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We are grateful to the editor and referee for their time and energy in providing helpful 

comments and guidance that have improved the manuscript. In this document, we 

describe how we have addressed the reviewer’s comments. Referee comments are 

shown in black italics and author responses are shown in blue regular text.  

 

Reviewer #2: 

In this paper, Hu et al. documented an important effort of generating a global daily fire-

sourced PM2.5 dataset from 2000-2023. This dataset is derived using the following steps: 

1) They use GEOS-Chem to simulate global daily all-source PM2.5 and apply ML to de-

bias the all-source PM2.5 against surface measurements; 2) they then apply the ratio 

between simulated fire PM2.5 and total PM2.5 at the grid level to estimate the fire-

sourced PM2.5. I think this is an important effort, and the dataset generated will become 

a valuable asset to the academic communities across different disciplines. I am excited 

to see such a dataset being made publicly available to the community. 

 Thank you for your positive evaluations. 

 

With that being said, I agree with the other reviewer that the paper should do a better 

job of discussing its difference from the Xu et al., 2023 Nature paper, in addition to the 

extended temporal period (which is an important update in my opinion). In addition to 

a transparent and detailed discussion of the differences and contributions, I imagine 

the project could benefit from several potential analyses to further differentiate this 

paper from their prior contributions: 

1) discuss the recent trends from 2020-2023; 

 Thank you for your valuable suggestion. In the revised paper, we added Figure 9 

to examine recent changes in fire-related air pollutants over the past four years 

beyond 2020. We described it as follows: “To better understand recent trends, we 

examined changes in fire-sourced [PM2.5] during the past few years. Relative to 

2000-2019, fire [PM2.5] decreases across nearly all latitudes from 2020 to 2023 for 

both inventories (Fig. 9). Regionally, hotspots of increased fire [PM2.5] could be 

found in North America, due to the 2023 Canadian fires, and in the Amazon, due 

to the 2022 Brazilian fires. Additionally, fire [PM2.5] levels increased in central 

Africa, northern India, and the Indo-China Peninsula, where human-induced 

agricultural burning is prevalent (Van Der Werf et al., 2017).” (Lines 296-301) 
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Figure 9. Differences in estimated fire-sourced PM2.5 (μg m-3) between 2020-2023 and 
2000-2019 derived using (a) GFED and (b) QFED inventories. The zonal averages and 
one standard deviation are shown alongside each panel. 

 

2) discuss the differences between the GFED and QFED-based dataset (which do not 

seem to be the focus of their prior work);  

 Yes, the inclusion of two inventories is one of the major contributions of our study 

to the community. In the revised paper, we added Figure S8 to compare the 

differences in fire [PM2.5] between the two inventories at various percentiles. This 

comparison helps explain why the two datasets exhibited comparable performance 

for fire episodes, despite a large difference in their mean values: “The probability 

density distributions of fire-sourced [PM2.5] from the two inventories show notable 

differences (Fig. S8). During 2000-2023, fire [PM2.5] from QFED is more than 

twice that from GFED below the 75th percentile, indicating that QFED predicts 

significantly higher [PM2.5] for low to moderate fire events. However, this 

difference diminishes above the 90th percentile and becomes particularly 

constrained at the 99th percentile, where fire-sourced [PM2.5] from GFED is 79.29% 

of that from QFED. It suggests that while both inventories yield comparable 
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estimates for extreme fire episodes, GFED systematically underestimates 

emissions from smaller fires. This underestimation persists despite improvements 

in GFED’s representation of small fires through additional implementations (Van 

Der Werf et al., 2017). Consequently, validations in the U.S. reveal substantial low 

values with GFED relative to observations (Fig. 4), whereas both inventories 

perform comparably during high-emission fire episodes (Figs. 3 and S7).” (Lines 

244-254) 

 
Figure S8. Comparison of daily fire-sourced [PM2.5] at different percentiles between 
simulations with GFED and QFED inventories. 

 

3) a better quantification and discussion of the uncertainty of their datasets. 

 In the revised version, we analyzed of the long-term trend of fire-sourced [PM2.5] 

exceeding the WHO health standard with shadings to quantify the uncertainties 

from two inventories (Figure 8). We also added following discussion to explain the 

possible causes of the uncertainties in fire emission inventories: “The two datasets 

derived from different inventories showed discrepancies in both the long-term 

mean and trend of fire-sourced [PM2.5] (Fig. 5). In general, fire-related [PM2.5] is 

much higher when using the QFED inventory compared to GFED, but the long-

term trend is more negative with QFED. As expected, these discrepancies can be 

attributed to differences in the underlying fire emission inventories (Fig. 6), which 

stem from variations in their estimation methods, data sources, emission factors, 

and so on (Kaiser et al., 2012; Larkin et al., 2014; Jin et al., 2023). For example, 

QFED adjusts emission factors based on aerosol optical depth from MODIS 

(Petrenko et al., 2012; Li et al., 2022), resulting in significantly higher emissions 

in some regions compared to GFED. In contrast, GFED relies on burning pixels 

and changes in surface reflectance identified during satellite overpasses under 
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relatively cloud-free conditions, which may lead to underestimating burned areas 

especially for some small fires (Pan et al., 2020).” (Lines 347-357) 

 

In the revised discussion, we explicitly outlined how our study made further 

progresses compared to Xu et al. (2023):  

“We employed a similar approach to Xu et al. (2023) but incorporated new datasets 

and perspectives. First, we used global observed PM2.5 concentrations from 9541 

monitoring sites, significantly more than the 5661 stations used in Xu et al. (2023). 

The expansion of ground-based stations, particularly in fire-prone regions such as 

Africa and South America, strengthens the foundation for model training and data 

validation. Second, we applied two different fire emission inventories. 

Comparisons showed that fire [PM2.5] estimates from these inventories were 

consistent during extreme fire episodes (Figs 3 and S7). However, for low to 

moderate fire emissions, fire [PM2.5] from GFED was much lower than that from 

QFED (Fig. S8), suggesting that global population exposure to fire-related air 

pollution may have been underestimated in Xu et al. (2023) due to the application 

of GFED. Third, we extended the ending simulation year from 2019 to 2023, 

capturing an additional four years that included unprecedent fire events, such as 

the 2023 Canadian fires and the 2022 Brazilian fires. These events provide valuable 

data for assessing population exposure and associated health impacts. Fourth, we 

found a global decreasing trend in fire [PM2.5] during 2000-2023, which contrasts 

with the increasing trend reported in Xu et al. (2023). This discrepancy may stem 

from differences in machine learning approaches (random forest vs. XGBoost in 

this study), pollution definitions (population-weighted vs. non-weighted), and 

observational datasets. Despite these differences, both studies identified a turning 

point in 2017, after which global fire [PM2.5] began to increase, with the most 

pronounced rise observed in boreal regions.” (Lines 330-346)  

 

Other comments: 

1) One recent study found that GFED emissions inventory had a large positive bias in 

the western US in 2020. This raises potential concerns about the author’s methodology 

of using model-based fire/total ratios to derive their fire-source PM2.5 estimates. I think 

the paper could benefit from a more detailed discussion of this assumption. 

https://pubs.acs.org/doi/10.1021/acs.est.4c05922 

 In the revised paper, we added following discussion to acknowledge the 
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uncertainties from chemical transport model: “Third, biases in the [PM2.5] 

simulated by the GC model may significantly affect the accuracy of machine 

learning. Predicting air pollutants involves uncertainties due to variations in 

meteorological forcing, chemical and physical schemes, initial and boundary 

conditions, and so on. For example, Qiu et al. (2024) found that the GC model 

significantly overestimated [PM2.5] during extreme wildfire events in 2020 over the 

western U.S. In contrast, our derived fire [PM2.5], using the same GFED inventory, 

is much lower than the estimates of Childs et al. (2022) for low to median fire 

events (Fig. 4). These findings suggest that incorporating more validated fire 

inventories and/or chemical models is necessary to better quantify the uncertainties 

in derived air pollutant concentrations.” (Lines 378-386) 

 

2) Related to the comment above, I think the paper could benefit from a comparison 

with the more refined regional fire smoke PM2.5 estimates. For example, the authors 

could compare their two estimates with data from Childs et al (which was recently 

updated to include 2021-2023) in North America. 

https://www.stanfordecholab.com/wildfire_smoke 

 Thank you for your valuable suggestion. In the revised version, we added Figure 4 

and related descriptions to validate the derived fire [PM2.5] from both inventories 

against estimates from Childs et al. (2022): “We further compare the fire-sourced 

[PM2.5] data with the estimates by Childs et al. (2022) in the U.S. (Fig. 4). Our 

estimates show reasonable performance, with correlation coefficients of 0.68 (0.6) 

and RMSE of 2.79 (2.71) μg m-3 using the GFED (QFED) inventory. However, 

fire-sourced [PM2.5] form GFED is overall lower than that of Childs et al. (2022) 

by -55.04%.” (Lines 239-243) 

 
Figure 4. Comparison of fire-sourced PM2.5 (μg m-3) estimated using (a) GFED and (b) 
QFED inventories with smoke PM2.5 observed by Childs et al. (2022) at 100156 
polygons in U.S. during 2016–2019. Validation metrics of N, regression equation, R2, 
RMSE, and NMB are calculated. 
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3) The difference between GFED and QFED-based estimates is so large that I think it 

warrants a more in-depth discussion of the potential reasons. Could the authors draw 

on prior research that evaluates these emission inventories to discuss the potential 

reasons? 

For example: https://doi.org/10.5194/acp-20-969-2020 

 In the revised version, we added following discussion to explain the possible 

causes of the uncertainties in fire emission inventories: “The two datasets derived 

from different inventories showed discrepancies in both the long-term mean and 

trend of fire-sourced [PM2.5] (Fig. 5). In general, fire-related [PM2.5] is much higher 

when using the QFED inventory compared to GFED, but the long-term trend is 

more negative with QFED. As expected, these discrepancies can be attributed to 

differences in the underlying fire emission inventories (Fig. 6), which stem from 

variations in their estimation methods, data sources, emission factors, and so on 

(Kaiser et al., 2012; Larkin et al., 2014; Jin et al., 2023). For example, QFED 

adjusts emission factors based on aerosol optical depth from MODIS (Petrenko et 

al., 2012; Li et al., 2022), resulting in significantly higher emissions in some 

regions compared to GFED. In contrast, GFED relies on burning pixels and 

changes in surface reflectance identified during satellite overpasses under 

relatively cloud-free conditions, which may lead to underestimating burned areas 

especially for some small fires (Pan et al., 2020).” (Lines 347-357) 

 

 

4) Generating these two datasets (GFED and QFED-based) is an interesting 

contribution that allows researchers to evaluate the potential uncertainty. However, 

downstream users often just want to use the best available dataset. What can the 

authors say in terms of which one they recommend more or less? Also, I think the Xu et 

al. Nature 2023 paper considered other emissions inventories in their sensitivity 

analyses, why did the authors decide to focus only on GFED and QFED in this work? 

 Xu et al. (2023) compared the uncertainties in fire-sourced [PM2.5] from different 

inventories, but only for the year 2012. In contrast, our study provided datasets 

from both inventories spanning 2000-2023, enabling us to compare their 

spatiotemporal variations. Initially, we considered using the FINN and GFAS 

inventories as well. However, these datasets were slower to update and had 

incomplete emission data for the timeframe of our study. The GFED and QFED 

inventories, being more efficient in the data update, were ultimately chosen. Based 
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on our evaluations, we find that derived fire [PM2.5] from both inventories are 

reasonable (though with some biases). “Therefore, we recommend using the 

average of fire-sourced [PM2.5] from both inventories to indicate the mean state, 

while using their difference as the range of uncertainties associated with fire-

related air pollutants.” (Lines 364-366) 

 

References  

Childs, M. L., Li, J., Wen, J., Heft-Neal, S., Driscoll, A., Wang, S., Gould, C. F., Qiu, 
M., Burney, J., and Burke, M.: Daily Local-Level Estimates of Ambient Wildfire 
Smoke PM2.5 for the Contiguous US, Environmental Science & Technology, 56, 
13607-13621, https://doi.org/10.1021/acs.est.2c02934, 2022. 

Jin, L., Permar, W., Selimovic, V., Ketcherside, D., Yokelson, R. J., Hornbrook, R. S., 
Apel, E. C., Ku, I. T., Collett Jr, J. L., Sullivan, A. P., Jaffe, D. A., Pierce, J. R., 
Fried, A., Coggon, M. M., Gkatzelis, G. I., Warneke, C., Fischer, E. V., and Hu, L.: 
Constraining emissions of volatile organic compounds from western US wildfires 
with WE-CAN and FIREX-AQ airborne observations, Atmos. Chem. Phys., 23, 
5969-5991, https://doi.org/10.5194/acp-23-5969-2023, 2023. 

Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., 
Morcrette, J. J., Razinger, M., Schultz, M. G., Suttie, M., and van der Werf, G. R.: 
Biomass burning emissions estimated with a global fire assimilation system based 
on observed fire radiative power, Biogeosciences, 9, 527-554, 
https://doi.org/10.5194/bg-9-527-2012, 2012. 

Larkin, N. K., Raffuse, S. M., and Strand, T. M.: Wildland fire emissions, carbon, and 
climate: U.S. emissions inventories, Forest Ecology and Management, 317, 61-69, 
https://doi.org/10.1016/j.foreco.2013.09.012, 2014. 

Li, F., Zhang, X., Kondragunta, S., Lu, X., Csiszar, I., and Schmidt, C. C.: Hourly 
biomass burning emissions product from blended geostationary and polar-orbiting 
satellites for air quality forecasting applications, Remote Sensing of Environment, 
281, 113237, https://doi.org/10.1016/j.rse.2022.113237, 2022. 

Pan, X., Ichoku, C., Chin, M., Bian, H., Darmenov, A., Colarco, P., Ellison, L., Kucsera, 
T., da Silva, A., Wang, J., Oda, T., and Cui, G.: Six global biomass burning emission 
datasets: intercomparison and application in one global aerosol model, Atmos. 
Chem. Phys., 20, 969-994, https://doi.org/10.5194/acp-20-969-2020, 2020. 

Petrenko, M., Kahn, R., Chin, M., Soja, A., Kucsera, T., and Harshvardhan: The use of 
satellite-measured aerosol optical depth to constrain biomass burning emissions 
source strength in the global model GOCART, Journal of Geophysical Research: 
Atmospheres, 117, https://doi.org/10.1029/2012JD017870, 2012. 

Qiu, M., Kelp, M., Heft-Neal, S., Jin, X., Gould, C. F., Tong, D. Q., and Burke, M.: 
Evaluating Chemical Transport and Machine Learning Models for Wildfire Smoke 
PM2.5: Implications for Assessment of Health Impacts, Environmental Science & 
Technology, 58, 22880-22893, https://doi.org/10.1021/acs.est.4c05922, 2024. 

van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, 
B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., 



 

8 
 

and Kasibhatla, P. S.: Global fire emissions estimates during 1997–2016, Earth Syst. 
Sci. Data, 9, 697-720, https://doi.org/10.5194/essd-9-697-2017, 2017. 

Xu, R., Ye, T., Yue, X., Yang, Z., Yu, W., Zhang, Y., Bell, M. L., Morawska, L., Yu, P., 
Zhang, Y., Wu, Y., Liu, Y., Johnston, F., Lei, Y., Abramson, M. J., Guo, Y., and Li, 
S.: Global population exposure to landscape fire air pollution from 2000 to 2019, 
Nature, 621, 521-529, https://doi.org/10.1038/s41586-023-06398-6, 2023. 

 


