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We are grateful to the editor and referee for their time and energy in providing helpful 

comments and guidance that have improved the manuscript. In this document, we 

describe how we have addressed the reviewer’s comments. Referee comments are 

shown in black italics and author responses are shown in blue regular text.  

 

Reviewer #3: 

The study has constructed a global dataset of fire-sourced PM2.5 concentrations at a 

spatial resolution of 0.25 degree and daily scale covering the period of 2000-2023. The 

dataset is developed using global model simulations with two fire emission inventories, 

and further with bias-corrected using a machine learning algorithm applied to predict 

global surface PM2.5 measurements. Differences between the fire-sourced PM2.5 

concentrations derived from the two fire emission inventories (GFED vs. QFED) are 

further analyzed. 

 

Overall, I think the study is well conducted and the high-resolution fire-sourced PM2.5 

dataset is valuable for the community to further explore the impacts of fires on the 

environment, such as its use in the recent study (Xu et al., Nature 2023). Publishing the 

dataset (with reasonable extension relative to the previous study) on ESSD appears to 

fit the journal’s scope. 

 

Here I have several comments on the quality of the dataset that hope the authors can 

further address and refine. 

 Thank you for your positive evaluations. 

 

Comments 

 

1) The differences between GFED vs. QFED derived fire PM2.5 need to be better 

quantified. It seems that compared with the previous dataset of Xu et al. (Nature 2023), 

the datasets presented in this study apply two different fire emission inventories. Why 

were the two fire emission inventories selected? Did they represent the current fire 

emission uncertainty ranges? Section 3.3 discussed their differences but mainly focused 

on the mean values. How about the episodic fire events? Some comparisons based on 

the daily scale would be valuable. 

 Thank you for your valuable suggestions. Xu et al. (2023) compared the 

uncertainties in fire-sourced [PM2.5] from different inventories, but only for the 

year 2012. In contrast, our study provided datasets from both inventories spanning 
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2000-2023, enabling us to compare their spatiotemporal variations. Initially, we 

considered using the FINN and GFAS inventories as well. However, these datasets 

were slower to update and had incomplete emission data for the timeframe of our 

study. The GFED and QFED inventories, being more efficient in the data update, 

were ultimately chosen.  

 

The inclusion of two inventories is one of the major contributions of our study to 

the community. In the revised version, we added Figure 4 to validate the derived 

fire [PM2.5] from both inventories against estimates from Childs et al. (2022), and 

Figure S8 to compare the differences between them at various percentiles: “The 

probability density distributions of fire-sourced [PM2.5] from the two inventories 

show notable differences (Fig. S8). During 2000-2023, fire [PM2.5] from QFED is 

more than twice that from GFED below the 75th percentile, indicating that QFED 

predicts significantly higher [PM2.5] for low to moderate fire events. However, this 

difference diminishes above the 90th percentile and becomes particularly 

constrained at the 99th percentile, where fire-sourced [PM2.5] from GFED is 79.29% 

of that from QFED. It suggests that while both inventories yield comparable 

estimates for extreme fire episodes, GFED systematically underestimates 

emissions from smaller fires. This underestimation persists despite improvements 

in GFED’s representation of small fires through additional implementations (Van 

Der Werf et al., 2017). Consequently, validations in the U.S. reveal substantial low 

values with GFED relative to observations (Fig. 4), whereas both inventories 

perform comparably during high-emission fire episodes (Figs. 3 and S7).” (Lines 

244-254) 

 

 
Figure 4. Comparison of fire-sourced PM2.5 (μg m-3) estimated using (a) GFED and (b) 
QFED inventories with smoke PM2.5 observed by Childs et al. (2022) at 100156 
polygons in U.S. during 2016–2019. Validation metrics of N, regression equation, R2, 
RMSE, and NMB are calculated. 
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Figure S8. Comparison of daily fire-sourced [PM2.5] at different percentiles between 
simulations with GFED and QFED inventories.  

 

 

In the revised paper, we expanded our discussion on the causes of these 

uncertainties and offered recommendations on how to best use these datasets: “The 

two datasets derived from different inventories showed discrepancies in both the 

long-term mean and trend of fire-sourced [PM2.5] (Fig. 5). In general, fire-related 

[PM2.5] is much higher when using the QFED inventory compared to GFED, but 

the long-term trend is more negative with QFED. As expected, these discrepancies 

can be attributed to differences in the underlying fire emission inventories (Fig. 6), 

which stem from variations in their estimation methods, data sources, emission 

factors, and so on (Kaiser et al., 2012; Larkin et al., 2014; Jin et al., 2023). For 

example, QFED adjusts emission factors based on aerosol optical depth from 

MODIS (Petrenko et al., 2012; Li et al., 2022), resulting in significantly higher 

emissions in some regions compared to GFED. In contrast, GFED relies on burning 

pixels and changes in surface reflectance identified during satellite overpasses 

under relatively cloud-free conditions, which may lead to underestimating burned 

areas especially for some small fires (Pan et al., 2020). Further validations showed 

that all-source [PM2.5] using GFED yielded an R value of 0.58±0.29 and an NMB 

of 10.68±24.96% averaged for the 12 fire episodes (Fig. 3). Slightly improved 

statistical metrics were achieved using QFED, with an R value of 0.63±0.26 and 

an NMB of 6.56±27.61% for the same events (Fig. S7). However, these differences 

are too minor to conclusively determine which dataset provides a better estimate 

of fire-sourced [PM2.5]. Fire-sourced [PM2.5] is generally lower in the GFED 

dataset compared to QFED; exceptions exist, such as the 2023 Canadian fires, in 

which fire-sourced [PM2.5] from GFED (Fig. 7) was significantly higher than that 
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from QFED (Fig. S9). Therefore, we recommend using the average of fire-sourced 

[PM2.5] from both inventories to indicate the mean state, while using their 

difference as the range of uncertainties associated with fire-related air pollutants.” 

(Lines 347-366)  

 

As for the episodic fire events, we analyzed of the long-term trend of fire-sourced 

[PM2.5] exceeding the WHO health standard with shadings to quantify the 

uncertainties from two inventories (Figure 8). Along with other figures (e.g., Figs 

3 vs. S7, Figs 7 vs. S9), our study provided a thorough comparison and validation 

of fire [PM2.5] during extreme events derived from two inventories. 

 “Extreme fire episodes pose significant threats to public health. The percentage 

of days and land grids with fire-sourced [PM2.5] exceeding the World Health 

Organization’s air quality standard of 15 g m3 showed a global decreasing trend 

of -0.03% yr-1 (Fig. 8a). Regionally, an increase of 0.04% yr-1 was found in North 

America, driven by the 2023 Canadian fire episode, though this change was not 

statistically significant. In other regions, the exposure risk to high levels of fire 

PM2.5 declines, with the most notable declines of -0.22% yr-1 in South America and 

-0.13% yr-1 in Africa. While extreme fire [PM2.5] in general decreased, a turning 

point occurred in 2017, with more pronounced fire events thereafter.” (Lines 289-

296) 
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Figure 8. Annual percentage of days and land grids with fire-sourced [PM2.5] exceeding 

15 g m3 in (a) Global, (b) Asia, (c) North America, (d) Africa, (e) South America and 

(f) Oceania for 2000-2023. The average estimates from GFED and QFED are shown as 

bold lines, with shadings indicating their range. Regional trends are displayed on the 

top right of each panel, with an asterisk denoting significant (p < 0.05) changes. 
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2) As shown in Figure 4 and Figure S3, the model simulated all-source PM2.5 

concentrations were significantly biased high over many regions. How would these 

model biases affect the fire-sourced PM2.5 estimates? According to Equ (3) in Section 

2.4, if the biases were from the nofire model PM2.5, then the resulting fire-sourced PM2.5 

would be underestimated. The impacts of the model biases shall be better discussed. 

 In the revised paper, we added following discussion to acknowledge the 

uncertainties from chemical transport model: “Third, biases in the [PM2.5] 

simulated by the GC model may significantly affect the accuracy of machine 

learning. Predicting air pollutants involves uncertainties due to variations in 

meteorological forcing, chemical and physical schemes, initial and boundary 

conditions, and so on. For example, Qiu et al. (2024) found that the GC model 

significantly overestimated [PM2.5] during extreme wildfire events in 2020 over the 

western U.S. In contrast, our derived fire [PM2.5], using the same GFED inventory, 

is much lower than the estimates of Childs et al. (2022) for low to median fire 

events (Fig. 4). These findings suggest that incorporating more validated fire 

inventories and/or chemical models is necessary to better quantify the uncertainties 

in derived air pollutant concentrations.” (Lines 378-386) 
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