respectively, 

which are the five thermal infrared bands with 90 m resolution. 

 

Note that the 100 m resolution of ASTER GEDv3 could be too coarse for certain small individual facets (e.g., small 

roof tops, narrow roads between buildings) and thus a potential source of uncertainty. However, given the relatively 220 

narrow range of emissivity values (i.e., near blackbody) of typical materials and natural surfaces (Oke et al., 2017), 

this uncertainty is likely small.  

 

For albedo, we used a 10 m land surface blue-sky albedo product retrieved from Sentinel-2 which covers nearly 2,300 

major cities across the globe (Lin et al., 2022). For the rest of the global urban areas, we applied the narrow-to-225 

broadband conversion method (Bonafoni and Sekertekin, 2020) to estimate the 10m-resolution albedo based on 

Sentinel-2 surface reflectance (Eq. 2). Both the blue-sky albedo product and the narrow-to-broadband calculated 

albedo are derived using the Sentinel-2 imageries composited from 2019 to 2021. The blue-sky albedo product only 

includes cloud free images. For the narrow-to-broadband algorithm, we use the Cloud Score+ (CS+) dataset 

(Pasquarella et al., 2023) to mask out the cloud-contaminated pixels, where pixels with a CS+ quality assessment score 230 

below 0.8 were excluded. 

                          𝛼 = 0.2266𝜌(% + 0.1236𝜌(& + 0.1573𝜌(' + 0.3417𝜌() + 0.1170𝜌(## + 0.0338𝜌(#%                (2) 
where 𝛼  is the broadband surface albedo, 𝜌(%  to 𝜌(#%  represent the surface reflectance for bands B2 to B12 of 

Sentinel-2 Multispectral Instrument (MSI) respectively. The 10 m resolution Sentinel-2 albedo data provides the fine 

granularity to differentiate between roof, impervious, and pervious canyon floor. 235 
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The derived facet-level emissivity and albedo were then aggregated to the 1km grids using an area-weighted approach: 

                                                                             𝜀*#+, =
∑ .!

" ⋅0"
#$$%&&

"'$
∑ .!

"&&
"'$

                                                                           (3) 

                                                                           	𝛼*#+, =
∑ .!

" ⋅1"
#$%&&&&

"'$
∑ .!

"&&&&
"'$

                                                                          (4) 

where 𝜀*#+,  and 	𝛼*#+,  is 1 km emissivity and albedo, respectively, for a certain facet (roof/impervious canyon 240 

floor/pervious canyon floor), 𝑤*2  is the area fractions of a certain facet within each 100m or 10m grid cell derived from 

the 10m segmented imagery. The subscript 𝑓 stands for each individual facet. For example, when calculating roof 

emissivity and albedo, 𝑤*2  is the roof fraction within each 100m and 10m grid cell, respectively. 

 

Because satellites mostly sample roofs (canopy tops) and canyon floors, wall emissivity and albedo can hardly be 245 

measured from passive satellite remote sensing. To address this issue, we leveraged the CLMU radiative data which 

was based on building materials. Specifically, for wall emissivity, we assume it shares the same/similar emissivity as 

its building roof, since the wall surfaces within the same building could either have analogous material compositions 

in interior layers with roofs or not deviate much in terms of emissivity value given the nature of its narrow range. This 

will be further discussed in Results and Discussion (Sect. 3.1 and 3.2). For wall albedo, we assume that the ratio of 250 

material-based roof albedo to wall albedo in J2010 approximately holds for our data. We then applied this roof-to-

wall albedo ratio calculated from J2010 to our new satellite-based roof albedo to derive the wall albedo at each 1 km 

grid. 

2.2.2 Morphological parameters 

The morphological parameters in the “urban canyon” conceptual model (particularly the fractional parameters) are 255 

normally defined with respect to its corresponding “urban” landscape. In U-Surf, we combined the Global Urban 

Boundaries (GUB, Li et al., 2020) and the ESA WorldCover data to identify and sufficiently preserve “urban” or 

“built-up” landscapes as much as possible. Developed based on the Global Artificial Impervious Area data (Gong et 

al., 2020), the GUB dataset provides a collection of physical boundaries of global urban extents. We first overlaid the 

GUB polygons with the ESA WorldCover map to identify all “urban” surfaces recognized by GUB. For the grids 260 

falling outside of the urban boundaries, we applied a 10×10 (i.e., 100m × 100m) window on the ESA WorldCover 

data and calculated its “built-up” fraction (i.e., the sum of roof and impervious canyon floor fraction) within the 

window. If the “built-up” fraction is larger than 10%, we define the window as “urban”. We chose a threshold of 10%, 

which is at the lower end of the typical thresholds used in the literature (10% - 30%), to preserve as many “urban” 

grids as possible. The urban fraction was then calculated based on the proportional areas of roof, impervious and 265 

pervious canyon floor, following the GUB-defined thresholds. Although this will likely result in an inclusion of some 

“sub-urban” landscapes in the U-Surf raw data, users have the flexibility to apply stricter criteria (larger built-up 

thresholds) to extract “urban” grids according to their own definition. This approach is designed to maximize the 

retention of grids, ensuring U-Surf’s adaptability to various user-defined urban extents (Figure 2; e.g., Gao and O’Neill, 

2020; Li et al., 2021; Zhao et al., 2022; Zhou et al., 2015). The roof fraction is then defined as the ratio between roof 270 
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area and urban horizontal surface area, where roof area is calculated from the building footprints polygons. Consistent 

with the definition in CLMU, the pervious fraction is defined as the ratio of pervious canyon floor to the sum of 

impervious and pervious canyon floors.  

 

The building height (H) was obtained primarily from the 3D-GloBFP data (Che et al., 2024) and supplemented by 275 

another building height dataset by Li et al., (2022) to maximize the spatial coverage. The 3D-GloBFP is a global 

building height data at a building footprint scale recently developed by leveraging a combination of Synthetic Aperture 

Radar (SAR), optical imagery, terrain, population, nighttime light data primarily covering 2014 to 2023, and XGBoost 

machine learning approach. We aggregated the vector-level height to 1 km grids using area-weighted averages. The 

second global building height data (Li et al., 2022) is a raster map at 1 km spatial resolution that also utilizes radar 280 

and optical satellite imagery, along with additional geographical information circa 2015. To comply with the CLMU 

requirement, we calculated another building height-related parameter: the height at which wind speed in urban canyons 

is computed. This parameter is simply set at half the building height in the current version of CLMU, providing a 

standardized reference point for wind calculations in urban environments. 

 285 

Canyon height-to-width ratio (𝐻/𝑊; i.e., the ratio of building height to canyon width) is another critical morphological 

parameter that is widely used in most UCMs including CLMU. It is a proxy parameter that implies the structural 

layout and compactness of the built area. Unlike other parameters that can be directly measured by satellite data, 𝐻/𝑊 

needs to be derived on the basis of model geometry and assumptions. Consistent with the single-layer urban canyon 

geometry in UCMs, the 𝐻/𝑊  in this study is estimated using the 2D infinite street canyon model with two 290 

recommended primary parameters, building fraction (or plan area density; 𝜆3) and wall surface density (𝜆.) (Masson 

et al., 2020): 

                                                                                   𝐻/𝑊 = 4(
%(#64))

                                                                            (5) 

where 𝜆. is calculated as the ratio between the surface wall area that is in direct contact with the atmosphere (i.e., 

external wall surfaces, 𝐴.) and the horizontal urban surfaces, as represented in the building footprints (Microsoft, 295 

2022; Che et al., 2024; Shi et al., 2024); and 𝜆3 is building fraction (i.e., roof fraction) as described above. The external 

wall surfaces area is estimated by   

                                                                                    𝐴. = 𝑁 ⋅ 𝑃! ⋅ 𝐻!                                                                        (6) 

where 𝑁, 𝑃! and 𝐻! are the number of buildings, the average perimeter of buildings, and the height of buildings within 

each 1km grid, respectively.   300 

2.2.3 Thermal parameters 

Requirements of thermal parameters are relatively diverse compared to radiative and morphological parameters among 

various UCMs, depending not only on the UCM’s parameterization itself but also on whether and what type of a 

building energy model is in places (Reinhart and Cerezo Davila, 2016; Sezer et al., 2023). The thermal parameters 

required in CLMU include volumetric heat capacity and thermal conductivity of roofs, impervious canyon floors and 305 
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walls, thickness of roofs and walls, minimum/maximum building interior temperature, as well as the penetration rate 

of air conditioning (AC). These parameters are exceptionally challenging to acquire on a large scale, as they cannot 

be detected by satellite remote sensing. The most feasible way to estimate these parameters by far is still from 

information about dominant construction materials combined with local surveys and building code, which is largely 

the approach used in J2010 data.  310 

 

However, because of the coarse resolution of previous versions of CLMU, the capability of the J2010 thermal 

parameters data has not yet been taken full advantage of. Here we adapt the thermal parameters from J2010 raw data 

to U-Surf, aiming to better leverage its material-based estimates. J2010 compiled a comprehensive look-up table based 

on the thermal properties of 49 types of construction materials from imagery, construction data and documentations 315 

by country (Jackson et al., 2010). This table includes thickness, thermal conductivity and volumetric heat capacity of 

up to 10 layers for common types of roofs, walls, roads (layers with identical materials are allowed) (Oleson and 

Feddema, 2020). As these thermal parameters are provided in a look-up table instead of a geospatially explicit format, 

we need to map the table values to each 1 km grid in U-Surf. In order to do this, we classified 1km U-Surf urban grids 

into four nominal density classes: TBD (0.016% of the pixels), HD (3.83%), MD (41.98%), LD (54.17 %) (Figure S2) 320 

based on the percentiles of canyon height-to-width ratio defined in J2010. We then applied the corresponding thermal 

parameters from the lookup table to each class to ensure it covers all possible materials used in 33 regions (Figures 

S18-S25). Although this is likely the most feasible approach for providing an ESM-compatible global building thermal 

property dataset at present, we acknowledge its limitation of relying somewhat on coarse-grained regional and density-

class values. Once more detailed, spatially explicit global datasets – such as those on building materials or thermal 325 

properties – become available, we can readily incorporate their thermal parameters into future releases of U-Surf. 

 

The AC adoption rate (𝑃𝐴𝐶) is a new thermal parameter added to the latest version of CLMU/CESM because of the 

introduction of a new explicit-AC-adoption scheme in the building energy model of CLMU (Li et al., 2024a). Along 

with this new scheme, Li et al., (2024a) also created a present-day, global, survey-based, and spatially explicit AC 330 

adoption rate dataset at country and sub-country level. The AC adoption rate data are created by leveraging U.S. EIA 

data, literature reports, national surveys, government documentation, the AC units per household data from the 

International Energy Agency (IEA). To comply with this energy scheme, the maximum building interior temperature 

is set to a constant value of 300K globally. More details on this new 𝑃𝐴𝐶 data are discussed in Li et al., (2024a). We 

incorporated this 𝑃𝐴𝐶 dataset into our new U-Surf dataset by producing the density-class-weighted averages at 1 km 335 

resolution. 

 

All the source data, estimation and/or processing methods, and the comparison with CLMU urban surface data are 

summarized in Table 1.  
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2.3 Masking, gap filling and quality control 340 

After estimating all the required parameters as described above, we took several additional steps to ensure the accuracy, 

coherence, and transparency of our U-Surf data product, including masking, gap filling, and quality control. First, we 

only retain the grids containing all three facets – roofs, impervious and pervious canyon floors in U-Surf, because a 

complete “urban canyon” can only be formed when all the three facets are present. This constraint helps make U-Surf 

more consistent with the conceptual definition of physical urban land in an UCM and is an improvement over the 345 

J2010 dataset, which used urban density classes from urban form and population estimates (LandScan), leading to 

large over- and under-estimations of physical urbanization depending on region (Chakraborty et al., 2024). Second, 

we masked out the grids with extremely high canyon height-to-width ratios (>12) yet low building heights (<40 m). 

These grids are actually very sparsely built suburban or rural landscapes instead of densely built areas. 

 350 

The last step is to gap-fill the missing values caused by synthesizing multiple datasets with different spatial coverage. 

For example, the emissivity product from ASTER GEDv3 has missing pixels in certain regions due to cloud coverage. 

These missing values were gap-filled using a simple approach. We combined two classification data: the Koppen 

climate zones (Beck et al., 2018) and the 33 urban regions defined in J2010, both at 1 km-resolution. The average 

parameter values for each combined class were then used to fill the missing values of the corresponding parameters. 355 

Note that only a small proportion of grids needs to be gap-filled, accounting for less than 3.5% of the total among all 

parameters. To keep the aforementioned data source, processing, and gap-filling information accessible and to make 

it easier for users to track changes in future version releases, each parameter comes with an additional quality control 

(QC) band using a 4-digit code (Table 2). The first and second digits differentiate algorithms and single/multi source 

data, respectively, while the last two digits indicate whether the parameter was directly derived or gap filled. These 360 

QC codes are consistent across the entire dataset and will be updated accordingly in later versions.  

 
Table 2. Quality control flags for U-Surf dataset. Note that percentages in the parentheses represent the percentage of grid cells 
with the corresponding QC flag. 

 365 

Category Radiative Morphological

Variable

Emissivity Albedo Fraction
Building 

height

Canyon 
height-to-

width ratioRoof
Impervious 

canyon 
floor

Pervious 
canyon 

floor
Wall Roof

Impervious 
canyon 

floor

Pervious 
canyon 

floor
Wall Roof

Pervious 
canyon 

floor

Urban 
percentage

1st digit 
(Algorithm) 1 1 1 2 1 1 1 2 1 1 1 3 2

1: Processing based on observation products, 2: Processing based on model/assumptions, 3: Regridding of existed products w/o further change

2nd digit 
(Source) 0 0 0 0 1 1 1 1 0 0 0 1 1

0: Single source, 1: Multiple source

3rd digit 
(Gapfill) 00, 99 00, 99 00, 99 00, 99 00, 99 00, 99 00, 99 00, 99 00 00 00 00, 99 00, 99

00: Direct derivation, 99: Gapfilled values

QC_flag

1000 
(98.34%)*,

1099 
(1.66%)*

1000 
(98.26%),

1099 
(1.74%)

1000 
(98.56%),

1099 
(1.44%)

2000 
(98.34%),

2099 
(1.66%)

1100 
(98.22%),

1199 
(1.78%)

1100 
(98.54%),

1199 
(1.46%)

1100 
(98.45%),

1199 
(1.55%)

2100 
(98.21%),

2199 
(1.79%)

1000 
(100.00%)

1000 
(100.00%)

1000 
(100.00%)

3100 
(96.56%),

3199 
(3.44%)

2100 
(96.56%),

2199 
(3.44%)

* percentages in parentheses represent the percentage of grid cells with the corresponding QC flag.
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2.4 Dataset validation 

Validating urban surface parameters on the global scale is extremely challenging primarily due to the lack of globally 

consistent measurement networks. This challenge is exacerbated by the scarcity of long-term urban observational sites, 

especially in diverse urban environments. The inherent variability within urban areas further complicates validation 

efforts, as data from one site may not represent the broader urban landscape. U-Surf is composed of extraction of 370 

satellite measurement, satellite-derived products (i.e., land cover data and building footprints), and our own derived 

parameters. The satellite measurements and derived products have already been validated and quality-controlled by 

their development teams, as summarized in Table 3. U-Surf parameters derived based on these input data sources are 

therefore subject to their inherent uncertainties and uncertainty propagation during data synthesis and processing. To 

systematically evaluate the accuracy and uncertainty of U-Surf parameters, we first conducted a thematic validation 375 

on the derived morphological parameters at 1 km resolution against the 3D World Settlement Footprint (WSF-3D, 

Esch et al., 2022) observational site data and Urban-PLUMBER site metadata. We then further employed Monte Carlo 

simulations to quantify the final uncertainties of U-Surf parameters arising from input data errors/uncertainties and 

their propagation (see Sect. 3.4 for detailed discussion). 

3 Results and discussion 380 

3.1 Global distribution of 1km urban surface property parameters 

U-Surf demonstrates significant improvements over the default CLMU parameters. As U-Surf directly provides 

spatially continuous urban surface parameters without relying on any density class or land use classification, here just 

for the ease of comparison and illustrative purpose, we separated raw U-Surf pixels into the four urban density classes 

(TBD, HD, MD, and LD) following their locations defined by J2010 and plot the distributions of the urban surface 385 

parameters in both U-Surf and J2010 data at these locations defined in J2010 (Figure 3). The location data defined by 

J2010/OF2020 at 1 km resolution can be accessed at https://doi.org/10.6084/m9.figshare.28169324.v1. The overall 

distribution of U-Surf raw data is also shown in the figure. As most of the thermal properties in U-Surf are adapted 

from J2010, the discussion here will be mainly focused on radiative and morphological parameters and the comparison 

of thermal properties can be found in Figure S3.  390 

 

Retrieved from direct remote sensing measurements, the radiative properties exhibit physically more reasonable 

ranges compared to J2010 data. As described above, urban surface properties in J2010 were estimated on the basis of 

building materials sampled in a predefined region and then generalized to the entire region. This clearly leads to 

unreasonable values, such as abnormally low emissivity and high albedo, across entire regions for certain countries. 395 

The former issue is not only true for CLMU, but also for urban emissivity constraints in regional models like WRF 

(Chakraborty et al., 2021). For instance, the minimum roof emissivity in J2010 is as low as 0.04 in regions like 

Mongolia, Kazakhstan, France and Germany (Figure 3, Figure S5) and the roof albedo can be as high as 0.61 for Chili, 

Argentina, Mongolia and Kazakhstan (Figure 3, Figure S9). These values were derived from specific low-emissivity 

and high-albedo materials (e.g. zinc/galvanized steel coating), which might be possible for individual buildings, but 400 
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are highly unlikely for all urban areas in a large region (Chakraborty et al., 2021). Broadcasting to an entire region 

from sampled material estimates results in an oversimplified representation of urban surfaces. In contrast, the 

“effective” emissivity retrieved from ASTER GEDv3 (Hulley et al., 2015) in U-Surf is generally higher and more 

narrowly concentrated, typically between 0.95 and 1.0 across urban facets, with exceptions in a few specific areas. 

This pattern also aligns with urban canyon characteristics, where the effective emissivity of an urban canyon is slightly 405 

higher than the weighted-average values from all individual components due to the “canyon trapping” effects (i.e., 

increased absorption from reflections between facets) (Harman et al., 2004; Oke et al., 2017). Likewise, we can 

observe a narrower spread of roof albedo values concentrated between 0.1 and 0.3 across countries, which align with 

the aggregated values from the commonly-used urban roof materials such as tiles (0.10 - 0.35), shingles (0.05 - 0.25), 

and slate (0.08 - 0.18) (Oke et al., 2017). Our results confirm that the blue/clear sky albedo (actual albedo) calculated 410 

in U-Surf, an interpolation between white- and black-sky albedo (Liang et al., 1999), represents the real-world 

conditions more accurately. 

 

The morphological parameters in our dataset also provide more reasonable estimates of both mean values and 

variability. The four morphological parameters follow similar trends with J2010 in their variations across urban 415 

density types. For example, the roof fractions (pervious fractions) are generally higher (lower) in TBD locations 

identified in J2010, and decrease (increase) as the built density decreases (i.e., HD, MD and LD). However, U-Surf 

captures much larger variabilities in these parameters compared to J2010, reflecting a more diverse urban morphology. 

This is again because of the J2010’s approach of applying uniform parameter values based on selected representative 

buildings in a region. This approach not only fails to represent the granular spatial variability in a region, but also 420 

easily skews the estimates. For example, J2010 reported an unrealistically high roof fraction of 0.8 for the MD class 

over Brazil; whereas U-Surf presents a more realistic roof fraction predominantly ranging between 0.03 and 0.14, with 

a median value of 0.07 for this region, which aligns more closely with observations. Note that the median values of 

the four morphological parameters in U-Surf raw data (black boxes in Figure 3) are generally lower (or higher in 

“Pervious Fraction”) than TBD, HD, MD and LD categories (blue boxes). This is because U-Surf raw covers more 425 

pixels than the sum of locations identified as TBD, HD, MD and LD in J2010, most of which are sparsely built 

landscapes. In fact, the less densely built urban areas dominate the global urban landscapes. The four density classes 

TBD, HD, MD, and LD in J2010, for example, account for 0.022%, 5.85%, 23.76%, and 70.37% of all urban grids, 

respectively.  

 430 

The 𝐻/𝑊 values in U-Surf are concentrated within ranges of 0.6-1.4, 0.2-0.8, and 0.1-0.4 for TBD, HD, and MD 

locations identified in J2010, respectively. These values are close to real-world observations which typically vary 

between 0.5 and 2 at the neighborhood scale (Vardoulakis et al., 2003). Note that high 𝐻/𝑊 values are very rare at 1-

km resolution in real cases. Only very densely built central metropolitan areas (such as the lower Manhattan area in 

New York City, US) exhibit ratios exceeding 1. These occasions, however, usually only constitute a small proportion. 435 

This explains why the overall raw U-Surf 𝐻/𝑊 values are mostly concentrated between 0.06 and 0.5. We note that in 

very rare cases, there are some very high roof fraction numbers (≥ 0.9) in U-Surf which nevertheless are not located 
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in central metropolitan areas. These outliers are places with relatively large roof cover but very small “urban” 

impervious areas (such as, near the edge of a suburban area, or located in small-size dispersed town areas).  

 440 

 
Figure 3. Distribution of urban surface properties at four density classes locations (Oleson and Feddema, 2020): Tall Building 
District (TBD), High Density (HD), Medium Density (MD), and Low Density (LD), compared with raw U-Surf data. Red 
bars represent CLMU values (discrete, 33 regions), and blue bars show new U-Surf values (continuous, 1 km) extracted from grids 
identified as TBD, HD, MD and LD per J2010’s definition. The black bars show the distribution of 1 km U-Surf raw data. Box and 445 
whisker plots show the 25th, median and the 75th (the bottom, middle and top horizontal bars), and extend to the 5th and 95th 
quantiles.   
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3.2 Enhanced urban surface properties 

In this section, we present selected radiative and morphological parameters as illustrative examples to demonstrate 450 

the improvement of the new urban surface dataset in spatial heterogeneity, granularity, accuracy, and broader 

applicability from global to city scale. The global maps of the complete list of parameters can be found in SI (Figures 

S5-S26). 

 

U-Surf exhibits significant advancements in capturing the spatial heterogeneity and granularity, which is a crucial 455 

improvement over traditional categorical urban classifications, such as density classes used in CLMU and LCZs used 

in state-of-the-art mesoscale models. The dataset’s fine-scale resolution reveals detailed variations in both urban 

radiative and morphological parameters (Figure 4, Figures S5-S17). For instance, in J2010, the emissivity of pervious 

canyon floors is uniformly set at 0.95 globally to represent a typical value for vegetation using a bulk parameterization 

scheme (Oleson et al., 2010), and roof albedo is limited to 11 distinct values (Figures 4a and 4b). These discrete values 460 

lead to oversimplifications that fail to represent the critical variations in urban areas, potentially affecting the accuracy 

of climate predictions. Conversely, U-Surf data shows clear variability both within and across regions (Figures 4c and 

4d). In general, albedo exhibits greater variability than emissivity across different facets (Figures S5d-S12d). The 

albedo of impervious canyon floor is comparable with the pervious one, while roof and wall albedo tend to be higher, 

especially in the city center with densely-built tall buildings (Figures S9d-S12d). In New York City, for example, the 465 

mean albedo values are 0.13 for both impervious and pervious canyon floors, while roof albedo averages 0.16 and 

wall albedo is even higher at 0.22. This pattern is consistent with the fact that commonly used road pavement materials, 

such as asphalt and concrete, exhibit similarly low albedo values when compared to urban vegetated surfaces like 

parks and lawns (Oke et al., 2017). Moreover, roofing materials in metropolitan areas often feature higher reflectivity 

to reduce heat absorption by buildings (Jia et al., 2024), further contributing to the observed differences in albedo. 470 

These variations not only reflect differences in materials used but also adaptation strategies to local climate conditions, 

thereby providing more insights into local climate-sensitive urban design practices. 

 

On the global scale, U-Surf also reveals high-level distinct spatial patterns that correspond to the varying stages of 

urban development across regions (Figure 5). In the Global North, particularly in Europe and United States, urban 475 

areas typically exhibit higher building density (roof fraction × urban percentage), greater average building height, and 

higher average canyon height-to-width ratio. These characteristics are indicative of more developed urban form and 

well-established infrastructure, often driven by the need to accommodate growing populations in limited spaces. For 

instance, metropolitan centers (e.g. Manhattan, New York City, USA; Quartiers 1-4, Paris, France) in these areas 

frequently exceed 30-40% roof coverage, with average building heights surpassing 30 meters. In contrast, the Global 480 

South (e.g., Latin America, Africa, and Central Asia) generally exhibit lower values for these parameters. For example, 

building density in these regions are 38.59%, 46.46%, 88.71% lower, respectively, than in the United States. Similarly, 

their median building height is 11.94%, 31.65%, 12.75% lower, respectively, than in Europe. Consequently, their 

median canyon height-to-width ratios are 29.88%, 37.18%, 23.99% lower, respectively, than those in Europe.  

However, this trend is rapidly changing in emerging economies, including India and Brazil, where cities are 485 



 

17 

experiencing swift urban growth. For instance, rapidly urbanizing places such as Delhi, India and Sao Paulo, Brazil 

have demonstrated tall and densely built environments, where Delhi has a roof fraction of 31.02% and building heights 

of 12.63m, while Sao Paulo has a roof fraction of 49.42% and building heights of 13.87m, all of which exceed the 

75th percentile in the global distribution (Figure 3c). Additionally, regions such as East Asia exhibit urbanization 

patterns that are more akin to those in North America and Europe, characterized by high roof fractions (e.g., Figure 490 

S4a) and significant vertical development. For example, many cities in Eastern China have exhibited city-wide average 

roof fractions above 14% and building heights exceeding 13m, reflecting rapid industrialization and economic growth 

that have rapidly transformed the urban landscape over the past few decades (Cai et al., 2022). These observations 

further demonstrate the fidelity of U-Surf to reveal globally comparable yet regionally nuanced urbanization 

representations, which are essential for understanding geographical disparities and advancing region-specific 495 

sustainable urban development. 

 

At a more localized level, U-Surf uncovers intriguing patterns within countries and even individual cities, offering 

insights into the complex interactions between urban morphology and local climate conditions. For instance, in the 

Southwestern United States (e.g., California, Arizona), Northern Africa countries like Egypt and Tunisia, along with 500 

Northeastern China, U-Surf captures lower pervious canyon floor emissivity (below 0.93) and higher roof albedo 

(above 0.25) (Figures 4c and 4d), reflecting the potential impact of arid conditions and the use of high-albedo materials 

for heat adaptation in hot climates. Furthermore, U-Surf highlights regional differences in surface morphological 

properties (Figure 5), which play crucial roles in determining local urban climates. Building heights are notably higher 

along the coasts and in southern regions of Contiguous United States (CONUS), with cities like New York, Chicago, 505 

and Miami showing exceptionally high values (> 100m) and corresponding high canyon height-to-width ratios (> 2) 

in city cores. These cities also exhibit high roof fractions, showing more clustered building patterns in city centers, 

with density decreasing outwards (Figure S4b). In densely populated developing countries like India and China, high 

roof fractions exceeding 40% are observed, particularly in regions such as the Indo-Gangetic Plain and the area 

spanning from the Bohai Economic Rim to the Yangtze River Basin (Figure S4a). In underdeveloped regions of South 510 

America and Africa (e.g., Bolivia, Chad) with widely dispersed urban areas, buildings are more sparsely distributed, 

typically concentrated within fewer metropolitan areas. It is interesting to note that the high-resolution U-Surf data 

even captures the very densely populated informal settlements (such as the slum areas in Delhi) where buildings are 

tightly packed and often overcrowded (characterized by high roof fraction and population density) (Figures S4c and 

S4d). This illustrates the potential use of U-Surf as a valuable tool to better inform socioeconomic disparities in 515 

environmental and climate hazards within cities, currently difficult to do using process-based models (Chakraborty et 

al., 2023; Zhao et al., 2021). 
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Figure 4. Global-scale comparison between the default CLMU and U-Surf parameters. (a, b) Discrete pervious canyon floor 520 
emissivity [unitless] and roof albedo [unitless] over 33 regions (area-weighted averages across TBD, HD and MD) in CLMU; (c, 
d) 1-km continuous pervious canyon floor emissivity and roof albedo in U-Surf. Each column shares the same color scale range 
but note that default CLMU parameters only have discrete values over 33 regions and 3 density classes. 
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 525 
Figure 5. Global spatial distribution of U-Surf morphological parameters: (a) roof fraction [unitless], (b) pervious fraction 
[unitless], (c) building height [m], (d) canyon height-to-width ratio [unitless].  

3.3 Improved urban representation across scales 

The high-resolution U-Surf data enables intra- and inter- city comparison in global-scale urban climate modeling, in 

an unprecedented way. To illustrate this point, we identified two cities with similar background climates: Chicago, IL, 530 

USA, and Seoul, South Korea (Figure 6), both of which are classified as Dfa under Koppen-Geiger climate 

classification (humid continental climate with hot summers) (Beck et al., 2018). Because of the coarse-resolution 

urban surface input in J2010, these two cities share the exact same roof-specific parameters of the MD class. However, 

U-Surf reveals distinct contrasts in their radiative and morphological properties. Chicago, which has a history of 

applying heat mitigation strategies such as cool roofs (Mackey et al., 2012; Zhao et al., 2014), demonstrates higher 535 

roof emissivity and albedo, with average values of 0.972 and 0.175, respectively, compared to Seoul’s 0.955 and 0.114. 

As to intra-city variations, Chicago’s urban form is characterized by a higher concentration of buildings, with an 

average roof fraction of 0.284, in the northern part of the city. High-rise buildings or skyscrapers are predominantly 

clustered around Lake Michigan and the Chicago Loop area. On the contrary, Seoul exhibits a more dispersed urban 

structure, with buildings spread more widely across the city. Such detailed representation facilitates comprehensive 540 

attribution and sensitivity analyses, permitting the examination of how individual parameters, such as emissivity, 
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albedo and building height, can alter the city microclimate and further influence the role of cities in local to global 

climate change scenarios (Krayenhoff et al., 2018, 2021; Zhao et al., 2017) and potentially informs more actionable 

climate adaptation and mitigation strategies. 

 545 

U-Surf demonstrates a remarkable ability to capture the spatial heterogeneity and textural details of global urban 

landscapes across scales. To demonstrate this point, we aggregated the 1km U-Surf data to coarser resolutions of 

	0.125° and nominal	1° (a typical resolution that ESMs are run at) to compare with J2010 side by side. More detailed 

information about the aggregation process can be found in Supplementary Text S1, Table S1 and Figure S27. For 

illustrative purposes, only the comparisons of 𝐻/𝑊 are shown here. Our results demonstrate that U-Surf represents 550 

the detailed urban form considerably well, even at much coarser resolutions. The spatial variability and urban texture 

are well preserved at global (Figure 7d), national (Figure 7e), and city (Figure 7f) scales. This further demonstrates 

the adaptability and application of U-Surf in multi-scale, cross-scale urban modeling studies, with potential usage in 

regionally refined models (RRM) such as E3SM-RRM (Tang et al., 2023a) as well as the variable-resolution models 

(Huang et al., 2016) like Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA; Pfister et al., 2020), where 555 

seamless transitions between different spatial scales are crucial for comprehensive and coherent analysis. 

 

 
Figure 6. Spatial distributions of roof emissivity [-], roof albedo [-], roof fraction [-], building height [m] in (a-d) Chicago, 
USA and (e-h) Seoul, South Korea. Each pair of panels within the same column shares a consistent color scale. 560 
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Figure 7. Spatial variability of (a-c) area-weighted averages from CLMU and (d-f) U-Surf surface dataset. The parameter 
shown here is canyon height-to-width ratio. The spatial resolution from left to right: global nominal 1-deg, 0.125-deg over CONUS, 
and 1km in New York City, US. Panels in the same column share a colorbar at the bottom of the column. Different colorbar ranges 565 
are used to help visualize the distributions across scales. 

3.4 Accuracy assessment and uncertainty  

For the derived morphological parameters, we conducted a thematic validation based on two recently available, 

observation-based datasets, Urban-PLUMBER and WSF-3D. WSF-3D is a high-resolution (~ 90 m at the equator) 

global dataset that provides detailed three-dimensional information on building fraction, height, and volume, derived 570 

from satellite imageries, offering crucial insights into urban structures and their spatial distribution across the globe 

(Esch et al., 2022). We compared the roof fraction and height at 1 km resolution across WSF-3D’s 17 validation sites. 

The Urban-PLUMBER project primarily aims to enhance the understanding of the quality of current urban climate 

models and has also produced a harmonized dataset of quality controlled and gap-filled observations from 21 diverse 

urban flux tower sites across different climate zones and urban built environments (Lipson et al., 2022). We compared 575 

all four morphological parameters across these sites by using neighboring pixels around the flux towers to evaluate 

against the site-specific information. 

 

The roof fraction showed strong agreement across the reference sites in both WSF-3D and Urban-PLUMBER, with 

low mean absolute errors (MAEs) of 0.076 and 0.081 (Figure 8a). Similarly, the pervious fraction also aligned well at 580 

most Urban-PLUMBER sites, with a mean MAE of 0.124 (Figure 9a). Some discrepancies were observed in building 

height (MAE=5.918m and 7.446m, Figures 8c and 8d) and canyon height-to-width ratio (MAE=0.387, Figure 9c). 

These discrepancies are primarily attributed to the disparity between the neighborhood-scale values captured by flux 

towers, typically representing areas within several hundreds of meters, and the 1 km-resolution averaged values. 
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 585 
Figure 8. Comparison of two morphological parameters: (a-b) roof fraction, and (c-d) building height, evaluated against 21 
Urban-PLUMBER and 17 WSF-3D sites. The numbers labeled on the bottom right corner of (a) and (c) indicate the average 
mean absolute errors (MAEs) across sites. The blue points in (b) and (d) represent the city-scale average values at WSF-3D sites. 
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Figure 9. Comparison of two morphological parameters: (a-b) pervious canyon floor fraction, (c-d) canyon height-to-width 590 
ratio, against 21 Urban-PLUMBER sites. The numbers labeled on the bottom right corner of (a) and (c) represent the average mean 

absolute error across sites. 

 

As discussed briefly in Sect. 2.4, U-Surf’s parameters are inherently influenced by the uncertainties embedded in the 

synthesized data sources and uncertainty propagation during calculations. To systematically evaluate the uncertainties 595 

in final U-Surf parameters, we first documented the available validation approaches, as conducted by the development 

teams, and associated uncertainties for all input data sources in Table 3. Based on these numbers, we then employed 

the Monte Carlo simulation approach to quantify the final uncertainties in all our derived urban surface parameters in 

U-Surf (see Supplementary Text S2).  

 600 

Specifically, three datasets used to differentiate roofs, impervious and pervious canyon floors demonstrate high global 

classification accuracy. The 10m-resolution ESA land cover (Zanaga et al., 2022) was validated using updated 

Copernicus Global Land Service-Land Cover Validation (CGLS-100) dataset. The global overall accuracy across all 



 

24 

land cover types is 76.7±0.5%. The confidence intervals for specific land cover types are 3.3% for built-up surface 

and average 1.2% for pervious canyon (the average value of tree cover, grassland, shrubland, bare soil).  The MS-BFP 605 

data (Microsoft, 2022) were evaluated using building polygon labels from Bing Maps, including Maxar and Airbus 

data. The precision of semantic segmentation (i.e., building pixel detection) showed regional variations with the lowest 

false positive rate of 0.1% in Mexico and highest false positive rate of 2.98% in Indonesia. The EA-BFP (Shi et al., 

2024) were validated in sampled Chinese cities with manual annotation, compared against OSM building data and 

regional roof vectors (Zhang et al., 2022). It has an overall average accuracy of 89.63% and F1 score of 82.55%. The 610 

primary data source of building height (Chet et al., 2024) underwent rigorous validation against various reference 

height datasets and selected cities from Google Earth Pro. The validated results showed 𝑅% values ranging from 0.66 

(Europe) to 0.96 (South America) and Root Mean Squared Error (RMSE) from 1.9m (South America) to 14.6m (Japan, 

North and South Korea) across different subregions. The supplementary dataset (Li et al., 2022) was also validated 

and compared against WSF-3D, yielding a global RMSE of 2.56m, with the lowest RMSE of 1.35m in Sub-Saharan 615 

Africa and the highest RMSE of 4.94m in China.  

 

All remote sensing products and algorithms used to derive radiative properties were validated against ground 

measurements with high credibility. ASTER GEDv3 (Hulley et al., 2015) was compared with MODIS Collection 4 & 

5 Emissivity and validated against lab measurements at four large sand dune fields, yielding a relatively low average 620 

RMSE of 0.077. The broadband emissivity regression algorithm (Eq. 1) was validated against ASTER spectral library 

covering the wavelength ranging from 2-15μm, yielding the 𝑅% of 0.913 and RMSE of 0.011 (Malakar et al., 2018; 

Ogawa et al., 2008). The 10m land blue-sky albedo (Lin et al., 2022), retrieved from Sentinel-2 surface reflectance, 

was validated against local flux tower measurements, achieving an overall 𝑅% of 0.94 and RMSE of 0.03 across five 

land cover types. The RMSE ranges from around 0.0154 for urban areas (see Supplementary Text S2 for detailed 625 

calculation) to 0.032 for grassland. In addition, the narrow-to-broadband algorithm (Bonafoni and Sekertekin, 2020) 

demonstrated a 𝑅% of 0.77 and RMSE of 0.023 when compared against the ground measurements at six Surface 

Radiation Budget Network (SURFRAD) stations. It also showed a 𝑅% of 0.98 and RMSE of 0.021 when compared 

against albedometer measurements at eighteen Perugia sites. 

 630 

The primary source of uncertainty in the AC adoption rate (Li et al., 2024a) stems from the linear model that correlates 

AC adoption rate with the number of AC units per household. The linear model with saturation effect has an 𝑅% of 0.9 

(p < 0.001), RMSE of 11.5 and MAE of 8.5 (both in the unit of %).  

 

Using these documented uncertainties, we conducted Monte Carlo simulations with 1,000 trails of randomly perturbed 635 

input parameters based on 10,000 randomly selected samples across 10 countries (Table S2) to quantify the uncertainty 

of error propagation through our data synthesis and processing (Supplementary Text S2). The resulting 95% 

confidence intervals for all parameters across all sampled regions and global averages are presented in Table 4. These 

intervals provide the expected error/uncertainty ranges for our final estimates. Overall, the uncertainties propagated 
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through our data synthesis and processing align closely with those in the input data and remain relatively small – partly 640 

due to spatial upscale from finer resolutions to 1 km – which confirms the robustness of our methodology. 

 
Table 3. Validation and uncertainty analysis of synthesized data products. 

 
 645 

 

Table 3 new: uncertainty analysis of original data products

Dataset Source Validation Uncertainty

ESA Landcover 
2021 v200 Zanaga et al., 2022 Validated using Copernicus Global Land 

Service-Land Cover Validation dataset

Global accuracy of 76.7% ± 0.5%
User’s accuracy: Treecover 80.0% ± 0.7%, bare/sparse 
vegetation: 92.1% ± 0.9%, shrubland: 49.1% ± 2.1%, 
grassland:71.9% ± 1.0%, built-up: 65.9% ± 3.3% 

Microsoft Global 
Building 

Footprints*
Microsoft, 2022

Evaluated on a set of building polygon 
labels for each region based on Bing 
Maps including Maxar and Airbus 
between 2014 and 2021

Precision: 92.2% (Carribbean) -- 97.17% (Central Asia)
False positive rate: Mexico 0.1%, North America 1.0%, Africa 
1.1%, Australia 1.1%, Europe 1.4%, South Asia 1.4%, South 
America 1.7%, Caribbean 1.8%, Middle East 1.8%, Central 
Asia 2.2%, Indonesia 2.98%

East Asia Building 
Footprints Shi et al., 2024

Validated in sampled Chinese cities with 
manual annotation, compared against 
OSM building data and regional roof 
vectors

Accuracy: 89.63% (average)
F1 score: 82.55% 

ASTER Global 
Emissivity Dataset 

v3
Hulley et al., 2015

Validated against lab measurements & 
MODIS C4, C5 emissivity (2000-2008) 
over selected 4 sites

RMSE of 0.41%, 0.84%, 0.87%, 0.95% at four sites: 
Algodone Dunes, Namib, Senegal Basin and Rub Al Khali

Broadband ASTER 
Emissivity

Malakar et al., 2018; 
Ogawa et al., 2008

Validated against 305 samples from 
ASTER spectral library covering the 
wavelength ranging from 2-15𝜇𝑚 

𝑅ଶ = 0.913, 𝑅𝑀𝑆𝐸 = 0.011 

Sentinel-2 Albedo Lin et al., 2022
Validated against ground meaurements 
& MODIS satellite product at local flux 
sites

Overall across 5 land cover types: 𝑅ଶ = 0.94, 𝑅𝑀𝑆𝐸 = 0.030
Decidious broadleaf forest: 𝑅ଶ = 0.58, 𝑅𝑀𝑆𝐸 = 0.027
Evergreen needleleaf forest: 𝑅ଶ = 0.72, 𝑅𝑀𝑆𝐸 = 0.028
Grassland: 𝑅ଶ = 0.95, 𝑅𝑀𝑆𝐸 = 0.032
Open shrubland: 𝑅ଶ = 0.92, 𝑅𝑀𝑆𝐸 = 0.026
Urban: blask sky albedo 𝑅ଶ = 0.90, 𝑅𝑀𝑆𝐸 = 0.0185, white 
sky albedo 𝑅ଶ = 0.87, 𝑅𝑀𝑆𝐸 = 0.0205 (average), blue sky 
albedo 𝑅𝑀𝑆𝐸 = 0.0154

Sentinel-2 NTB 
Albedo

Bonafoni & 
Sekertekin, 2020

Validated against ground measurements 
at selected sites

𝑅ଶ = 0.77, 𝑅𝑀𝑆𝐸 = 0.023 when compared against six 
Surface Radiation Budget Network stations measurements 
during 2018-2019
𝑅ଶ = 0.98, 𝑅𝑀𝑆𝐸 = 0.021 when compared against 
albedometer measurements at 18 Perugia sites, summer 2016

Building Height

Che et al., 2024
Validated against various reference 
dataset and selected cities from Google 
Earth Pro

Varying across 33 subregions
𝑅ଶ: 0.66 (Europe) -- 0.96 (South America)
RMSE: 1.92m (South America) -- 14.60m (Japan, North and 
south Korea)

Li et al., 2022 Evaluated on the validation set, 
compared against WSF-3D

Global: 𝑅ଶ = 0.73, 𝑅𝑀𝑆𝐸 = 2.56
Canada and USA 𝑅ଶ = 0.72, 𝑅𝑀𝑆𝐸 = 2.01, China 𝑅ଶ =
0.49, 𝑅𝑀𝑆𝐸 = 4.94, Europe 𝑅ଶ = 0.68, 𝑅𝑀𝑆𝐸 = 2.35, South 
Asia 𝑅ଶ = 0.47, 𝑅𝑀𝑆𝐸 = 1.79, Latin America 𝑅ଶ =
0.60, 𝑅𝑀𝑆𝐸 = 2.86, Middle-East and Northern Africa 𝑅ଶ =
0.75, 𝑅𝑀𝑆𝐸 = 2.92, Oceania 𝑅ଶ = 0.70, 𝑅𝑀𝑆𝐸 = 1.58, 
Russia and Central Asia 𝑅ଶ = 0.48, 𝑅𝑀𝑆𝐸 = 2.78, Southeast 
Asia 𝑅ଶ = 0.62, 𝑅𝑀𝑆𝐸 = 1.50, Sub-Saharan Africa 𝑅ଶ =
0.63, 𝑅𝑀𝑆𝐸 = 1.35

AC Penetration 
Rate Li et al., 2024a

35 countries/regions were directly 
collected; additional linear model was 
built to map other 34 regions/countries 
and sub-country level data

Linear model 𝑅ଶ = 0.9, 𝑅𝑀𝑆𝐸 = 11.5%, 𝑀𝐴𝐸 = 8.5%

*Currently there is no official documentation on the validation method, evaluation results were collected from https://github.com/microsoft/GlobalMLBuildingFootprints
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Table 4. Estimated 95% confidence intervals (±) by Monte Carlo simulations across all regions. 

 

4 Broader implications of U-Surf  

The U-Surf dataset significantly advances the development of ultra-high resolution urban-resolving process-based 650 

ESMs and RCMs. Its high-resolution capabilities allow for a detailed and refined representation of urban areas, 

breaking away from the limitations of previous models that relied on coarse regional divisions and outdated 

classifications. By integrating the latest global data sources, U-Surf provides global continuity and local granularity 

in urban surface representation. This enhanced representation shows promise in correcting systematic biases in current 

models and improving their modeling accuracy and predictability. For example, a recent study finds that the simulated 655 

urban heat island (UHI) effects tend to be overestimated in CESM2 (Liu et al., 2024). To test the effects of U-Surf, 

we have run two preliminary land-only CESM2 simulations (0.9375°×1.25°) spanning from 2010 to 2014 with the 

default urban surface data and U-Surf, both forced by bias-corrected ERA5 (Cucchi et al., 2020). We find that this 

overestimation is largely reduced by an average of 0.176K in annual canopy UHI (CUHI) over China, due to the 

widespread cooling trend in urban near-surface air temperatures (Figure S28). This improvement aligns with Liu et 660 

al., (2024)’s findings that CESM2 overestimates CUHI in China by +0.127°C. Moreover, the remote-sensing-based 

methodology offers a unique capability to track the quantitative evolution of urban canopy parameters (UCPs) over 

time, a level of detail that is difficult to extract from traditional classification methods.  

 

While developed with the architecture of Earth system models in mind (namely CLMU and its versions used in various 665 

ESMs), U-Surf can be adapted to other UCMs, such as those embedded in RCMs like WRF, and atmospheric 

chemistry models such as MUSICA (Pfister et al., 2020; Tang et al., 2023b). Its scalability enables its use in studies 

ranging from local-scale high-resolution applications to regional and global-scale analyses. Incorporating detailed 

fine-resolution UCPs (e.g., plan area fraction 𝜆3, frontal area index 𝜆:), as demonstrated in WRF studies, is essential 

for accurately modeling urban climate dynamics (Best and Grimmond, 2014; Georgescu, 2015; Sharma et al., 2017). 670 

U-Surf’s application in the next-generation kilometer-scale models could help resolve fine-resolution processes such 

as convection and advection, further advancing the high-fidelity climate and air quality simulations.  

Continent Country

Radiative
Morphological

Emissivity Albedo

Roof
Impervious 

canyon 
floor

Pervious 
canyon 

floor
Wall* Roof

Impervious 
canyon 

floor

Pervious 
canyon 

floor
Wall* Urban 

percentage
Roof 

fraction
Pervious 
fraction

Canyon 
height to 

width ratio

Building 
height (m)

North 
America

United 
States 0.0443 0.0369 0.0181 0.0443 0.0086 0.0067 0.0020 0.0086 0.0029 0.0019 0.0056 0.0751 3.8092

Mexico 0.0316 0.0326 0.0137 0.0316 0.0043 0.0058 0.0009 0.0043 0.0039 0.0029 0.0060 0.1702 5.0254

South 
America

Argentina 0.0342 0.0289 0.0169 0.0342 0.0034 0.0044 0.0012 0.0034 0.0048 0.0024 0.0059 0.2130 5.0589

Bolivia 0.0477 0.0443 0.0133 0.0477 0.0096 0.0099 0.0010 0.0096 0.0033 0.0029 0.0076 0.1307 5.2250

Europe
France 0.0386 0.0479 0.0149 0.0386 0.0047 0.0101 0.0010 0.0047 0.0031 0.0045 0.0073 0.1592 4.4660

Poland 0.0381 0.0450 0.0159 0.0381 0.0045 0.0082 0.0011 0.0045 0.0031 0.0046 0.0085 0.1585 4.5200

Asia
China 0.0428 0.0394 0.0164 0.0428 0.0169 0.0056 0.0012 0.0169 0.0047 0.0061 0.0104 0.2156 8.2679

Malaysia 0.0359 0.0432 0.0135 0.0359 0.0041 0.0082 0.0007 0.0041 0.0034 0.0024 0.0049 0.1058 2.8700

Oceania Australia 0.0542 0.0616 0.0126 0.0542 0.0080 0.0129 0.0007 0.0080 0.0023 0.0026 0.0074 0.0681 3.0307

Africa Nigeria 0.0432 0.0560 0.0202 0.0432 0.0069 0.0118 0.0019 0.0069 0.0023 0.0087 0.0107 0.1052 2.5947

Average 0.0411 0.0436 0.0156 0.0411 0.0071 0.0084 0.0012 0.0071 0.0034 0.0039 0.0074 0.1401 4.4868
*Wall radiative parameters were processed by directly utilizing the roof parameters, resulting in the same uncertainty range.
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Finally, the implications of U-Surf extend beyond the realm of climate or Earth system modeling. This comprehensive 

dataset provides essential urban informatics and properties on the global scale that can be directly used as key input 

features for machine learning models (Chajaei and Bagheri, 2024; Furuya et al., 2023; Li et al., 2023b), making U-675 

Surf a valuable resource for both process-based and data-driven modeling. U-Surf can potentially serve as a powerful 

tool for researchers, policymakers, and urban planners across multiple disciplines. In socio-economic studies, for 

instance, the dataset can be utilized to explore correlations between urban morphology and economic indicators, 

potentially revealing relationships between building density, green space distribution, and neighborhood income levels 

(Chakraborty et al., 2022; Wang et al., 2024). In the public health sector, U-Surf could be used to investigate links 680 

between urban structural design and air quality (Zhang et al., 2023b; Zhang and Gu, 2013). Moreover, the dataset 

could be beneficial for emergency management and disaster preparedness, enabling more accurate risk assessments 

in densely built areas (Li et al., 2020b; Ma and Mostafavi, 2024).  

5 Limitations and future work 

We note several limitations, which also present opportunities for future improvements. The accuracy of U-Surf is 685 

inherently linked to the uncertainties of the synthesized data sources. For instance, the use of Microsoft global building 

footprints (mostly 2014-2021, with additional updates up to 2023) may result in missing roofs or land cover 

misclassification within certain pixels. One primary challenge arises from integrating datasets with varying 

spatiotemporal coverage. Most of the datasets we utilized reflect urban surface properties from 2014 to 2021. Although 

the temporal discrepancy among different data sources may introduce additional uncertainties, given the small changes 690 

in built surfaces within this short time span, these uncertainties are likely small. Additionally, the spatial resolution of 

ASTER GEDv3 data is 100 meters, which could be too coarse to accurately distinguish small individual facets, 

potentially resulting in mixed facet representation. There is also room for improvements in the remote sensing 

algorithms used to derive some of the raw surface properties incorporated into U-Surf since they are not always 

calibrated for urban areas (Chakraborty et al., 2021; Chen et al., 2016), though this is beyond the scope of this study. 695 

Lastly, we note that certain U-Surf morphological parameters are constructed on the basis of the 2D infinite-street 

urban canyon conceptual model. Direct application of those parameters should follow the same conceptual 

assumptions of the urban geometry. Caution should be given if they are used in more complex representations of the 

real-world urban landscapes.  

 700 

We plan to continue improving the U-Surf in future versions through multiple aspects. For example, we anticipate that 

ongoing efforts and continuing endeavor of urban scientific and remote sensing communities will lead to the 

emergence of more datasets with higher spatial resolutions and accuracies (e.g., more comprehensive building 

footprints) to be incorporated or updated in U-Surf. We will also adjust the parameter list to reflect advancements in 

urban parameterization within RCMs and ESMs. For instance, while urban vegetation is not explicitly represented in 705 

the current version of CLMU and most operational RCMs, we can follow similar data pipelines and set of constraints 

(same land cover data, building footprint estimates, etc.) to develop internally consistent global urban vegetation 

estimates, known to strongly modulate global inter-sample variability in urban climate signals (Chakraborty and Lee, 
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2019), for the next-generation UCMs in the future. Lastly, depending upon the availability of data sources and new 

downscaling approaches, we plan to provide temporally varying urban surface properties, which are important for 710 

capturing changes in various urban climate signals over time (Chakraborty and Qian, 2024; Fang et al., 2023; Wu et 

al., 2024). 

6 Data availability 

The global 1km continuous urban surface property dataset (U-Surf) is publicly available at 

https://doi.org/10.5281/zenodo.14695837 (Cheng et al., 2024). In addition to the raw dataset at 1km resolution, we 715 

also provided the CESM2/E3SM-compatible version at standard resolution (0.9375° × 1.25°) as the ready-to-use 

input surface dataset for CESM2 simulations. The U-Surf dataset will be incorporated as part of a future release in the 

high-resolution branch of CTSM (https://github.com/ESCOMP/CTSM).  

 

To facilitate interactive data visualization, query, download, and location-specific analysis, we have further developed 720 

a web application using Google Earth Engine (GEE). This interactive platform allows users to explore various urban 

areas by zooming in on the map, toggle between different parameter layers for comprehensive analysis and extract 

precise values for all parameters by simply clicking on points of interest or selecting area of interests. The GEE web 

application is publicly available at https://ycheng1891.users.earthengine.app/view/global-1km-urban-surface-

property-dataset.  725 

 

The code and intermediate data layers are available from authors upon request. 

7 Conclusion 

Despite recent advances in urban climate model development across scales, one long-standing critical barrier remains: 

the absence of a complete, fine-resolution, globally consistent, and spatially explicit urban surface property dataset. 730 

Existing products relying on broad categorization underscores the challenge of developing an urban representation 

that can balance global consistency and local precision. This has been preventing the development of urban-resolving 

Earth system models for decades, as well as the ultra-high-resolution urban modeling across scales. To address this 

challenge, we develop a first-of-its-kind global 1km continuous urban surface property dataset – U-Surf. Leveraging 

recent advancements in remote sensing technologies and machine learning algorithms, U-Surf provides a 735 

comprehensive, present-day dataset of urban surface properties that can be used in state-of-the-art ESMs and RCMs. 

 

The high-resolution U-Surf data significantly enhances the urban representation in terms of both spatial heterogeneity 

and accuracy on the global scale, enables detailed city-to-city comparisons in Earth system modeling, and facilitates 

high-resolution urban climate modeling across scales. By breaking the constraints of predefined urban density classes, 740 

the new dataset provides a more nuanced and accurate representation of urban environments worldwide. The remote-

sensing-based approach captures the actual surface properties as observed from space, accounting for the complex 

https://doi.org/10.5281/zenodo.14695837
https://github.com/ESCOMP/CTSM
https://ycheng1891.users.earthengine.app/view/global-1km-urban-surface-property-dataset
https://ycheng1891.users.earthengine.app/view/global-1km-urban-surface-property-dataset
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mixture of materials and structures in urban areas that are difficult to illustrate through traditional bottom-up material-

based approaches, which provides more effective and accurate urban canopy parameterization compared to the 

generalization of material-based values used in previous dataset.  745 

 

The dataset represents a key step forward in advancing the development of ultra-high resolution Earth system 

modeling. While developed consistent with common ESM architecture in mind, U-Surf can be adapted to quite easily 

for other models such as weather and regional climate models, and air pollution models, and may be useful inputs for 

machine learning algorithms. U-Surf also provides useful urban informatics for research and applications across 750 

multiple disciplines such as socioeconomics, public health, and urban planning, making it a powerful tool for 

addressing contemporary challenges in urban development, disaster preparedness, and sustainable city planning. As 

climate change and urbanization continue to reshape the planet, toolkits like this dataset have increasingly vital roles 

for understanding future climate-change- and urbanization-driven risks and impacts, further opening up new avenues 

for research into context-specific guidance for climate-sensitive urban planning and actionable climate adaptation 755 

strategies.  
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