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Response to Comments of Reviewer #1: 

General comments: This study introduces a novel approach to reconstructing and 

merging global daily L-band Vegetation Optical Depth (L-VOD) data at a 9-km 

resolution from 2010 to 2021. The authors integrate datasets from the SMOS and SMAP 

satellites. They use a three-dimensional discrete cosine transform-based penalized least 

square regression (DCT-PLS) method to fill gaps in the data, followed by a 

spatiotemporal fusion model (STFM) based on non-local filtering to enhance the spatial 

and temporal continuity of the dataset. This material is important for long-term canopy 

and vegetation change studies. The manuscript is well-prepared, and the VOD data are 

valuable and should be published in ESSD. However, I have some questions about the 

data and their seasonal pattern, hope the authors can clarify them and confirm the data 

quality. 

Response: We sincerely thank the reviewer for his/her positive comments. According 

to the concerns, we have tried our best to improve the manuscript. The point-by-point 

responses are listed below. Thanks for your time. 

 

Response to Specific Comments: 

Q: 1) In Fig. 6, the description indicates that the rectangles emphasize some 

extreme value "reconstruction" results, but why does the first panel with a 30% 

missing proportion have a rectangle in the "Original" part line (magenta color)? 

Response: This is a good question. In Figure 6, the red line represents the original 

values and is overlaid on the blue line representing the reconstructed values. In other 

words, the original values are missing, while the reconstructed values are continuous. 

The results show that the DCT - PLS model does not alter the original pixel values 

themselves. It preserves the original characteristics of the data and maintains the 

continuity of the reconstructed results. In the first panel with a 30% missing proportion, 

the rectangle is marked on the original values, indicating that the reconstruction process 

can not only maintain the original non - missing parts but also capture extreme values 

well. Similar studies [1] also mark extreme values on the original values. 

 



References: 

[1] Wang, G., Garcia, D., Liu, Y., De Jeu, R., and Dolman, A. J.: A three-dimensional 

gap filling method for large geophysical datasets: Application to global satellite soil 

moisture observations, Environmental Modelling & Software, 30, 139–142, 2012. 

 

Q: 2) For Fig. 6 and Fig. 7, the colors for "Reconstructed" and "Original" are too 

similar. Please consider using more distinct colors, such as red and blue or black 

and blue. Additionally, the yaxis uses different scales in these figures. I suggest 

using the same y-axis scale range to better compare the relative size differences. 

Response: Thanks for the reviewer’s suggestion regarding the detail of our mapping. 

According to the advice, we have changed the colors of the reconstructed values and 

the original values to distinct blue and red. The extreme values are marked with black 

boxes.  

 

Fig. 1. Results of temporal variation in selected pixel at different missing data ratios in 2018, with 

red representing original values, blue representing model reconstructed values, and rectangles 

emphasizing some extreme value reconstruction results. 



In the comparison of the temporal variation results of different land cover types, to 

ensure consistency, we select pixels with a data - missing proportion of 52% throughout 

the year for analysis. 

 

Fig. 2. The red dots in the figure indicate the pixel points selected to characterise the temporal 

variation of L-VOD under different vegetation conditions. Four different surface types are selected 

here, namely (a) scrub, (b) forest, (c) cropland, and (d) grassland; (1)-(4) represent the time-series 

variation maps of the corresponding pixels under the above surface types, respectively.  

 

Q: 3) In Fig. 10, the x- and y-axes represent VOD. What do the colors and the color 

bar indicate? Please clarify their meaning. 

Response: Thanks for the comment. The colors and the color bar indicate the density 

of data points in the scatter plot. The color bar indicates the range of density, with the 

colors transitioning from blue to red, where blue represents lower density and red 

indicates higher density. This helps visualize the distribution of the original and 

reconstructed VOD values, with more frequent data points represented by warmer 

colors (red) and less frequent points represented by cooler colors (blue). 

 

Q: 4) In Fig. 18, VOD_st has more blank data compared to VOD_resmap. Can you 

provide a clearer explanation of why VOD_st is considered close to VOD_resmap 



(line 490)? 

Response: Thanks for the comment. During the spatiotemporal fusion process, VOD_st 

learns the temporal characteristics of VOD_resmos (from 2010 to 2015) and the spatial 

characteristics of VOD_resmap (with a 9-km spatial resolution). During the period from 

2010 to 2015, only the SMOS satellite provides L-band VOD products. Therefore, the 

spatial coverage of VOD_st from 2010 to 2015 is completely dependent on 

VOD_resmos. In comparison, the spatial coverage of the SMOS satellite products is 

not as extensive as that of the SMAP satellite. In our paper, VOD_st is considered closer 

to VOD_resmap (line 490) in terms of numerical accuracy. Specifically, it is closer to 

the high-resolution product in terms of numerical performance of the valid data (9 km) 

rather than in terms of spatial coverage (VOD_resmos). This numerical proximity 

further demonstrates that the fusion product (VOD_st) has a certain degree of reliability 

in reflecting relevant features. 

 

Q: 5) In Fig. 19, the red boxes and zoomed-in plots show that the reconstructed 

data appear smoother and free of striping. However, it is difficult to conclude that 

the reconstructed data are necessarily better. Why was the Black Sea region 

chosen as an example instead of another region with a higher VOD signal? 

Response: Thanks for the comment. We select the Black Sea region as an example due 

to its representative ecosystem, which primarily consists of grasslands and croplands. 

Moreover, the proportion of missing data in this area is moderate, mostly ranging from 

40% to 50%. Since the percentage of missing data is not very high, the data distribution 

in the region is relatively uniform. The data characteristics are generally consistent, 

reducing the impact of extreme values or unusual data clusters. Therefore, the 

difference between the monthly averages before and after reconstruction is not 

significant. 

In order to better compare the results before and after the reconstruction, we have 

re-selected a relatively more representative area, the Kalimantan Island (5° S - 8° N, 

108° E - 120° E). The VOD signals on Kalimantan Island are higher, and the missing - 

data proportion mainly ranges from 50% to 80%, which can better reflect the 



reconstruction ability. Kalimantan Island is characterized by its large - area and diverse 

- type tropical rainforests. The dynamic changes in vegetation are significantly affected 

by human activities. Located in the tropical climate zone, it has complex climatic 

conditions, abundant precipitation, and extreme weather events that can impact 

vegetation. With diverse landforms and a special geographical location, as well as social 

and economic activities such as agricultural development and eco - tourism, this island 

becomes a typical area for testing the effectiveness and reliability of the reconstruction 

method in complex environments. 

In the selected local area, the original data presents blocky patterns. There are 

significant differences in VOD values between different patches, and the edges are 

rather abrupt. Meanwhile, there may be some noises or outliers in the original data, 

resulting in a non - smooth spatial distribution of the data. The reconstructed data shows 

a smoother spatial transition. It indicates that the reconstruction algorithm not only fills 

in the missing data values but also processes the noises and outliers in the original data 

to a certain extent. It is important to note that VOD products exhibit insignificant 

variations at the daily scale. So the difference between the monthly average data before 

and after the reconstruction is not significant.  

 

Fig. 3. Original (top) and reconstructed (bottom) results for July 2015 SMOS VOD monthly 

average. The red boxes highlight local areas. 

 



Response to Data part Comments: 

Q: 1) Each data file includes only one time step and has a file size of 3.7 MB. I 

suggest merging them by year into a single NetCDF file. 

Response: We sincerely thank the reviewer for the suggestion. We have followed this 

suggestion and merged the daily data within each year into one NetCDF file. The 

variable names are named as VOD_xxxxyydd, where xxxx represents the year, yy 

represents the month, and dd represents the day. The longitude variable is named “lon” 

with a dimension of 4000×1, and the latitude variable is named “lat” with a dimension 

of 2000×1. It should be noted that these NetCDF files are saved using the netCDF4 

library in Python, with the dimension order being (lat, lon). When reading these 

NetCDF files in MATLAB, the default data dimension order is (lon, lat). Therefore, it 

is necessary to transpose the variables to match the correct dimension order. 

 

Q: 2) I selected VOD data from two days: summer (2021-07-07, left panel) and 

winter (2021-01-07, right panel). In the Eastern US and many other regions, the 

seasonal pattern appears reasonable, with higher VOD in summer and lower VOD 

in winter in the Northern Hemisphere. However, in Sweden (red rectangle) in 

Europe, the summer VOD (~0.6) is lower than the winter VOD (~0.8). Additionally, 

the black boxes indicate that the western US, Alaska and western Canada have 

higher VOD in winter (almost as high as Amazon rainforest, VOD >1.0). Please 

confirm whether this seasonal pattern is reasonable in those regions. 

Response: Thank you for your careful review and the valuable comment. We appreciate 

your attention to the seemingly unusual seasonal patterns of VOD in specific regions.  

Regarding the situation in Sweden where the summer VOD (~0.6) is lower than the 

winter VOD (~0.8), this phenomenon can be reasonably explained by several factors. 

In Sweden, during the winter, although the vegetation may be less physiologically 

active, the presence of snow cover can have a significant impact on the VOD 

measurement. Snow has unique electromagnetic properties, and its high dielectric 

constant can lead to increased microwave backscattering, which in turn can elevate the 

VOD value [1]. In contrast, during the summer, although the vegetation is growing, the 



relatively sparse forest cover, combined with possible effects of soil moisture and 

vegetation structure changes, might result in a lower VOD compared to the winter with 

snow cover. 

As for the regions in the western US, Alaska, and western Canada where the winter 

VOD is higher (almost as high as in the Amazon rainforest, VOD >1.0), this can be 

attributed to the local environmental conditions. A large part of these areas is covered 

by coniferous forests. These forests are characterized by evergreen trees such as spruce, 

pine, and fir. The evergreen nature of these trees means that they retain their foliage 

throughout the winter [2]. Compared to deciduous trees that shed their leaves in winter, 

the continuous presence of foliage in coniferous forests leads to a relatively stable and 

high VOD [3]. In addition, the density of coniferous forests in these regions is relatively 

high in many areas. This high - density vegetation further contributes to the elevated 

VOD values, making them comparable to those in the Amazon rainforest in terms of 

magnitude. 

In conclusion, based on the local environmental characteristics and the influence 

mechanisms of various factors on VOD, the observed seasonal patterns in these regions 

are reasonable and consistent with our understanding of the interaction between the 

environment and microwave remote sensing signals. 

 

References: 

[1] Mätzler C. Applications of the interaction of microwaves with the natural snow 

cover[J]. Remote sensing reviews, 1987, 2(2): 259-387. 

[2] Tian F, Wigneron J P, Ciais P, et al. Coupling of ecosystem-scale plant water storage 

and leaf phenology observed by satellite[J]. Nature ecology & evolution, 2018, 2(9): 

1428-1435. 

[3] Jones H G, Vaughan R A. Remote sensing of vegetation: principles, techniques, and 

applications[M]. OUP Oxford, 2010. 

 

Q: 3) There are large areas of missing data in Russia, China, and Japan during 

winter, but a specific spot in Russia appears red. Please confirm whether this 



pattern is reasonable. 

Response: We sincerely thank the reviewer for pointing out this interesting observation. 

In the final L-VOD product, the data from April 1, 2015, to July 31, 2021, is seamless 

data obtained through gap - filling model. The VOD product from January 1, 2010, to 

March 31, 2015, is further processed using a spatiotemporal fusion algorithm based on 

the seamless data. Both of these datasets maintain spatial consistency with the original 

satellite products. 

As shown in Figure 4, which presents the monthly average of VOD_resmap in 

January 2021, we can observe that the SMAP satellite product has missing data during 

this period. Our reconstruction model constructs three - dimensional data on a monthly 

basis to learn spatiotemporal features. Since the input data (the original SMAP satellite 

data) has missing values, the reconstruction results also exhibit missing data. This is the 

reason for the large - scale missing data in Russia, China, and Japan during winter in 

our product. 

The presence of the red spot in Russia can be attributed to the availability of 

original satellite data in that area. Unlike the surrounding regions in Russia, China, and 

Japan where there are large - scale data gaps during winter, this particular location has 

accessible original satellite data. The sensors are able to capture signals in this area, 

enabling reconstruction model to generate a valid VOD value. 

In summary, these spatial patterns are reasonable given the characteristics and 

spatial consistency of the original data. 

 

Fig. 4. This chart shows the monthly average of VOD_resmap in January 2021. 



Response to Comments of Reviewer #2: 

Response to General comments: 

Q: 1) A more detailed discussion of the results would strengthen the manuscript. 

In particular, further analysis of the performance of the new product across 

different land cover types would be beneficial. Additionally, evaluating VOD 

against vegetation-related parameters, such as aboveground biomass (AGB), 

NDVI, and LAI, would enhance clarity. 

Response: Thanks for the comment. Regarding the first point about a more detailed 

discussion of the results, especially the performance of the new product across different 

land cover types, we have already conducted relevant analyses. As shown in Figure 7 

of our paper, we present the temporal variation results for four selected land cover types: 

forest, shrubland, cropland, and grassland. This analysis allows us to understand how 

the new product behaves differently under various land cover conditions, providing a 

solid basis for discussing its performance in different environments. 

For the second point about evaluating VOD against vegetation - related parameters, 

we add a related experiment in which we compare VOD_st with NDVI. The monthly 

average comparison results are shown in the Figure 1. We can observe that the seasonal 

trends of VOD_st and NDVI are highly consistent, showing obvious periodic 

characteristics. During the summer months corresponding to the period of maximum 

vegetation growth and leaf production, the values of these parameters increase 

significantly, and they decline as the vegetation ages. This consistency indicates that 

VOD_st can effectively capture the changes in vegetation growth, similar to traditional 

optical - based indices like NDVI. Notably, VOD_st exhibits a slight lag in its seasonal 

changes compared to NDVI, but this lag is not due to the quality of VOD_st. Our 

findings are in line with previous studies by Lawrence et al. [1] and Xiaojun Li et al. 

[2], which also reported that VOD data has a slight lag when compared with optical 

vegetation indices. 

The reasons for this lag are related to their distinct biophysical meanings. Firstly, 

NDVI is highly sensitive to rapid changes in leaf - level characteristics such as 

chlorophyll content and leaf area as it is based on the reflection and absorption of visible 



and near - infrared light by the vegetation canopy. In contrast, VOD_st, relying on 

microwave - vegetation interactions, reflects more comprehensive and large - scale 

vegetation structural information and responds more to gradual changes in the overall 

vegetation structure over a longer time frame. Secondly, NDVI is mainly influenced by 

the optical properties of vegetation and is less directly affected by moisture in the short 

- term, while VOD_st is highly sensitive to changes in vegetation moisture content and 

the scattering and absorption properties of the medium. The time it takes for moisture - 

related changes to impact VOD_st compared to the relatively instantaneous optica l 

changes captured by NDVI contributes to the lag. Thirdly, differences in temporal 

resolution and data processing between the two parameters can also lead to the non - 

alignment of their peaks and troughs. 

Overall, this comparison between VOD_st and NDVI provides valuable insights 

into the relationship between microwave - based VOD and optical - based NDVI, 

helping to better understand the characteristics and performance of the VOD product. 

 

Fig. 1. Long - term monthly average trend comparison between VOD and NDVI. 

 

References: 

[1] Lawrence H, Wigneron J, Richaume P, et al. Comparison between SMOS Vegetation 

Optical Depth products and MODIS vegetation indices over crop zones of the USA[J]. 

Remote Sensing of Environment. 2014, 140: 396-406.  

[2] Li X, Wigneron J, Frappart F, et al. Global-scale assessment and inter-comparison 

of recently developed/reprocessed microwave satellite vegetation optical depth 

products[J]. Remote Sensing of Environment. 2021, 253: 112208. 



Q: 2) It may be helpful to consider measures to reduce the bias between SMOS 

VOD and SMAP VOD, as this discrepancy could impact the accuracy of the fused 

product. A more detailed analysis of this uncertainty would be valuable. 

Response: Thank you for highlighting the importance of uncertainty analysis for our 

fused product. First I would like to illustrate how bias between SMOS and SMAP  

VOD affect the results. SMOS and SMAP sensors have different observational 

capabilities, and the differences in instrumentation result in different ways of sensing 

and measuring VOD. In addition, the two have different VOD retrieval algorithms, 

which can also cause bias. The bias between SMOS and SMAP VOD products may 

introduce errors during the data fusion process, thereby affecting the accuracy and 

reliability of the fused product [1]. 

In the context of our study, we focus on the overall temporal and spatial trends of 

VOD rather than eliminating the bias between the two sensors’ products. This is based 

on an assumption that within the same spectral band, high - resolution and low - 

resolution data obtained from different sensors have similar temporal changes.  

We believe that these similar temporal variations can still provide valuable 

information for our research objectives. For instance, when analyzing the long - term 

trends of vegetation dynamics or the response of vegetation to environmental changes, 

the common temporal patterns in SMOS and SMAP VOD data can be used to draw 

meaningful conclusions. In addition, our study is more concerned with the general 

performance and usability of the fused product. We believe that the bias does not 

significantly distort the overall patterns and relationships.  

We understand the importance of the bias issue and acknowledge that it may be 

necessary to further explore ways to mitigate bias in future studies for more accurate 

and refined results. However, in the scope of this current study, our approach based on 

the assumption of similar temporal variations is a valid strategy.  

This bias can also lead to uncertainty in the final product. We can identify the 

following sources of uncertainty for the fused VOD product: 

1. The errors of original SMOS VOD and SMAP VOD products. Our fused VOD 

product is generated based on the original SMOS VOD and SMAP VOD products. 



These original datasets inherently contain errors, due to the satellite sensor's 

performance and the difference of VOD retrieval algorithms. These errors from the 

original data sources are propagated into our fused product, affecting its accuracy.  

In addition, we perform a gap-filling process on the original data, which also 

introduces uncertainty and increases the error in the final fused product. 

2. The meteorological factors. Meteorological factors can affect vegetation phenology.  

Vegetation phenology plays a crucial role. For instance, rapid changes in vegetation 

growth stages, such as the sudden onset of leaf senescence or new growth, can cause 

significant variations in VOD values. If our fusion method does not fully account 

for these rapid changes, it can lead to inaccuracies in the fused product. Moreover, 

the presence of clouds and aerosols can interfere with the satellite measurements of 

VOD which can introduce uncertainties into the final product. 

3. The generalization limitations of the fusion model. Our spatiotemporal fusion model 

is trained using a specific set of data. However, there are differences between the 

training data and the actual data used for testing and generating the final product. 

For example, the land cover types in the testing data might have different spatial 

distributions or compositions compared to those in the training data. Different land 

cover types have distinct VOD responses, and if the model is not well - generalized 

to these variations, it can lead to uncertainties in the fused product. Additionally, 

the temporal coverage of the training data might not fully capture all the possible 

seasonal and interannual variations in VOD, which can limit the model's ability to 

accurately fuse data in different scenarios and contribute to the overall uncertainty 

of the final product. 

 

References: 

[1] Li X, Wigneron J P, Frappart F, et al. The first global soil moisture and vegetation 

optical depth product retrieved from fused SMOS and SMAP L-band observations[J]. 

Remote Sensing of Environment, 2022, 282: 113272. 

 

Q: 3) The overall readability of the manuscript could be improved, particularly in 



terms of phrasing, organization, and paragraph structure. The authors may wish 

to have the manuscript reviewed by a native English speaker to refine grammar, 

style, and syntax. 

Response: Thank you for your feedback regarding the language presentation in our 

manuscript. We sincerely appreciate your careful reading and constructive comments. 

We completely understand your concerns about the English fluency and readability. 

Please allow us to explain that we have already undergone multiple rounds of language 

editing, including: 

1. Professional proofreading by colleagues fluent in academic English; 

2. Grammar checking using advanced language tools (Grammarly and Hemingway 

Editor); 

3. Several iterations of meticulous self-editing to improve clarity. 

While we acknowledge that perfecting academic language remains challenging for 

non-native speakers, we have made our best effort to ensure the technical content is 

presented with precision and clarity. The current version represents what we believe to 

be the optimal balance between scientific accuracy and linguistic quality given our 

capabilities. 

However, we fully respect your expert opinion. Should the manuscript be accepted 

pending minor revisions, we would be happy to collaborate with professional editing 

services to make final language improvements at the production stage. 

 

Response to Specific Comments: 

Q: 1) Page 4, line 191. Define “IGBP, UMD and LAI” before their first use. 

Response: Thank you for your careful review and the valuable comment. We have 

taken your suggestion into consideration and have made the necessary corrections. On 

page 4, line 191, before the first use of "IGBP", "UMD", and "LAI", we have added 

definitions. Detailed explanations are provided below: 

-IGBP (International Geosphere-Biosphere Programme) [1] refers to a global research 

initiative that developed a widely used classification scheme for land cover types based 

on satellite data. 



-UMD (University of Maryland) [2] refers to the land cover classification system 

developed by the University of Maryland, which is based on multi-temporal satellite 

data and has been widely applied in various environmental studies. 

-LAI (Leaf Area Index) [3] is a key parameter in vegetation studies, representing the 

total leaf area per unit of ground area, which is important for understanding vegetation 

structure and function. 

 

References: 

[1] Loveland T R, Zhu Z, Ohlen D O, et al. An analysis of the IGBP global land-cover 

characterization process[J]. Photogrammetric engineering and remote sensing, 1999, 

65: 1021-1032. 

[2] Hansen M C, DeFries R S, Townshend J R G, et al. Global land cover classification 

at 1 km spatial resolution using a classification tree approach[J]. International journal 

of remote sensing, 2000, 21(6-7): 1331-1364. 

[3] Chen J M, Black T A. Defining leaf area index for non‐flat leaves[J]. Plant, Cell 

& Environment, 1992, 15(4): 421-429. 

 

Q: 2) Page 5, line 220. Define “DCT-PLS” before its first use. 

Response: Thanks for the suggestion to improve our paper. In response to the 

reviewer’s comment regarding "DCT-PLS" on page 5, line 220, we have added the 

definition before its initial use. Detailed explanations are provided below: 

DCT-PLS stands for Discrete Cosine Transform - Partial Least Squares. Discrete 

Cosine Transform (DCT) is a mathematical transformation that converts a signal from  

the spatial domain to the frequency domain. It is often used for data compression and 

feature extraction as it can represent the data in terms of its frequency components. 

Partial Least Squares (PLS) is a statistical method that is used for dimensionality 

reduction and regression modeling. In the context of our research, PLS is employed to 

establish a relationship between different variables in the VOD data to fill gaps. It 

combines the advantages of DCT in extracting relevant features from the data and PLS 

in finding the optimal relationship between variables, aiming to reconstruct missing or 



incomplete data in a more accurate and efficient manner. 

 

Q: 3) Page 7, line 288. The bias between SMOS and SMAP products should be 

considered (e.g., 10.1016/j.rse.2022.113272). This addition is relevant and could 

significantly broaden the manuscript's appeal. 

Response: Thank you for your suggestion regarding the consideration of the bias 

between SMOS and SMAP products. This question has already been discussed in 

comment 2 in General comments. The addition you suggested has been added to the 

Discussion part in our study. 

SMOS and SMAP sensors have different observational capabilities, and the 

differences in instrumentation result in different ways of sensing and measuring VOD. 

In addition, the two have different VOD retrieval algorithms, which can also cause bias. 

The bias between SMOS and SMAP VOD products may introduce errors during the 

data fusion process, thereby affecting the accuracy and reliability of the fused product 

[1]. 

In the context of our study, we focus on the overall temporal and spatial trends of 

VOD rather than eliminating the bias between the two sensors’ products. This is based 

on an assumption that within the same spectral band, high - resolution and low - 

resolution data obtained from different sensors have similar temporal changes.  

We believe that these similar temporal variations can still provide valuable 

information for our research objectives. For instance, when analyzing the long - term 

trends of vegetation dynamics or the response of vegetation to environmental changes, 

the common temporal patterns in SMOS and SMAP VOD data can be used to draw 

meaningful conclusions. In addition, our study is more concerned with the general 

performance and usability of the fused product. We believe that the bias does not 

significantly distort the overall patterns and relationships.  

 

References: 

[1] Li X, Wigneron J P, Frappart F, et al. The first global soil moisture and vegetation 

optical depth product retrieved from fused SMOS and SMAP L-band observations[J]. 



Remote Sensing of Environment, 2022, 282: 113272. 

 

Q: 4) Page 7, Line 313. Please consider adding a more detailed description of the 

spatiotemporal fusion experiment. This should include the relationship between 

the reconstructed SMOS VOD and reconstructed SMAP VOD, the division of time 

segments, and the relationship between the fusion product and the reconstructed 

SMOS VOD and SMAP VOD. 

Response: Thank you for your valuable comment regarding the need for a more 

detailed description of the spatiotemporal fusion experiment.  

The reconstructed SMOS VOD and SMAP VOD play distinct yet complementary 

roles in our spatiotemporal fusion approach. On the one hand, the reconstruction results 

offer long - term SMOS VOD products from 2010 to 2015, filling the temporal gap 

before the SMAP mission’s start. This data provides a continuous record of VOD trends 

over a relatively long period, allowing us to capture the seasonal and inter - annual 

variations in vegetation properties. On the other hand, the reconstructed SMAP VOD 

provides high - resolution data (9 km). This spatial information enables us to resolve 

local - scale details in vegetation distribution and structure.  

We would like to emphasize that the time segment division in our spatiotemporal  

fusion experiment is clearly presented in Fig.1 of our paper (Figure 2 in this response). 

The division is based on the launch dates of the SMOS and SMAP satellites. The SMOS 

VOD data has been available since January 1, 2010, while the SMAP VOD data is 

accessible from April 1, 2015, to July 31, 2021. To fill the temporal blank in 9-km 

spatial resolution L-VOD products before the launch of the SMAP satellite, we select 

April 1, 2015, the initial date when the SMAP VOD products become available, as the 

time node. We define the prediction period of the fused product VOD_st as T1, which 

spans from January 1, 2010, to March 31, 2015. To construct the baseline data required 

for the spatiotemporal fusion model and consider the temporal correlation, we extend 

the fusion input period by one year. The T2 period is defined from April 1, 2015, to 

April 1, 2016. For the purpose of validating the quality of the fused product VOD_st, 

we define the remaining period from April 2, 2016, to December 31, 2017, as the T3 



period. By comparing the fused product with the actual data during this period, we can 

effectively evaluate the performance and reliability of the spatiotemporal fusion method.  

 

Fig. 2. Temporal division of spatiotemporal fusion experiment. 

Both the reconstructed SMOS VOD and SMAP VOD serve as the input data for 

our spatiotemporal fusion model. They are used to construct the baseline data for the 

model, which is a key step in learning the transformation relationships between high - 

resolution and low - resolution data across different time periods. By analyzing the co 

- variations between the SMOS and SMAP VOD data at different scales and time 

intervals, the model can identify patterns that are characteristic of the relationship 

between the two datasets. This learned relationship is then applied to predict the high - 

resolution VOD_st at the target time. As shown in Fig.3, we input daily low-resolution 

VOD_resmos for each corresponding month into the model. Once the model learns 

from the SMOS and SMAP VOD data during the training phase, it is able to predict the 

daily high-resolution fusion product VOD_st. Thus, the fusion product VOD_st 

combines the spatial and temporal complementarities of the reconstructed SMOS VOD 

and SMAP VOD. 

 

Fig. 3. Spatiotemporal fusion Process. 



Q: 5) Page 12, Fig. 7. The text in this figure is too small. 

Response: Thanks for the comment. In response to your comment, we have carefully 

adjusted the proportion of Fig. 7 within the manuscript. By enlarging the figure, we 

have ensured that the text within it is now in a more harmonious size relative to the 

overall graphic. This adjustment has been made to optimize the visual presentation of 

the data and information in the figure, making it easier for readers to interpret and 

understand the content. 

 

Q: 6) Page 13, Fig. 9. Please explain why the reconstructed products were more 

blurred than the original product. 

Response: Thanks for the comment. After analyzing the data and the reconstruction 

process, we find several factors that may have contributed to the blurring of the results.  

Firstly, the reconstruction algorithm itself might introduce a certain level of 

smoothing. The reconstruction method involves complex mathematical operations such 

as interpolation. These operations can average out the details in the original data, 

resulting in a blurred appearance.  

Secondly, the quality of the input data plays a crucial role. The original products 

generally capture the true characteristics of the target phenomenon with high fidelity. 

In contrast, the reconstructed product depends on the quality and quantity of the 

available data for reconstruction. If there are limitations in the data, such as missing 

values or noisy measurements, the reconstruction algorithm may not be able to fully 

replicate the details of the original. In our case, although we have taken measures to pre 

- process and filter out outliers, there may still be some uncertainties and inaccuracies 

that affect the clarity of the reconstructed product. 

In addition to the factors we previously mentioned, there is another significant 

aspect contributing to the difference in the blurred effect between the reconstructed and 

original products. We stitch and store the daily raster data for a month as a 3D data (2-

D spatial + time), which is subsequently fed into the reconstruction model for learning 

and training. Monthly averages of VOD are the basis for learning these time-series 

features, but extreme values tend to be ignored when calculating monthly averages. 



This smoothing effect can make the reconstructed products appear more blurred 

compared to the original product, which retains all the fine - grained details, including 

those extreme values.  

We understand that this is an important consideration, and we are exploring ways 

to better incorporate extreme value information into our reconstruction process to 

improve the representativeness of the reconstructed products. 

 

Q: 7) Page 19, Fig. 16. Discuss the reseason of white pixels over land in VOD_st 

winter. 

Response: Thanks for the comment. Maybe the “reseason” in your question is “reason”? 

We appreciate your concern and have carefully considered the possible reasons, with a 

focus on the aspect of original data loss. 

Regarding VOD data retrieval, Radio Frequency Interference (RFI) is likely to be 

a critical factor. In winter, RFI may intensify in certain regions for various reasons. For 

example, the increased use of electronic heating devices or the operation of 

communication systems in the same frequency bands as the sensors can render the VOD 

values unreliable. As a result, these values are removed during data retrieval. 

Secondly, the snow and ice cover in winter can distort or attenuate the microwave 

signals used for VOD measurement. This distortion or attenuation can prevent the 

sensors from accurately detecting the underlying vegetation, leading to data loss. 

Furthermore, low temperatures and other harsh winter weather conditions can 

impact the calibration of the sensors. Inaccurate calibration can produce unreliable 

measurement results, which are then discarded, contributing to the loss of data. 

 


