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Global gridded NOy emissions using TROPOMI observations
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Abstract. We present top-down global gridded emissions of NOy for the year 2022. This dataset is constructed
from retrievals of tropospheric vertical column densities of NOs by the TROPOMI spaceborne instrument associated
with winds and atmospheric composition data from ECMWF reanalyses, using an improved version of a mass-balance
atmospheric inversion. The emissions-are-provided-with-dataset has a spatial resolution of 0.0625° x0.0625 and-deliver
and delivers a detailed overview of the distribution of emissions. %q%l%lt allows the 1dent1ﬁcat10n of in-

tense area sources, such as cities, and isolated emitters, ssuch as

ower plants or cement kilns, but does not correctly represent biomass burnln At global level the emissions ob-
tained are consistent with the EDGARv6.1 bottom-up inventory, although there are differences at regional level,

particularly in emerging countries and countries with low observation densities. The emissions of the three largest
emitting countries, China, the United States and India, are H53+6-and-66, 14 and 4% lower than EDGAR estimates.
Uncertainties remain high, and a quantitative analysis of emissions over several averaging periods indicates that av-
eraging emissions uniformly across the year may be sufficient to obtain estimates consistent with annual averages,
in regions of the world with high retrieval densities. This dataset is designed to be updated with a low latency to
help policymakers monitor emissions and implement energy savings and clean air quality policies. The data can be

accessed at https://doi-org/10-5281/zenodo-13957837https://doi.org/10.5281/zenodo.13758447as monthly
files (Rey-Pommier et al., 2024).

1 Introduction

Air pollution is one of the leading causes of premature death in the world. Public health policies, implemented
at the scale of countries, regions or cities, often aim to reduce the exposure to several pollutants, such as nitrogen
oxides (NOy = NO+NOs). Such mitigation plans therefore require a precise knowledge of the emitters, as well as
a monitoring of their emission levels over time. Data on NOy emissions is therefore fundamental for monitoring the
implementation of air quality policies. Besides, because NOy is mainly produced during the combustion of carbon fuels
at high temperatures, such data can also be. in conjunction with NOx/CO ratios derived at_the scale of industrial
sectors and countries, a tool to measure progress towards carbon neutrality. Gridded emissions with high spatial and
temporal resolution are therefore of great scientific and political value. Many of such datasets are emission inventories,
i.e. bottom-up models in which emissions are calculated on the basis of known sectoral activities and allocated in
time and space, combined with specific emission factors by sector and, possibly, by country. These inventories provide
valuable information on long-term trends and large-scale emission budgets, but they suffer from several weaknesses.
They hardly represent daily or weekly variations, their activity data may be outdated, and some sources may be
misallocated or unknown, which is common in many developing countries. Besides, uncertainties surrounding rapidly
changing emissions factors and the generally low temporal resolution of activity data limits, in certain circumstances,
the realism of such bottom-up inventories. Finally, they have a data lag of at least ene—yearthree years, which limits
their potential as monitoring tools.

In this context, increasing efforts have been made to overcome the weaknesses of the inventories in order to
obtain independent emission datasets that are homogeneous from one country to another. Such datasets are of the
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top-down type: they use direct observations of pollution and result from the inversion of an atmospheric chemistry-
transport model (CTM) in which these atmospheric observations are assimilated. The observation data may be in-situ
measurements or satellite retrievals.

In previous studies, we used a method for detecting and quantifying NO, emissions from daily observations of
NO; columns by the TROPOMI instrument, onboard the Sentinel 5P instrumentsatellite. This method, developed for
the countries of the Eastern Mediterranean and Middle East region, is based on a two-dimensional simplification of
atmospheric chemistry and transport, and does not require the direct use of a full 3D chemistry-transport model. Here,
we extend the emissions domain to the whole world for the year 2022, and provide a dataset of averaged NOy emissions
at a resolution of 0.0625°x0.0625°. We analyse the results by pinpointing emitters and distinguishing between point
sources, generally corresponding to isolated industrial facilities, and diffuse/area sources, generally corresponding to
megacities. We also compare the results with the bottom-up inventory EDGARv6.1 and assess their reliability using
different average horizons.

This article is structured as follows: Section 2 details the method used throughout this study, its improvements
and simplifications since its previous uses, and the input data in its implementation. Section 3 presents the global
NOy emissions dataset and analyses the different types of emitters. It also compares the results obtained with the
EDGARv6.1 bottom-up inventory, and analyses different time horizons for averaging daily emissions in order to obtain
representative results. Section 4 analyses the applicability limits of the method and highlights sources of uncertainty.

2 Methods

2.1 Input data
2.1.1 TROPOMI NO; column densities

NOs can be observed from space with satellite instruments based on its strong absorption features in the 400-465 nm
wavelength region (Vandaele et al., 1998). By comparing observed spectra with a reference spectrum, the amount of
NOs in a portion of the atmosphere between the instrument and the surface can be derived. The TROPOspheric Mon-
itoring Instrument (TROPOMI), onboard the European Space Agency’s (ESA) Sentinel-5 Precursor (S-5P) satellite,
is one of those instruments (Veetkind et al., 2012). This instrument has a large swath width (~2600 km), combined
with the 15-day orbit cycle of the satellite, leading to a revisit time of one day for every point of the Earth in absence
of clouds. Moreover, these daily measurements are always collected during the middle of the day, the satellite crossing
the sunlit equator at around 13:30 local time (LT). The high spatial resolution of the instrument (up to 3.5x5.5 km?
since 6 August 2019) allows observing fine-scale structures of NOy pollution, such as hotspots within medium-size
cities or plumes from power plants and industrial facilities. Tropospheric vertical column densities (VCDs, or sim-
ply "columns") are provided after retrieval of total slant column densities using the Differential Optical Absorption
Spectroscopy method (Platt et al., 2008). VCDs represent the integrated number of NOg molecules per surface unit
between the surface and the tropopause at the corresponding vertical. An algorithm also supplies an air mass factor,
which is the ratio between slant and vertical column densities. This factor is derived from the knowledge of many
physical quantities such as the vertical distribution of the absorber but also the viewing angle and the albedo of the ob-
served surface. It comprises a significant part of the uncertainty in NOy measurements (Boersma et al., 2004; Lorente
et al., 2019), which becomes non-negligible in a polluted atmospehre. Each TROPOMI retrieval is also associated
with a quality assurance value g,, which ranges from 0 (no data) to 1 (high-quality data). We selected NOs retrievals
with g, values greater than ¢, 1im = 0.75, which correspond to clear-sky conditions (Eskes et al., 2022). Here, we use
TROPOMI NOs retrievals in 2022 (OFFL product using processor version 2.5.0, product version 2.3.1 and 2.4.0 before
and after November 2022 respectively). To limit effects due to product of processor version changes, other years are
not studied.

2.1.2 Meteorological and air composition fields

Horizontal wind is taken from the ERA5 data archive, provided by the European Centre for Medium-Range Weather
Forecasts (ECMWF). Both components have a horizontal resolution of 0.25°x0.25° gridded on 37 vertical pressure

levels (Hersbach et al., 2020). We vertically average wind fields using the first two vertical levels, at 975 and 1000

hPa, except for representing ground winds, for which the last level at 1000 hPa is used. ECMWF also produces a
reanalysis for air composition, under the Copernicus Atmospheric Monitoring Service (CAMS). It provides analyses

and forecasts for reactive gases, greenhouse gases and aerosols. These parameters are gridded on 25 vertical pressure
levels with a horizontal resolution of 0.4°x0.4° and a temporal resolution of 3 hours (Huijnen et al., 2016). Here, ground
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concentrations of NOy, NO, OH, as well as temperature, are taken from CAMS to represent chemical processes in our
model. Fields are vertically averaged using the first two vertical levels, at 950 and 1000 hPa.

2.1.3 Elevation data

For computing altitude gradients, we use the Global Multi-resolution Terrain Elevation Data (GMTED2010, Danielson
and Gesch (2011)) with a 0.0625°%0.0625° resolution. Elevation data is zegridded-re-gridded on the TROPOMI grid,
before calculation of the corresponding gradient to derive a corrective "topography-wind" value that is detailed in
Section 2.2.2.

2.2 The mass-balance inversion
2.2.1 Main principle

The flux-divergence method is a mass-balance inversion model calculating the emissions of a given trace gas from
observations of the corresponding vertical tropospheric columns, which is particularly well suited to data with high
spatial resolution. In the case of NOs, this approach was pioneered by Beirle et al. (2019). It has subsequently been
implemented differently by other researchers, in different circumstances under simplified forms or, on the contrary,
more complex ones (Lama et al., 2020; Rey-Pommier et al., 2022; de Foy and Schauer, 2022; Sun, 2022). The flux-
divergence method is based on the conservation of mass principle, which makes it possible to calculate emission
densities at the pixel scale as a function of a transport term and a sink term. By noting C' the local concentration of
NO; and w = (u, v, w) the mean wind at the time of measurement, the corresponding emissions F¢ are expressed as:

Ec = % +div(Cw) + S (1)

Here S¢ is the sink term expressing the loss of NOs due to chemical reactions. Assuming that the vertical variations
in concentration are small compared with the horizontal variations, and considering that most NOs remains confined
close to the ground, the previous equation can be rewritten in terms of tropospheric columns €2, which enables, in
steady state, the computation of emissions per surface area F, as:

(Qu) = 9(Qw)
Or dy

Sq is the sink term expressed by surface unit. D = O(Q“) + 8(QU) is the horizontal advection (transport) term.
The assumption of a stationary state and a pollution eeﬁeeﬁﬁtaﬂeﬁclose to the ground means that the temporal
and vertical dimensions of the problem can be ignored, resulting in a purely herizontal-2D calculation of emissions.
The corresponding reduction in complexity means that inversions can be performed very qulckly compared with the
conventlonal use of full- ﬁedged 3D CTMs and without a priori knowledge on emissions. On—the-dewnside—such
‘ tons-—are-—ae »y-While useful, these simplifications come with inherent uncertainties, the main
sources of which belng uneerbainties-on the input tropospheric columns, wind direction and atmospheric composition.
It_must _also be noted that far from strong and localized sources; the underlying assumptions of stationarity and
pollution containment are no longer valid.

Finally, we-eenvertthe NOa production can be convertedinto NOy emissions. Performing this conversion is ac-
counting for the portion of NOy, mainly emitted as NO, which is not converted into NOs by reaction with ozone. The
reformation of NO by the photolysis of NOs during the day leads to an equilibrium between the two compounds. The
ratio £ = [NOy]/[NOg| swhichusually varies between 1.2 and 1.4, depending on local conditions. NO emissions are
therefore calculated as:

FE =

(2)

Eno. = LE (3)

In most urbanized areas, daytime NO concentrations frequently exceed 20 ppb. Under such conditions, this ratio is
stabilized in a few minutes (Graedel et al., 1976; Seinfeld and Pandis, 2006). As this time is shorter than the inter-mesh
transport tlmescale the impact of stablhzatlon time on the overall emission composition can be justifiably ignored.

e 5 5 Here, it is near emission sources —where-that the stationary hypothesis may

not be apphcable MIM the value of £ could be significantly hlgher than 1.4. The implications of this
neglect will-be-are discussed in Section 4.1.
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2.2.2 Refined version

In order to consider only anthropogenic pollution located close to the ground, it is necessary to remove any signal of
natural emissions from the tropospheric columns provided by TROPOMI. In the absence of anthropogenic sources,
the NOg3 columns that are observed constitute a tropospheric background ;. At the global scale, this background is
mostly due to soil emissions in the lower troposphere (Yienger and Levy, 1995; Hoelzemann et al., 2004). In the upper
troposphere, NOg sources include lightning, convective injection and downwelling from the stratosphere (Ehhalt et al.,
1992). We remove that background by calculating the 1st tercile in a 200 pixel x 430 pixel zone around each pixel
(along x across track, i.e. approx. 700 km x 2360 km). We assume that this zone is sufficiently large whatever the
considered pixel so that this tercile corresponds to the typlcal local value for this background. We-thensubtractthis

The large across-track distance is chosen for two
WMWWMQM@%MW
estimate, which can inflate the estimation when performed on a smaller domain and prevent the detection of smaller
emitters. Secondly, it minimizes the mixing of pixels with varying NO, backgrounds due to distinct climatic and
geographical conditions, such as between arid and temperate regions. Such variations are less pronounced across-track
than along-track. Besides, the overpass of Sentinel-5P around 13:00 LT, when diurnal NOy variations are minimal,
limits the mixing of pixels with backgrounds corresponding to different local times. After calculation of the background,
it _is subtracted from the vertical tropospheric column density, and the resulting lower tropospheric vertical density

V' =Q—Q is used in the flux divergence method. Pixels with columns lower than the calculated background have a
WW%&Q@Q\ Such assumption can be challenged above macro-regions for wh1ch soil emissions

and Wlldﬁres result in hlgh N02 values observed by TROPOMI

‘ . High tropospheric back IOUIldS can also arise from locahzed aths of
long-range trans ort of reactive nltro en Zhal et al., 2024) or around shipping laneswher :

thetikelthood-of-thunderstorms-, where exhaust emissions directly increase NOs levels and may also enhance li htn1n
activity that produces additional NO, (Thornton et al., 2017). The neglect of such effects is highlighted in Section

4.1.

We represent the sink term Sq by considering only the chemical loss of NOy due to its reaction with the
hydroxyl radical (OH). This reaction follows a first-order kinetics, and the sink term can be expressed as Sq =
komino, [on] [OH]QY with koni~o, the reaction rate whose value is given by Burkholder et al. (2020). This is equiv-

alent to compute a mixed lifetime 7 = 1/(kon+no,|[OH]);swhiek-. This lifetime generally ranges between 1 and +2k14

h in mid-latitude regions and reaches higher values in polar and subtropical zones. Two global maps of lifetimes for
winter and summer, computed with this method, are added in the Supplementary Materials. In many studies, this
quantity is kept uniform and constant in the use of the flux-divergence method (Beirle et al., 2019; de Foy and Schauer,
2022), because justified by a relatively small domain of interest. Here, a singularity of our version of the flux-divergence
method is to account for the temporal variability of OH, which is primarily driven by the amount of UV radiation
from the stratosphere, but also for its spatial variability, since OH can also be influenced by NOy through a non-linear
relationship (Valin et al., 2011). In this respect, our sink term is heavily reliant on the NOy sources accounted for
in CAMS data. Neglecting a source, or mis-estimating the order of magnitude of its NOy emissions, therefore results
in a wrong OH field whose bias depends on the amphtude of the neglect Slnnlarly, the coarse resolution in CAMS
data (0.4°x0.4°) can fail to represent -eesthe particular conditions within
or downwind power plant plumes, leading to a wrong estimation of the real OH budget. We expeet-these-effeetsto-be
miner-regard these effects as less pronounced compared to those that would result in representing a constant lifetime
for NO5 which oversimplifies and misrepresents temporal and spatial dynamics by representing all situations the same
way, whether they represent emitters or not.

Additionally, systematic artifacts concerning advection processes were reported over regions with complex to-
pographies, particularly when high tropospheric vertical column densities are observed over mountainous regions.
These high values can hinder the identification and quantification of point sources, possibly due to inaccurate mean
wind fields over mountains. A study by Sun (2022) shows that these patterns can also be caused by 3D transport
effects which have been ignored in the simplified 2D approach which has been described so far. A "topography-wind"
V term can be introduced in Equation 3 in order to correct for this effect using ground wind wy, the topography
gradient Vzy, and an inverse scale height X, as follows:

V=X0w, Vz (4)

Here, we choose a uniform and constant value of X, = 0.3 km™!. Thiswvalse-Although this value is about one order
of magnitude lower than that used by Beirle et al. (2023), it corresponds to the approximate mean inverse scale used
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by-Sun—{2022)-who-allewedfor-height calculated by Sun (2022) in which a variability for X, was allowed by fitting its
value using-observational-data-through linear regressions on the basis of selected observations. While we acknowledge

the—faet—that choosing a single value for X, is a simplification, we note that performing the fit of its value would
require an arbitrary selection of the cells used for that fit. We therefore compute the following equation to estimate
NO, emissions:

O(Qu) O(u)  I(Qv) O(Q'v)
Tor oe oy oy

Exo, = ﬁ( + kOH+NO2 [OH]QL + XEQ/Wg . VZ()) (5)

Following deFey—and-Sehaner—-{20223de Foy and Schauer (2022), we perform the calculation of derivatives directly

on the original TROPOMI grid (along-track and across-track) to better handle pixels with low-quality or no data,
resulting in lower discontinuities in the calculated transport term. To do so, we re-grid the wind field on the TROPOMI
grid and linearly interpolate the estimates at the satellite timestamp. We do the same for all other parameters that
are concerned for the calculation of the sink term (concentrations of OH, NO and NOs, and temperature). Emissions
are thus calculated on the TROPOMI grid and are then re-gridded on a regular north-south/east-west grid with a
0.0625°x0.0625° resolution.

Finally, the accuracy of TROPOMI retrievals can be compromised by challenges in estimating the air mass factor
or local effects, particularly in specific vertical distribution scenarios (Griffin et al., 2019; Lorente et al., 2019; Judd
et al., 2020). The latest versions of TROPOMI (v2.x) showed VCD values higher than those of earlier versions (v1.x),
with biases up to 40%, depending on pollution levels and seasonal variations (Van Geffen et al., 2022). Additionally, the
chemistry-transport model TM5, which is integrated into the operational TROPOMI product, tends to underestimate
pollution near the ground, while overestimating NOs concentrations at higher altitudes over the sea (Latsch et al.,
2023; RieB et al., 2023). To compensate for such effects, studies like Goldberg et al. (2022) or Beirle et al. (2023)
corrected the used VCDs by changing the corresponding vertical sensitivity over emitters. In this study, we do not
perform such adjustment, while recognizing it could constitute a further step in the improvement of our dataset. On
Figure 1, we sum up the functioning of our method.
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Figure 1: General overview of the mass-balance inversion.

2.3 EDGAR bottom-up inventory

Many high-resolution datasets for air quality exist at global (Benkovitz et al., 1996; Granier et al., 2019) or regional
scale (Kuenen et al., 2022; He, 2012). Here we compare our averaged emissions for the year 2022 to NO4 emissions
provided by The Emissions Database for Global Atmospheric Research (EDGARv6.1) for 2018. It is a global inventory
providing 0.1°x0.1° gridded emissions of greenhouse gases and air pollutants at the monthly scale, covering different
sectors (Crippa et al., 2020). It is based on activity data of different nature (population, industrial processes, energy
production, fossil fuel extraction, agricultural outputs, etc.) derived from the International Energy Agency (IEA) and
the Food and Agriculture Organization (FAO), and the emission factors corresponding to each of the covered sectors.
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National and regional information on technology mix data provide a better characterization of these emission factors.
End-of-pipe measurements are also used for correcting purposes. The version 6.1 of the inventory covers the years
1970-2018.

3 Technical validation

3.1 Spatial distribution of the global NO, emissions

The global map of the averaged NOy emissions for 2022 is shown on Figure 2, while Figure 3 zooms over seven

macro-regions that cover rnost of the ernltters over land and sea. Emissions are represented as density, i.e. by surface
unit. : i i :es-All the analyses carried out in this study are based
on the displa; ed domain, i.e. between latitudes 65°S and 65°N. This discards frequent outliers above these latitudes

resulting from monthly and annual estimates based on too few observations. Significant regional differences appear
on these maps. The highest values are concentrated in developing areas such as setuth-eastern China, India and

the Middle East. High values are also found in Europe, Russia and the United States, where they correspond to
megacities and industrial areas. Transport emissions can also be highlighted where they provide the highest share
of emissions, i.e. on highways and shipping lanes which appear in various regions. South America, Oceania and
Sub-Seharan-sub-Saharan Africa display low or zero emissions except in a small number of cities and industrial sites.
Wildfires, which are frequent in rainforests and savannas (Mebust and Cohen, 2013; Castellanos et al., 2014; Ossohou
et al., 2019; Opacka et al., 2022), dlsplay qua81—zero emissions in Arnazonla and low emissions in the Congo basin.

re s-everseve ro-reg he-emit seaWildfire emissions might
WMMMW%WWW
the reaction with OH are important. Such other sinks are developed in Section 4.1, It must be noted that at a lower
temporal scale, wildfire emissions display an annual variability. The example of the fires in the Congo basin is studied
in_the Supplementary Materials, with high emissions during summer (JJA). It is thus possible that a large number of
smaller wildfires, occurring during other seasons, are too small to be correctly observed from space, as shown by other
studies (Ramo et al., 2021; Khairoun et al., 2024).

Generally speaking, the maps highlights the industrialized areas, revealing the world’s main megacities where
several sources of emissions (traffic, power, residential) are mixed. Some industrial facilities and large power plants
also appear. Emissions are correctly resolved in most regions of the world. The observed spread of emissions over
two to three pixels (i.e. about 12 to 20 km) further away from the exact location of the corresponding emitters is
due to the turbulent spread of emissions, which is not considered in our method. Finally, we note that emissions in
mid- and high-latitude regions (beyond about 40° from the Equator) seem-te-be-are noisy, due to an averaging over a
smaller number of clear-sky days throughout the year. On average, countries such as Egypt, Niger and Saudi Arabia
are observed mere-than-90about 70% of the time with a quality flag higher than g, 1, = 0.75, while Ireland, Canada
and Finland are observed less than 3820% of the time. This uneven sampling is also present in tropical regions where
rainfall is frequent as there is no measurement during cloudy scenes. Countries like Gabon, Indonesia or Peru are
5 s—the observed less than 30% of the time-year with quality flags higher than the threshold. In
some cases, thls low densrty of observations prevents emissions from intense sources from being quantified correctly at
the monthly scale, as it is discussed in Section 3.4.
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5.1
NOx emissions in 2022
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Figure 2: TROPOMI-derived mean daytime NOx emission rates in 2022 estimated with the flux-divergence method. The seven frames
correspond to macro-regions whose emissions are specifically shown in Figure 3.

The statistical distribution of emissions is shown in Figure 4. Four different regimes of emissions can be distinguished
in the red curve (note the log-log scale):

e Very low values of emission densities (less than ~0.02 Pmolecules.cm™2.h~!), in practice at places where there
are almost no emissions in reality. Note that, as the calculated fluxes represent averaged emissions, such pixels
can also represent places where high emissions occurred, but only during a small portion of the year, as it is the
case in regions where wildfires frequently happen.

o Residual emission densities (between ~0.02 Pmolecules.cm™2.h~! and ~0.2 Pmolecules.cm~2.h~1), for which it
is difficult to determine the corresponding source.

e Low emission densities (between ~0.2 and ~2 Pmolecules.cm™2.h~!), generally high enough to be associated
with an emitter, but too low for a reliable quantification to be possible unless heavy averaging. The upper limit
corresponds approximately to the emission densities observed on smaller power plants.

e High emission densities (higher than 2 Pmolecules.cm~2.h~!), where the signal-to-noise ratio is high enough to
quantify emissions when enough observations are averaged.
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Figure 3: TROPOMI-derived mean daytime NOy emission rates in 2022 estimated with the flux-divergence method for North America,
South America, sub-Saharan Africa, Europe and North Africa, East Asia, Oceania, Middle East and Central Asia.

Figure 4 also shows negative values (blue curve), even though negative emissions are physically impossible.

They appear in practice because the transport term, which includes a derivative, can be negative.

In calculated
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emission densities, negative pixels of low absolute value are as numerous as positive pixels of the same amplitude;
they correspond to numerical noise and are found in pollution-free zones where the sink term is virtually zero. Higher
values for negative pixels are less frequent: we count about 4-5 times less pixels with emission densities lower than -0.2
Pmolecules.cm™2.h~! than pixels with emission densities higher than 0.2 Pmolecules.cm~2.h~! (yellow and red parts
of the graph in Figure 4). The locations where such high values are observed for negative pixels correspond to areas
close to anthropogenic sources of NO,, but in situations for which the absolute transport term has been overestimated
or the sink term has been underestimated. Such negative emissions are limited to rare cases, such as Tehran, which
will-beisdiscussed in Section 4.2.
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Figure 4: Distribution of positive and negative TROPOMI-inferred NOy emissions for year 2022. Four regimes can be distinguished (the
values defining the thresholds between these regimes are given as order of magnitudes).

3.2 Diffuse sources and point sources

The assimilation of high-resolution observations with the flux-divergence method holds a significant potential for
pinpointing emissions at small scale. As a consequence, it reveals the difference between sources that emit pollutants
from a localized area, called point sources, from diffuse sources emitting pollutants over a wider area, such as sprawling
urban regions like megacities. While the extent of the observed NOy pollution created by a point source is primarily
determined by advection and turbulent mixing, the spread of the pollution for a diffuse source is above all determined
by the spatial extent of the source itself. Point sources are therefore characterized by a dominance of the transport
term, while diffuse sources (the term "area sources" is also used) exhibit a balance or dominance of the sink term
(Beirle et al., 2019). Within the flux-divergence method, these two types of sources can be identified differently, since
the main sources of uncertainty come from wind angle in the case of a point source while they come from the OH
concentration explaining the sink term for a diffuse source. Because this distinction remains qualitative, to classify a
detected source as one or the other type, arbitrary thresholds must be defined, concerning the number of pixels above
a certain value of emissions, or the share of the transport term within the emissions in Equation 5. Here, we catalog
all sources in the averaged emissions map for 2022. Firstly, we define a source as a cluster of at least 3 contiguous
pixels above the value of 2 Pmolecules.cm™2.h~!'. We then classify these sources as "point" or "diffuse" according to
the number of pixels in the detected clusters—, point sources being the clusters comprising 3 to 9 pixels, and diffuse
sources those with more than 10 pixels. We dﬁe&e&%&w pomt sources and 3306-323 diffuse sources, whose

locations are displayed on Figure 5. The statistical distribution of the emitters, as

well as their detailed location, are provided in the Supplementary Materials and in Rey-Pommier et al. (2024).
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Figure 5: Location of different point sources in blue (between 3 and 9 contiguous pixels above 2 Pmolecules.cm~2.h~1) and diffuse sources
in red (more than 10 contiguous pixels) for 2022.

3.2.1 Diffuse sources

Most point sources correspond to facilities such as power stations, cement kilns or mining sites. They can also
correspond to concentrated urban areas. Conversely, almost—atl-most diffuse sources correspond to urban areas of
megacities, whether they comprise industrial facilities within their extent or not. Exceptions concern mega-emitters
like the Medupi and Matimba power plants in South Africa, mentioned in various articles (Reuter et al., 2019;
Hakkarainen et al., 2021; Cusworth et al., 2023) or the Ain Sokhna industrial area in Egypt, already mentioned in
Rey-Pommier et al. (2022). In both cases, such groups of industrial facilities exhibit particularly high emissions over
more than 10 pixels and are detected as diffuse sources. Figure 6 displays the emissions of diffuse sources corresponding
to megacities: Baghdad (32:9-32.3 t.h™!, 198 pixels), Istanbul (#6:3-15.4 t.h~!, 432-127 pixels), Mexico City (+74
17.6 t.h™1, 113114 pixels), Moscow (26-4-19.0 t.h™!, 486-177 pixels), Riyadh (33-+-33.0 t.h™', 472-171 pixels) and

Shanghai ($62-:6-100.2 t.h~!, 837836 pixels). City cores are denoted with dashed lines, and generally correspond to
areas where emissions are largely above the cluster-detection threshold. Table 1 shows the 20 diffuse sources with the

highest emissions.
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Number of Latitude Longitude Mean emission density Output Emitt
pixels in cluster (°N) (°E) (Pmolecules.cm™2.h~1) (t.h—1) mitter

2818-2623 37527-37.617 | +6:646-116.030 2:827-2.818 235-03-217.89 Beijing urban area, China
837836 31.283 +20-352-120.354 3:834-3.771 +62-64-100.21 Shangai-Shanghai urban area, C

439-443 35:549-35.557 5+:329-51.321 7689-6.939 94-19-93.05 Tehran urban area, Iran
552-554 -26-466—-26.407 28:739-28.738 4:266-4.217 FEA5-T7.79 Gauteng coal region, South Af
425-417 22-798-22.796 | +13:636-113.626 3-72+-3.691 54-22-52.78 Shenzen-Shenzhen & Hong-Kong urban
361+-364 29:653-29.648 3+426-31.129 4-427-4.064 48-16-47.84 Cairo & Beni Suef urban area, F
303-302 20:582-29.585 47-874-47.872 4-555-4.496 44-64-43.95 Kuwait City urban area, Kuw
+72-171 24:649-24.650 46-797-46.791 5:695-5.708 3342-33.01 Riyadh urban area, Saudi Ara
198 327732775 44:298-44.301 5:319-5.223 32:94-32.36 Baghdad urban area, Iraq
274-255 4b474-41.124 | $23:033-123.005 4-2864.281 32-88-30.60 Anshan urban area, China
353-347 39-338-39.339 | +16:656-110.659 2:986-2.933 36:32-29.31 Ordos mining region, China
224-169 371+62-25.251 +26-874-55.348 4:3+2-4.790 28:63-27.23 Seeul-Dubai urban area, Seuwth-Kerea-Unite
+7-193 25-3+6-37.162 55-342-126.822 4-809-4.425 27:65-25.30 Dubai-Seoul urban area, United-Arabtmire
157 32:577-32.583 5+616-51.602 4:866-4.796 23-92-23.62 Ispahan urban and industrial are:
+27-124 2HH5-21.112 39-309-39.313 4-9+6-4.886 21+:66-21.03 Djeddah urban area, Saudi Ar:
2149-220 373+7-37.320 | H2:087-112.088 3+73-3.131 26-56-20.39 Shanxi urban area, China
+86-177 55:745-55.706 37564-37.508 5:395-5.121 26:35-19.02 Moscow urban area, Russia
+62-101 24:14148-24.120 82:747-82.744 5:536-5.461 +9-45-18.73 Jogi Chaura industrial zone, Ir
+54-158 39:329-39.327 106.809 4:258-4.116 +8:87-18.72 Wuhai/Hainan industrial zone, (
83 -12.183 -76.853 6489-6.101 +8:68-18.41 Lima urban area & Pachamac mine

Table 1: List and location of the 20 diffuse sources with highest TROPOMI-inferred NOx emissions (expressed as NO3), and corresponding
size of the cluster and main sector responsible for the emissions.

These six diffuse sources differ greatly from one another: Baghdad, Mexico City and Riyadh are very dense and
isolated, allowing their emissions to stand out from the rest of the hotspots, while Moscow and Istanbul are less
dense, resulting in lower emission densities. The Shanghai urban area has a large spatial extent, and the associated
cluster extends over an area much wider than the city limits. Finally, it should be noted that Moscow and Shanghai
experience many cloudy days, resulting in a fairly low level of averaging, leading to numerical noise that is visible
on the maps. Many industrial facilities near city centers do not have high emissions. possibly due to an irregular
production throughout the year, with high-activity periods covered by clouds.
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Figure 6: Map of mean daytime TROPOMI-inferred NOx emissions for 2022 (expressed as NOs) for six megacities (diffuse sources),
clockwise: Baghdad, Istanbul, Moscow, Shanghai, Riyadh, and Mexico City. The approximate boundaries of the city cores are denoted with
dashed lines and the approximate location of power plants and other industrial facilities are denoted with circles and squares respectively,

except for Shanghai (unavailable data).

3.2.2 Point sources

With a manual verification of the 456-436 detected point sources, we identify 61-euthers:36-48 outliers, 26 of which
being points in places totally empty from any anthropogenic activity, and 34-22 points in areas with anthropogenic
activity but without significant source (no facility of significant size). Most of these outliers are located in high-latitude
regions, with 34-29 of them being located north to the 50°N parallel.

Because a threshold has been introduced in-the-elassifieation-of-to detect emitters, classified sources elassified-as
Ipeint-sourcesare isolated from eﬂ&%eﬂﬂﬁwé%l&%eﬁﬁtﬁeﬂ%eeﬂs%mﬁeﬂ—pe&kmﬂ&edﬁpmyeém&peach other.
For many of them, emissions peak within the associated cluster. With a threshold set at 2 Pmolecules. em~2.h~L, the , the
corresponding signal-to-noise ratio is generally high enough to perform a-peak-fitting around the source, &M
accurate emission derivation. While this method works well for most point sources, it is not directly applicable to
many diffuse sources. Since the observed spread of the-emissions-areund-thesouree-is-given-emissions around a source
is caused by turbulent diffusion, we-try—teofit-a 2D-Gaussian function en—the-detected-pointseurces-over-a—zone-of14
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is applied to fit the detected sources within a 15 x ixels-ar —deteeted-15 pixel zone around the maximum
emission density within the eerrespending-cluster. Three examples are shown for the city of Medina, Saudi Arabia,

the Shar-Sohar Industrial zone, Oman and the Western Mountain power plant, Libya on Figure 7. Note that these
locations correspond to peintsources well-isolated from other industrial activities, in countries with frequent cloud-free
conditions that allowed an averaging over a high number of days in 2022.

We acknowledge the fact that the value of 2 Pmolecules.cm™2.h~! (corresponding to 37 kg.h™! for a pixel at
60°N or 60°S, to 74 kg.h ! for a pixel at the equator) to mark the limit between high and low emissions is arbitrary,
as other values for thls threshold could be used. For instance, the Beijing cluster, identified on Table 1, with a size
of SEes € ' 2623 pixels, is broken down into 35 smaller clusters (1%13 diffuse
sources and }‘}g&pomt sources) When changing the threshold from 2 Pmolecules.cm=2.h~! to 3 Pmolecules.cm=2.h~1.
These new clusters represent better urban sprawling around the various megacities and industrial facilities in Eastern
China. However, in the same fegieﬁ%m three pomt sources disappear when performing this threshold change.

i : aterials—To determine the sensitivity of the point source
and diffuse source detectlon and classification method we carry out the detection by changing this threshold from
2 Pmolecules.cm™2.h™! to 3 and 4 Pmolecules.cm™ 2.h 1. A comparative map is displayed in the Supplementary
Materials. The point sources and diffuse sources are identified, and a fit with a 2D-Gaussian is carried out on point
sources to estimate better emissions by accounting for the Gaussian nature of turbulent diffusion around the source.
We then count the number of point sources with a fit of correct quality (with a correlation coefficient R? higher than
0.4). The results are shown in Table 2 for the different thresholds, and we compare the countries with the most
point sources. Note that among the 6448 outliers identified in the detected point sources with the threshold of 2
Pmolecules.cm™2.h~!, only +6-11 reached a value of R? higher than 0.4.

(a) Medina City, Saudi Arabia

5 R
Location : 24.45°N, 39.6125°E EOGY) =B+ g @XP (g 0exp )

=06 km: /o= 43km: 6 = 1L0km: 0y =39k
5201 Kk 1 1 = 2000 ko

fzs:
20 &

(b) Sohar industrial zone, Oman

o o
Location : 24.5179°N, 56.5714°E Ey) =B+ ggexp (i exp(”

47k 5= 3 =04im; 0= 67im

issions (kg.km-2.h-3)

(c) Western mountain power station, Libya

vt
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Figure 7: Calculated mean daytime NOx emissions in 2022 (expressed as NOg) for peint-different sources (left) and fitted emissions using
a 2D-Gaussian function (right) for the city of Medina, Saudi Arabia (a), the Sohar Industrial Zone, Oman (b) and the Western Mountain
power plant, Libya (c).
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Threshold value 2 Pmolecules.cm~2.h~T | 3 Pmolecules.cm=2.h~! | 4 Pmolecules.cm™2.h~ T
Number of point sources 456436 363287 +72163
Point sources with R?> > 0.4 | 237 189179 114111
China 24-23 2723 +8-17
India 3738 33 22-23
Russia 23-29 +3-20 +2-9
United States 18-17 64 3
Tirkiye -8 65 12
Iran 7 9-8 9

Saudi Arabia 54 56 5

Japan 2 5 4
Egypt-Australia 3 25 41
Germany 6 31 1

Iraq 56 54 2
Mexico 7 5 3
Adgeriab5-2-Kazakhstan OPakistan— 56 12-

Table 2: Analysis of the number of point sources detected as a function of the threshold applied for cluster detection, and the number of
point sources whose fit with a 2D-Gaussian was of acceptable quality (R? > 0.4). Countries with at least 5 point sources with one of the
thresholds are displayed.

As seen with the example of Beijing, moving to a higher threshold can reduce the number of point sources by not
including some emitters with lower emissions, but it can also increase the number of detected point sources by
reducing the number of pixels corresponding to the cluster and moving certain emitters from the "diffuse source"
category to the "point source" category. For example, with a limit of 2 Pmolecules.cm™2.h~!, the group of the Ras
Laffan power stations in Qatar does not appear as a point source because its emissions are associated to a greater
cluster corresponding to a diffuse source which includes the nearby Doha megacity. Conversely, with limits of 3 or 4
Pmolecules.cm™2.h~!, these power plants appear as a point source, and a good quality Gaussian fit provides their total
emissions of +:69-1.66 t.h™', close to the value of 1.86.h~! reported for the four-year average between 2019 and 2022
in Rey-Pommier et al. (2023). Finally, it should be noted that lowering the threshold to 1 Pmolecules.cm™2.h~! also
reduces the number of diffuse sources because several nearby urban areas become linked by residual emission zones
into a single, larger, diffuse source. Conversely, lowering the threshold detects a very large number of seuree—points
point sources , but many of these additional points are outliers. In the rest of the study, we therefore choose to keep
the lowest value of the threshold, i.e. 2 Pmolecules.cm™2.h~!, to optimise the number of correct emitters we work
with. These emitters account for a total output of 2,388-303 t.h~! (376-352 t.h~! for point sources and 2648-1951 t.h~*
for diffuse sources). This represents about 17% of all emissions with densities higher than 0.2 Pmolecules.cm~2.h~!
(with a total output of 14,335 t.h~!). As urban areas with more than 1 million inhabitants gather around 16% of
the global population (Zimmer et al., 2023), this share of emissions from point and diffuse sources seems consistent
with the detection limit of the flux-divergence method using TROPOMI retrievals, as urban areas lower than 1 million
inhabitants are generally not detected as diffuse sources here.

The full list of the 456436 point sources and 330-323 diffuse sources are given in Supplementary Materials. This
list can be compared with the catalog provided by Beirle et al. (2023). Of the 237 point sources for which the Gaussian
fit is of correct quality (with R? > 0.4), +44-137 also appear in their catalog. For these points, we generally obtain
higher emissions (with a median of 469441 t.h~! and an average of 479-487 t.h~! in our case, whereas they have a
median of 296-303 t.h~! and an average of 344-353 t.h~!). The two datasets have no particular reason to exhibit any
clear correlation because they concern different years, and because swhite-their approach focused on monthly averages,
while ours presents annual averages. For example, a site designated as a point source by Beirle et al. (2023) might
not be detected if averaged over a whole year, especially if it stays inactive during certain periods. For instance, their
catalog shows 187 occurrences where the signal of NOy emissions was significant for 6 months out of 12, and 348
occurrences for 5 months.

3.3 National and regional outputs and comparison with bottom-up emissions

We perform an analysis of emissions at the scale of countries by comparing them to the NOy emissions provided by
EDGARv6.1 for 2018. For our TROPOMI-inferred emissions, we calculate the total mean NO, output, representing
daytime emissions for 2022, for each country using country masks at the 0.0625°x0.0625° resolution. To avoid any
over-estimation of the total output due to a very high number of pixels with very low emissions, we exclude from
the calculation pixels with emission densities below 0.2 Pmolecules.cm™2.h~!. For emissions in EDGARvV6.1, we sum
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the gridded emissions, representing monthly averages in 2018, for all sectors covered by the inventory and calculate
the average flux for the year 2018. The output for each country is calculated using country masks at the 0.1°x0.1°
resolution. In both cases, we include pixels that directly touch coastlines because marine regions close to the shore
seereceive the spread ofanthropogenic emissions spread-due to turbulent diffusion. This can result in over-estimating
total emissions for smaller countries, especially those with low emission densities. In order not to account for such
outliers, we exclude countries with a population lower than 300,000 inhabitants or with a size lower than 1,000 km?
from our analysis. This concerns many insular countries in the Caribbean and the Pacific, as well as micro-states like

Andorra or Singapore. Overseas territories are considered together with their mainland country. Figure 8 shows the
country-wise comparison, covering +64-165 countries, and Table 3 provides a comparison at the scale of eight different

macro-regions: Europe, North America and-& the Caribbean, South America, MiddleFast-and-the Middle Fast &
North Africa, Fermer—former USSR countries, Oceania, Sub-Saharan—sub-Saharan Africa and the rest of Asia. For

each macro-region, differences are evaluated with the relative bias for the total region, and the mean absolute error
(for which each country has the same weight). The use of these different metrics enables to assess the performance of
the method on a large scale with respect to an inventory, while simultancously evaluating its performance on a smaller
scale to identify systematic effects that might offset cach other at the larger scale.

TROPOMI-inferred emissions are generally close to EDGAR estimates for high-ineemelevel-eountrieshigh-income

countries, which generally have localized and powerful sources, or countries with a majority of sources located in areas
with high observation densities. Fhis-is—the-ease-As a consequence, the macro-regions that perform best with both

metrics are Europe, North America & the Caribbean, the Middle East & North Africa, and the rest of Asia. At the
scale of countries, TROPOML-inferred emissions are close to EDGAR estimates for the three largest emitting eountries;

nations, i.e. China, the United States and India, with TROPOMI-inferred emissions +4+=46-and-66, 14 and 4% lower
than EDGAR estimates respectively. These three countries account for 4445% of global estimated emissions. However,
for the fourth highest emitting country, Russia, we estimate emissions ?952% higher than EDGAR—We-interpret—this
WMM due to the low den51ty of observations ther i 5 FOTS

" s A‘w&m
Wﬁ
emissions of the two largest Russian cities, Moscow and Saint-Petersburg, are studied in the Supplementary Materials.
In extreme cases, such key emitters can have no estimates at all for months, making the calculation of the annual
average representative of only a part of the year, even when its order of magnitude is correct. Generally speaking,
large differences between our top-down estimates and EDGAR emissions are found for many countries that also have
low observation densities —for this reason. Without prior knowledge of the annual emission profiles in these countries,
these biases cannot be corrected, leading to a systematic mis-estimation of total emissions.
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Figure 8: Comparison between TROPOMI-inferred daytime NOy emissions for 2022 (expressed as NOs) and mean emissions from
EDGARv6.1 in 2018 for all countries, classified by macro-regions.

The other countries for which the difference between our emissiens-and-the TROPOMI-inferred emissions and EDGAR
estimates is significant are low-income countries. ¥-For such countries, it is possible that theseurees-there-are-small
and-—diffiealt—to-most_sources are too small to be detected with our method;—, resulting in an under-estimation of

emissions. Countries for which TROPOMI inferred estimates are lower than EDGAR estimates by more than an order
of magnitude are Guinea-Bissau, Equatorial Guinea, Togo, Guinea, Gabon, Montenegro, Fl Salvador, Liberia, Ivory
Coast and Myanmar. Of all these countries, only Montenegro and Gabon are not considered low-income countries.
Conversely, although no country has TROPOMLinferred estimates higher than EDGAR estimates by more than an
order of magnitude, notable biases exist. In this respect, largest differences are found in central Asia (ratios of 3.8 for

Kyrgyzstan, 3.2 for Uzbekistan, 3.4 for Tajikistan), in central and southern Africa (ratios of 5.6 for Zambia, 4.7 for

Democratic Republic of Congo, 4.0 for Eswatini, 4.1 for Mozambique, 3.0 for Angola), and Yemen (ratio of 3.2). For

these countries, it is also possible that the corresponding EDGAR estlmates are 1mprec1se due to the 1ncomplete or

ARAARIRAAANRNRIAC
outdated nature of the reported sources in these countries. The

Sub-Seharan-Africa—and-theformerUSSRpresence of many sub-Saharan African countries with extreme dlfferences

between TROPOMI-inferred and EDGAR estimates explains why the macro-region has the highest mean absolute
error des ite having the lowest total relative bla

At the global scale, our TROPOMI-inferred daytime emissions for all considered countries (i.e., excluding emissions
which take place at sea and #-smaller countries) reach a total value of 11,269-168 t.h~!. This value is consistent with
that of EDGAR at 12,243-254 t.h™!, i.e around 107 Mt per year, elose-te-and lower than the value of 123 Mt calculated
by Stocker (2014) for global anthropogenic emissions in 2000 (which include shipping and aircraft emissions). We

should-however-If the lower value can be interpreted as a reduction of NO, emissions between the two dates, it is also
ossible that our emissions are under-estimated due to biased-low columns in the TROPOMI NQOs operational product
Verhoelst et al., 2021). We detail this uncertainty in Section 4.2. We should also note that our TROPOMI-inferred

emissions only represent daytime emissions taken around 13:30 LT for each pixel, which are generally lower during
mid-day than other times of the day, swhere-when pollutlon peaks in the early mornlng and late afternoon are reported

¢ ener: : tohtri tsstonstraffic in most c1t1es Menut et al 2012 Goldber et al 2019
For the ower sector emissions at 13: 30 are enerall similar to the daily mean for power plants used for electricit
baseload, but for power plants whose purpose is to meet peak demand, the mid-day emissions can largely differ from
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the daily mean. For other sectors such as cement, it is difficult to assess whether mid-day emissions are higher than
the daily average, since cement production can be driven by factors that are more irregular than those driving power

eneration or traffic.

Relative bias Mean absolute
Region 2’1(;52050}15/111) 20?]83?:?113’1) VS EDGAR error VS EDGAR
: : (weighted average) | (unweighted average)

Subseharan-Sub-Saharan Africa | 656-660 702-712 6574 % 90-295.0%

Rest of Asia 4424-4584 5482 -19:3-16.4 % 49:354.4%

Europe 842-830 1092 -22:9-24.0 % 38-740.3%

Middle East & North Africa +569-1531 1125 34%?@\./1»% 49795,%\1%

North America & the Caribbean | +729-1690 1944 -++6-13.1 % 48:948.8%

Oceania 10492 282 -63:2-67.5 % 52:662.9%

South America 512514 762 32.8-32.5 % 53-461.8%

Former USSR 14331268 856 676482 % 7A877.4%

Total 1120911168 | 1224312254 | -8.4-8.8 % 60-664.7%

Table 3: Comparison between TROPOMI-inferred daytime NOx emissions for 2022 (expressed as NOz) and mean emissions from
EDGARv6.1 in 2018 for macro-regions. For each macro-region, the relative bias between total TROPOMI-inferred emissions and to-
tal EDGAR emissions is calculated. The mean absolute bias for all countries of these macro-regions is also calculated.

A source of underestimation can also come from the threshold used to filter out emissions. Here, the limit used of

0.2 Pmolecules.cm”2:h " makes it possible to eliminate residual emissions that are difficult to attribute to a source.
This filtering also eliminates pixels with negative emissions that are physically impossible. Nevertheless, as negative
emissions may represent NO incorrectly distributed spatially in the transport term due to errors in the wind field,
calculating the sum of emissions without the use of thresholds may be important for identifying countries and regions
where the flux-divergence method is limited. In this case, total emissions reach 14,835 t.h”", which corresponds to an
increase of 32.8% compared to the total with the application of the threshold. This estimate is therefore higher than
the total EDGAR budget. The differences between the two estimates vary greatly by macro-region: it rises to 149.6%
for sub-Saharan Africa, 126.7% for Oceania and 95.5% for South America. The increase is moderate in the Middle
East & North Africa region and the North America & the Caribbean, (41.7% and 33.3% respectively). The difference
between the two estimates is the lowest in former USSR countries, Europe and the rest of Asia (increases of 16.4%,
14.1% and 12.1% respectively). The trends observed previously regarding the reasons for the discrepancy between the
TROPOMT:inferred estimates and EDGAR remain unchanged.

3.4 Temporal distribution and averaging size

The results presented so far concerned daytime emissions averaged on the entire year 2022{(at-around13:30-local-time
for-each—pixel)—2022. They therefore show a certain potential for mapping the sources of pollution, quantifying the

corresponding emissions and characterising their type (by size and country or region). Several studies have shown the
possibility to characterise a weekly cycle of NOy emissions (Stavrakou et al., 2020; Rey-Pommier et al., 2022). The use
of geostationary satellites, such as the Geostationnary Environment Monitoring Spectrometer (GEMS) in East Asia
(Kim et al., 2020), the Tropopheric Emissions Monitoring of Pollution (TEMPO) in North America (Zoogman et al.,
2017) and Sentlnel 4 (%&uﬂﬁh—pﬁmdﬂﬁpt%ﬁbﬁ%@%mwm%) in Europe (Gulde et al 2017) could also
-ising-be used to characterise the daily cycle of emissions, whi
@MMWMforecastmg capabilities. In our case, TROPOMI can only momtor pollutlon
on a daily basis provided that retrievals are of high quality, and the analyses presented so far could theoretically
be carried out at this temporal resolution. In praetice-howeverthe Supplementary Materials, we monitor the daily
emissions of the Zaporizhia thermal power plant in Ukraine, whose activity was altered following the ongoing conflict
in the country that started in February 2022. However, this type of monitoring remains rare and is more indicative of
order-of-magnitude variations rather than precise emission estimates. In practice, the high sensitivity of the method

to wind direction and the low signal-to-noise ratio around sources at high latitudes leads to daily emission maps that
are very noisy in most cases, making it difficult to precisely monitor activity at this temporal resolution. Averaging-In
general, averaging is therefore required to lmit-reduce noise effects and limit the uncertainties associated to emission
estimates. Here, we try to evaluate what level of averaging is necessary to limit noise effects and allow a monitoring of
emissions. To this end, we consider the average daily emissions obtained for 2022 (i.e. over a maximum of 52 weeks) to
be the most accurate estimate of daytime emissions. We compare this maximum averaging value with averages based
on a smaller number of estimates. We compare the emissions of various emitters, calculated with an averaging period
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of 12, 24, 36 and 48 weeks. Figure 9 shows the results for se-Soure -h-are-all-eight urban areas, but with
dlfferent latitudes, populations, levels of development and energy mixes: Ankara (Turkey), Cape Town (South Africa),
Madrid (Spain), Portland (Qregon, United States), Chaguanas (Trinidad and Tobago), Saint Petersburg (Russia),

Manila (Philippines) and Muscat (Oman). Portland and Manila are urban areas clab&ﬁed as_a point sources. Figure
10 shows the results for the-seuree-pointssix industrial facilities, which are i 3T -ilities-all point sources located

six industrial facilities, ‘ ‘
in Egypt, Australia, Mexico, Chile, India and Germany. The sources were chosen for their relative isolation from other

soureesemitters. Calculated emissions correspond to the sum of pixels around the source with densities greater than
2 Pmolecules.cm™2.h~!. There are two pitfalls to be avoided in this comparison:

- The first pitfall would be not to account for the seasonal cycle of emissions, which is very pronounced in some
cases, and to compare chronological averages. For example, comparing the first 12 weeks of the year with the
first 24 weeks of the same year would not make sense in terms of the difference with emissions averaged over
the whole year, because in the first case, emissions would essentially be calculated in boreal winter, whereas in
the second case, emissions would be included during spring and summer. To avoid this seasonal bias, emissions
averaged over 12 weeks correspond to an average over the first week of each of the 12 months of 2022, and
emissions averaged over 24 weeks correspond to the first two weeks of these same 12 months, and so on.

- The second pitfall would be not to account for the weekly cycle of emissions. NOy emissions are generally lower
at weekends due to a reduction in human activity in most areas (i.e. on Saturday and Sunday, or Friday and
Saturday in most Arabian and North-African countries). It is therefore necessary to ensure that the proportion of
weekend days and weekdays in each of the averages calculated remains the same, hence the interest in averaging
by weeks (these proportions are therefore 2/7 and 5/7 respectively). We also carry out a finalfifth set of averaging
over 24 days, i.e. 2 days per month. Since the seasonal effect (first pitfall) is generally stronger than the weekly
bias (second pitfall), we therefore choose to retain the principle of selecting the same number of days in each
month, even if it means making comparisons between averages where the weekend and weekday rates differ by
from 2/7 and 5/7. This last averaging set will be indicated as "irregular".

In the case of urban areas, the different averages uniformly distributed over tlme show a similarity in the emissions

calculated over the time horizons for Ankara, Muscat, Cape Town, and ++ 5 -ent;-Madrid. For these cities,
the low cloud cover allows a high density of observations and optimal averaging. The 84-day averaging, and to some
extent the 24-day irregular averaging, seems sufficient for monitoring emissions. This is not the case for the other
urban areas studied, for which the observation density is lower, such as Manila, Saint Petersburgand;,—te—a—certain
extent;, and Chaguanas. For these cities, emissions-menitoring-with-a monitoring performed with an averaging below
168 days (or even 252 days in the case of Saint—PetersburgManila) is therefore limited by noise effects. In—the—ease
of-the-studied-The limit-case is Portland, which has the larger difference between 84- and 336-days averagings. This

is due to a limited number of observations over a small urban area which are not compensated by high-emissions
like other point sources shown on Figure 10. For those point sources, similar emissions are observed after an 84-day
168-day averaging. In some cases, a 24-day averaging is also sufficient, while in others it is not. The representativeness

of emissions on such a low level of averaging should be considered with caution, as emissions from industrial plants
are always more irregular than those from cities, with the exception of power stations used for baseload electricity
generation. The averages over 84 days presented here represent emissions that include several days of activity and
several moments of inactivity.
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Figure 9: NOy emissions for 8 different urban areas (diffuse sources), averaged over a period of 24, 84, 168, 252 and 336 days, evenly
distributed throughout the year. The proportion of weekend days and weekdays is identical in all the averaging sets except the first one of
24 days. Masses are expressed as NOsg.
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0.00 -
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Figure 10: NOy emissions for 8 different industrial facilities (diffuse sources), averaged over a period of 24, 84, 168, 252 and 336 days,
evenly distributed throughout the year. The proportion of weekend days and weekdays is identical in all the averaging sets except for the
first set of 24 days. Masses are expressed as NOsy.

Overall, this analysis seems to indicate that tracking emissions from seuree-points-point sources or diffuse sources
using the flux-divergence method requires an averaging effort to limit the noise obtained in the daily emissions. This
averaging effort, which is made more difficult for smaller sources, increases with the density of observations, is of
about a month in countries with frequent high-quality observations, but of about a year quarter in regions with low
observation densities, such as tropical regions and high-latitude regions.

4 Uncertainties and assessment of results

4.1 Model uncertainties

Our top-down emissions are calculated here using a flux-divergence model, based on a simplified calculation of a
transport term, a sink term and a conversion factor from NOy to NOy. This simplicity reduces the computation time
to calculate emissions and the dependence on external datasets, at the cost of increased model uncertainties. Here,
although a "topography-wind" term has been introduced in this article to refine the transport term, the sink term
remains simple and only represents the reaction between NOy and OH. While this reaction is the first contributor of
NOx loss, other sinks may be significant. For instance, organic peroxy radicals can oxidise NOy to form peroxy nitrates,
making the corresponding sink important in the presence of VOCs (Stavrakou et al., 2013), especially in biomass fires.
In different conditions, the formation of peroxyacetyl nitrate from NOs (Moxim et al., 1996), can also contribute

to a significant share of the NOy loss. The vertical averaging of is also made simple here, and alhough the sink
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term varies little with the thickness of the layer within which the temperature and OH concentration are calculated

Rey-Pommier et al., 2022), this assumes the OH field is correctly represented. This assumption may be wrong if
large NO, emitters are not taken into account, as this would distort the corresponding NO, field and the subsequent
OH field. A possible improvement to our dataset could be to compare the columns calculated from the TROPOMI
observations with the NOy column represented by CAMS and correct outliers detected from this comparison. Another
refined version could infer directly the effective NO lifetime from the NO, observations themselves, as suggested by
Laughner and Cohen (2019).

Another model uncertainty comes from the calculation of the conversion of NOs production to total NOy. The
majority of NOy is emitted in the form of NO, which is not observed from space. A common assumption is that NO
is rapidly transformed into NOs through its reaction with ozone, reaching a stationary state within a few minutes.
Numerous studies (Beirle et al., 2019; de Foy and Schauer, 2022) assumed a photostationary state in typical urban
conditions and used a ratio of 1.32 based on Seinfeld and Pandis (2006). Here, the values of this ratio calculated
from CAMS data did not differ much from this value. However, the photostationary state is a hypothesis which is
potentially not verified on the scale of a NOy source like a power plant stack. Li et al. (2023b) calculated values of
this conversion ratio correlated with the combustion temperature and energy efficiency for sources in China that are
highly intensive in energy such as power plants, and found a median value of 3.3. Biases in the calculation of the
NO4:NO; ratio can also arise in highly polluted environments, in which the Leighton relationship used to calculate
this ratio is no longer valid. In particular, OH can also react with VOCs and form oxygenated VOCs. Further studies
estimating this ratio at various spatial and temporal scales would thus provide a better implementation of our model.

4.2 Data uncertainties

The NOg2 column densities are the main input quantity in our estimation of NO, emissions, making the its calculation
within the TROPOMI product the first element to examine when considering the data uncertainties in our estimates.
Columns are calculated from measurements of solar backscattered radiation and comparison with a specific UV-Visible
band using the Differential Optical Absorption Spectroscopy method, before being assimilated to derive a tropospheric
vertical component. The corresponding uncertainty under polluted conditions is dominated by the sensitivity of
satellite observations to air masses near the ground, and is expressed through the calculation of the tropospheric air-
mass factor (AMF). To assess the significance of such effects, vertical profiles within the TROPOMI product can be
replaced by any other profile information, resulting in a new retrieved tropospheric NOy column. Douros et al. (2023)
replaced the a priori TROPOMI OFFL NO, profile by high-resolution air quality forecasts for Europe. As compared
to the standard TROPOMI NO, data, this new product was found to be biased-low by 5% to 12% for most European
cities. The air mass factor (AMF) itself can be replaced: for instance, Lama et al. (2022) re-calculated the AMF
by replacing the tropospheric AMF of the original TROPOMI OFFL product by an AMF taken from WRF-Chem
simulations. Similarly, Beirle et al. (2023) re-calculated the AMF above different emitters from the corresponding
averaging kernel based on a peak profile at plume height to better reflect the distribution of NOs close to ground,
which resulted in an AMF correction of about 1.61. Here, we did not perform any of such corrections, and we consider
a relative uncertainty for the column of 30% (Boersma et al., 2004) —eensistent—with—for pixels corresponding to
non-urbanized areas. For pixel corresponding to cities, S-5P validation activities which indicate that TROPOMI
tropospheric NOy columns are systematlcally biased low by M#IL@%@M\WMM@@

higher relative uncertainty of 50% ove 5 s-seems-is used. Such biases seem to
run counter to our comparison with the catalog by {Be%ﬂ&e%al—Z@Q%—}Belrle et al 2023), for which this change in

sensitivity was performed but leading to emissions generally lower than ours. A more detalled analysis of the concerned
emitters seems necessary to better understand the parameters that have the largest impact on the vertical sensitivity
of TROPOMI retrievals and our inversion model.

Other data uncertainties can arise from other parameters that play a crucial role in the estimation of advection
and chemistry effects. An accurate representation of the wind is critical to estimate the transport term correctly.
For a given plume, the poor representation of wind speed leads to an under-or over-estimation of transport, but the
correct orientation of positive and negative values around the source remains. However, an incorrect representation
of the wind direction, such as a non-alignment with the main direction of the plume, fails to represent a correct
orientation of positive and negative values. The estimation of the transport term significantly thus relies heavily on
the representation of the wind angle. Higher errors are therefore expected to be high in regions having winds that
vary rapidly in time, or regions with complex horizontal wind variations, such as mountainous regions. In particular,
situations where sub-grid scale-phenomena occur, not accounted for in ERA5 wind fields, might display even higher
errors in the estimation of transported NOy. For instance, Tehran, Iran, has an extremely complex topography,
and in the calculated emissions, the transport term is particularly high compared with the sink term, with high and
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unrealistic negative values on large scales around the Tochal mountain immediately to the north of the city. Other
megacities such as Seoul, South Korea, Jeddah, Saudi Arabia, Chittagong, Bangladesh, also exhibit unrealistically
high values for the transport term. Sueh-Besides, these values are not compensated by the topography-wind term,
for which an inverse scale height of X, — 0.3 km ! is used based on Sun (2022). For this term to be sufficient to
compensate for the negative values observed, a higher inverse scale height would be required. Such observation is
consistent with Beirle et al. (2023), who used empirical values of X, up to 2 km~! and reduced the amplitude of the
negative patterns observed for Los Angeles, United States, Tehran, Iran, or Seoul, South Korea. Finally, errors in the

estimation of emissien-emissions can also come from a wrong estimation of the air composition when calculating the
sink term. The NOs lifetime relies heavily on the representation of the OH concentration field, which varies with NOy
itself through a non-linear mechanism. An incorrect representation of the sink term can occur at the scale of a plume
by not capturing this relationship due to an incorrect knowledge of emitters on the ground. This can also be due to
the 0.4°x0.4° resolution of CAMS that do not always capture the NOy gradients adequately in plumes near a known
emitter (Valin et al., 2011; Li et al., 2023a). For the OH concentration, a relative uncertainty of 30% has been used
(Huijnen et al., 2019), representing the largest component of absolute uncertainty apart from the vertical columns.
Large errors in the annual cycle of OH, and therefore in the sink term, can thus be expected. As a consequence, a
wrong estimation of wind angle and OH concentration can lead to unrealistically high emissions, or even negative
emissions.

5 Conclusion

In this study, we present a global quantification of NOy emissions by performing a mass-balance inversion based
on the flux-divergence method, based. This approach offers a rapid alternative to traditional 3D inversion methods
using Chemical Transport Models. The foundation of this method lies in the observation of tropospheric vertical
column densities of NOs provided by TROPOMI. Our methodology incorporates several components in the calculation
of emissions: a transport term driven by horizontal wind, a sink term largely driven by OH concentrations, and
a topography-wind correction term. The emissions calculated represent mean daytime fluxes for the year 2022,
allowing us to map emissions on a global scale. The results highlight that the primary sources of NO, emissions
are industrialized and developing countries. Our emission estimates are consistent with global estimates, as well as
the EDGARv6.1 inventory, though notable discrepancies are observed at the national level, particularly in former
USSR countries and sub-Saharan Africa. Besides, we performed a pinpointing of emitters by distinguishing between
diffuse sources, typically large metropolitan areas with extensive spatial distribution{456-identified-emitters}, and point
sources, generally isolated industrial facilities with emissions that often exhibit a Gaussian spread. 456-436 diffuse
sources and 330-323 point sources are identified. Significant uncertainties remain, especially in regions where > OH is not
the only source of NOy removal, regions where wind representation is inaccurate, and regions where TROPOMI data
exhibit substantial biases. Nonetheless, eur-this work demonstrates the feasibility of annual NOy emission monitoring
with reduced latency and fewer mis-allocation issues compared to traditional inventories. Our approach enables the
monitoring of emissions at the monthly scale in regions with high observation densities, that usually correspond to dry,
mid-latitude countries. Conversely, the effect of numerical noise, combined with low-observation densities, restricts
such monitoring to a higher averaging period of up to months, generally in tropical and high-latitude regions. Efforts
should be made to further develop this method to provide a near-real time monitoring tool a higher temporal resolution
for these regions. The results of this study were obtained from the calculation of daily NOy emissions in 2022 and
their annual average.

6 Data availability

The monthly NO, emission maps can be accessed at https+//doi-org/1t0-5281/zenedo~13957837https://doi.org/10.5281/z¢

Pommier et al., 2024). Data is made available as emission grid maps as .nc files with emissions expressed in

petamolecules per square centimetre per hour (Pmolecules.cm™2.h~1). Conversion factors to mass terms (expressed
as NOs, NO or N) are included. The lists of diffuse and point sources are also provided.

Author contributions. AR analysed the data, prepared the main software code and wrote the paper. AH improved
some aspects of the code and prepared the code for Gaussian fitting. FC, PC, TC, JK and JS contributed to the
improvement of the method and the interpretation of the results. All the authors read and agreed on the published
version of the paper.
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