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Response to reviews on Earth System Science Data Manuscript 2024-416 “U-Surf: a global 
1km spatially continuous urban surface property dataset for kilometer-scale urban-
resolving Earth system modeling” 
 
We thank the Editor and the Reviewers for their constructive suggestions and questions, and 
appreciate the opportunity to address their concerns and improve the manuscript. We address all 
the concerns raised by the Reviewers on a point-by-point basis. The Reviewers’ original comments 
are indicated in blue, and our responses are indicated in black, with tracked changes in red. Please 
note that, for the Reviewers’ convenience, all the line numbers below indicate the line numbers in 
the tracked-changes version of the manuscript unless otherwise stated. 
   
Response to Reviewers’ comments:     
********************     
Reviewer #1     
******************** 
 
1. “This study develops a global 1km spatially continuous urban surface property dataset (U-Surf) 
for kilometer-scale urban-resolving Earth system modeling by leveraging the latest advances in 
remote sensing, machine learning, and cloud computing to provide the most relevant urban surface 
biophysical parameters. Compared to the default urban surface property dataset, the U-Surf dataset 
significantly improves the representation of urban land heterogeneity both within and across cities 
globally. The accuracy, uncertainties, and limitations of the U-Surf dataset are assessed and 
discussed. Its great value for applications is outlined as well. Overall, the manuscript is well-
structured and straightforward. The developed urban surface property dataset is of great 
importance for urban modeling and study. I recommend the publication and just have a few 
comments (quite minor) for clarification.” 
 
Thank you very much. We appreciate the reviewer’s acknowledgement of the significance of our 
study. We have addressed the reviewer’s concerns in points below. 
 
2. “How are the raw U-Surf data separated into values for the four urban density classes (e.g., TBD, 
HD, MD and LD, as shown in Figure 3)? Does this separation follow the locations defined by 
Oleson and Feddema (2020)? If it does, is the location data also provided at a 1 km resolution?” 
 
Thank you for the good question. First, we would like to clarify that U-Surf directly provides 
spatially continuous UCP values without relying on any mapping from categorical urban density 
classes, which is why the density class data was not included in the raw U-Surf dataset. In Figure 
3, we separated the raw U-Surf pixels into the four density classes just for the ease of comparison 
with J2010/OF2020. The reviewer is correct that this separation strictly follows the locations of 
the 4 density classes defined by Oleson and Feddema (2020) at 1 km resolution.  
 
The reviewer has also raised a good suggestion of providing the location data. We have now 
modified the text as below to improve the clarity and provide the location data: 
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“U-Surf demonstrates significant improvements over the default CLMU parameters. As U-Surf 
directly provides spatially continuous urban surface parameters without relying on any density 
class or land use classification, here just for the ease of comparison and illustrative purpose, we 
separated raw U-Surf pixels into the four urban density classes (TBD, HD, MD, and LD) following 
their locations defined by J2010 and plot the distributions of the urban surface parameters in both 
U-Surf and J2010 data at these locations (Figure 3). The location data defined by J2010/OF2020 
at 1 km resolution can be accessed at https://doi.org/10.6084/m9.figshare.28169324.v1. The 
overall distribution of U-Surf raw data is also shown in the figure.” (Line 398-404) 
 
3. “When the authors aggregated the 1km U-Surf data to coarser resolutions of 0.125o and 1o, were 
the urban surface property parameters averaged with the weights of the fractional coverage of 
different 1km urban land types?” 
 
The reviewer has raised an excellent point. We greatly thank the reviewer for this insightful 
question, and it significantly helps improving the quality of the dataset. After carefully examining 
all our derived parameters in U-Surf, we agree with the reviewer that some of the property 
parameters should be aggregated with the weights of fractional area. In light of the reviewer’s 
suggestion, our approach to aggregating the 1km U-Surf data to coarser resolutions (0.125° and 
1°) has been refined. We have updated Figure 7 in the main text and the 1° surface data in U-Surf 
data version 1.1 (https://doi.org/10.5281/zenodo.14695837). In addition, we have modified the 
results and supplemental information as shown below. 
 
“To demonstrate this point, we aggregated the 1km U-Surf data to coarser resolutions of 0.125° 
and nominal 1° (a typical resolution that ESMs are run at) to compare with J2010 side by side. 
More detailed information about the aggregation process can be found in Supplementary Text S1, 
Table S1 and Figure S27. For illustrative purposes, only the comparisons of 𝐻/𝑊 are shown here.” 
(Line 611-614) 
 
Supplementary Text 1: Aggregation of 1km raw U-Surf data to coarser resolutions 
 “The aggregation of urban canopy parameters (UCPs) from 1km to coarser resolutions requires 
careful consideration of the physical properties and conservation principles of different parameters. 
As shown in Table S1, we have classified UCPs into two categories, area-based conservative and 
non-conservative. We employed direct spatial averaging for urban percentage. For conservative 
parameters – roof and pervious fraction – which are inherently weighted by area, we used their 
urban percentages as weights to aggregate. We implemented a facet-fraction weighted averaging 
method for all the non-conservative parameters to ensure physically meaningful aggregation. For 
example, when aggregating roof or impervious canyon floor emissivity, we used the respective 
facet areal fractions (roof or impervious canyon floor fraction × urban percentage) with respect to 
the 1 km grid as their weights. This way ensures that the contribution of each parameter to the 
coarser resolution is proportional to its actual surface coverage.  
 
The aggregation of canyon height-to-width ratio (𝐻/𝑊) is slightly more complex as it is derived 
from multiple primary parameters. We evaluated two potential aggregation methods: ‘aggregating 
first’ and ‘aggregating after’ (Li et al., 2024), both using urban density (urban percentage × roof 
fraction) as weights. The former is to aggregate the primary input parameters (e.g., building height, 
roof fraction) to the target resolution before calculating 𝐻/𝑊. The latter calculates 𝐻/𝑊 at the 

https://doi.org/10.5281/zenodo.14695837
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original 1km resolution before spatial aggregation. Our analysis revealed that the ‘aggregating 
after’ method generally produces slightly higher values and preserves more spatial variation 
compared to the ‘aggregating first’ method (Figure S27). In addition, the ‘aggregating after’ 
method better maintains the non-linear relationships between input and output parameters and 
hence preserves local canyon characteristics during the upscaling process. This choice aligns with 
the recommendations from previous studies (e.g., Dai et al., 2019; Shangguan et al., 2014) and 
helps prevent the smoothing of local variations in the ‘aggregating first’ method. Therefore, in the 
published dataset with this study we choose the ‘aggregating after’ method to aggregate H/W to 
coarser resolutions (0.125° and 1°).” 
 
Table S1. Conservativeness of urban surface property parameters under spatial aggregation 

 
 
 

Category Parameter
Facet type

Roof Impervious 
canyon floor

Pervious canyon 
floor Wall

Radiative Emissivity N N N N
Albedo N N N N

Morphological

Fraction* Y - Y -
Building height N - - -
Canyon height-to-
width ratio N - - -

Thermal

Thickness N - - N
Volumetric heat 
capacity N N - N

Thermal 
conductivity N N - N

Y: conservative parameters; N: non-conservative parameters; -: not applicable. 
* Urban percentage is another fractional (conservative) parameter. 
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Figure S27. Comparison between ‘aggregating fist’ and ‘aggregating after’ method for aggregating 
𝑯/𝑾 from 1km to 1o in selected regions. 
 
4. “With the U-Surf data, the possible improvements to the urban climate simulations could be 
speculated in detail. For example, currently, the simulated UHI effects are overestimated in 
CESM2 (Liu et al., 2024). Can the new data improve this simulation?” 
 
We thank the reviewer for this insightful question regarding the potential impact of U-Surf data 
on urban climate simulations. To address the reviewer’s question, we have run several sets of 
preliminary land-only simulations spanning from 2010 to 2014 forced by bias-corrected ERA5 
(Cucchi et al., 2020) with CESM2. Below we calculated (i) the canopy UHI as the difference 
between urban and rural near-surface air temperature and (ii) the surface UHI as the difference 
between urban and rural land surface temperature for each grid.  
 
We have added more details in broader implication (section 4) and a new supplementary Figure 
S28 as below. 
 
“By integrating the latest global data sources, U-Surf provides global continuity and local 
granularity in urban surface representation. This enhanced representation shows promise in 
correcting systematic biases in current models and improving their modeling accuracy and 
predictability. For example, a recent study finds that the simulated urban heat island (UHI) effects 
tend to be overestimated in CESM2 (Liu et al., 2024). To test the effects of U-Surf, we have run 
two preliminary land-only CESM2 simulations (0.9375°×1.25°) spanning from 2010 to 2014 with 
the default urban surface data and U-Surf, both forced by bias-corrected ERA5 (Cucchi et al., 
2020). We find that this overestimation is largely reduced by an average of 0.176K in annual 
canopy UHI (CUHI) over China, due to the widespread cooling trend in urban near-surface air 
temperatures (Figure S28). This improvement aligns with Liu et al., (2024)’s findings that CESM2 
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overestimates CUHI in China by +0.127°C. Moreover, the remote-sensing-based methodology 
offers a unique capability to track the quantitative evolution of urban canopy parameters (UCPs) 
over time, a level of detail that is difficult to extract from traditional classification methods.” (Line 
739-748) 
 
 

 
Figure S28. Spatial distribution of 5-year average canopy urban heat island (UHI) intensity [K] in 
China. The panels show (a) annual, (b) summer (JJA), and (c) winter (DJF) averages simulated by CESM2 
using default urban canopy parameters (UCPs) (top row), U-Surf parameters (middle row), and their 
difference (U-Surf minus default, bottom row). Negative values in the difference plots indicate weaker UHI 
intensity with U-Surf parameters. 
 
We have observed similar pattern of reduced CUHI in a higher-resolution simulation (1/32°) over 
CONUS (Figure R1). More significant reduction of surface UHI (SUHI) have been shown from 
the same simulation (Figure R2), which can be primarily attributed to increased emissivity values 
compared to J2010/OF2020. This finding aligns with Chakraborty et al., (2021), which 
demonstrated stronger sensitivity of SUHI intensity to surface emissivity.  
 
In summary, integrating U-Surf parameters into CESM simulations could indeed reduce the 
overestimation of both SUHI and CUHI. A comprehensive assessment of U-Surf's impacts would 
require coupled simulations to account for land-atmosphere interactions. 
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Figure R1. Same as S29 but for 1/32° simulation results over contiguous U.S. 
 

 
Figure R2. Same as R1 but for surface UHI intensity. 
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Response to Reviewers’ comments:     
********************     
Reviewer #2     
******************** 
 
1. “Dear authors, 
High-quality urban surface property dataset is vital for high-resolution urban climate modeling, 
this study use a series of mature methods to generate a global spatially continuous dataset (named 
as: U-Surf) from multisourced remote sensing observations and products, which contains radiative, 
morphological, and thermal properties. Overall, the methodological framework is complete and 
the generated products are valuable.” 
 
Thank you very much for acknowledging the importance of our study and the U-Surf product. We 
have addressed the reviewer’s concern in points below. 
 
2. The method descriptions should be totally strengthened. 
2.1 For example, in Section 2.2.1, I don’t know how to use the ASTER and Sentinel-2 imagery 
(the yearly-composited imagery or all available imagery) to calculate the single or time-series 
emissivity and albedo. 
 
Thank you for raising these important points. We have added more details in Section 2.2.1 as 
shown below and updated Table 1 accordingly: 
 
“This facet-segmented image was then applied to the Advanced Spaceborne Thermal Emission 
and Reflection (ASTER) Global Emissivity Dataset 100 m V003 product (hereafter referred as 
ASTER GEDv3; Hulley et al., 2015) and the Sentinel-2 land surface albedo data (Lin et al., 2022) 
to extract the emissivity and albedo of building roof, and impervious and pervious ground. The 
static emissivity imagery is composited from clear-sky (cloud free) pixels for all available ASTER 
data from 2000 to 2008 (Hulley et al., 2015) to represent the emissivity climatology over this 
period. We use a linear spectral-to-broadband algorithm (Malakar et al., 2018) to estimate the 
broadband emissivity from ASTER GEDv3 bands (Eq. 1):” (Line 212-218) 
 
“For albedo, we used a 10 m land surface blue-sky albedo product retrieved from Sentinel-2 which 
covers nearly 2,300 major cities across the globe (Lin et al., 2022). For the rest of the global urban 
areas, we applied the narrow-to-broadband conversion method (Bonafoni and Sekertekin, 2020) 
to estimate the 10m-resolution albedo based on Sentinel-2 surface reflectance (Eq. 2). Both the 
blue-sky albedo product and the narrow-to-broadband calculated albedo are derived using the 
Sentinel-2 imageries composited from 2019 to 2021. The blue-sky albedo product only includes 
cloud free images. For the narrow-to-broadband algorithm, we use the Cloud Score+ (CS+) dataset 
(Pasquarella et al., 2023) to mask out the cloud-contaminated pixels, where pixels with a CS+ 
quality assessment score below 0.8 were excluded.” (Line 228-235) 
 
2.2 As for the Eq. (4), how to determine the parameter of wf, which follows the normal distribution? 
Equal distribution? 
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In Eq. (4), 	𝛼!"#$ =
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10m grid cell. The subscript f stands for each individual facet (such as roof, wall, etc.). These 
fractions are calculated by dividing the area of each facet by the area of the grid at each grid. 
Therefore, they don’t necessarily follow Equal or normal distribution. Most of these numbers are 
concentrated in the low end as very densely built cities are scarce worldwide. We have revised the 
text accordingly: 
 
“where 𝜀!"#$  and 	𝛼!"#$  is 1 km emissivity and albedo, respectively, for a certain facet 
(roof/impervious canyon floor/pervious canyon floor), 𝑤!)  is the area fractions of a certain facet 
within each 100m or 10m grid cell derived from the 10m segmented imagery. The subscript 𝑓 
stands for each individual facet. For example, when calculating roof emissivity and albedo, 𝑤!)  is 
the roof fraction within each 100m and 10m grid cell, respectively.” (Line 249-252) 
 
2.3 As for the albedo and emissivity model in Eq. (2-3), how to consider their uncertainty? How 
do these models perform on a global scale? 
 
The stepwise regression approach (Eq. (1); Malakar et al., (2018)) was originally adapted from 
Ogawa et al., (2008). The derived ASTER broadband emissivity was validated against 305 samples 
from ASTER spectral library covering the wavelength ranging from 2-15𝜇𝑚, yielding the R2 of 
0.913 and RMSE of 0.011. The spectra covered different land covers including rocks, soils, 
vegetation and water with the spatial focus in California. 
 
The model has been used and validated in multiple studies (Chakraborty et al., 2021; Ru et al., 
2023). To address the reviewer’s question, we have now added this information in the text and 
updated Table 3: 
 
“ASTER GEDv3 (Hulley et al., 2015) was compared with MODIS Collection 4 & 5 Emissivity 
and validated against lab measurements at four large sand dune fields, yielding a relatively low 
average RMSE of 0.077. The broadband emissivity regression algorithm (Eq. 1) was validated 
against ASTER spectral library covering the wavelength ranging from 2-15μm, yielding the R2 of 
0.913 and RMSE of 0.011 (Malakar et al., 2018; Ogawa et al., 2008).” (Line 692-696) 
 
As we have discussed in Section 3.4, according to Bonafoni and Sekertekin, (2020), the narrow-
to-broadband albedo model (Eq. 2) has demonstrated credibility on the global scale through two 
validation efforts. The first validation against six stations of SURFRAD generated an average R 
of 0.77 and RMSE of 0.023. The second validation across 18 urban sites in Perugia, Italy yielded 
an average R of 0.98 and RMSE of 0.021. The validation sites are carefully chosen to include 
different landcover types (cropland, grassland/sparse grassland, natural vegetation, urban) and 
background climate (humid continental, cold semi-arid, humid subtropical, mediterranean), the 
consistent performance across the heterogeneous site can demonstrate the model’s robustness. 
 
For the detailed uncertainty analysis and error propagation, please refer to our response to 
comment #3 below. 
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2.4 Similarly, some details should be added in the Section 2.2.2 and 2.2.3. 
 
In response to the reviewer’s comments, we have revised the text to improve the clarity as below. 
 
“The 3D-GloBFP is a global building height data at a building footprint scale recently developed 
by leveraging a combination of Synthetic Aperture Radar (SAR), optical imagery, terrain, 
population, nighttime light data primarily covering 2014 to 2023, and XGBoost machine learning 
approach. We aggregated the vector-level height to 1 km grids using area-weighted averages. The 
second global building height data (Li et al., 2022) is a raster map at 1 km spatial resolution that 
also utilizes radar and optical satellite imagery, along with additional geographical information 
circa 2015.” (Line 285-290) 
 
“Canyon height-to-width ratio (𝐻/𝑊; i.e., the ratio of building height to canyon width) is another 
critical morphological parameter that is widely used in most UCMs including CLMU. It is a proxy 
parameter that implies the structural layout and compactness of the built area. Unlike other 
parameters that can be directly measured by satellite data, 𝐻/𝑊 needs to be derived on the basis 
of model geometry and assumptions. Consistent with the single-layer urban canyon geometry in 
UCMs, the 𝐻/𝑊 in this study is estimated using the 2D infinite street canyon model with two 
recommended primary parameters, building fraction (or plan area density; 𝜆*) and wall surface 
density (𝜆&) (Masson et al., 2020):” (Line 295-301) 
 
“This table includes thickness, thermal conductivity and volumetric heat capacity of up to 10 layers 
for common types of roofs, walls, roads (layers with identical materials are allowed) (Oleson and 
Feddema, 2020). As these thermal parameters are provided in a look-up table instead of a 
geospatially explicit format, we need to map the table values to each 1 km grid in U-Surf. In order 
to do this, we classified 1 km U-Surf urban grids into four nominal density classes: TBD (0.016% 
of the pixels), HD (3.83%), MD (41.98%), LD (54.17 %) (Figure S2) based on the percentiles of 
canyon height-to-width ratio defined in J2010. We then applied the corresponding thermal 
parameters from the lookup table to each class to ensure it covers all possible materials used in 33 
regions (Figures S18-S25). Although this is likely the most feasible approach for providing an 
ESM-compatible global building thermal property dataset at present, we acknowledge its 
limitation of relying somewhat on coarse-grained regional and density-class values. Once more 
detailed, spatially explicit global datasets – such as those on building materials or thermal 
properties – become available, we can readily incorporate their thermal parameters into future 
releases of U-Surf.”(Line 327-337) 
 
3. My major concern is the quality of the U-Surf. Although the authors emphasized that “validating 
urban surface parameters on the global scale is extremely challenging primarily due to the lack of 
globally consistent measurement networks”, I don’t think the Table 3 can support the accuracy 
analysis of the U-Surf. My concerns come from that 1) the synthesized data products only part of 
the parameters of the retrieved models in Section 2.2, i.e., how to quantify the transformed error 
of synthesized data in the retrieved models; 2) as a user of the U-Surf, I also want to know its 
absolute accuracy not that its better than the previous data. I hope that the authors can strength the 
accuracy assessment. 
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We thank the reviewer for pointing this out and for the good suggestion. We agree with the 
reviewer that a more comprehensive and explicit accuracy/uncertainty assessment would 
strengthen the U-Surf product. To address the reviewer’s concern, we have improved the 
accuracy/uncertainty assessment section thoroughly by explicitly quantifying the error 
propagation for all the parameters in U-Surf.  
 
Specifically, for parameters derived from multiple data sources, we use Monte Carlo (MC) 
simulation approach to quantify how uncertainties propagate through our calculations. We used 
the documented uncertainties of input datasets (updated Table 3) as probability distributions in the 
MC simulations to quantify the expected error ranges in our final estimated parameters. These 
simulation results are now presented in the new Table 4 in the revised manuscript. 
 
1) Uncertainty analysis 
We first selected 10 countries/regions in total that cover every continent (except for Antarctica) 
and diverse Koppen climate zone globally (Supplementary Table S2). Then, for each country we 
randomly sampled 1,000 pixels, forming a total sample size of 10,000 to conduct MC simulations. 
 
Table S2. Selected countries/regions to demonstrate the uncertainty propagation. 

 
 
For the following sections we just use roof albedo as an example to illustrate how we quantified 
the uncertainty propagation during data synthesize and spatial aggregation through MC simulation 
approach. Similar procedure was repeated for all U-Surf radiative and morphological parameters. 
The results have been reported in the revised manuscript.  
 
The derivation of roof albedo at 1-km resolution includes uncertainties from three components: 
building footprints detection, 10-m Sentinel-2 blue sky albedo product, narrow-to-broadband 
(NTB) conversion algorithm. The uncertainty from building footprint detection can be quantified 
using the false positive rate, which is approximately 1% in North America according to Table 3, 
i.e. the error is 𝜎+,,! = 0.01 . The RMSE of narrow-to-broadband algorithm is 𝜎-. = 0.023 . 
Regarding the uncertainty of Sentinel-2 albedo product, we can estimate it by examining the 
RMSE of black-sky albedo 𝛼/0-1# and white-sky albedo 𝛼&2)34. According to Lin et al., (2022), 
𝜎/0-1# = 0.0185 and 𝜎&2)34 = 0.0205, reported as the average of the unevenly and uniformly 
distributed urban area. We calculated the blue sky albedo 𝛼/054  as (1 − 𝐷)𝛼/0-1# + 𝐷𝛼&2)34 , 
where 𝐷 is the diffuse skylight ratio, with the common of value of 0.3 using the BaRAD2019 
dataset from Chakraborty and Lee, (2021). Thus, 𝜎/0-1# = ;(1 − 𝐷).𝛼/0-1#. + 𝐷.𝛼&2)34. =
0.0154. 
 
 

Continent North America South America Europe Asia Oceania Africa

Country United 
States Mexico Argentina Bolivia France Poland China Malaysia Australia Nigeria

Koppen 
climate zone*

- BSh Cfa Aw Cfb Dfb - Af Bwh Aw

Varying Hot semi-
arid

Humid 
subtropical

Tropical 
savanna

Temperate 
oceanic

Warm 
summer 

continental
Varying Tropical 

rainforest Hot desert Topical 
savanna

* The table only shows the predominant koppen climate zone if any.
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Theoretically, if we assume the uncertainties from different data products are independent, we can 
add the uncertainty from each data sources as a normally distributed perturbation to test the 
sensitivity of roof albedo to these uncertainties. For most of our input data, only RMSE value was 
available. Since 𝑅𝑀𝑆𝐸. = 𝑏𝑖𝑎𝑠. + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 , we adopted a conservative approach by using 
RMSE as the upper limit of potential bias, thereby maximizing our uncertainty estimation. We ran 
the Monte Carlo simulation by repeating aforementioned process by 1,000 times and taking the 
standard error across all simulations to analyze the propagation of uncertainties. Since we only 
applied the NTB algorithm where Sentinel-2 blue sky albedo product is unavailable, we can easily 
combine the uncertainties generated from two procedures together to calculate the final uncertainty.  
 
The average 95% confidence interval (i.e., 𝑧 = 1.96) of roof albedo across selected countries is 
approximately 0.003-0.017 at 1km resolution (Table 4). This demonstrates a reduction in 
uncertainty compared to the input data uncertainties at 10m resolution, primarily due to the spatial 
aggregation process from 10m to 1km resolution. 
 
Table 4. Estimated 95% confidence intervals (±) by Monte Carlo simulations across all regions. 

 
 
2) Absolute accuracy 
To validate our morphological parameters thematically, we compared U-Surf data against two 
recently available, observation-based datasets, Urban-PLUMBER and WSF-3D. This comparison, 
as visualized in Figure 8 and S5 (now moved to Figure 9 in the revised manuscript), shows 
generally strong agreement, especially for roof fraction (MAE=0.076, 0.081 for two reference 
datasets, respectively). We have added the data and bias as new supplementary Table S3 and S4. 
While direct validation of radiative parameters remains challenging due to the lack of 
comprehensive ground-truth datasets, our uncertainty analysis above demonstrates that the error 
propagation through our data synthesis and processing remains considerably small (Table 4). 
 
 
 
 
 
 
 
 

Continent Country

Radiative
Morphological

Emissivity Albedo

Roof
Impervious 

canyon 
floor

Pervious 
canyon 

floor
Wall* Roof

Impervious 
canyon 

floor

Pervious 
canyon 

floor
Wall* Urban 

percentage
Roof 

fraction
Pervious 
fraction

Canyon 
height to 

width ratio

Building 
height (m)

North 
America

United 
States 0.0443 0.0369 0.0181 0.0443 0.0086 0.0067 0.0020 0.0086 0.0029 0.0019 0.0056 0.0751 3.8092

Mexico 0.0316 0.0326 0.0137 0.0316 0.0043 0.0058 0.0009 0.0043 0.0039 0.0029 0.0060 0.1702 5.0254

South 
America

Argentina 0.0342 0.0289 0.0169 0.0342 0.0034 0.0044 0.0012 0.0034 0.0048 0.0024 0.0059 0.2130 5.0589

Bolivia 0.0477 0.0443 0.0133 0.0477 0.0096 0.0099 0.0010 0.0096 0.0033 0.0029 0.0076 0.1307 5.2250

Europe
France 0.0386 0.0479 0.0149 0.0386 0.0047 0.0101 0.0010 0.0047 0.0031 0.0045 0.0073 0.1592 4.4660

Poland 0.0381 0.0450 0.0159 0.0381 0.0045 0.0082 0.0011 0.0045 0.0031 0.0046 0.0085 0.1585 4.5200

Asia
China 0.0428 0.0394 0.0164 0.0428 0.0169 0.0056 0.0012 0.0169 0.0047 0.0061 0.0104 0.2156 8.2679

Malaysia 0.0359 0.0432 0.0135 0.0359 0.0041 0.0082 0.0007 0.0041 0.0034 0.0024 0.0049 0.1058 2.8700

Oceania Australia 0.0542 0.0616 0.0126 0.0542 0.0080 0.0129 0.0007 0.0080 0.0023 0.0026 0.0074 0.0681 3.0307

Africa Nigeria 0.0432 0.0560 0.0202 0.0432 0.0069 0.0118 0.0019 0.0069 0.0023 0.0087 0.0107 0.1052 2.5947

Average 0.0411 0.0436 0.0156 0.0411 0.0071 0.0084 0.0012 0.0071 0.0034 0.0039 0.0074 0.1401 4.4868
*Wall radiative parameters were processed by directly utilizing the roof parameters, resulting in the same uncertainty range.
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Table S3. Thematic validation results at 21 Urban-PLUMBER sites. 

 
 
Table S4. Thematic validation results at 17 WSF-3D sites. 

 
 

Site City Country Roof fraction
MAE

Pervious 
fraction MAE

Building height 
MAE (m)

Canyon height-
to-width ratio 

MAE
AU-Preston Melbourne Australia 0.110 0.370 0.929 0.124

AU-Surreyhills Melbroune Australia 0.061 0.015 4.407 0.204
CA-Sunset Vancouver Canada 0.030 0.111 1.664 0.159

FI-Kumpula Heksinki Finland 0.005 0.005 0.887 0.013
FI-Torni Helsinki Finland 0.165 0.112 4.220 0.582

FR-Capitole Toulouse France 0.014 0.046 2.224 0.446
GR-HECKOR Crete Greece 0.025 0.023 1.484 0.855

JP-Yoyogi Tokyo Japan 0.065 0.180 16.354 0.816
KR-Jungnang Seoul South Korea 0.397 0.014 2.900 0.441
KR-Ochang Ochang South Korea 0.022 0.271 12.600 0.056

MX-Escandon Mexico City Mexico 0.042 0.180 2.562 1.019
NL-Amsterdam Amsterdam Netherlands 0.111 0.194 3.780 0.240

PL-Lipowa Lodz Poland 0.052 0.101 21.590 0.316
PL-Narutowicza Lodz Poland 0.059 0.078 1.008 0.358

SG-TelokKurau06 - Singapore 0.160 0.118 15.737 1.493
UK-KingsCollege London United Kingdom 0.120 0.016 1.652 0.696

UK-Swindon Swindon United Kingdom 0.049 0.054 2.446 0.010
US-Baltimore Baltimore United States 0.044 0.002 7.239 0.082

US-Minneapolis1 Minnesota United States 0.050 0.047 6.436 0.057
US-Minneapolis2 Minnesota United States 0.060 0.114 6.436 0.057
US-WestPhoenix Arizona United States 0.050 0.561 7.716 0.113

Average 0.081 0.124 5.918 0.387

Site Country
Roof 

fraction 
MAE

Roof 
fraction 
RMSE

Building 
height MAE 

(m)

Building 
height 

RMSE (m)
Almaty Kazakhstan 0.054 0.070 8.150 10.586

Amsterdam Netherlands 0.070 0.095 5.098 7.078
Bavaria Germany 0.065 0.084 4.217 5.955

Cartagena Colombia 0.088 0.116 8.551 11.996
Dongying China 0.111 0.130 7.627 9.805
Gyeonggi South Korea 0.067 0.083 6.029 8.378

Indianapolis United States 0.045 0.067 5.000 7.264
Kigali Rwanda 0.062 0.084 6.475 9.823
Lipa Philippines 0.094 0.104 5.274 6.542

Munich Germany 0.053 0.069 5.587 7.626
Nairobi Kenya 0.058 0.082 12.445 17.714

NewYork United States 0.076 0.105 11.653 14.889
Niamey Niger 0.112 0.133 10.636 14.473
Seoul South Korea 0.113 0.124 11.210 13.386

Tanauan Philippines 0.092 0.104 4.881 5.675
Vienna Austria 0.063 0.082 6.614 8.872

Washington United States 0.072 0.094 7.132 8.276
Average 0.076 0.096 7.446 9.902
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To address the reviewer’s concern and in light of the reviewer’s suggestion, we have improved  
the Accuracy assessment and uncertainty section (Section 3.4) by adding discussions on the 
uncertainty quantification using MC simulations (new Supplementary Text S2) and accuracy 
evaluation against observations. We have also revised the high-level summary in Section 2.4 
accordingly: 
 
2.4 Dataset validation 
“Validating urban surface parameters on the global scale is extremely challenging primarily due 
to the lack of globally consistent measurement networks. This challenge is exacerbated by the 
scarcity of long-term urban observational sites, especially in diverse urban environments. The 
inherent variability within urban areas further complicates validation efforts, as data from one site 
may not represent the broader urban landscape. U-Surf is composed of extraction of satellite 
measurement, satellite-derived products (i.e., land cover data and building footprints), and our own 
derived parameters. The satellite measurements and derived products have already been validated 
and quality-controlled by their development teams, as summarized in Table 3. U-Surf parameters 
derived based on these input data sources are therefore subject to their inherent uncertainties and 
uncertainty propagation during data synthesis and processing. To systematically evaluate the 
accuracy and uncertainty of U-Surf parameters, we first conducted a thematic validation on the 
derived morphological parameters at 1 km resolution against the 3D World Settlement Footprint 
(WSF-3D, Esch et al., 2022) observational site data and Urban-PLUMBER site metadata. We then 
further employed Monte Carlo simulations to quantify the final uncertainties of U-Surf parameters 
arising from input data errors/uncertainties and their propagation (see Sect. 3.4 for detailed 
discussion).” (Line 383-395) 
 
3.4 Accuracy assessment and uncertainty 
“For the derived morphological parameters, we conducted a thematic validation based on two 
recently available, observation-based datasets, Urban-PLUMBER and WSF-3D. WSF-3D is a 
high-resolution (~ 90 m at the equator) global dataset that provides detailed three-dimensional 
information on building fraction, height, and volume, derived from satellite imageries, offering 
crucial insights into urban structures and their spatial distribution across the globe (Esch et al., 
2022). We compared the roof fraction and height at 1 km resolution across WSF-3D’s 17 validation 
sites. The Urban-PLUMBER project primarily aims to enhance the understanding of the quality of 
current urban climate models and has also produced a harmonized dataset of quality controlled 
and gap-filled observations from 21 diverse urban flux tower sites across different climate zones 
and urban built environments (Lipson et al., 2022). We compared all four morphological 
parameters across these sites by using neighboring pixels around the flux towers to evaluate against 
the site-specific information. 
 
The roof fraction showed strong agreement across the reference sites in both WSF-3D and Urban-
PLUMBER, with low mean absolute errors (MAEs) of 0.076 and 0.081 (Figure 8a). Similarly, the 
pervious fraction also aligned well at most Urban-PLUMBER sites, with a mean MAE of 0.124 
(Figure 9a). Some discrepancies were observed in building height (MAE=5.918m and 7.446m, 
Figures 8c and 8d) and canyon height-to-width ratio (MAE=0.387, Figure 9b). These discrepancies 
are primarily attributed to the disparity between the neighborhood-scale values captured by flux 
towers, typically representing areas within several hundreds of meters, and the 1 km-resolution 
averaged values. 
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As discussed briefly in Sect. 2.4, U-Surf’s parameters are inherently influenced by the 
uncertainties embedded in the synthesized data sources and uncertainty propagation during 
calculations. To systematically evaluate the uncertainties in final U-Surf parameters, we first 
documented the available validation approaches, as conducted by the development teams, and 
associated uncertainties for all input data sources in Table 3. Based on these numbers, we then 
employed the Monte Carlo simulation approach to quantify the final uncertainties in all our derived 
urban surface parameters in U-Surf (see Supplementary Text S2).  
 
Specifically, three datasets used to differentiate roofs, impervious and pervious canyon floors 
demonstrate high global classification accuracy. The 10m-resolution ESA land cover (Zanaga et 
al., 2022) was validated using updated Copernicus Global Land Service-Land Cover Validation 
(CGLS-100) dataset. The global overall accuracy across all land cover types is 76.7±0.5%. The 
confidence intervals for specific land cover types are 3.3% for built-up surface and average 1.2% 
for pervious canyon (the average value of tree cover, grassland, shrubland, bare soil). The MS-
BFP data (Microsoft, 2022) were evaluated using building polygon labels from Bing Maps, 
including Maxar and Airbus data. The precision of semantic segmentation (i.e., building pixel 
detection) showed regional variations with the lowest false positive rate of 0.1% in Mexico and 
highest false positive rate of 2.98% in Indonesia. The East Asia building footprints (Shi et al., 2024) 
were validated in sampled Chinese cities with manual annotation, compared against OSM building 
data and regional roof vectors (Zhang et al., 2022). It has an overall average accuracy of 89.63% 
and F1 score of 82.55%. The primary data source of building height (Che et al., 2024) underwent 
rigorous validation against various reference height datasets and selected cities from Google Earth 
Pro. The validated results showed R2 values ranging from 0.66 (Europe) to 0.96 (South America) 
and Root Mean Squared Error (RMSE) from 1.9m (South America) to 14.6m (Japan, North and 
South Korea) across different subregions. The supplementary dataset (Li et al., 2022) was also 
validated and compared against WSF-3D, yielding a global RMSE of 2.56m, with the lowest 
RMSE of 1.35m in Sub-Saharan Africa and the highest RMSE of 4.94m in China.  
 
All remote sensing products and algorithms used to derive radiative properties were validated 
against ground measurements with high credibility. ASTER GEDv3 (Hulley et al., 2015) was 
compared with MODIS Collection 4 & 5 Emissivity and validated against lab measurements at 
four large sand dune fields, yielding a relatively low average RMSE of 0.077. The broadband 
emissivity regression algorithm (Eq. 1) was validated against ASTER spectral library covering the 
wavelength ranging from 2-15μm, yielding the R2 of 0.913 and RMSE of 0.011 (Malakar et al., 
2018; Ogawa et al., 2008). The 10m land blue-sky albedo (Lin et al., 2022), retrieved from 
Sentinel-2 surface reflectance, was validated against local flux tower measurements, achieving an 
overall R2 of 0.94 and RMSE of 0.03 across five land cover types. The RMSE ranges from around 
0.0154 for urban areas (see Supplementary Text S2 for detailed calculation) to 0.032 for grassland. 
In addition, the narrow-to-broadband algorithm (Bonafoni and Sekertekin, 2020) demonstrated a 
R2 of 0.77 and RMSE of 0.023 when compared against the ground measurements at six Surface 
Radiation Budget Network (SURFRAD) stations. It also showed a R2 of 0.98 and RMSE of 0.021 
when compared against albedometer measurements at eighteen Perugia sites. 
 
The primary source of uncertainty in the AC adoption rate (Li et al., 2024b) (Li et al., 2024) stems 
from the linear model that correlates AC adoption rate with the number of AC units per household. 
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The linear model with saturation effect has an R2 of 0.9 (p < 0.001), RMSE of 11.5 and MAE of 
8.5 (both in the unit of %).  
 
Using these documented uncertainties, we conducted Monte Carlo simulations with 1,000 trails of 
randomly perturbed input parameters based on 10,000 randomly selected samples across 10 
countries (Table S2) to quantify the uncertainty of error propagation through our data synthesis 
and processing (Supplementary Text S2). The resulting 95% confidence intervals for all 
parameters across all sampled regions and global averages are presented in Table 4. These intervals 
provide the expected error/uncertainty ranges for our final estimates. Overall, the uncertainties 
propagated through our data synthesis and processing align closely with those in the input data and 
remain relatively small – partly due to spatial upscale from finer resolutions to 1 km – which 
confirms the robustness of our methodology.” (Line 632-726) 
 
Supplementary Text S2: Uncertainty propagation in data synthesis and processing 
“In our uncertainty assessment, we employed Monte Carlo simulation approach that assume the 
uncertainties from different data products are independent. For each simulation, we introduced 
normally distributed perturbations based on the documented uncertainties of individual data 
sources (Table 3) to evaluate how these variations affect our 1km output parameters. Most input 
datasets provided only RMSE values as their uncertainty metric, thus we adopted a conservative 
approach by approximating the standard deviation with RMSE (𝑅𝑀𝑆𝐸. = 𝑏𝑖𝑎𝑠. + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒, 
thus 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 ≤ 𝑅𝑀𝑆𝐸 ) in these cases, thereby ensuring our uncertainty estimates remain 
conservative. 
 
For most input datasets, we could directly obtain uncertainty values from original literature or 
calculate them through simple averaging. However, the uncertainty estimation for the Sentinel-2 
blue-sky albedo product required additional steps. We estimate the uncertainty of the Sentinel-2 
blue-sky albedo by examining the RMSE of black-sky albedo 𝛼/0-1# and white-sky albedo 𝛼&2)34. 
According to Lin et al. (2022), the average uncertainty of the unevenly and uniformly distributed 
urban areas gives 𝜎/0-1# = 0.0185 and 𝜎&2)34 = 0.0205, respectively. We then calculated the 
blue-sky albedo 𝛼/054 as (1 − 𝐷)𝛼/0-1# + 𝐷𝛼&2)34, where 𝐷 is the diffuse skylight ratio and is 
assigned the commonly used value of 0.3 here based on the BaRAD2019 dataset from Chakraborty 
and Lee, (2021). Thus, 𝜎/0-1# = ;(1 − 𝐷).𝛼/0-1#. + 𝐷.𝛼&2)34. = 0.0154.”  
 
4. The comparisons and analysis in the Figure 4 and 5 are interesting, meanwhile, I hope that 
authors can add some quantitative statistics. For example, in the line of 453-454, the author stated 
“the Global South (Latin America, Africa, and parts of Asia) generally shows lower values for 
these parameters and higher pervious surface fractions”. If the further statistics and analysis can 
be added, it may be interesting. 
 
Thank you for pointing this out. We have added more quantitative statistics and discussions in the 
main text as below: 
 
“In the Global North, particularly in Europe and United States, urban areas typically exhibit higher 
building density (roof fraction × urban percentage), greater average building height, and higher 
average canyon height-to-width ratio. These characteristics are indicative of more developed urban 
form and well-established infrastructure, often driven by the need to accommodate growing 
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populations in limited spaces. For instance, metropolitan centers (e.g. Manhattan, New York City, 
USA; Quartiers 1-4, Paris, France) in these areas frequently exceed 30-40% roof coverage, with 
average building heights surpassing 30 meters. In contrast, regions in the Global South (e.g., Latin 
America, Africa, and Central Asia) generally exhibit lower values for these parameters. For 
example, building density in these regions are 38.59%, 46.46%, 88.71% lower, respectively, than 
in the United States. Similarly, their median building height is 11.94%, 31.65%, 12.75% lower, 
respectively, than in Europe. Consequently, their median canyon height-to-width ratios are 29.88%, 
37.18%, 23.99% lower, respectively, than those in Europe. However, this trend is rapidly changing 
in emerging economies, including India and Brazil, where cities are experiencing swift urban 
growth. For instance, rapidly urbanizing places such as Delhi, India and Sao Paulo, Brazil have 
demonstrated tall and densely built environments, where Delhi has a roof fraction of 31.02% and 
building heights of 12.63m, while Sao Paulo has a roof fraction of 49.42% and building heights of 
13.87m, all of which exceed the 75th percentile in the global distribution (Figure 3c). Additionally, 
regions such as East Asia exhibit urbanization patterns that are more akin to those in North 
America and Europe, characterized by high roof fractions (Figure S4a) and significant vertical 
development. For example, many cities in Eastern China have exhibited city-wide average roof 
fractions above 14% and building heights exceeding 13m, reflecting rapid industrialization and 
economic growth that have rapidly transformed the urban landscape over the past few decades 
(Cai et al., 2022).” (Line 516-551) 
 
5. The descriptions about the TBD, HD, MD and LD should be strengthen, which has been 
mentioned several times in the results section. 
 
We thank the reviewer for the suggestion. First, we would like to clarify that U-Surf directly 
provides spatially continuous UCP values and therefore does not have categorical density classes. 
We use the four urban density classes (TBD, HD, MD, and LD) defined by J2010 in our results 
and discussion sections are just for two reasons: (i) for the ease of direct comparison with 
J2010/OF2020 data and (ii) to leverage the look-up table provided by J2010 for certain thermal 
properties. These four density classes were classified mainly based on their morphological and 
population density characteristics in J2010. Their typical ranges (valid for circa-2000) can be 
found in Jackson et al. (2010) and are reproduced here below in Table R1. 
 
Table R1. Characteristics of TBD, HD and MD per definition of Jackson et al. (2010). 

 
 
We have also added more information and discussion in the revised manuscript about how we 
separated raw U-Surf data to the four classes following their locations defined in J2010 in our 
response to Reviewer #1 Comment #2, and how we leveraged the four density classes to inform 

Urban Class H/W Building Heights 
(m)

Pervious Fraction 
(%)

Population Density 
(km2)

Typical Building 
Types

Tall Building District 
(TBD) 4.6 40-200+ 5-15 14,000 – 134,000+ Skyscrapers

High Density (HD) 
Residential/ 
Commerical/
Industrial

1.6 17-45 15-30 5,000 – 80,000+
Tall apartments, 
office bldgs, 
industry

Medium Density 
(MD) Residential 0.7 8-17 20-60 1,000 – 7,000 1-3 story apartment 

bldgs, row houses
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our thermal parameter assignments in our response to Comment #2.4. Please refer to our responses 
to these comments above. 
 
In addition, we have revised the following text to improve the clarity as below: 
 
“J2010 clusters the global urban areas into 33 distinct regions sharing similar climates, socio-
economic characteristics, and architectural practices (Figure S1), with properties defined within 
each region for up to four urban density classes: low density (LD), medium density (MD), high 
density (HD), and tall building district (TBD). These density classes are classified based on 
morphological features (including building height, pervious areal fraction, canyon height-to-width 
ratio, and typical building type) and population density. The dataset then prescribes uniform 
surface properties to each density type within a region.” (Line 89-94) 
 
6. In summary, the U-Surf dataset provides important support in urban climate modeling, and 
shows great advantages over the previous dataset (such as: CLMU and J2010), which meets the 
high-quality of the ESSD journal. I hope that above comments will help to improve the quality of 
this article. 
 
Thank you very much. We appreciate the review’s acknowledgement of the importance of U-Surf 
dataset and the helpful comments and questions. 
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