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We are grateful to the editor and referee for their time and energy in providing helpful 

comments and guidance that have improved the manuscript. In this document, we 

describe how we have addressed the reviewer’s comments. Referee comments are 

shown in black italics and author responses are shown in blue regular text.  

 

Reviewer #1: 

I cannot support the acceptance of this paper at its present form due to the following 

major concerns 

 We made substantial revisions following your comments. We hope this version of 

paper have answered your concerns. 

 

Major concerns: 

1) The method and interpretation are very similar (nearly identical) to a recent 

publication (Xu et al., Nature, s41586-023-06398-6, 2023). There are essentially no 

new developments after I examined the whole paper, except for the slightly extended 

time coverage (by including three additional years). If the authors intended to revise 

the manuscript, they should extensively discuss how and why their method and results 

are different from the Xu et al. study.  

 In the revised version, we included additional analyses and explicitly explained 

how our study built upon and extended findings of Xu et al. (2023): 

(1) We analyzed the long-term trend of fire-sourced [PM2.5] exceeding the WHO 

health standard (Figure 8) and examined recent changes in fire-related air 

pollutants over the past four years beyond 2020 (Figure 9). These new results 

enhanced the novelty of our study.  

(2) In the revised discussion, we explicitly outlined how our study made further 

progresses compared to Xu et al. (2023):  

“We employed a similar approach to Xu et al. (2023) but incorporated new 

datasets and perspectives. First, we used global observed PM2.5 concentrations 

from 9541 monitoring sites, significantly more than the 5661 stations used in 

Xu et al. (2023). The expansion of ground-based stations, particularly in fire-

prone regions such as Africa and South America, strengthens the foundation for 

model training and data validation. Second, we applied two different fire 

emission inventories. Comparisons showed that fire [PM2.5] estimates from 

these inventories were consistent during extreme fire episodes (Figs 3 and S7). 

However, for low to moderate fire emissions, fire [PM2.5] from GFED was 

much lower than that from QFED (Fig. S8), suggesting that global population 
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exposure to fire-related air pollution may have been underestimated in Xu et al. 

(2023) due to the application of GFED. Third, we extended the ending 

simulation year from 2019 to 2023, capturing an additional four years that 

included unprecedent fire events, such as the 2023 Canadian fires and the 2022 

Brazilian fires. These events provide valuable data for assessing population 

exposure and associated health impacts. Fourth, we found a global decreasing 

trend in fire [PM2.5] during 2000-2023, which contrasts with the increasing 

trend reported in Xu et al. (2023). This discrepancy may stem from differences 

in machine learning approaches (random forest vs. XGBoost in this study), 

pollution definitions (population-weighted vs. non-weighted), and 

observational datasets. Despite these differences, both studies identified a 

turning point in 2017, after which global fire [PM2.5] began to increase, with 

the most pronounced rise observed in boreal regions.” (Lines 330-346) 

 

2) There appears to be very limited discussion about uncertainties in the derived 

datasets. The Zenodo archive only presents absolute concentrations, while no 

information about the expected error was included in the data or discussed in the paper. 

Especially considering that the paper presented strong dependence of the fire-induced 

PM2.5 on the specific fire inventory, what uncertainty envelope do you recommend in 

each of the dataset? After all, these datasets are expected to be used by the community 

for various applications, and such information is vital. 

 The inclusion of two inventories is one the major contributions of our study to the 

community. In the revised version, we added Figure 4 to validate the derived fire 

[PM2.5] from both inventories against estimates from Childs et al. (2022), and 

Figure S8 to compare the differences between them at various percentiles. Along 

with other figures (e.g., Figs 3 vs. S7, Figs 7 vs. S9) and tables (Tables 1-2), our 

study provided a thorough comparison and quantification of the uncertainties in 

fire [PM2.5] derived from two inventories. In the revised paper, we expanded our 

discussion on the causes of these uncertainties and offered recommendations on 

how to best use these datasets: 

“The two datasets derived from different inventories showed discrepancies in both 

the long-term mean and trend of fire-sourced [PM2.5] (Fig. 5). In general, fire-

related [PM2.5] is much higher when using the QFED inventory compared to GFED, 

but the long-term trend is more negative with QFED. As expected, these 

discrepancies can be attributed to differences in the underlying fire emission 
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inventories (Fig. 6), which stem from variations in their estimation methods, data 

sources, emission factors, and so on (Kaiser et al., 2012; Larkin et al., 2014; Jin et 

al., 2023). For example, QFED adjusts emission factors based on aerosol optical 

depth from MODIS (Petrenko et al., 2012; Li et al., 2022), resulting in significantly 

higher emissions in some regions compared to GFED. In contrast, GFED relies on 

burning pixels and changes in surface reflectance identified during satellite 

overpasses under relatively cloud-free conditions, which may lead to 

underestimating burned areas especially for some small fires (Pan et al., 2020). 

Further validations showed that all-source [PM2.5] using GFED yielded an R value 

of 0.58±0.29 and an NMB of 10.68±24.96% averaged for the 12 fire episodes (Fig. 

3). Slightly improved statistical metrics were achieved using QFED, with an R 

value of 0.63±0.26 and an NMB of 6.56±27.61% for the same events (Fig. S7). 

However, these differences are too minor to conclusively determine which dataset 

provides a better estimate of fire-sourced [PM2.5]. Fire-sourced [PM2.5] is generally 

lower in the GFED dataset compared to QFED; exceptions exist, such as the 2023 

Canadian fires, in which fire-sourced [PM2.5] from GFED (Fig. 7) was significantly 

higher than that from QFED (Fig. S9). Therefore, we recommend using the average 

of fire-sourced [PM2.5] from both inventories to indicate the mean state, while 

using their difference as the range of uncertainties associated with fire-related air 

pollutants.” (Lines 347-366)  

 

3) The paper only provided evaluation of the total PM2.5 using ground-based 

measurements, which is insufficient and partially reflected by the fact that the GFED- 

and QFED-derived products both agree well in terms of total PM2.5 while fire-PM2.5 

are different systematically. Many recent products of fire-PM2.5 have been developed in 

North America (e.g., 10.1021/acs.est.2c02934, 10.1038/s41586-023-06522-6). The 

manuscript should use these critical data sources to inter-compare with the modeled 

fire fraction and the final estimates of fire-PM2.5. 

 Thank you for your valuable suggestions. In the revised version, we added Figure 

4 and related descriptions to validate the derived fire [PM2.5] from both inventories 

against estimates from Childs et al. (2022): “We further compare the fire-sourced 

[PM2.5] data with the estimates by Childs et al. (2022) in the U.S. (Fig. 4). Our 

estimates show reasonable performance, with correlation coefficients of 0.68 (0.6) 

and RMSE of 2.79 (2.71) μg m-3 using the GFED (QFED) inventory. However, 

fire-sourced [PM2.5] form GFED is overall lower than that of Childs et al. (2022) 
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by -55.04%.” (Lines 239-243) 

 

We also added Figure S8 to compare the differences in fire [PM2.5] between the 

two inventories at various percentiles. This comparison helps explain why the two 

datasets exhibited comparable performance for fire episodes, despite a large 

difference in their mean values: “The probability density distributions of fire-

sourced [PM2.5] from the two inventories show notable differences (Fig. S8). 

During 2000-2023, fire [PM2.5] from QFED is more than twice that from GFED 

below the 75th percentile, indicating that QFED predicts significantly higher [PM2.5] 

for low to moderate fire events. However, this difference diminishes above the 90th 

percentile and becomes particularly constrained at the 99th percentile, where fire-

sourced [PM2.5] from GFED is 79.29% of that from QFED. It suggests that while 

both inventories yield comparable estimates for extreme fire episodes, GFED 

systematically underestimates emissions from smaller fires. This underestimation 

persists despite improvements in GFED’s representation of small fires through 

additional implementations (Van Der Werf et al., 2017). Consequently, validations 

in the U.S. reveal substantial low values with GFED relative to observations (Fig. 

4), whereas both inventories perform comparably during high-emission fire 

episodes (Figs. 3 and S7).” (Lines 244-254) 

 

 
Figure 4. Comparison of fire-sourced PM2.5 (μg m-3) estimated using (a) GFED and (b) 
QFED inventories with smoke PM2.5 observed by Childs et al. (2022) at 100156 
polygons in U.S. during 2016–2019. Validation metrics of N, regression equation, R2, 
RMSE, and NMB are calculated. 
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Figure 8. Annual percentage of days and land grids with fire-sourced [PM2.5] exceeding 
15 g m3 in (a) Global, (b) Asia, (c) North America, (d) Africa, (e) South America and 
(f) Oceania for 2000-2023. The average estimates from GFED and QFED are shown as 
bold lines, with shadings indicating their range. Regional trends are displayed on the 
top right of each panel, with an asterisk denoting significant (p < 0.05) changes.
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Figure 9. Differences in estimated fire-sourced PM2.5 (μg m-3) between 2020-2023 and 
2000-2019 derived using (a) GFED and (b) QFED inventories. The zonal averages and 
one standard deviation are shown alongside each panel. 
 

 
Figure S8. Comparison of daily fire-sourced [PM2.5] at different percentiles between 
simulations with GFED and QFED inventories.  
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Other comments: 

1) I downloaded one example data, and found that negative values occur in occasional 

pixels. What are the physical meanings of them?   

 Fire-sourced [PM2.5] is estimated as the difference between the simulated [PM2.5] 

with all sources and that without fire emissions. In some rare case, the latter might 

be higher than the former due to nonlinearity in chemical reactions and dynamic 

transport processes. However, these negative values are generally very small in 

absolute terms. In the revised version, we have removed all negative values by 

defining them as zero, which led to minor changes in regional and global statistics. 

For example, the original statement in the Abstract, “Globally, the average fire-

sourced [PM2.5] is estimated to be 1.94 μg m-3 with GFED4.1s and 3.74 μg m-3 with 

QFED2.5.” was changed to “Globally, the average fire-sourced [PM2.5] is estimated 

to be 2.04 μg m-3 with GFED4.1s and 3.96 μg m-3 with QFED2.5.” in the revision. 

 

2) Line 44, fire PM2.5 aerosols can be larger in size than urban PM2.5, see e.g., 

https://acp.copernicus.org/articles/19/6561/2019/ 

 In the revised version, we removed this sentence to avoid inaccurate statements. 

 

3) Line 71-81: These uncertainties seem not narrowed in this new dataset compared to 

the previous studies? Even the Xu et al. 2023 study itself has indicated similar 

differences in the derived fire-PM2.5 using four inventories. So what new 

insights/constraints have this work provided? 

 Xu et al. (2023) compared the uncertainties in fire [PM2.5] from different 

inventories only for the year 2012. In contrast, our study provided datasets from 

both inventories spanning 2000-2023, enabling us to compare their spatiotemporal 

variations. In the revised version, we provided several new insights. For example, 

we conducted a more in-depth analysis of long-term changes in extreme wildfire 

events and discussed the underlying reasons for the differences between GFED and 

QFED, as follows:  

 

“Extreme fire episodes pose significant threats to public health. The percentage of 

days and land grids with fire-sourced [PM2.5] exceeding the World Health 

Organization’s air quality standard of 15 g m3 showed a global decreasing trend 

of -0.03% yr-1 (Fig. 8a). Regionally, an increase of 0.04% yr-1 was found in North 

America, driven by the 2023 Canadian fire episode, though this change was not 

statistically significant. In other regions, the exposure risk to high levels of fire 
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PM2.5 declines, with the most notable declines of -0.22% yr-1 in South America and 

-0.13% yr-1 in Africa. While extreme fire [PM2.5] in general decreased, a turning 

point occurred in 2017, with more pronounced fire events thereafter. To better 

understand recent trends, we examined changes in fire-sourced [PM2.5] during the 

past few years. Relative to 2000-2019, fire [PM2.5] decreases across nearly all 

latitudes from 2020 to 2023 for both inventories (Fig. 9). Regionally, hotspots of 

increased fire [PM2.5] could be found in North America, due to the 2023 Canadian 

fires, and in the Amazon, due to the 2022 Brazilian fires. Additionally, fire [PM2.5] 

levels increased in central Africa, northern India, and the Indo-China Peninsula, 

where human-induced agricultural burning is prevalent (Van Der Werf et al., 2017).” 

(Lines 289-301) 

 

“In general, fire-related [PM2.5] is much higher when using the QFED inventory 

compared to GFED, but the long-term trend is more negative with QFED. As 

expected, these discrepancies can be attributed to differences in the underlying fire 

emission inventories (Fig. 6), which stem from variations in their estimation 

methods, data sources, emission factors, and so on (Kaiser et al., 2012; Larkin et 

al., 2014; Jin et al., 2023). For example, QFED adjusts emission factors based on 

aerosol optical depth from MODIS (Petrenko et al., 2012; Li et al., 2022), resulting 

in significantly higher emissions in some regions compared to GFED. In contrast, 

GFED relies on burning pixels and changes in surface reflectance identified during 

satellite overpasses under relatively cloud-free conditions, which may lead to 

underestimating burned areas especially for some small fires (Pan et al., 2020).” 

(Lines 348-357) 

 

4) Line 93-94: I do not think computational cost is a major obstacle of machine learning 

approach.  

 We clarified that the computational cost is attributed to CTM simulations instead 

of machine learning approach: “However, due to the high computational cost, most 

CTM simulations have been performed at the regional scale or driven with a single 

fire inventory, limiting the ability of machine learning methods to accurately 

constrain fire-related air pollutants on global and long-term scales.” (Lines 88-90) 

 

5) Line 108-110: Is it necessary/critical to do this specifically for China? Many other 

regions also bear with incomplete time series. If the ML method is very sensitive to the 

availability of data over 2000-2013 in China, how uncertain are your predictions for 
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e.g., India before ~2010 when observation data is available?  

 We tried our best to maximize the temporal and spatial coverage of site-level data 

while ensuring high accuracy. The TAP data was developed using machine 

learning approaches that integrate multiple data sources, including ground 

measurements, satellite retrievals, emission inventories, chemical transport model 

simulations, meteorological fields, and land use data 

http://tapdata.org.cn/?page_id=67&lang=en). Our validations further confirmed its 

reliability (Fig. S1). We did not find other available and robust products to expand 

site-level data.  

 

6) Line 117-118: Please provide references of the method to convert AQI to PM2.5. 

 In the revised version, we modified: “where the Air Quality Index (AQI) was 

converted to PM2.5 following a standardized methodology (Benchrif et al., 2021).” 

(Lines 112-113) 

 

7) Figure 1b: It appears that log-scale color scheme is needed. 

 In the revised version, we modified Figure 1b and Figure S2 by using log-scale x 

and y axis so as to visualize the data density. 

 
Figure 1. Observed PM2.5 concentrations and their comparisons with predictions made by the XGBoost model. Panel 

(a) presents the annual mean PM2.5 concentrations (μg m-3) at 9541 monitoring sites in 2022. Panel (b) shows daily 

PM2.5 concentrations predicted by the GEOS-Chem model, adjusted using the XGBoost approach, and compared 

with validation subsets of observations in 2022. The GEOS-Chem simulations incorporate emissions from both 

anthropogenic sources and the Global Fire Emissions Database version 4.1s. Colors in (b) represent data frequency, 

and the red dashed line indicates the linear regression. Validation metrics, including the sample size (N, 20% of total 

observational records), regression equation, determination coefficient (R2), root-mean-square error (RMSE), and 

normalized mean bias (NMB), are provided. GEOS-Chem simulations using QFED inventory for 2022 are shown 

in Fig. S2. 
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Figure S2. Same as Fig. 1b, but for GEOS-Chem simulations using the QFED inventory. 

 

8) Figure 3: It looks abnormal to me that the cross-validation R2 (Panel b) values are 

stronger than the direct R2 (Panel c) in many years? Also, please do not use "simulated" 

for ML-corrected PM2.5. Could use "estimated". 

 We have moved the original Figure 3 into SI as Figure S4. We have changed 

“simulated” to “estimated” as suggested.  

Typically, 80% of the data is used for training, while the remaining 20% is set aside 

for validation (Bai et al., 2022). During the training process, we continuously 

adjust the model’s parameters, using the 10-fold cross-validation R2 as a measure 

of the model's performance (Adams et al., 2020; Wang et al., 2022). Once the 10-

fold cross-validation R2 reaches a sufficiently high value, we validate the model 

using the validation set. Consequently, the lower R2 shown in Panel c, compared 

to the cross-validation R2 in Panel b, can be attributed to the difference in the data 

sets. Specifically, the cross-validation R2 is calculated based on the training set (i.e., 

the 80%), while the direct R2 is computed on the validation set (i.e., the rest 20%). 

It is common for the cross-validation R2 to be slightly higher than the direct R2 

(Wei et al., 2019; Song et al., 2021; Xu et al., 2023). 

In the text, we explained that: “For each year, 80% of observational records were 

randomly selected to train the XGBoost model, while the remaining 20% were 

used as independent samples for validations.” (Lines 178-180) In the caption of 

Figure S4, we clarified that: “Panels (c) and (d) display the year-to-year R2 and 

RMSE between observed and estimated [PM2.5] using these different fire emission 

inventories for independent validation samples.” 
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9) Figure 6: I do not understand the "green slashes". Why are they so regularly 

distributed? 

 The green slashes indicate that the trend in that region passed the significance test 

(p < 0.05). Since we masked the oceanic regions, the green dashed lines are all 

located within the continental regions. 
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