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Abstract. Fires are a significant disturbance in Earth’s systems. Smoke aerosols emitted from fires can 

cause environmental degradation and climatic perturbations, leading to exacerbated air pollution and 

posing hazards to public health. However, research on the climatic and health impacts of fire emissions 20 

is severely limited by the scarcity of air pollution data directly attributed to these emissions. Here, we 

develop a global daily fire-sourced PM2.5 concentration ([PM2.5]) dataset at a spatial resolution of 0.25º 

for the period 2000-2023, using the GEOS-Chem chemical transport model driven with two fire emission 

inventories, the Global Fire Emissions Database version 4.1 with small fires (GFED4.1s) and the Quick 

Fire Emission Dataset version 2.5r1 (QFED2.5). Simulated all-source [PM2.5] are bias-corrected using a 25 

machine learning algorithm, which incorporates ground observations from over 9000 monitoring sites 

worldwide. Then the simulated ratios between fire- and all-source [PM2.5] at individual grids are applied 

to derive fire-sourced [PM2.5]. Globally, the average fire-sourced [PM2.5] is estimated to be 1.942.04 μg 

m-3 with GFED4.1s and 3.7496 μg m-3 with QFED2.5. Both datasets show consistent spatial distributions 

with regional hotspots in central Africa and widespread decreasing trends over most areas. While the 30 

mean levels of fire-sourced [PM2.5] are much larger at low latitudes, fire episodes at the boreal regions 

can cause comparable PM2.5 levels as in the tropics. This dataset serves as a valuable tool for exploring 

the impacts of fire-related air pollutants on climate, ecosystems, and public health, enabling accurate 

assessments and supports for decision-making in environmental management and policy. 
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1 Introduction 

Atmospheric particulate matter, typically PM2.5 with aerodynamic diameter less than 2.5 μm, poses 

significant impacts on air quality, climate system, and public health (Gu et al., 2021;Salana et al., 

2024;Xie et al., 2024;Gu et al., 2021). These fine particles originate from a variety of sources, among 40 

which the biomass burning from both natural wildfires and anthropogenic activities makes substantial 

contributions (Burke et al., 2023;Atuyambe et al., 2024;Connolly et al., 2024;Atuyambe et al., 2024). The 

fire PM2.5 is particularly toxic due to its chemical composition and smaller size compared to urban-derived 

PM2.5 (Aguilera et al., 2021).. Exposure to elevated fire PM2.5 has been observed to increase the mortality 

rates for various diseases, particularly cardiovascular and respiratory ailments (Chen et al., 2021). 45 

Additionally, the increased temperatures associated with wildfire emissions promote the likelihood of 

adverse health effects (Xu et al., 2020). Furthermore, the heterogenous distribution of fire PM2.5 

concentrations ([PM2.5]) poses much larger population exposure for low-income countries (Xu et al., 

2023). Over the past a few decades, the frequency and magnitude of wildfire occurrences have escalated 

due to climate change and extreme weather events (Ward et al., 2012;Zhu et al., 2021;Melia et al., 50 

2022;Zhu et al., 2021;Hu et al., 2024b). Hence, a comprehensive examination of the trends and 

influencing factors related to fire PM2.5 is important for the development of effective environmental 

protection and health policies.  

Currently, two principal approaches are used for estimating fire [PM2.5] on the large scale (Yue et al., 

2024). The first method derives the changes of air pollutants before and after specific fire events using 55 

observational records. For example, Roberts and Wooster (2021) used Copernicus Atmosphere 

Monitoring Service, a system integrating remote sensing and ground-based observations, to estimate that 

fire air pollutants result in approximately 750,000 deaths annually worldwide with the highest mortality 

rates observed in Asia and Africa. Burke et al. (2023) utilized both surface and spaceborne PM2.5 

measurements (from 2000 to 2022) and found that wildfire smoke has stabilized or even reversed the 60 

decreasing trends of [PM2.5] in most U.S. states since 2016. Notably, these fire-induced increases are 

expected to remain unregulated as the climate continues to warm. In addition to station and satellite 

observations, numerical modelling is also a valuable tool to assess [PM2.5] from fire emissions. For 

instance, Chen et al. (2021) employed the GEOS-Chem model to estimate daily [PM2.5] attributable to 
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wildfires and revealed that short-term exposure to fire PM2.5 increases mortality risks, especially the all-65 

cause, cardiovascular, and respiratory deaths. Zhang et al. (2023) utilized an advanced model to assess 

daily [PM2.5] originating from both fire and non-fire sources across various regions of the USA. Their 

findings showed that fire smokes accounted for over 25% of the daily PM2.5 levels recorded in the Air 

Quality System of Environmental Protection Agency (EPA) from 2007 to 2018, deteriorating the U.S. air 

quality particularly along the Pacific coast and in the southeast. 70 

However, there are considerable discrepancies in modelled concentrations of wildfire pollutants due 

to variations in physicochemical processes, model resolutions, and meteorological forcings (Wolke et al., 

2012;Markakis et al., 2015;Wolke et al., 2012). Moreover, differences in fire emission inventories can 

significantly influence the assessment of fire air pollutants. For example, Desservettaz et al. (2022) used 

the chemical transport model (CTM) GEOS-Chem and revealed that the Global Fire Emissions Database 75 

version 4 with small fires (GFED4s) outperformed other fire inventories in Australia. On the global scale, 

Pan et al. (2020) used six fire emission inventories to drive GEOS-Chem model and found that simulations 

using the Quick Fire Emission Dataset (QFED) version 2.4 yielded the closest estimate of aerosol optical 

depth compared to both site-level and satellite-based observations during fire seasons. These studies 

revealed certain discrepancies among fire inventories and suggested a need of the comparison among 80 

these inventories to improve the accuracy of predicted fire air pollutants.  

Due to inherent limitations in CTMs and inventories, there has been a growing utilization of machine 

learning algorithms in recent years. These algorithms have proven effective in reducing biases in model 

simulations, particularly in regional analysis and prediction of wildfire pollutant concentrations. For 

instance, Wei et al. (2019) developed a space-time random forest (RF) algorithm that integrated satellite 85 

data, ground observations, and model outputs to estimate daily PM2.5 and black carbon concentrations at 

a one-kilometer resolution across the U.S. during 2000-2020.. On the global scale, Xu et al. (2023) used 

the RF algorithm to bias-correct the GEOS-Chem output, so as to assess global daily [PM2.5] generated 

from wildfires during 2001-2019. They improved the determination coefficient of simulated PM2.5 from 

0.22 of the original GEOS-Chem model to 0.75 with the RF adjustment. Their analyses showed that 90 

approximately 2.18 billion people experienced at least one day of severe pollution per year due to fire-

emitted PM2.5, with an average exposure of 9.9 days per person each year. However, due to the largehigh 
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computational cost, most of these machine learning algorithms were appliedCTM simulations have been 

performed at the regional scale or driven with a single fire inventories, which restricts their inventory, 

limiting the ability of machine learning methods to accurately quantify the spatiotemporal variability 95 

ofconstrain fire-related air pollutants on global and long-term scales. 

In this study, the GEOS-Chem model was employed to create two global datasets of fire [PM2.5] 

corresponding to the GFED4.1s and QFED2.5 emission inventories. These model datasets were refined 

using the eXtreme Gradient Boosting (XGBoost) machine learning approach in combination with 

abundant in situ measurements from thousands of monitoring stations. Subsequently, two sets of daily 100 

fire PM2.5 data were generated with temporal coverage from 2000 to 2023 and a fine spatial resolution of 

0.25°×0.25°. We aim to systematically compare [PM2.5] across different regions, specifically focusing on 

the variations in PM2.5 levels attributable to fire emissions. 

2 Data and methods  

2.1 Observations of surface PM2.5 concentrations 105 

We collected site-level measurements of [PM2.5] from a total of ~9000 monitoring stations in the 

world. The site number varied year by year with the maximum of 9541 in the year 2022. The data at 1822 

sites in China for 2014-2023 were obtained from the China National Environmental Monitoring Center 

(CNEMC, http://www.cnemc.cn). For the earlier years (2000-2013), we interpolated the data-fusion 

product of Tracking Air Pollution (TAP, http://tapdata.org.cn) (Geng et al., 2021;Xiao et al., 2021;Geng 110 

et al., 2021) to 1822 ground stations to align with the CNEMC data. This TAP dataset has shown a good 

consistency with observed Chinese PM2.5 levels for 2015-2022 (Fig. S1). In the United States, PM2.5 

observations at 1198 sites for 2000-2023 were obtained from the Environmental Protection Agency (EPA, 

https://www.epa.gov). European PM2.5 data at 1687 sites in 2013-2023 were obtained from the European 

Environment Agency (EEA, https://www.eea.europa.eu/en), with data in pre-2013 coming from the 115 

European Monitoring and Evaluation Programme (EMEP, https://emep.int). PM2.5 data for other countries 

at 4995 sites were downloaded from OpenAQ (https://openaq.org) and the World's Air Pollution: Real-

time Air Quality Index (https://waqi.info), where the Air Quality Index (AQI) was converted to PM2.5 
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following a standardized methodology. (Benchrif et al., 2021). All PM2.5 data, both daily and hourly, have 

undergone rigorous quality checks with outliers removed to ensure accuracy. Daily values were calculated 120 

from the hourly data, and sites with fewer than 10-day data in a year were excluded from the analysis. 

Finally, a total of 2560645 records were compiled for the model training and validation. 

2.2 Auxiliary data 

The auxiliary data utilized in this study are detailed in Table S1. Climatic data were downloaded from 

the ECMWF Reanalysis v5 (ERA5, https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5) 125 

with a spatial resolution of 0.25°×0.25° at the hourly interval. Relative humidity was calculated using 

surface pressure, 2-m temperature, and 2-meter dewpoint, based on the Clausius-Clapeyron equation 

(Pechony and Shindell, 2009). These meteorological data were aggregated to daily time scale to be 

consistent with PM2.5 measurements. Global land cover data from 2000 to 2023 were obtained from 

MODIS Land Cover (https://modis-land.gsfc.nasa.gov/landcover.html), which classifies 17 vegetation 130 

types according to the International Geosphere-Biosphere Programme (IGBP). 

 

2.3 GEOS-Chem model simulation 

We used the GEOS-Chem model (version 12.0.0, https://geoschem.github.io) to predict global [PM2.5] 

and isolate the contributions from fire emissions. The model is a global three-dimensional CTM operating 135 

at a horizontal resolution of 2° latitude by 2.5° longitude with 47 vertical layers extending from ground 

level to the mesosphere (LuYan et al., 20192018;David et al., 2019;Lu et al., 2019;Yan et al., 2018). The 

model incorporates MERRA-2 meteorological inputs and implements a comprehensive chemical 

mechanism covering HOx-NOx-VOCs-O3-halogen-aerosol interactions (Mao et al., 2013). Previous 

studies have extensively demonstrated the effectiveness of GEOS-Chem in simulating the reasonable 140 

distribution of trace gases and aerosols at multiple spatial and temporal scales (Xu et al., 2013;Breider et 

al., 2014;Li et al., 2019;Xu et al., 2013). 

Emissions from various sources, regions, and types are processed using the Harvard–NASA 

Emissions Component (HEMCO) module, which operates online and allows users to specify the grid, 
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apply scaling factors, and dynamically integrate, overlay, and update emission inventories (Keller et al., 145 

2014). In our study, we incorporated two daily fire emission inventories within the HEMCO framework, 

including GFED4.1s (short as GFED thereafter) and QFED2.5 (short as QFED thereafter), both of which 

range from 2000 to 2023 (last modified in June 26th, 2024). All simulated PM2.5 data at 2°×2.5° from 

GEOS-Chem were downscaled to 0.25°×0.25° using the bilinear interpolation (Wei et al., 2021). In 

addition, we estimated [PM2.5] unaffected by fires by disabling the biomass combustion inventories in 150 

GEOS-Chem. 

2.4 The machine learning algorithm 

We used the XGBoost machine learning algorithm to bias-correct the simulated all-source [PM2.5]. 

XGBoost is based on the principle of gradient tree boosting (GTB) algorithms, which combine multiple 

imperfect decision trees (referred to as base or weak learning trees) to create a more accurate composite 155 

decision tree (Chen and Guestrin, 2016). XGBoost is designed for efficiency and speed, capable of 

building trees gradually and supporting customized objective functions and evaluation metrics. These 

features make it particularly well-suited for various regression tasks. The primary objective of this 

algorithm is to minimize of loss function, enhancing the model’s predictive accuracy. Notably, XGBoost 

provides a robust and scalable solution that optimizes computational speed and reduces memory usage 160 

when training large sample datasets (Li et al., 2020). The formula for prediction is defined as follows: 

𝑌෠ =  ෍ 𝑓௞(𝑋)

௄

௞ୀଵ

(1) 

where 𝑌෠  is the predicted daily [PM2.5]; X is the input variable related to [PM2.5], which includes simulated 

[PM2.5] from GEOS-Chem, meteorological fields, and land cover data (Table S1). K is the number of 

decision trees used in the model, and fk denotes the tree constructed to minimize the residuals left by the 165 

(k-1)th tree. 

XGBoost implements early stopping strategies and regularization techniques within the objective 

function to effectively prevent overfitting. The kth iteration of XGBoost function (Rk) is defined as follows: 

𝑅௞ =  ෍ 𝑙൫𝑦௜, 𝑦పෝ ௞
൯

௧

௜ୀଵ

+ ෍ 𝛺൫𝑓௝൯

௞

௝ୀଵ

(2) 



 

8 
 

where t refers to the number of samples; yi represents the actual value of the ith sample, and yiෝk means the 170 

predicted value of the ith sample after k iterations. The function l൫yi,yiෝk
൯ is a differentiable loss function 

used to measure the discrepancy between yi and yiෝk . The regularization term Ω൫fj൯  includes the 

complexity of the amount of the tree fj, such as the number of nodes and the weights assigned to each 

node (Ma et al., 2020). In addition, XGBoost employs a second-order Taylor expansion for the loss 

function, enhancing the precision of the model’s error assessment and consequently improving the 175 

accuracy of predictions (Wong et al., 2021).  

In this study, we used meteorological data, land cover information, and simulated all-source [PM2.5] 

from the GEOS-Chem model (Table S1) to develop XGBoost models. These gridded input data were 

interpolated to monitoring sites, and the site-level PM2.5 measurements was used as the predictand. Due 

to the substantial data volume, we trained the XGBoost model on a year-by-year basis using available 180 

measurements and modeling data from the corresponding years. For each year, 80% of observational 

records were randomly selected to train the XGBoost model, while the remaining 20% were used as 

independent samples for validations. The developed and validated machine learning models were then 

used to derive global gridded [PM2.5], using meteorological reanalyses, land cover data, as well as PM2.5 

outputs from GEOS-Chem models, at the resolution of 0.25°×0.25° on a daily base. We estimated fire-185 

emitted [PM2.5] by applying the simulated fire-to-all ratio of [PM2.5] to the XGB-adjusted all-source 

[PM2.5] following the same approach by Xu et al. (2023): 

                                                  [𝑃𝑀ଶ.ହ]௙௜௥௘ =
[𝑃𝑀ଶ.ହ]௔௟௟

ீ஼ − [𝑃𝑀ଶ.ହ]௡௢௙௜௥௘
ீ஼

[𝑃𝑀ଶ.ହ]௔௟௟
ீ஼ × [𝑃𝑀ଶ.ହ]௔௟௟

௑஻ீ                           (3) 

3 Results 

3.1 Bias-correction and validation of all-source [PM2.5] 190 

Figure 1 shows the locations of monitoring sites and the corresponding [PM2.5] in 2022. High levels 

of PM2.5 are observed in Asia, especially over India and East Asia, where large anthropogenic emissions 

locate. Predicted all-source [PM2.5] by the XGBoost model, which implements GEOS-Chem simulations 

considering GFED fire emissions, in general captures the observed spatial pattern with the determination 
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coefficient (R2) of 0.82, a root-mean-square error (RMSE) of 9.22 μg m-3, and a normalized mean bias 195 

(NMB) of 0.71%, respectively (Fig. 1b). Similarly, the XGBoost model demonstrates good performance 

when applied to GEOS-Chem simulations driven with QFED inventory, as shown in Fig. S2 for the results 

of 2022. 

Figure 2S3 presents the top ten most crucial features identified by the XGBoost model for predicting 

all-source [PM2.5] using two different fire inventories in 2022. As expected, the data simulated by the 200 

GEOS-Chem model consistently rank as the most important feature. This is followed by meteorological 

variables such 10-meter wind speed, surface pressure, and boundary layer height, which have a significant 

influence on [PM2.5] variations (Wei et al., 2019). Although there are variations in the importance scores 

of the top ten features between the two inventories, it is evident that meteorological data has a more 

pronounced impact on [PM2.5] compared to land use data. 205 

Following the same protocol, we developed machine learning models using XGBoost method for 

other years as well. Each year's model featured distinct parameterization schemes, and we utilized a 10-

fold cross-validation (CV) method to verify the robustness of these models. The statistical indicators, 

including CV score R2, overall R2, and RMSE for the XGBoost procedures over 24 years are displayed 

in Fig. 3S4. The R2 of CV validation remained above 0.85 throughout the study period, demonstrating 210 

that the XGBoost model effectively bias-corrected the predicted all-source PM2.5 with reasonable spatial 

coverage and temporal stability. It should be noted that the R2 gradually decreased after 2012, likely due 

to the rapid growth in data volume, which may have weakened the correlations (Perry and Dickson, 2018). 

 

3.2 Development and validation of fire [PM2.5]  215 

We compare the all-source [PM2.5] with ( [𝑃𝑀ଶ.ହ]௔௟௟
௑஻ீ ) and without ( [𝑃𝑀ଶ.ହ]௔௟௟

ீ஼ ) the XGBoost 

adjustment. Averaged for 24 years, the original simulations exhibit high [PM2.5] in North Africa, India, 

and East Asia, and relatively high values in eastern U.S. and central Europe (Fig. 4a2a). With the bias-

correction, those hotspots are either weakened or shrink (Fig. 4b2c). Specially, [PM2.5] decreases by 28.8% 

in North Africa, 12.3% in India, 41.7% in East Asia, 27.5% in eastern U.S., and 35.5% in central Europe 220 

(Table 1). In contrast, the adjusted [PM2.5] tends to increase over the regions with limited anthropogenic 
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perturbations, such as boreal forest, Tibetan Plateau, Australian desert and so on (Fig. 4c2e). Such 

discrepancies suggests that the GEOS-Chem model generally underestimates pollution levels in pristine 

regions (Kim et al., 2015;Protonotariou et al., 2010;Kim et al., 2015) and overestimates them in areas 

with dense pollution (Lei et al., 2021). Similar changes in [PM2.5] are found for the simulations using 225 

QFED (Fig. S32b, d and f) fire inventories. It worths noting that changes of [PM2.5] varied significantly 

over some regions among different fire inventories. For example, the bias-corrected [PM2.5] decreases by 

19.2% in India and 33.6% in eastern U.S. with QFED (Table 1), much larger than those with GFED, 

suggesting that differences in fire inventories result in certain discrepancies in the regional [PM2.5]. 

We further derive fire-sourced [PM2.5] using Equation (3) and validate it for typical fire events during 230 

2018-2022 (Fig. 53). Fire carbon emissions from GFED are used to pinpoint the accurate fire locations 

for these events (Table S2). The fire-affected sites are determined if their back trajectory cross the fire 

locations within the three days after occurrence. For example, 55 sites in Canada exhibited abrupt 

enhancement of [PM2.5] more than 5 times above ordinary level around August 15th, 2023. The back 

trajectory of these sites aligned with the large fire emissions at the western coast during August 13-15 235 

(Fig. S4S5). Similarly, 94 sites along the eastern coast of Australia were affected by the fire plume 

transport during December 8-10, 2019 (Fig. S5S6). Averaged for these 12 events, the correlation 

coefficient (R) of [PM2.5] between observations and simulations increases from 0.16±0.37 without fire 

emissions to 0.58±0.29 with fire emissions. The NMB is improved from -53.17±25.50% without fire 

emissions to 10.68±24.96% with fire emissions during the correspondent fire periods. A similar 240 

improvement of [PM2.5] is achieved with QFED emission inventory for these fire events (Fig. S6).S7). 

We further compare the fire-sourced [PM2.5] data with the estimates by Childs et al. (2022) in the U.S. 

(Fig. 4). Our estimates show reasonable performance, with correlation coefficients of 0.68 (0.6) and 

RMSE of 2.79 (2.71) μg m-3 using the GFED (QFED) inventory. However, fire-sourced [PM2.5] form 

GFED is overall lower than that of Childs et al. (2022) by -55.04%.  245 

The probability density distributions of fire-sourced [PM2.5] from the two inventories show notable 

differences (Fig. S8). During 2000-2023, fire [PM2.5] from QFED is more than twice that from GFED 

below the 75th percentile, indicating that QFED predicts significantly higher [PM2.5] for low to moderate 

fire events. However, this difference diminishes above the 90th percentile and becomes particularly 
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constrained at the 99th percentile, where fire-sourced [PM2.5] from GFED is 79.29% of that from QFED. 250 

It suggests that while both inventories yield comparable estimates for extreme fire episodes, GFED 

systematically underestimates emissions from smaller fires. This underestimation persists despite 

improvements in GFED’s representation of small fires through additional implementations (van der Werf 

et al., 2017). Consequently, validations in the U.S. reveal substantial low values with GFED relative to 

observations (Fig. 4), whereas both inventories perform comparably during high-emission fire episodes 255 

(Figs. 3 and S7). 

 

3.3 Spatiotemporal variations of fire-sourced [PM2.5]  

We examine the spatiotemporal variations of fire [PM2.5] derived from the GFED inventory (Fig. 65). 

Averaged for 2000-2023, fire-sourced [PM2.5] shows strong spatial heterogeneity with the highest 260 

concentrations in central Africa and secondary hotspots in South America, Southeast Asia, North America, 

and Siberia. An upward trend in fire-related [PM2.5] is found in Siberia and North America, while most 

other regions show downward trends (Fig. 6b5b). Predictions using the QFED inventory indicate much 

higher long-term average fire-related [PM2.5] compared to GFED (Table 2), particularly in the Middle 

East, western Siberia, and eastern South America (Fig. 6c5c and 6e5e). The decreasing trend in fire [PM2.5] 265 

predicted by QFED is even more pronounced than that predicted by GFED in fire-prone regions such as 

western Siberia, South America, and Australia (Fig. 6d5d). In contrast, a positive trend is predicted by 

QFED in eastern China and Europe, where wildfires are typically limited due to the dense population 

(Bistinas et al., 2014;Knorr et al., 2014). These differences in fire-sourced [PM2.5] are mainly due to the 

discrepancies in fire inventories. In global fire-prone regions, organic carbon (OC) emissions from fires 270 

are 51.08-65.18% lower in the GFED inventory compared to the QFED inventory (Fig. 7a6a). Moreover, 

the trends in fire emissions are generally more negative or less positive in QFED than in GFED (Fig. 

7b6b). Globally, the average fire-sourced [PM2.5] is estimated to be 1.942.04 μg m-3 with GFED and 

3.7496 μg m-3 with QFED (Table 2). 

On the long-term mean basis, fire-related [PM2.5] is significantly higher in the tropics than in boreal 275 

regions (Fig. 65), primarily due to the high fire emissions in central Africa (Fig. 76). However, during 
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extreme events, fire-sourced [PM2.5] can reach comparable levels at both low and high latitudes (Fig. 87). 

For instance, an unprecedented fire event over Canada in 2023 resulted in a regional hotspot exceeding 

30 μg m-3, surpassing the maximum value of ~20 μg m-3 in central Africa. Similarly, the extreme Siberian 

fires in 2019 significantly elevated local [PM2.5] and resulted in air pollution levels comparable to those 280 

in South America. From 2000 to 2023, the ratio of maximum to mean fire [PM2.5] peaked at values 

exceeding 4 around 60º in both hemispheres, gradually decreasing to 2 at lower latitudes (Fig. 7a). In the 

vast tropical areas, fires are primarily driven by anthropogenic activities (Ward et al., 2018;Marques et 

al., 2021;Ward et al., 2018), leading to relatively stable emissions from year to year. In contrast, most 

biomass burning in boreal regions is caused by wildfires, which are less inhibited by human activities. 285 

These uncontrolled fire episodes, combined with the huge carbon storage in boreal forests, result in 

tremendous emissions in specific years, significantly affecting air quality, climate system, and ecosystem 

functions at high latitudes in the Northern Hemisphere. It worths noting that fire-sourced [PM2.5] shows 

lower extreme values in QFED (Fig. S7S9) compared to those in GFED (Fig. 87) over Canada, though 

the mean fire [PM2.5] is much higher associated with the former inventory (Fig. 7).6).  290 

Extreme fire episodes pose significant threats to public health. The percentage of days and land grids 

with fire-sourced [PM2.5] exceeding the World Health Organization’s air quality standard of 15 g m3 

showed a global decreasing trend of -0.03% yr-1 (Fig. 8a). Regionally, an increase of 0.04% yr-1 was 

found in North America, driven by the 2023 Canadian fire episode, though this change was not 

statistically significant. In other regions, the exposure risk to high levels of fire PM2.5 declines, with the 295 

most notable declines of -0.22% yr-1 in South America and -0.13% yr-1 in Africa. While extreme fire 

[PM2.5] in general decreased, a turning point occurred in 2017, with more pronounced fire events 

thereafter. To better understand recent trends, we examined changes in fire-sourced [PM2.5] during the 

past few years. Relative to 2000-2019, fire [PM2.5] decreases across nearly all latitudes from 2020 to 2023 

for both inventories (Fig. 9). Regionally, hotspots of increased fire [PM2.5] could be found in North 300 

America, due to the 2023 Canadian fires, and in the Amazon, due to the 2022 Brazilian fires. Additionally, 

fire [PM2.5] levels increased in central Africa, northern India, and the Indo-China Peninsula, where 

human-induced agricultural burning is prevalent (van der Werf et al., 2017).  
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4 Conclusions and discussion 305 

We developed a global high-resolution dataset of fire-sourced PM2.5 concentrations for the period of 

2000-2023, using a chemical transport model driven with two fire inventories. A machine learning 

algorithm was applied to correct biases in the simulated [PM2.5] from the GEOS-Chem model, and to 

enhance the spatial resolution of data product. Validations demonstrated its high accuracy in capturing 

all-sourced [PM2.5] across more than 9000 global sites and the fire-sourced [PM2.5] for typical fire events. 310 

Though with some discrepancies, fire-sourced [PM2.5] from the two inventories displayed a consistent 

spatial pattern, with high levels of fire-related air pollution in tropics and relatively lower concentrations 

at middle to high latitudes. They also exhibited significant global declines in fire-sourced [PM2.5] over 

time, with the most pronounced decreases occurring in tropical regions. In contrast, fire episodes in boreal 

regions led to stronger enhancement of [PM2.5] compared to those in the tropics, due to the larger fuel 315 

loads of northern forests and the uncontrolled scale of fires in these areas.  

Recent advancements in ground monitoring networks and satellite observation systems have led to 

the development of high-resolution, long-term benchmark datasets for air pollutants (Wei et al., 2023;Gui 

et al., 2020;Song et al., 2022;Xiao et al., 2022;Wang et al., 2023;Wei et al., 2023;Xiao et al., 2022). 

However, these datasets typically retrieve total amount of PM2.5 without isolating the concentrations 320 

specifically caused by fire events. To accurately derive fire-related [PM2.5], it is crucial to firstly estimate 

PM2.5 concentrations that are unaffected by fires. Some studies have identified fire-affected sites using 

satellite imagery and then obtained non-fire PM2.5 either by taking the median [PM2.5] during non-fire 

seasons or by using data at nearby sites outside the influence of fire plumes (BurkeO’Dell et al., 

20232019;Delp and Singer, 2020;O’DellBurke et al., 20192023). This approach, however, depends 325 

heavily on the accuracy of high-frequency fire tracking systems to correctly identify fire periods and 

affected areas. Additionally, it may introduce biases due to not accounting for baseline [PM2.5] differences 

across various locations or periods. In our study, we performed sensitivity experiments using a CTM, 

where fire emissions were selectively activated or deactivated. This allowed us to more accurately 

quantify the changes of [PM2.5] attributable to fire emissions. Furthermore, we employed machine-330 

learning adjustments to minimize biases inherent in chemical models, thereby improving the accuracy 

and resolution of the derived fire-related [PM2.5].  
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We employed a similar approach to Xu et al. (2023) but incorporated new datasets and perspectives. 

First, we used global observed PM2.5 concentrations from 9541 monitoring sites, significantly more than 

the 5661 stations used in Xu et al. (2023). The expansion of ground-based stations, particularly in fire-335 

prone regions such as Africa and South America, strengthens the foundation for model training and data 

validation. Second, we applied two different fire emission inventories. Comparisons showed that fire 

[PM2.5] estimates from these inventories were consistent during extreme fire episodes (Figs 3 and S7). 

However, for low to moderate fire emissions, fire [PM2.5] from GFED was much lower than that from 

QFED (Fig. S8), suggesting that global population exposure to fire-related air pollution may have been 340 

underestimated in Xu et al. (2023) due to the application of GFED. Third, we extended the ending 

simulation year from 2019 to 2023, capturing an additional four years that included unprecedent fire 

events, such as the 2023 Canadian fires and the 2022 Brazilian fires. These events provide valuable data 

for assessing population exposure and associated health impacts. Fourth, we found a global decreasing 

trend in fire [PM2.5] during 2000-2023, which contrasts with the increasing trend reported in Xu et al. 345 

(2023). This discrepancy may stem from differences in machine learning approaches (random forest vs. 

XGBoost in this study), pollution definitions (population-weighted vs. non-weighted), and observational 

datasets. Despite these differences, both studies identified a turning point in 2017, after which global fire 

[PM2.5] began to increase, with the most pronounced rise observed in boreal regions. 

The two datasets derived from different inventories showed discrepancies in both the long-term mean 350 

and trend of fire-sourced [PM2.5] (Fig. 65). In general, fire-related [PM2.5] is much higher when using the 

QFED inventory compared to GFED, but the long-term trend is more negative with QFED. As expected, 

these discrepancies can be attributed to differences in the underlying fire emission inventories (Fig. 7).6), 

which stem from variations in their estimation methods, data sources, emission factors, and so on (Kaiser 

et al., 2012;Larkin et al., 2014;Jin et al., 2023). For example, QFED adjusts emission factors based on 355 

aerosol optical depth from MODIS (Petrenko et al., 2012;Li et al., 2022), resulting in significantly higher 

emissions in some regions compared to GFED. In contrast, GFED relies on burning pixels and changes 

in surface reflectance identified during satellite overpasses under relatively cloud-free conditions, which 

may lead to underestimating burned areas especially for some small fires (Pan et al., 2020). Further 

validations showed that all-source [PM2.5] using GFED yielded an R value of 0.58±0.29 and an NMB of 360 
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10.68±24.96% averaged for the 12 fire episodes (Fig. 53). Slightly improved statistical metrics were 

achieved using QFED, with an R value of 0.63±0.26 and an NMB of 6.56±27.61% for the same events 

(Fig. S6S7). However, these differences are too minor to conclusively determine which dataset provides 

a better estimate of fire-sourced [PM2.5]. Fire-sourced [PM2.5] is generally lower in the GFED dataset 

compared to QFED; exceptions exist, such as the 2023 Canadian fires, in which fire-sourced [PM2.5] from 365 

GFED (Fig. 87) was significantly higher than that from QFED (Fig. S7S9). Therefore, we recommend 

using the average of fire-sourced [PM2.5] from both inventories jointly to better capture theto indicate the 

mean state, while using their difference as the range of uncertainties associated with fire-related air 

pollutants.  

There are some uncertainties and limitations in our study. First, the PM2.5 observations used for 370 

machine learning lack broad spatial coverage. Although we gathered data from thousands of monitoring 

sites worldwide, most of them are located in the middle to high latitudes of the Northern Hemisphere. 

PM2.5 records are still limited in the fire-prone regions, such as central Africa, which are usually wildland 

areas far away from populated regions. This uneven distribution of monitoring sites may introduce some 

biases in the derived all-source [PM2.5] estimates and the subsequent contributions by fire emissions. 375 

Second, we used only one machine learning method for data training. In the preliminary stages, we 

compared the effectiveness of three different machine learning approaches for correcting biases in 

simulated [PM2.5]. We found that XGBoost algorithm outperformed the other two methods, Random 

Forest and Deep Neural Networks, showing better statistical metrics against observations (not shown). 

Although we chose XGBoost for the final analyses, further investigation into results from other machine 380 

learning algorithms is warranted to reduce uncertainties inherent in data-driven methods.  Third, biases 

in the [PM2.5] simulated by the GC model may significantly affect the accuracy of machine learning. 

Predicting air pollutants involves uncertainties due to variations in meteorological forcing, chemical and 

physical schemes, initial and boundary conditions, and so on. For example, Qiu et al. (2024) found that 

the GC model significantly overestimated [PM2.5] during extreme wildfire events in 2020 over the western 385 

U.S. In contrast, our derived fire [PM2.5], using the same GFED inventory, is much lower than the 

estimates of Childs et al. (2022) for low to median fire events (Fig. 4). These findings suggest that 
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incorporating more validated fire inventories and/or chemical models is necessary to better quantify the 

uncertainties in derived air pollutant concentrations. 

 Despite the limitations mentioned, our study presents a significant advancement in the development 390 

of global daily fire-sourced [PM2.5] datasets, featuring the most up-to-date, fine spatial resolution, and 

covering the longest time period available. By integrating a chemical model with a machine learning 

approach, we have effectively isolated the impact of fire emissions on ground-level [PM2.5], while also 

addressing and reducing modeling biases. This methodology allows for a more accurate representation of 

fire-related air pollution. Furthermore, we provide results derived from two different emission inventories, 395 

offering a comparison that highlights the uncertainties associated with varying emission estimates. The 

dataset we have constructed is not only a novel contribution to the field but also holds significant value 

for future research. It can serve as a critical input for studies examining the climatic, ecological, and 

epidemiological impacts of air pollutants from global fires. The insights gained from this dataset can 

inform policy decisions, improve public health strategies, and enhance our understanding of the broader 400 

environmental effects of wildfire emissions. 
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 600 

Figure 1. Observed PM2.5 concentrations and their comparisons with predictions made by the XGBoost model. Panel (a) 

presents the annual mean PM2.5 concentrations (([PM2.5], units: μg m-3) at 9541 monitoring sites in 2022. Panel (b) shows daily 

PM2.5 concentrations predicted by the GEOS-Chem model, adjusted using the XGBoost approach, and compared with 

validation subsets of observations in 2022. The GEOS-Chem simulations incorporate emissions from both anthropogenic 

sources and the Global Fire Emissions Database version 4.1s. Colors in (b) represent data frequency, and the red dashed line 605 

indicates the linear regression. Validation metrics, including the sample size (N, 20% of total observational records), regression 

equation, determination coefficient (R2), root-mean-square error (RMSE), and normalized mean bias (NMB), are provided. 

GEOS-Chem simulations using QFED inventory for 2022 are shown in Fig. S2. 
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Figure 2. Top 10 important features measured by F-score for the machine learning model, which was trained using GEOS-

Chem simulations with fire emissions from (a) GFED and (b) QFED inventories in 2022, respectively. The full name of each 

feature is shown in Table S1. 615 
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Figure 3. Statistical metrics of simulated PM2.5 concentrations ([PM2.5]) from 2000 to 2023. Panel (a) shows the total number 

of sites and samples (N) used for machine learning training. Panel (b) presents the 10-fold cross-validation R2 for each year, 620 

comparing simulations using different fire emission inventories, including GFED and QFED. Panels (c) and (d) display the 

year-to-year R2 and RMSE between observed and simulated [PM2.5] using these different fire emission inventories. 
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Figure 4. Annual mean all-source [PM2.5] for 2000-2023 from the (a) original GEOS-Chem simulations at 0.25°×0.25º 625 

resolution and (b) derived using (a) GFED and (b) QFED inventories, as well as (c, d) bias-corrected simulationsestimations 

using the XGBoost approach at the same resolution. The difference between the original and bias-corrected [PM2.5] is shown 

in (c). The simulated [PM2.5] is derived using GFED4s fire emissions.e, f).  
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 630 

Figure 53. Comparisons of [PM2.5] between observations (blue) and simulationsestimations with (red) and without (black) fire 

emissions for 12 incidences during 2018-2022. The simulationsestimations are performed using the GEOS-Chem model driven 

with fire emissions from the GFED inventory and bias-corrected with the XGBoost approach. Blue boxes (representing 

multiple sites) or points (representing single sites) on the map indicate the locations of air quality monitoring sites affected by 

nearby fire plumes. The sources of these fire episodes were determined using Lagrangian back-trajectory analysis as shown in 635 

Figs S4-S5-S6. The observed and simulatedestimated [PM2.5] at all sites averaged for fire periods are shown on each panel. 

These fire events were sourced from the Global Disaster Data Platform (https://www.gddat.cn/newGlobalWeb), which 

provides fire locations and the approximate start and end dates as shown in Table S2. 
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Figure 6. Long-term (a) mean and (b) trend of fire [PM2.5]

 

Figure 4. Comparison of fire-sourced PM2.5 (μg m-3) estimated using (a) GFED and (b) QFED inventories with smoke PM2.5 

observed by Childs et al. (2022) at 100156 polygons in U.S. during 2016–2019. Validation metrics of N, regression equation, 

R2, RMSE, and NMB are calculated. 645 
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Figure 5. Long-term (a) mean and (b) trend of fire [PM2.5] (μg m-3) derived using the GFED inventory for 2000-2023. The 

box regions in (a) indicate areas used for comparing differences between two inventories. Panels (c) and (d) display the same 

information as (a) and (b), but for fire [PM2.5] from QFED inventory. The differences in fire [PM2.5] (Δ[PM2.5]) between the 650 

two inventories are presented for the long-term (e) mean and (f) trend during 2000-2023. Green slashes indicate areas with 

significant (p < 0.05) changes. 
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 660 

Figure 76. The mean (a) and trend (b) of OC emissions in high fire-prone regions indicated by the GFED (red) and QFED 

(blue) inventories. Panels (c) and (d) display the fire-sourced [PM2.5] predicted using these two inventories. Errorbars represent 

one standard deviation for the year-to-year variations, and ‘*’an asterisk denotes areas with significant (p < 0.05) trends. 

Domain of the labelled regions is shown on Fig. 6a5a. 

  665 



 

33 
 

 

 

  



 

34 
 

 

 670 

Figure 87. The global maximum of fire [PM2.5] (μg m-3) from 2000 to 2023 derived using the GFED inventory, along with 

fire [PM2.5] during years of high wildfire emissions in various regions. For each grid on the global map, the maximum fire-

sourced [PM2.5] during 2000-2023 is shown. The ratios between zonal maximum and mean values are shown alongside the 

panel. For the three regions, numbers before the parentheses represent the mean fire [PM2.5] averaged for the affected countries 

or regions in that specific year. 675 
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Figure 8. Annual percentage of days and land grids with fire-sourced [PM2.5] exceeding 15 g m3 in (a) Global, (b) Asia, (c) 

North America, (d) Africa, (e) South America and (f) Oceania for 2000-2023. The average estimates from GFED and QFED 

are shown as bold lines, with shadings indicating their range. Regional trends are displayed on the top right of each panel, with 680 

an asterisk denoting significant (p < 0.05) changes.
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Figure 9. Differences in estimated fire-sourced PM2.5 (μg m-3) between 2020-2023 and 2000-2019 derived using (a) GFED 

and (b) QFED inventories. The zonal averages and one standard deviation are shown alongside each panel. 
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Table 1. Mean PM2.5 before and after bias-correction in selected regions averaged for 2000-2023 

  EUS CE NAF IN EA 

GFED 

GC 14.38±3.39 24.74±3.67 45.97±16.46 33.73±16.36 68.68±33.41 

XGB 10.42±2.16 15.94±3.33 32.74±8.08 29.59±8.07 40.08±16.73 

Differe

nceDif

f 

3.96±3.13 8.79±3.85 13.22±10.33 4.14±10.54 28.61±20.14  

QFED 

GC 16.55±3.44 23.56±3.25 47.56±15.82 35.60±16.30 70.57±32.36 

XGB 10.99±2.58 16.10±3.20 27.09±7.20 28.78±7.07 39.00±16.95 

Differe

nceDif

f 

5.56±3.38 7.46±3.81 20.47±10.57 6.82±12.90 31.57±19.79 
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Table 2. The mean fire-induced [PM2.5] in selected regions averaged for 2000-2023 

 NA SA CAF SB SEA Global 

GFED 1.5453±0.9899 3.72±2.43 5.31±4.28 1.8687±1.08 3.25±1.72 1.94±2.2404±2.33 

QFED 2.8684±1.3130 6.81±2.77 7.25±4.99 4.4043±1.6865 3.7988±1.7262 3.74±2.9896±3.01 
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