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Abstract. Vegetation optical depth (VOD) products provide information on vegetation water content21

and correlate with vegetation growth status, which are closely related to the global water and carbon22

cycles. The L-band signal penetrates deeper into the vegetation canopy than the higher frequency23

bands used for many previous VOD retrievals. Currently, there are only two operational L-band24

sensors aboard satellites, namely the SMOS satellite launched in 2010 and the SMAP satellite launched25

in 2015. The former has the limitation of a low spatial resolution of only 25 km, while the latter26

has improved the resolution to 9 km but has a shorter usable time range. Due to the influence27

of sensor and atmospheric conditions, as well as the observation methods of polar-orbiting satellites28

(such as scan gaps and observation revisit times), the daily data provided by both satellites suffer from29

varying degrees of missing data. In summary, the existing L-VOD products suffer from the defects30

of missing data and coarse resolution of historical data. There is few research on filling gaps and31

reconstructing 9-km long-term data for L-VOD products. To solve this problem, our study depends32

on a penalized least square regression based on three-dimensional discrete cosine transform to firstly33

generate the seamless global daily L-VOD products. Subsequently, the non-local filtering idea is applied34

to spatiotemporal fusion between high- and low-resolution data, resulting in a global daily seamless35

9-km L-VOD product from 1 January 2010 to 31 July 2021. In order to validate the quality of the36

products, time series validation and simulated missing regions validation are used for the reconstructed37

data. The fusion products are validated both temporally and spatially, and also compared numerically38

with the original 9-km data during the overlapping period. Results show that the seamless SMOS39

(SMAP) dataset is evaluated with a coefficient of determination (R2) of 0.855 (0.947), and root mean40

squared error (RMSE) of 0.094 (0.073) for the simulated real missing masks. The temporal consistency41

of the reconstructed daily L-VOD products is ensured with the original time-series distribution of valid42
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values. The spatial information of the fusion product and the original 9-km data in the overlapping43

period is basically consistent (R2: 0.926-0.958, RMSE: 0.072-0.093, MAE: 0.047-0.064). The temporal44

variations between the fusion product and the original product are largely synchronized. Our dataset45

can provide timely vegetation information during natural disasters (e.g., floods, droughts, and forest46

fires), supporting early disaster warning and real-time response. This dataset can be downloaded at47

https://doi.org/10.5281/zenodo.13334757 (Hu et al., 2024).48

Keywords: SMOS, SMAP, vegetation optical depth, seamless, global daily long-term, 9-km, spa-49

tiotemporal fusion50

1 Introduction51

Vegetation is a key factor in the energy, water, and carbon balance of the terrestrial surface, and52

it is significantly affected by climate change and human activities (Frappart et al., 2020). Remote53

sensing observations are commonly used to monitor vegetation dynamics and their temporal changes54

from regional to global scales. Unlike traditional optically based technologies, microwave-frequency55

sensors are almost unaffected by cloud cover (Moesinger et al., 2020). Microwave radiation passing56

through the vegetation canopy undergoes an extinction effect, and the extent of this attenuation can57

be observed by passive or active microwave satellites and is commonly referred to as the vegetation58

optical depth (VOD) (Wigneron et al., 2017). It is increasingly used for monitoring various ecological59

vegetation variables, which can provide frequent observations that are independent of atmospheric60

conditions and cloud pollution. Soil moisture contribution is coupled with the effects of vegetation in61

terms of absorption and scattering (Liu et al., 2012; Zhao et al., 2021),and water within the vegetation62

attenuates the microwave signal (Yao et al., 2024), thus VOD is directly related to the vegetation63

water content (VWC) (Dou et al., 2023; Fan et al., 2019; Holtzman et al., 2021; Konings et al., 2016).64

VOD has been widely used in biomass monitoring, drought early warning, phenology analysis, and65

other fields (Fan et al., 2023; Ferrazzoli et al., 2002; Kumar et al., 2021; Mialon et al., 2020; Moesinger66

et al., 2022; Vaglio Laurin et al., 2020; Van Dijk et al., 2013; Vreugdenhil et al., 2022; Wigneron et al.,67

2020). VOD is affected by a number of factors, including density and type of vegetation and microwave68

frequency. Many microwave remote sensing satellites provide VOD products in different microwave69

bands (X-, Ku-, C-). However, as the frequency of the microwave signal decreases, resulting in longer70

wavelengths, its ability to penetrate vegetation canopies increases (Frappart et al., 2020; Zhang et al.,71

2021a). Compared to VOD products in other bands, the low-frequency microwave product L-VOD72

correlates better with VWC and biomass (Brandt et al., 2018; Cui et al., 2023; Unterholzner, 2023).73

Currently, only SMOS and SMAP satellites provide VOD data based on the L-band, and both are74

satellites targeting the monitoring of soil moisture (SM) and VWC (Wigneron et al., 2017).75

The Soil Moisture and Ocean Salinity (SMOS) mission is to monitor the brightness temperature76

of microwave radiation at the earth’s surface, launched by the European Space Agency (ESA) in 200977

(Kerr et al., 2001, 2010). SMOS carries a passive microwave radiometer that can acquire data without78

emitting microwave signals by using microwave signals naturally radiated from the earth’s surface.79

Currently, there are three main physically based SMOS L-VOD retrieval methods (Wigneron et al.,80

2021), respectively SMOS L2 (Kerr et al., 2012), SMOS L3 (Al Bitar et al., 2017), and SMOS-IC81

(Fernandez-Moran et al., 2017). These algorithms are all based on the L-band Microwave Emission of82

the Biosphere (L-MEB) model (Wigneron et al., 2007), which uses the Tau-Omega (τ − ω) radiative83

transfer equation to simulate surface microwave emission (Cui et al., 2015; Mo et al., 1982). SMOS-IC84

is the latest algorithm in this series, which does not rely on auxiliary vegetation information as initial85

inputs but uses the annual average of previously retrieved vegetation τ during the retrieval process86

(Li et al., 2022a). The latest release of SMOS-IC v2 further improves upon this by incorporating a87

first-order modeling approach (2-Stream) instead of the zero-order τ − ω model (Li et al., 2020).88

The Soil Moisture Active Passive (SMAP) mission is to monitor the dynamics of soil moisture and89

vegetation moisture content globally, launched by the National Aeronautics and Space Administration90

(NASA) in 2015 (Entekhabi et al., 2010; Le Vine et al., 2010). SMAP carries an active microwave91

radiometer that emits microwave signals and then uses the reflection and scattering data from the92

signals to calculate parameters such as SM and VWC. Currently, SMAP retrieval algorithms are pri-93

marily categorized into single-channel algorithms (SCA) (Jackson, 1993) and dual-channel algorithms94

(DCA) (Njoku et al., 2003) based on polarization. In contrast, DCA utilizes both H and V polarization95
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channels and employs a nonlinear least squares optimization process to simultaneously retrieve SM and96

L-VOD (Crow et al., 2005; O’Neill et al., 2018). Due to the correlated brightness temperature obser-97

vations in dual-polarization channels, which cannot independently retrieve two unknowns, Koning et98

al. (Konings et al., 2016, 2017) proposed the Multi-Temporal Dual Channel Algorithm (MT-DCA) to99

enhance the robustness of retrieval.100

To sum up, the L-VOD retrieval algorithms for both SMOS and SMAP have reached a relatively101

mature stage. Both sensors operate in fully polarised mode and have demonstrated a strong capability102

in globally monitoring surface soil and vegetation characteristics. However, due to limitations such103

as satellite scanning gaps and retrieval methods, the daily data provided by the two satellites are104

spatially incomplete. This data missing phenomenon affects the seamless monitoring of VWC, above-105

ground biomass (AGB), etc. The seamless daily L-VOD data enhances the precision and timeliness of106

vegetation change monitoring, enabling the capture of short-term environmental changes and sudden107

events (e.g., extreme weather and natural disasters) impacts on vegetation. Currently, most applica-108

tions of VOD use multi-temporal data averaging. Incomplete VOD products are typically averaged109

on monthly, quarterly, and annual scales to generate global coverage products (Olivares-Cabello et al.,110

2022; Wild et al., 2022). The drawbacks of the multi-temporal data averaging method are evident. It111

compromises high temporal resolution, reducing the data utilisation. Additionally, the unique spatial112

distribution of daily data is overlooked, leading to the loss of dense time-series variation information.113

In other words, averaging VOD data over different time scales compromises the original information114

in both spatial and temporal dimensions.115

In order to overcome the missing data difficulties, recent studies have proposed reconstruction116

methods of other products on a global or regional scale. Yang et al. (Yang and Wang, 2023) used117

the HCTSA method to extract the temporal features from surface SM time-series data, and then118

reconstructed the data with the random forest model. Llamas et al. (Llamas et al., 2020) used119

auxiliary data such as precipitation in combination with a multiple regression model to fill in the120

blank portions of the CCI data. Zhang et al. (Zhang et al., 2021b) developed a novel spatiotemporal121

partial convolutional neural network for AMSR2 soil moisture product gap-filling. Building on this122

work, Zhang et al. (Zhang et al., 2022) proposed an integrated long short-term memory convolutional123

neural network (LSTM-CNN), in which global daily precipitation datasets were fused into the proposed124

reconstruction model to further improve gap-filling in daily soil moisture products. So far, there are125

few works for L-VOD reconstruction on both global and daily scales.126

In addition, SMOS satellite products are limited by coarse spatial resolution (25 km), which127

cannot capture fine-scale phenological changes in surface vegetation. Although the SMAP satellite128

improves spatial resolution, providing global L-VOD data at a 9 km resolution, it was launched in129

2015 and therefore cannot provide historical data. To address the limitations of different sensors,130

the recently released Vegetation Optical Depth Climate Archive (VODCA) version 2 (Zotta et al.,131

2024) combines VOD data from multiple sensors (SSM/I, TMI, AMSR-E, WindSat, and AMSR2)132

to generate a long-term VOD product. Compared to the version 1 (Myneni et al., 2015), the main133

improvement is the addition of L-band products (VODCA L) based on the SMOS and SMAP missions,134

which are theoretically more sensitive to the entire canopy (including branches and trunks). However,135

over extended periods such as 2010-2021, the spatial resolution of the existing L-VOD data remains136

limited to 25 km. Currently, there are few studies that perform spatiotemporal fusion of the L-VOD137

products from the two satellites to compensate for their spatiotemporal limitations.138

In summary, current VOD products from different sources suffer from data gaps and coarse resolu-139

tion of historical data. Hence the need to integrate multi-temporal and multi-source L-VOD products.140

Enhancing VOD quality by incorporating auxiliary data introduces more uncertainty. Independent141

retrieval of VOD products from microwave observations would be a more effective way to improve142

data quality. From these perspectives, our study begins with the reconstruction of missing data. Sub-143

sequently, a spatiotemporal fusion model is developed to generate seamless, long-term, 9-km global144

daily L-VOD products. The main contributions are below.145

1. Based on the three-dimensionality (2-D spatial + time) spatiotemporal dataset, we reconstruct146

the missing parts of SMOS L-VOD data from 1 January 2010 to 31 December 2017 and SMAP L-VOD147

data from 1 April 2015 to 31 July 2021, filling a gap in the research field regarding global daily L-VOD148

products reconstruction.149

2. A spatiotemporal fusion model based on the non-local filtering approach to generate a long-150

term 9-km L-VOD dataset. The fusion product is validated temporally and spatially, and numerically151
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compared with the original 9-km data during the overlapping period. Based on the availability of152

existing data, we ultimately obtain a global daily seamless L-VOD dataset with the spatial resolution153

of 9 km for the period from 1 January 2010 to 31 July 2021.154

3. The gap-filling accuracy is assessed using time series validation and simulated missing region155

validation. For the fusion products, temporal and spatial verification strategies are employed and156

numerical comparisons are made with the original 9-km data from the overlap period. Evaluation157

indexes demonstrate that the global daily seamless L-VOD dataset shows high accuracy, reliability,158

and robustness.159

The structure of this remaining paper as follows. Section 2 describes the L-VOD data and auxiliary160

data used in this study. Section 3 introduces the methods for gap filling and spatiotemporal fusion, as161

well as the experimental setup and accuracy validation metrics. Section 4 presents the experimental162

results and relevant validation results. Finally, Section 5 provides the conclusions of this study and163

suggestions for future work.164

2 Data description165

2.1 L-VOD data166

SMOS IC L-VOD dataset is published by the European Space Agency (ESA) and has a satellite167

revisit period of 8 days, a spatial resolution of 25 km, and a global spatial coverage. This study uses168

the latest improved version 2 of L-VOD data for the period from 1 January 2010 to 31 December 2017,169

which does not require the use of the optical vegetation index as an auxiliary data to drive the model,170

enhancing the independence and stability of the product. This data is derived from https://ib.remote-171

sensing.inrae.fr/index.php/smos-ic-v2-product-documentation/ (Wigneron et al., 2021). Due to the172

long-term advantage of SMOS L-VOD data, it is used as the low spatial resolution data for both173

the reference and target periods in the spatiotemporal fusion experiments. This data participates in174

constructing the baseline data and assists in generating 9-km L-VOD data for the target moments.175

SMAP MT-DCA L-VOD dataset covers the global surface with a satellite revisit period of 3 days176

and a spatial resolution of 9 km. This study uses the latest SMAP MT-DCA version 5 L-VOD data177

released by Feldman et al. (Feldman and Entekhabi, 2019), which updates the data from 1 April178

2015 to 31 July 2021. This data is derived from https://doi.org/10.5281/zenodo.5619583 (Feldman179

et al., 2021). The MT-DCA algorithm combines microwave radiometer data from the SMAP satellite180

and vegetation index data from MODIS, while also considering the temporal autocorrelation of VOD.181

Similar to the SMOS IC algorithm, MT-DCA does not require optical auxiliary data to provide initial182

VOD values due to its consideration of VOD’s temporal autocorrelation. SMAP L-VOD data has the183

advantage of high spatial resolution, which is used in this study as the high-resolution baseline data in184

the spatiotemporal fusion model to provide fine spatial detail information for the VOD fusion product.185

A specific description of the L-VOD data is shown in Table 1.186

Table 1. Description of L-VOD data used in this study

Product Source Version Temporal and spatial resolution Period

L-VOD SMOS IC V2 25 km/daily 2010.1.1-2017.12.31

L-VOD SMAP MT-DCA V5 9 km/daily 2015.4.1-2021.7.31

2.2 Auxiliary data187

To carry out the relevant analysis more comprehensively and accurately, we use two important188

auxiliary datasets, namely land cover types data and Normalized Difference Vegetation Index(NDVI)189

data.190

This study selected pixel points under different land cover types for accuracy validation. The data191

is based on the MODIS MCD12C1 V061 (Friedl and Sulla-Menashe, 2022), which provides global land192
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cover types at annual intervals with a time span from 2001 to 2022 and a spatial resolution of 0.05°193

(approximately 5.6 km). This dataset uses multiple classification schemes, including International194

Geosphere-Biosphere Programme(IGBP), University of Maryland(UMD), and Leaf Area Index(LAI)195

(Chen and Black, 1992; Hansen et al., 2000; Loveland et al., 1999). In this study, land cover data196

for 2017 and 2018 are used. The data is accessed and processed through the Google Earth Engine197

platform.198

In this study, we choose long-term NDVI data to further evaluate the final product VOD st. The199

data is based on the MODIS MYD13C1 V061 (Didan, 2021), which has a spatial resolution of 0.05°200

(approximately 5.6 km) and is synthesized over 16 days. This product provides a Vegetation Index201

(VI) value for each pixel, namely the Enhanced Vegetation Index (EVI) and the NDVI. We use the202

NDVI data from 2010 to 2021, which maintains continuity with the existing National Oceanic and203

Atmospheric Administration-Advanced Very High Resolution Radiometer (NOAA-AVHRR) derived204

NDVI.205

Considering the availability of the dataset, the study period for this research is from 1 January 2010206

to 31 July 2021. For convenience, the original SMOS IC L-VOD product is referred to as VOD smos,207

the original SMAP MT-DCA L-VOD product as VOD smap, the gap filling products as VOD resmos208

and VOD resmap, respectively, and the spatiotemporal fusion product as VOD st.209

3 Methodology210

3.1 Data preprocessing211

For the selected VOD smos and VOD smap datasets, preprocessing steps such as reprojection,212

anomaly handling, and resampling are required. Due to differences in geographic coverage and pro-213

jection methods between SMOS and SMAP data products, reprojection is necessary. Additionally,214

considering that VOD typically ranges from 0 to 1.5, with higher values often observed in densely215

vegetated tropical regions, reaching up to approximately 1.2, there are occasional outliers exceeding216

1.5 in specific areas like the Amazon and Congo river basins, accounting for approximately 1% of217

the total (Fernandez-Moran et al., 2017; Li et al., 2022a). To minimize the potential accumulation218

of uncertainty in subsequent experiments caused by abnormal values, these data need to be removed.219

Furthermore, some regions may have negative VOD values due to unreliable retrieval caused by sen-220

sor limitations or land types such as permafrost or deserts. VOD values less than zero cannot be221

explained by physical properties. Following the guidelines from Wigneron et al. for the SMOS IC222

L-VOD data (https://ib.remote-sensing.inrae.fr/index.php/smos-ic-v2-product-documentation/), neg-223

ative VOD values will be set to zero in this study to ensure result accuracy. Lastly, the low-resolution224

product VOD smos will be preliminarily resampled to 9 km using nearest neighbor interpolation225

to maintain consistency in spatial resolution across all datasets. Our data utilize a global grid of226

2000×4000 cells.227

We consider that VOD has continuity over long temporal sequences but faces a significant propor-228

tion of spatial data gaps. Moreover, in the spatiotemporal fusion model, higher spatial coverage of input229

data, represented by a larger effective number N , leads to better spatiotemporal fusion effects. There-230

fore, our study proposes initially using a penalized least square regression based on three-dimensional231

discrete cosine transform (DCT-PLS) method to leverage spatiotemporal variation information for232

repairing L-VOD data from SMOS and SMAP satellites. Subsequently, seamless data will be input233

into a non-local filter based spatiotemporal fusion model (STFM) model to reconstruct historical 9-km234

data, aiming to maximize error reduction and enhance product quality.235

3.2 Gap filling236

Given the significant spatial data gaps in the VOD smos and VOD smap datasets, and considering237

that frequency domain signal distribution is more concentrated and contains more comprehensive238

information, the discrete cosine transform (DCT) is an effective algorithm for transforming signals239

into the frequency domain for computation (Wang et al., 2023). Additionally, penalized least square240

(PLS) regression is a thin-plate spline smoothing method suitable for one-dimensional arrays, which241

aims to balance data fidelity and the roughness of the mean function. Garcia (Garcia, 2010) has242

demonstrated that DCT achieves PLS regression by expressing data as a sum of cosine functions243
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oscillating at different frequencies. Due to the multidimensional characteristics of DCT, DCT-based244

PLS regression can be directly extended to multidimensional datasets (Wang et al., 2012). For large245

spatiotemporal datasets, utilizing spatiotemporal variation information to predict missing parts is246

highly effective. Furthermore, VOD data shows significant temporal and spatial correlations, and247

DCT can capture this spatiotemporal correlation well. Therefore, this study uses the three-dimensional248

DCT-PLS method to fill the gaps in the global daily L-VOD data. The following section will briefly249

introduce the principles of the DCT-PLS algorithm for data repair:250

Let x represent the spatiotemporal dataset with missing values. The solution formula for the filled251

data matrix y is as follows:252

F (y) =
∥∥∥Q1/2 · (y − x)

∥∥∥2 + λ
∥∥∇2y

∥∥ (1)

where ∥ · ∥ denotes the Euclidean norm. Q is a binary matrix indicating the missing values in the253

original data, with the square root used for weight adjustment. ∇2 is the Laplacian operator. λ is the254

smoothness factor, which measures the smoothness of the data y. The iterative solution for y can be255

transformed into the following formula:256

y = DCT−1(G ·DCT(Q · (x− y) + y)) (2)

In this context, DCT is used to transform the data from the spatial domain to the frequency domain,257

where the data is then reconstructed. Finally, the inverse transform (DCT−1) is applied to convert the258

reconstructed results back from the frequency domain to the spatial domain. G is a three-dimensional259

filtering tensor:260

G(k1,k2,k3) =
1

1 + λ(
∑3

m=1(2− cos (km−1)π
Nm

))2
(3)

where km represents the k-th element in the m-th dimension (where m = 1, 2, 3), and Nm denotes the261

size of the data in the m-th dimension of the matrix x.262

In DCT-PLS modeling, the selection of the smoothing parameter λ is crucial. A higher value of263

the smoothing parameter will result in the loss of high-frequency components. To effectively fill in the264

data gaps, λ should be as close to zero as possible to minimize the smoothing effect. By calculating265

the normalized error between the original and reconstructed values, it can be determined whether the266

model accurately captures the characteristics of the data. Thus, the smoothing parameter λ can be267

adjusted based on the error evaluation results to optimize model performance. The error ϵ is defined268

as follows:269

ϵ =

∥∥Q1/2 · (y − x)
∥∥∥∥Q1/2 · x

∥∥ (4)

3.3 Spatiotemporal fusion270

Spatiotemporal fusion of remote sensing data is the process of integrating multi-source remote271

sensing data into products that have spatiotemporal consistency and higher accuracy. Among these272

methods, both transformation-based and pixel-based reconstruction methods are commonly used ap-273

proaches (Belgiu and Stein, 2019; Zhu et al., 2018). Transformation-based methods include techniques274

such as Fourier transform and wavelet transform (Fanelli et al., 2001; Gharbia et al., 2014). These275

methods fuse data by combining transform coefficients from different sources, offering simplicity and276

ease of implementation. However, they often suffer from lower accuracy and are prone to introduc-277

ing noticeable artifacts in the fusion images. On the other hand, pixel-based reconstruction methods278

involve weighted averaging or other operations on pixel values from different source data to achieve279

fusion. This approach has become the mainstream method in current spatiotemporal fusion research280

due to its ability to preserve spatial details and improve overall accuracy. Within these methods,281

the spatial and temporal adaptive reflectance fusion model (STARFM) has been widely applied (Gao282

et al., 2006). An improved approach to the STARFM model is used in this study.283

This study aims to extend the SMAP 9-km VOD by developing a non-local filter based spatiotem-284

poral fusion model (STFM) (Cheng et al., 2017). This model employs the transformation relationships285
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between high-resolution spatial and low-resolution temporal data over different time periods to ef-286

fectively utilize the high spatiotemporal correlation in remote sensing image sequences for predicting287

high spatial resolution data at the target time. For convenience, in this study, we refer to images288

with high spatial resolution and low temporal resolution as high-resolution images, and conversely, as289

low-resolution images, based on spatial resolution as the criterion.290

As mentioned above, this experiment performs spatiotemporal fusion on the reconstructed data291

VOD resmos and VOD resmap to obtain the VOD st product. Assuming that the changes in VOD292

are linear over a short period, the relationship between the data at different times tk and t0 within a293

pixel can be expressed as follows:294

VOD resmos(x, y, tk) = a(x, y,∆t) ·VOD resmos(x, y, t0) + b(x, y,∆t) (5)

where (x, y) denotes a given pixel location in the low-resolution data, ∆t = tk − t0, and a and b are295

the coefficients of the linear regression model describing the change in VOD resmos between the two296

time points.297

We assume that the high- and low-resolution data obtained by different sensors in the same298

spectral band exhibit similar temporal variations. Thus, the linear relationship between low-resolution299

remote sensing images, as shown in Eq.(5), also applies to high-resolution remote sensing images. The300

high-resolution data at time tk can be calculated as:301

VOD st(x, y, tk) = a(x, y,∆t) ·VOD resmap(x, y, t0) + b(x, y,∆t) (6)

It should be noted that the regression coefficients are derived locally and may vary with location.302

Hence, they cannot be applied globally. Additionally, the condition of the surface cover might un-303

dergo significant and complex changes during the prediction period. Therefore, the STFM algorithm304

incorporates a new non-local filtering method to minimize the impact of these factors on the fusion305

outcome.306

The non-local filtering method seeks to make full use of the highly redundant information within307

the image, thus contributing to the estimation of the target pixel (Buades et al., 2005a,b; Gilboa and308

Osher, 2009; Su et al., 2012). Within the search window Ω, the similarity between neighboring pixels309

and the central pixel will influence the determination of the weights. The weight calculation method310

is as follows:311

W (xi, yi) =
1

C(x, y)
exp

{
−G · ∥VOD resmos(P (xi, yi))−VOD resmos(P (x, y))∥2

h2

}
(7)

Where C(x, y) is the normalization factor, G is the Gaussian kernel, and h is the filtering parameter.312

The term (xi, yi) ∈ Ω represents the coordinates of neighboring pixels within the search window, and313

P(xi,yi) is the non-local similarity patch centered at (xi, yi). Once the similar pixels are determined314

globally, their information is used for estimating the target pixel through weighted averaging. The315

final spatiotemporal fusion prediction model can be expressed as follows:316

VOD st(xi, yi, tk) =

n∑
i=1

W (xi, yi, t0)× [a(xi, yi,∆t)×VOD resmap(xi, yi, t0) + b(xi, yi,∆t)] (8)

Where n represents the number of similar pixels globally.317

Since VOD smos data is available from 1 January 2010 to the present, while VOD smap data318

covers the period from 1 April 2015 to 31 July 2021. To fill the temporal blank in high spatial319

resolution L-VOD products before the launch of the SMAP satellite, we use 1 April 2015, the initial320

date provided by the VOD smap product, as the time node. The time range to be predicted by the321

VOD st product is defined as the T1 period, spanning from 1 January 2010 to 31 March 2015. To322

construct the baseline data required for the spatiotemporal fusion model and considering the temporal323

correlation, we extend one year beyond the fusion input period, defining the T2 period from 1 April324

2015 to 1 April 2016. To validate the quality of the fusion product VOD st, we define the remaining325

period from 2 April 2016 to 31 December 2017 as the T3 period. For specific details, refer to Fig. 1.326

Fig. 2 illustrates that the spatiotemporal fusion model requires paired high- and low-resolution327

data to construct the baseline data. To achieve a more temporally correlated fusion product, we use328
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Fig. 1. Spatiotemporal fusion experiment time segment division explanation.

monthly averaged VOD resmos and VOD resmap from April 2015 to April 2016 to generate baseline329

data, which is a key step in learning the transformation relationships between high - resolution and low330

- resolution data across different periods. Subsequent experiments utilize this baseline data, inputting331

daily low-resolution VOD resmos data for each corresponding month to obtain daily high-resolution332

spatiotemporal fusion product VOD st.333

STFM

T2: VOD_resmos monthly average baseline data

T2: VOD_resmap monthly average baseline data

T1: VOD_resmos daily data

T1: VOD_st daily data

Fig. 2. Spatiotemporal fusion Process.

In summary, this study first utilizes the DCT-PLS method to fill gaps in the original missing334

data, obtaining the reconstructed products, the VOD resmos and VOD resmap. Subsequently, the335

reconstructed global seamless daily datas are input into the spatiotemporal fusion model STFM, gen-336

erating the 9-km VOD st product for unreleased periods of the SMAP satellite. The main experimental337

process is illustrated in Fig. 3. The accuracy validation part is detailed in Section 4.338

3.4 Experimental Setup339

In this study, a three-dimensional dataset (2D spatial + time) is constructed with a monthly340

time series length. The DCT-PLS method is an iterative algorithm designed to fill missing values341

in multi-dimensional data. In this experiment, the number of iterations is set to 100, with the ini-342

tial prediction of the original data performed using the nearest neighbor interpolation method. The343

smoothing parameter (λ) follows a logarithmic sequence from 10−3 to 10−6. During the imputation344

process, the algorithm gradually reduces the smoothing parameter to achieve a transition from coarse345

to fine imputation.346

The STFM algorithm processes data in batches, using the high- and low-resolution monthly av-347

erage baseline data constructed for the T2 period, along with the daily low-resolution data for the348

corresponding month at the target time. After multiple adjustments, the optimal combination of pa-349

rameters for the L-VOD data is determined. Table2 describes the meaning and specific values of these350

parameters.351

The quantitative evaluation metrics used in the experimental section of this study include five352
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Fig. 3. General flow chart of the experiment.

Table 2. Parameterization of the STFM algorithm in this study

Parameters Description Values
Search window Search range of similar pixels 3

Spectral parameter Filter similar pixels 0.01
High-resolution error High-resolution data observation error 0.005
Low-resolution error Low-resolution data observation error 0.005
Filter parameters Calculate individual weights 0.15
Weight block Calculate individual weights 1

indicators: the correlation coefficient (R), the coefficient of determination (R2), the root mean square353

error (RMSE), the bias and the mean absolute error (MAE).354

4 Experiment results and discussions355

4.1 Gap filling356

4.1.1 Reconstructed results357

The gap-filling results for 1 June 2016 are illustrated in Fig. 4. We observe that the reconstructed358

results not only retain the existing values of the original data but also reasonably fill the missing parts.359

The filled areas show no obvious discontinuities or gaps with the surrounding data. Additionally, the360

reconstruction results maintain the details of the original image, such as topographic features and361

boundaries.362
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Fig. 4. Comparison results of SMOS (left) and SMAP (right) L-VOD before and after reconstruction
on 1 June 2016.

To further investigate the detail recovery capability of the DCT-PLS model, Fig. 5 presents the363

comparison results of magnified data in a local area. It can be seen that, whether in high-value or364

low-value situations, the reconstruction results still exhibit reasonable spatial variations in the missing365

areas without clear boundaries.366

SMOS SMAP

Original                        Reconstructed Original                       Reconstructed

Fig. 5. Four localized regions are selected to compare the reconstruction effect of SMOS and SMAP
in the same localized region on 1 June 2016.
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根据审稿意见改红蓝配色

Fig. 6. Results of temporal variation in selected pixel at different missing data ratios in 2018, with red
representing original values, blue representing model reconstructed values, and rectangles emphasizing
some extreme value reconstruction results.

4.1.2 Time-series validation367

Apart from maintaining spatial continuity as described in Section 4.1.1, temporal consistency is368

also crucial for the reconstructed L-VOD products. In this section, we analyze the time series of369

representative pixels with different missing proportions and different land surface types before and370

after reconstruction.371

Take the SMAP L-VOD data in 2018 as an example. In Fig. 6, we show three time series with372

varying proportions of data gaps and their corresponding model outputs. The three pixel points are373

from western Canada (52.155° N, 64.755° W), southern Russia (55.215° N, 95.355° E), and northeastern374

Democratic Republic of the Congo (1.215° N, 26.325° E). In Fig. 6, the red line represents the original375

values, overlaid on the blue line representing the reconstructed values. In other words, the DCT-PLS376

model does not alter the original pixel values themselves, preserving the original characteristics of the377

data and maintaining continuity in the reconstructed results. Notably, the boxes in Fig. 6 indicate378

that the model effectively captures the extreme values present in the original dataset. These findings379

suggest that the DCT-PLS model used in this study reliably predicts the missing portions.380

Combining Sentinel-2 satellite imagery with MODIS MCD12C1 V061 land cover classification381

data, Fig. 7 shows the temporal variation results across different land cover types. Four land types382

are selected for study: forest, shrubland, cropland and grassland. To ensure consistency, we select383

pixels with 52% missing data throughout the year for analysis. The time series illustrates the seasonal384

variations in different land types. For instance, forests and grasslands exhibit significant vegetation385

changes during certain seasons, such as periods of vigorous growth and dormancy. Croplands show386

distinct cyclic fluctuations in VOD, reflecting the planting and harvesting cycles of crops. Typically,387

VOD is lower during the sowing season, peaks during the growth period, and decreases again after388

harvest.389
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Fig. 7. The red dots in the figure indicate the pixel points selected to characterise the temporal
variation of L-VOD under different vegetation conditions. Four different surface types are selected
here, namely (a) scrub, (b) forest, (c) cropland, and (d) grassland; (1)-(4) represent the time-series
variation maps of the corresponding pixels under the above surface types, respectively.

4.1.3 Simulated missing-region validation390

To quantitatively analyze the performance of the DCT-PLS method in spatiotemporal data re-391

construction, we design a series of experiments. Considering the current lack of site data for L-VOD392

products, we simulate missing data by removing original values.393

Taking the SMAP original L-VOD data from 20 July 2020 as an example, we create four simulated394

square missing areas (80×80 pixel) in North America, South America, Africa, and Asia, as shown in395

Fig. 8. This allows us to easily compare the reconstructed VOD areas with the original VOD areas to396

validate the spatial continuity of the gaps filling products. Fig. 8(a) and Fig. 8(b) respectively depict397

the original and reconstructed results of the simulated missing areas on 20 July 2020. It can be seen398

that the output data are continuous within the original valid areas. In the simulated missing patches,399

the spatial texture information is also continuous, without noticeable boundary reconstruction effects.400

To better analyze the spatial details of the reconstructed VOD data, we magnify the results of the401

four simulated regions in Fig. 8. Fig. 9 shows the detailed original and reconstructed spatial information402

Fig. 8. Original and reconstructed results with simulated missing regions on 20 July 2020: (a) Original
data with four simulated missing patches; (b) Reconstructed data. The gray background represents
the ocean.
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Fig. 9. Detailed original and reconstructed spatial information of four simulated missing patches.
The four simulated missing patches (80 × 80 pixel) are from the original SMAP L-VOD data from 20
July 2020, taken from North America, South America, Africa, and Asia.

for the four simulated patches on 20 July 2020. It can be clearly seen that the reconstructed patches403

have high consistency with the original patches.404

Fig. 10 shows scatter plots of the original and reconstructed data for the four simulated regions405

mentioned above. The results indicate that the VOD in the simulated missing areas has a high406

reconstruction accuracy, with R2 values ranging from 0.883 to 0.978. The RMSE does not exceed 0.05,407

and the MAE does not exceed 0.04.408

Fig. 10. Scatter plots of the original and reconstructed data for the four simulated missing regions
on 20 July 2020. The colors and the color bar indicate the density of data points in the scatter plot.

Additionally, to better simulate the missing patterns of the original data and make the validation409

results more realistic, we also create missing data by applying real missing masks from the original410

data, as shown in Fig. 11. This method randomly applies the missing mask from one day to data from411
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other days, avoiding the influence of fixed missing data patterns on the validation results. It is suitable412

for time series data and can simulate missing data patterns at different time points. The DCT-PLS413

method is then used to reconstruct the missing data, with the original values serving as the reference414

to compare the accuracy of the reconstruction.415

Fig. 11. Simulation real missing data on 9 September 2011: (a) original striped data, (b) simulated
real missing mask data, (c) reconstructed result for the missing parts.

By simulating real missing masks, we validate the effectiveness of the DCT-PLS reconstruction416

method. We analyze the overlapping period of SMOS and SMAP data, and Fig. 12 shows the results of417

missing value reconstruction for the SMOS and SMAP L-VOD datasets for 2016 and 2017. The results418

indicate that the proposed method performs excellently in reconstructing missing values. Specifically,419

for SMOS L-VOD data, the R2 exceeds 0.8, the RMSE is less than 0.1, and the Bias is only -0.008 and420

-0.006, respectively. The SMAP L-VOD data, likely due to its more complete original data distribution421

and smaller proportion of missing values, shows even better reconstruction results, with an R2 of 0.948422

and an RMSE of 0.073. These metrics indicate a high degree of consistency between the predicted and423

original values, with minimal errors and no significant systematic bias.424
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Fig. 12. Scatter plots of the accuracy for the simulated missing parts, i.e., the accuracy assessment
results for Fig. 11 (a) and (c). Here, we take the overlapping period of SMOS and SMAP in 2016 and
2017 as examples.

4.2 Spatiotemporal Fusion425

4.2.1 Comparison of VOD st and VOD resmap values in the overlapping period426

This experiment aims to use a spatiotemporal fusion model to generate 9-km L-VOD products,427

making the fusion product (VOD st) an effective substitute for the high-resolution VOD resmap prod-428

uct before its release. The closer the values of VOD st are to VOD resmap, the higher the quality429

of the fusion product. We first validate the accuracy of VOD st by comparing it with VOD resmap430

in the T3 period. Fig. 13 shows box plots that integrate the daily accuracy assessment results on a431

monthly basis. Three different metrics ( R2, RMSE, Bias) evaluate the differences between VOD st432

and VOD resmap. Overall, R2 remains between 0.88 and 0.96, indicating a high correlation between433

the fusion product and the 9-km product. Notably, the accuracy is the highest during the summer434

due to the largest spatial coverage, resulting in more valid data input into the spatiotemporal fusion435

model.436
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Fig. 13. Box plots of R2, RMSE, and Bias for VOD resmap and VOD st during the T3 period. The
x-axis represents the months, and each box represents the accuracy metrics for all the days within the
current month. The shading of the boxes is divided by the median line.

This experiment also conducts multiple validations on three different time scales: daily, monthly,437

and yearly. Table 3 presents representative evaluation results. The accuracy assessment covers these438

three time scales as well as the four seasons, which essentially represents the quality of the fusion439

product. We observe that the results during the T2 period show higher accuracy, which can be440

attributed to the baseline data used in constructing the spatiotemporal fusion model being sourced441

from the T2 period. Furthermore, the accuracy is highest on a global scale, aligning with the principle442

of the spatiotemporal fusion model that the fusion effect improves with higher spatial coverage, i.e., a443

larger effective number (N). Overall, R2 consistently remains above 0.8, RMSE around 0.1, and MAE444

below 0.1, indicating a high correlation between VOD st and VOD resmap in terms of values.445

Table 3. Evaluation results of VOD resmap and VOD st at three time scales.

Time Scale Date Number R2 RMSE MAE

daily

2016.01.15 1064320 0.958 0.072 0.047
2016.07.15 1477263 0.948 0.075 0.052
2017.04.15 1289649 0.934 0.084 0.059
2017.10.15 1476562 0.926 0.093 0.064

Monthly average
2017.05 1425487 0.970 0.055 0.038
2017.11 1356799 0.959 0.070 0.046

Yearly average
2016 1488668 0.983 0.042 0.026
2017 1488659 0.978 0.049 0.031

Considering that the input datas of the fusion model are reconstructed, some errors may be446

introduced. The original daily data is closest to the real situation, so comparing it with the fusion447

result can verify the authenticity and reliability of the fusion results. Fig. 14 shows the scatter density448

plot between the fusion product VOD st and the original 9-km data VOD smap, allowing us to more449

intuitively visualize the excellent correlation between the two.450
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Fig. 14. Scatter density plot between VOD st and VOD smap, selected from mid-season data for the
corresponding season during the T3 period.

Despite the large amount of data in the model (N ≥ 441767), the results indicate that the fu-451

sion product and the original data still achieve excellent convergence, maintaining a high degree of452

linear correlation. There is a clear tendency for the fusion results to underestimate higher values and453

overestimate lower ones. This might be attributed to the original data handling of outliers (negative454

values and values greater than 1.5). Additionally, the weight distribution during the fusion process455

may lead to data smoothing, reducing data volatility and thus weakening extreme values. However,456

in the high-value range of 1-1.5, VOD st shows partial underestimation, which is considered a pos-457

itive phenomenon in this study. VOD smos and VOD smap products use different algorithms and458

have differences in their data ranges. It is believed that VOD smap tends to overestimate data in the459

high-value range. The fusion product obtained through the spatiotemporal fusion process is closer to460

VOD smos in this range, effectively complementing the two products.461

Through comprehensive accuracy assessment of the fusion data, we easily observe that the fusion462

data not only maximally align with the characteristics of the original observational data but also463

maintain consistency with the reconstructed data in the missing regions.464

4.2.2 Long-term comparison465

Since the input data for the spatiotemporal fusion model are low-resolution VOD products from466

the T1 period, we expect the fusion product to not only maintain high numerical consistency with467

VOD resmap but also show a synchronized temporal trend with VOD resmos. We compute the468

monthly averages of effective pixels for VOD resmos, VOD resmap, and VOD st from 2010 to 2017,469

analyzing their temporal variations, as shown in Fig. 15. The results indicate that from 2010 to 2017,470

VOD st shows a generally synchronized trend with VOD resmos, demonstrating effective learning of471

the temporal characteristics of the SMOS satellite product. The temporal trend lines of VOD st and472

VOD resmap generally align, with VOD st values falling between the original data, indicating that it473

has effectively captured the numerical characteristics of both SMOS and SMAP satellites, making it a474

suitable complement for VOD resmap during missing periods.475
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Fig. 15. Temporal variation of monthly averages of VOD resmos, VOD resmap, and VOD st valid
pixels from 2010 to 2017. Green represents VOD resmos, blue represents VOD resmap, and red rep-
resents VOD st.

4.2.3 Spatial Distribution Comparison476

After analyzing the temporal characteristics of the three products, it is also necessary to discuss477

the spatial distribution of VOD st. In this experiment, VOD resmos and VOD st from the T1 period478

in 2011 are selected for spatial distribution comparison to represent the mid-season L-VOD products,479

demonstrating spatial distribution changes across different seasons. As shown in Fig. 16, corresponding480

to the conclusion that VOD st numerically exceeds VOD resmos, it can be observed that VOD st and481

VOD resmos exhibit similar spatial distribution patterns across different seasons. With the warming482

of spring, vegetation begins to grow, especially in the polar regions where snow and ice melt, expanding483

the spatial coverage of VOD. As temperatures rise in summer and autumn, the coverage area of VOD484

increases, and VOD values significantly rise, particularly noticeable in summer. The consistency in485

spatial distribution changes once again demonstrates the reliability of the spatiotemporal fusion results.486
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Fig. 16. Comparison of spatial distribution between VOD resmos and VOD st, using mid-season data
from 2011 for the respective seasons.

4.2.4 Comparison of spatial details487

To visually compare the spatiotemporal fusion results, Fig. 17 selects the mid-summer season of488

2017 for a comparison of the three products. Due to the lack of 9-km L-VOD data from 2010 to 2015,489

we use VOD resmos from this period to correct the spatiotemporal fusion results. Therefore, VOD st490

maintains consistent spatial coverage with VOD resmos. Additionally, because the spatiotemporal491

fusion model incorporates the characteristics of the VOD resmap baseline data, it can be observed492

that VOD st improves the underestimation seen in the original SMOS satellite product.493
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Fig. 17. To visually compare the spatiotemporal fusion results, we select the mid-summer season of
2017 to compare the model inputs and outputs: (a) VOD resmos, (b) VOD resmap, and (c) VOD st.
Based on the MODIS MCD12C1 V061 data, the red boxes in (c) are four representative regions.

We expect the VOD fusion product (VOD st) to capture detailed information comparable to the494

spatial resolution of 9 km L-VOD product from the SMAP satellite. Therefore, we further analyze495

the spatial detail representation capability of VOD st. Considering that during the T1 period, only496

coarse-resolution VOD resmos and VOD st are available, and during the T2 period, VOD resmos and497

VOD resmap contribute to the spatiotemporal fusion baseline data. Hence, in this experiment, we498

select the mid-summer season of the T3 period to compare VOD resmos, VOD resmap and VOD st,499

evaluating the spatial detail quality of the fusion product. Based on MODIS MCD12C1 V061 land500

cover category data, we choose four representative regions, as indicated by the red boxes in Fig. 17(c).501
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Fig. 18. VOD resmos, VOD resmap and VOD st in the summer season of the T3 period are selected
for comparison to evaluate the quality of spatial details of the fusion products. Based on MODIS
MCD12C1 V061 land cover category data, four representative regions are selected, as indicated by the
red boxes in Fig. 17(c).

Fig. 18 compares the spatial details of three L-VOD products. We find that the spatial de-502

tails of VOD st are significantly better than VOD resmos and very close to VOD resmap. This is503

because VOD st effectively learns the characteristics of the VOD resmap baseline data through the504

spatiotemporal fusion model, adequately considering the spatiotemporal correlations of VOD in the505

neighborhood. For example, it captures patchy features in region 2 and high-value boundary areas in506

region 4. Compared to VOD resmap, VOD st exhibits some gaps, primarily due to missing information507

from the original coarse-resolution VOD resmos dataset.508

5 Discussion509

5.1 Comparisons with time-series averaging510

Currently, there is a lack of seamless daily L-VOD data. Therefore, we attempt to synthesize511

monthly averages of VOD resmos and VOD resmap data for a comprehensive comparison. Taking512

July 2015 data as an example, we consider the monthly average of the original strip data as the513

benchmark for qualitative analysis of the corresponding reconstructed results.514

Fig. 19 compares the overall and local monthly average data before and after reconstruction.515

We believe that the daily variations in L-VOD values are not significant. Consequently, whether the516

missing data is filled or not, the overall spatial coverage remains largely consistent without noticeable517

blocky patterns. We select a relatively representative area, the Kalimantan Island (5° S - 8° N, 108° E -518

120° E). The VOD signals on Kalimantan Island are higher, and the missing - data proportion mainly519

ranges from 50% to 80%, which can better reflect the reconstruction ability. Kalimantan Island is520

characterized by its large - area and diverse - type tropical rainforests. Located in the tropical climate521

zone, it has complex climatic conditions, abundant precipitation, and extreme weather events that can522

impact vegetation. With diverse landforms and a special geographical location, as well as social and523
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(a)Original(top)  and Reconstructed(bottom) SMOS VOD monthly averages in 2015.07

Fig. 19. Original (top) and reconstructed (bottom) results for July 2015 SMOS VOD monthly
average. At a global scale, the overall coverage remains consistent. The red boxes highlight local
areas, indicating that the monthly average spatial variations in the reconstructed data are smoother
and free of striping.

economic activities such as agricultural development and eco - tourism, this island becomes a typical524

area for testing the effectiveness and reliability of the reconstruction method in complex environments.525

In local areas, the monthly average data after reconstruction is smoother, almost without the striped526

distribution phenomenon.527

Fig. 20 compares more representative regions. For SMOS data, the original data in certain regions528

(such as region1 and region2) show significant stripe-like gaps or discontinuities. These issues are well529

resolved in the reconstructed data, resulting in smoother and more continuous data. For SMAP data,530

the original data in region2 show significant missing blocks (white areas), where the nearby data531

may have large monthly average changes due to numerous missing days. The filled data effectively532

improve this situation, appearing more complete and smooth overall compared to the original data.533

Overall, in all three regions, the reconstructed data show significantly better performance in local534

areas, eliminating the striped distribution caused by missing original data and demonstrating a more535

uniform spatial distribution.536

5.2 Evaluating VOD against vegetation-related parameter537

To enhance clarity, we evaluate VOD against vegetation-related parameter NDVI. The results of538

the monthly average comparison between VOD st and NDVI are shown in Fig. 21. We can observe539

that the seasonal trends of VOD st and NDVI are highly consistent, showing obvious periodic charac-540

teristics. During the summer months corresponding to the period of maximum vegetation growth and541

leaf production, the values of these parameters increase significantly, and they decline as the vegetation542

ages. This consistency indicates that VOD st can effectively capture the changes in vegetation growth,543

similar to traditional optical - based indices like NDVI. Notably, VOD st exhibits a slight lag in its544

seasonal changes compared to NDVI, but this lag is not due to the quality of VOD st. Our findings545

are in line with previous studies (Lawrence et al., 2014; Li et al., 2021), which have also reported that546

VOD data has a slight lag when compares with optical vegetation indices.547
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Fig. 20. Here three regions are selected for each type of satellite product to compare the monthly
average results of original and reconstructed data under different factors.

Fig. 21. Long - term monthly average trend comparison between VOD and NDVI.

23



5.3 The bias between SMOS and SMAP products548

SMOS and SMAP sensors have different observational capabilities, and the differences in instru-549

mentation result in different ways of sensing and measuring VOD. In addition, the two have different550

VOD retrieval algorithms, which can also cause bias. The bias between SMOS and SMAP VOD prod-551

ucts may introduce errors during the data fusion process, thereby affecting the accuracy and reliability552

of the fused product (Li et al., 2022b).553

In the context of our study, we focus on the overall temporal and spatial trends of VOD rather554

than eliminating the bias between the two sensors’ products. This is based on an assumption that555

within the same spectral band, high - resolution and low - resolution data obtained from different556

sensors have similar temporal changes. We believe that these similar temporal variations can still557

provide valuable information for our research objectives. For instance, when analyzing the long - term558

trends of vegetation dynamics or the response of vegetation to environmental changes, the common559

temporal patterns in SMOS and SMAP VOD data can be used to draw meaningful conclusions. In560

addition, our study is more concerned with the general performance and usability of the fused product.561

We believe that the bias does not significantly distort the overall patterns and relationships.562

We understand the importance of the bias issue and acknowledge that it may be necessary to563

further explore ways to mitigate bias in future studies for more accurate and refined results. However,564

in the scope of this current study, our approach based on the assumption of similar temporal variations565

is a valid strategy.566

5.4 Uncertainty analysis of the 9-km VOD products567

We demonstrate the superior performance of this method in addressing VOD data gaps. With568

conventional methods, the most challenging part is to fill the continuous gaps. In spatiotemporal569

datasets, missing data is not necessarily consistent. It may alternate across spatial and temporal570

dimensions, adding complexity to the gap-filling process. For example, a sensor failure might result571

in no data being recorded during a specific period, with these gaps being spatially continuous. As a572

fully three-dimensional technique, the DCT-PLS method can easily cope with data gaps of this type.573

It explicitly utilizes both spatial and temporal information to predict missing values. However, while574

this method shows clear advantages, it is still subject to certain limitations. The uncertainties in the575

generated VOD product can be classified into three types, as detailed below.576

1. The errors of original VOD product. The proposed 9-km VOD product is generated based577

on the original VOD products, which contain errors due to satellite sensor imaging and retrieval578

algorithms. In filling in missing data, low-frequency components are typically used to predict the579

missing values because they capture the main trends in the data. However, when there is a large580

amount of missing data (e.g., in tropical rainforest regions with dense vegetation), the reliability of581

the filled-in high-frequency components may be reduced. It is worth noting that a significant portion582

of the data gaps in this VOD dataset is caused by frozen soil, in which case the reconstructed VOD583

values are physically unrealistic.584

2. The selection of parameters. The statistical modeling process is controlled entirely by a single585

smoothing parameter, making it straightforward to set without requiring complex model parameter586

tuning. Additionally, when the smoothing parameter is small, the DCT-PLS method has the potential587

to effectively fill in high-frequency components in the data. However, the choice of the smoothing588

parameter must be adjusted based on the specific characteristics of the dataset. If there are large589

spatial differences in the data, using an extremely small smoothing parameter (e.g., less than 10−7)590

can lead to overfitting, resulting in poor prediction performance.591

In the estimation of 9-km VOD, the STFM demonstrates strong fusion performance by effectively592

integrating the advantages of the original VOD products: the temporal availability of VOD resmos593

(2010-2015) and the spatial resolution of VOD resmap (9 km). The STFM fully considers the spa-594

tiotemporal correlation of VOD, and only VOD resmos and VOD resmap are used. This approach does595

not require the VOD retrieval process or additional auxiliary data, thus minimizing potential errors596

in the estimation process (Hongtao et al., 2019). Unlike traditional spatiotemporal fusion models that597

only establish relationships between high- and low-resolution imagery, the STFM constructs baseline598

data for corresponding months. This approach mitigates the instability in fusion results caused by599

fixed baseline data, thereby enhancing reliability.600

Since the data fusion is performed sequentially by month, it is essential to discuss the temporal601
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impact on the fusion results. Fig. 13 presents a box plot of the monthly aggregated daily accuracy602

evaluation results for the T3 period. The findings indicate that accuracy is highest in summer, likely603

due to the broad spatial coverage providing more valid input data for the spatiotemporal fusion model.604

In contrast, accuracy decreases in winter as vegetation growth slows down due to lower temperatures605

and reduced sunlight, leading to a decline in surface vegetation coverage. Additionally, the presence606

of snow and frozen soil under low-temperature conditions can further interfere with accurate VOD607

signal capture, exacerbating model errors and uncertainties. The R2 gradually increases in spring,608

particularly in April and May. It indicates that the explanatory power of the model is improving609

with the gradual recovery of vegetation. In autumn, vegetation decline reduces data coverage, thereby610

affecting the model’s performance. To sum up, the fusion accuracy is affected by the amount of valid611

data. In the future, adjusting the approach to constructing the baseline data could reduce this impact.612

6 Data availability613

This dataset can be downloaded at https://doi.org/10.5281/zenodo.13334757 (Hu et al., 2024).614

The global daily seamless 9-km VOD datasets from 2010 to 2021 are stored in separate folders for the615

corresponding years, with each folder containing daily files in matfile format.616

7 Conclusions617

In this study, aiming at the spatial incompleteness and coarse resolution of historical data, we gen-618

erate a global daily seamless 9-km L-VOD product from 1 January 2010 to 31 July 2021. Considering619

the spatiotemporal characteristics of the data, we begin by employing the DCT-PLS method to recon-620

struct global daily seamless L-VOD data. Thereafter, we integrate the complementary spatiotemporal621

information of SMOS and SMAP satellite L-VOD products by developing STFM.622

Due to the lack of in situ L-VOD data, three validation strategies are employed to assess the pre-623

cision of our seamless global daily 9-km products as follows: (1) time series validation, (2) simulated624

missing-region validation, and (3) data comparison validation. Through quantitative and qualitative625

assessments, we find that the fusion product VOD st effectively maintains the stable long-term charac-626

teristics of VOD resmos and achieves good spatial consistency. It closely approximates VOD resmap627

numerically, thus mitigating the underestimation issues associated with SMOS satellite-derived L-VOD628

products.629

We also identify limitations in our study. To begin with, the lack of in situ L-VOD data limits630

comprehensive accuracy validation. Additionally, SMAP MT-DCA L-VOD data is no longer updated,631

making it necessary to consider the use of additional real-time data sources in future studies to improve632

timeliness and accuracy. Another significant limitation is that the current level of detail in our data633

products may not sufficiently support studies of local-scale forest disturbance events (e.g., droughts634

and fires). The resolution constraints may lead to inaccuracies in detail processing and small-scale635

event identification. Future research should consider downscaling methods to enhance L-VOD data636

resolution (Zhong et al., 2024), thereby providing better support for local-scale analysis. Through637

these improvements, we aim to enhance the reliability and applicability of research results to better638

support forest ecosystem management and environmental conservation needs.639
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