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Abstract. We present top-down global gridded emissions of NOx for the year 2022. This dataset is constructed9

from retrievals of tropospheric vertical column densities of NO2 by the TROPOMI spaceborne instrument associated10

with winds and atmospheric composition data from ECMWF reanalyses, using an improved version of a mass-balance11

atmospheric inversion. The emissions are provided with
::::::
dataset

::::
has a spatial resolution of 0.0625°×0.0625°and deliver12

:
,
::::
and

:::::::
delivers

:
a detailed overview of the distribution of emissions. They allow

:
It

:::::::
allows the identification of in-13

tense area sources
:
,
::::
such

:::
as

::::::
cities, and isolated emitters, and the quantification of their associated emissions

::::
such

::
as14

:::::
power

::::::
plants

:::
or

:::::::
cement

:::::
kilns,

::::
but

:::::
does

:::
not

:::::::::
correctly

:::::::::
represent

:::::::
biomass

::::::::
burning. At global level, the emissions ob-15

tained are consistent with the EDGARv6.1 bottom-up inventory, although there are differences at regional level,16

particularly in emerging countries and countries with low observation densities. The
::::::::
emissions

:::
of

::::
the three largest17

emitting countries, China, the United States and India, are 11, 16 and 6
::
6,

:::
14

::::
and

:
4% lower than EDGAR estimates.18

Uncertainties remain high, and a quantitative analysis of emissions over several averaging periods indicates that av-19

eraging emissions uniformly across the year may be sufficient to obtain estimates consistent with annual averages,20

in regions of the world with high retrieval densities. This dataset is designed to be updated with a low latency to21

help policymakers monitor emissions and implement energy savings and clean air quality policies. The data can be22

accessed at https://doi.org/10.5281/zenodo.13957837
:::::::::::::::::::::::::::::::::::::::::
https://doi.org/10.5281/zenodo.13758447as monthly23

files (Rey-Pommier et al., 2024).24

25

1 Introduction26

Air pollution is one of the leading causes of premature death in the world. Public health policies, implemented27

at the scale of countries, regions or cities, often aim to reduce the exposure to several pollutants, such as nitrogen28

oxides (NOx = NO+NO2). Such mitigation plans therefore require a precise knowledge of the emitters, as well as29

a monitoring of their emission levels over time. Data on NOx emissions is therefore fundamental for monitoring the30

implementation of air quality policies. Besides, because NOx is mainly produced during the combustion of carbon fuels31

at high temperatures, such data can also be
:
,
::
in

:::::::::::
conjunction

:::::
with

:::::::::
NOx/CO2::::::

ratios
:::::::
derived

:::
at

:::
the

:::::
scale

::
of

:::::::::
industrial32

::::::
sectors

::::
and

:::::::::
countries,

:
a tool to measure progress towards carbon neutrality. Gridded emissions with high spatial and33

temporal resolution are therefore of great scientific and political value. Many of such datasets are emission inventories,34

i.e. bottom-up models in which emissions are calculated on the basis of known sectoral activities and allocated in35

time and space, combined with specific emission factors by sector and, possibly, by country. These inventories provide36

valuable information on long-term trends and large-scale emission budgets, but they suffer from several weaknesses.37

They hardly represent daily or weekly variations, their activity data may be outdated, and some sources may be38

misallocated or unknown, which is common in many developing countries. Besides, uncertainties surrounding rapidly39

changing emissions factors and the generally low temporal resolution of activity data limits, in certain circumstances,40

the realism of such bottom-up inventories. Finally, they have a data lag of at least one year
::::
three

:::::
years, which limits41

their potential as monitoring tools.42

In this context, increasing efforts have been made to overcome the weaknesses of the inventories in order to43

obtain independent emission datasets that are homogeneous from one country to another. Such datasets are of the44
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top-down type: they use direct observations of pollution and result from the inversion of an atmospheric chemistry-45

transport model (CTM) in which these atmospheric observations are assimilated. The observation data may be in-situ46

measurements or satellite retrievals.47

In previous studies, we used a method for detecting and quantifying NOx emissions from daily observations of48

NO2 columns by the TROPOMI instrument, onboard the Sentinel 5P instrument
:::::::
satellite. This method, developed for49

the countries of the Eastern Mediterranean and Middle East region, is based on a two-dimensional simplification of50

atmospheric chemistry and transport, and does not require the direct use of a full 3D chemistry-transport model. Here,51

we extend the emissions domain to the whole world for the year 2022, and provide a dataset of averaged NOx emissions52

at a resolution of 0.0625°×0.0625°. We analyse the results by pinpointing emitters and distinguishing between point53

sources, generally corresponding to isolated industrial facilities, and diffuse/area sources, generally corresponding to54

megacities. We also compare the results with the bottom-up inventory EDGARv6.1 and assess their reliability using55

different average horizons.56

This article is structured as follows: Section 2 details the method used throughout this study, its improvements57

and simplifications since its previous uses, and the input data in its implementation. Section 3 presents the global58

NOx emissions dataset and analyses the different types of emitters. It also compares the results obtained with the59

EDGARv6.1 bottom-up inventory, and analyses different time horizons for averaging daily emissions in order to obtain60

representative results. Section 4 analyses the applicability limits of the method and highlights sources of uncertainty.61

2 Methods62

2.1 Input data63

2.1.1 TROPOMI NO2 column densities64

NO2 can be observed from space with satellite instruments based on its strong absorption features in the 400–465 nm65

wavelength region (Vandaele et al., 1998). By comparing observed spectra with a reference spectrum, the amount of66

NO2 in a portion of the atmosphere between the instrument and the surface can be derived. The TROPOspheric Mon-67

itoring Instrument (TROPOMI), onboard the European Space Agency’s (ESA) Sentinel-5 Precursor (S-5P) satellite,68

is one of those instruments
::::::::::::::::::::
(Veefkind et al., 2012). This instrument has a large swath width (∼2600 km), combined69

with the 15-day orbit cycle of the satellite, leading to a revisit time of one day for every point of the Earth in absence70

of clouds. Moreover, these daily measurements are always collected during the middle of the day, the satellite crossing71

the sunlit equator at around 13:30 local time (LT). The high spatial resolution of the instrument (
::
up

:::
to 3.5×5.5 km2

72

since 6 August 2019) allows observing fine-scale structures of NO2 pollution, such as hotspots within medium-size73

cities or plumes from power plants and industrial facilities. Tropospheric vertical column densities (VCDs, or sim-74

ply "columns") are provided after retrieval of total slant column densities using the Differential Optical Absorption75

Spectroscopy method (Platt et al., 2008). VCDs represent the integrated number of NO2 molecules per surface unit76

between the surface and the tropopause at the corresponding vertical. An algorithm also supplies an air mass factor,77

which is the ratio between slant and vertical column densities. This factor is derived from the knowledge of many78

physical quantities such as the vertical distribution of the absorber but also the viewing angle and the albedo of the ob-79

served surface. It comprises a significant part of the uncertainty in NO2 measurements (Boersma et al., 2004; Lorente80

et al., 2019), which becomes non-negligible in a polluted atmospehre. Each TROPOMI retrieval is also associated81

with a quality assurance value qa, which ranges from 0 (no data) to 1 (high-quality data). We selected NO2 retrievals82

with qa values greater than qa,lim = 0.75, which correspond to clear-sky conditions (Eskes et al., 2022). Here, we use83

TROPOMI NO2 retrievals in 2022 (OFFL product using processor version 2.5.0, product version 2.3.1 and 2.4.0 before84

and after November 2022 respectively). To limit effects due to product of processor version changes, other years are85

not studied.86

2.1.2 Meteorological and air composition fields87

Horizontal wind is taken from the ERA5 data archive, provided by the European Centre for Medium-Range Weather88

Forecasts (ECMWF). Both components have a horizontal resolution of 0.25°×0.25° gridded on 37 vertical pressure89

levels (Hersbach et al., 2020).
::
We

:::::::::
vertically

::::::::
average

:::::
wind

:::::
fields

:::::
using

::::
the

::::
first

::::
two

:::::::
vertical

::::::
levels,

:::
at

::::
975

::::
and

::::
100090

::::
hPa,

::::::
except

::::
for

:::::::::::
representing

:::::::
ground

::::::
winds,

::::
for

:::::
which

::::
the

::::
last

:::::
level

::
at

:::::
1000

::::
hPa

::
is
::::::
used.

:
ECMWF also produces a91

reanalysis for air composition, under the Copernicus Atmospheric Monitoring Service (CAMS). It provides analyses92

and forecasts for reactive gases, greenhouse gases and aerosols. These parameters are gridded on 25 vertical pressure93

levels with a horizontal resolution of 0.4°×0.4° and a temporal resolution of 3 hours (Huijnen et al., 2016). Here, ground94
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concentrations of NO2, NO, OH, as well as temperature, are taken from CAMS to represent chemical processes in our95

model.
:::::
Fields

:::
are

:::::::::
vertically

::::::::
averaged

::::::
using

:::
the

::::
first

::::
two

:::::::
vertical

::::::
levels,

::
at

::::
950

::::
and

:::::
1000

::::
hPa.

:
96

2.1.3 Elevation data97

For computing altitude gradients, we use the Global Multi-resolution Terrain Elevation Data (GMTED2010, Danielson98

and Gesch (2011))
::::
with

:
a
:::::::::::::::
0.0625°×0.0625°

:::::::::
resolution. Elevation data is regridded

:::::::::
re-gridded

:
on the TROPOMI grid,99

before calculation of the corresponding gradient to derive a corrective "topography-wind" value that is detailed in100

Section 2.2.2.101

2.2 The mass-balance inversion102

2.2.1 Main principle103

The flux-divergence method is a mass-balance inversion model calculating the emissions of a given trace gas from104

observations of the corresponding vertical tropospheric columns, which is particularly well suited to data with high105

spatial resolution. In the case of NO2, this approach was pioneered by Beirle et al. (2019). It has subsequently been106

implemented differently by other researchers, in different circumstances under simplified forms or, on the contrary,107

more complex ones (Lama et al., 2020; Rey-Pommier et al., 2022; de Foy and Schauer, 2022; Sun, 2022). The flux-108

divergence method is based on the conservation of mass principle, which makes it possible to calculate emission109

densities at the pixel scale as a function of a transport term and a sink term. By noting C the local concentration of110

NO2 and w = (u, v, w) the mean wind at the time of measurement, the corresponding emissions EC are expressed as:111

EC =
∂C

∂t
+ div(Cw) + SC (1)

Here SC is the sink term expressing the loss of NO2 due to chemical reactions. Assuming that the vertical variations112

in concentration are small compared with the horizontal variations, and considering that most NO2 remains confined113

close to the ground, the previous equation can be rewritten in terms of tropospheric columns Ω, which enables, in114

steady state, the computation of emissions per surface area E, as:115

E =
∂(Ωu)

∂x
+

∂(Ωv)

∂y
+ SΩ (2)

SΩ is the sink term expressed by surface unit. D = ∂(Ωu)
∂x + ∂(Ωv)

∂y is the horizontal advection (transport) term.116

The assumption of a stationary state and a pollution concentrationclose to the ground means that the temporal117

and vertical dimensions of the problem can be ignored, resulting in a purely horizontal
::
2D

:
calculation of emissions.118

The corresponding reduction in complexity means that inversions can be performed very quickly compared with the119

conventional use of full-fledged 3D CTMs and without a priori knowledge on emissions. On the downside, such120

simplifications are accompanied by
:::::
While

:::::::
useful,

:::::
these

::::::::::::::
simplifications

:::::
come

:::::
with

::::::::
inherent

:
uncertainties, the main121

sources of which being uncertainties on the input tropospheric columns, wind direction and atmospheric composition.122

:
It
::::::

must
::::
also

:::
be

::::::
noted

::::
that

::::
far

:::::
from

::::::
strong

::::
and

::::::::
localized

::::::::
sources,

::::
the

::::::::::
underlying

::::::::::::
assumptions

::
of

:::::::::::
stationarity

::::
and123

::::::::
pollution

:::::::::::
containment

::::
are

::
no

::::::
longer

::::::
valid.

:
124

Finally, we convertthe NO2 production
:::
can

:::
be

:::::::::
convertedinto NOx emissions. Performing this conversion is ac-125

counting for the portion of NOx, mainly emitted as NO, which is not converted into NO2 by reaction with ozone. The126

reformation of NO by the photolysis of NO2 during the day leads to an equilibrium between the two compounds. The127

ratio L = [NOx]/[NO2] whichusually varies between 1.2 and 1.4, depending on local conditions. NOx emissions are128

therefore calculated as:129

ENOx = LE (3)

In most urbanized areas, daytime NO concentrations frequently exceed 20 ppb. Under such conditions, this ratio is130

stabilized in a few minutes (Graedel et al., 1976; Seinfeld and Pandis, 2006). As this time is shorter than the inter-mesh131

transport timescale, the impact of stabilization time on the overall emission composition can be justifiably ignored.132

However, this assumption breaks down
:::::
Here,

::
it

::
is

:
near emission sources , where

::::
that

:
the stationary hypothesis may133

not be applicable, and
:
in

::::::
which

::::
case

:
the value of L could be significantly higher than 1.4. The implications of this134

neglect will be
:::
are

:
discussed in Section 4.1.135
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2.2.2 Refined version136

In order to consider only anthropogenic pollution located close to the ground, it is necessary to remove any signal of137

natural emissions from the tropospheric columns provided by TROPOMI. In the absence of anthropogenic sources,138

the NO2 columns that are observed constitute a tropospheric background Ωb. At the global scale, this background is139

mostly due to soil emissions in the lower troposphere (Yienger and Levy, 1995; Hoelzemann et al., 2004). In the upper140

troposphere, NO2 sources include lightning, convective injection and downwelling from the stratosphere (Ehhalt et al.,141

1992). We remove that background by calculating the 1st tercile in a 200 pixel × 430 pixel zone around each pixel142

(along × across track, i.e. approx. 700 km × 2360 km). We assume that this zone is sufficiently large whatever the143

considered pixel so that this tercile corresponds to the typical local value for this background. We then subtract this144

background to the calculated tropospheric column densities and use
:::
The

:::::
large

:::::::::::
across-track

::::::::
distance

::
is
:::::::
chosen

:::
for

:::
two145

:::::::
reasons.

:::::::
Firstly,

::
it

:::::
limits

::::
the

::::::::
influence

::
of

::::::::::
low-quality

::::::::::::
observations

:::
and

::::::::::::
intermediate

::::::::
pollution

::::::
levels

::
on

::::
the

::::::::::
background146

::::::::
estimate,

::::::
which

:::
can

::::::
inflate

::::
the

::::::::::
estimation

:::::
when

:::::::::
performed

:::
on

::
a
:::::::
smaller

:::::::
domain

::::
and

:::::::
prevent

::::
the

::::::::
detection

::
of
:::::::
smaller147

::::::::
emitters.

:::::::::
Secondly,

:::
it

:::::::::
minimizes

::::
the

:::::::
mixing

::
of

::::::
pixels

:::::
with

:::::::
varying

:::::
NO2 :::::::::::

backgrounds
::::

due
:::
to

::::::::
distinct

:::::::
climatic

::::
and148

:::::::::::
geographical

::::::::::
conditions,

::::
such

:::
as

:::::::
between

::::
arid

::::
and

::::::::::
temperate

:::::::
regions.

:::::
Such

:::::::::
variations

:::
are

::::
less

::::::::::
pronounced

:::::::::::
across-track149

::::
than

:::::::::::
along-track.

::::::::
Besides,

::::
the

::::::::
overpass

::
of

:::::::::::
Sentinel-5P

:::::::
around

:::::
13:00

::::
LT,

:::::
when

:::::::
diurnal

:::::
NOx:::::::::

variations
::::
are

::::::::
minimal,150

:::::
limits

:::
the

:::::::
mixing

::
of

:::::
pixels

::::
with

::::::::::::
backgrounds

::::::::::::
corresponding

:::
to

:::::::
different

:::::
local

::::::
times.

:::::
After

::::::::::
calculation

::
of

:::
the

:::::::::::
background,151

:
it
::
is
::::::::::
subtracted

:::::
from

::::
the

:::::::
vertical

::::::::::::
tropospheric

:::::::
column

:::::::
density,

::::
and

:
the resulting lower tropospheric vertical density152

Ω′ = Ω−Ωb ::
is

::::
used

:
in the flux divergence method.

:::::
Pixels

:::::
with

::::::::
columns

:::::
lower

:::::
than

:::
the

:::::::::
calculated

:::::::::::
background

:::::
have

:
a153

::::::::
corrected

:::::::
column

:::::::
reduced

:::
to

:::::::
Ω′ = 0. Such assumption can be challenged above macro-regions for which soil emissions154

and wildfires result in high NO2 values observed by TROPOMI(those emissions are therefore considered abusively as155

anthropogenic sources). This can also happen .
:::::
High

::::::::::::
tropospheric

:::::::::::
backgrounds

::::
can

::::
also

:::::
arise

::::
from

:::::::::
localized

:::::
paths

::
of156

:::::::::
long-range

:::::::::
transport

::
of

::::::::
reactive

::::::::
nitrogen

:::::::::::::::::
(Zhai et al., 2024)

:
or

:
around shipping laneswhere exhaust particles increase157

the likelihood of thunderstorms ,
::::::
where

:::::::
exhaust

:::::::::
emissions

:::::::
directly

::::::::
increase

::::
NO2::::::

levels
:::
and

:::::
may

:::
also

::::::::
enhance

::::::::
lightning158

:::::::
activity

::::
that

:::::::::
produces

:::::::::
additional

:::::
NOx:

(Thornton et al., 2017). The neglect of such effects is highlighted in Section159

4.1.160

We represent the sink term SΩ by considering only the chemical loss of NO2 due to its reaction with the161

hydroxyl radical (OH). This reaction follows a first-order kinetics, and the sink term can be expressed as SΩ =162

kOH+NO2 [OH] [OH]Ω′ with kOH+NO2 the reaction rate whose value is given by Burkholder et al. (2020). This is equiv-163

alent to compute a mixed lifetime τ = 1/(kOH+NO2
[OH]), which

:
.
:::::
This

:::::::
lifetime generally ranges between 1 and 12h

::
14164

:
h
:::
in

:::::::::::
mid-latitude

:::::::
regions

::::
and

:::::::
reaches

::::::
higher

::::::
values

::
in

::::::
polar

::::
and

::::::::::
subtropical

::::::
zones.

:::::
Two

::::::
global

:::::
maps

::
of

::::::::
lifetimes

:::
for165

::::::
winter

:::
and

:::::::::
summer,

:::::::::
computed

:::::
with

::::
this

::::::::
method,

:::
are

::::::
added

:::
in

:::
the

::::::::::::::
Supplementary

:::::::::
Materials. In many studies, this166

quantity is kept uniform and constant in the use of the flux-divergence method (Beirle et al., 2019; de Foy and Schauer,167

2022),
::::::::
because

:::::::
justified

:::
by

:
a
:::::::::
relatively

:::::
small

:::::::
domain

::
of

:::::::
interest. Here, a singularity of our version of the flux-divergence168

method is to account for the temporal variability of OH, which is primarily driven by the amount of UV radiation169

from the stratosphere, but also for its spatial variability, since OH can also be influenced by NOx through a non-linear170

relationship (Valin et al., 2011). In this respect, our sink term is heavily reliant on the NOx sources accounted for171

in CAMS data. Neglecting a source, or mis-estimating the order of magnitude of its NOx emissions, therefore results172

in a wrong OH field whose bias depends on the amplitude of the neglect. Similarly, the coarse resolution in CAMS173

data (0.4°×0.4°) can fail to represent pollution gradients downwind different sources
:::
the

:::::::::
particular

::::::::::
conditions

::::::
within174

::
or

:::::::::
downwind

::::::
power

:::::
plant

:::::::
plumes, leading to a wrong estimation of the real OH budget. We expect these effects to be175

minor
:::::
regard

:::::
these

:::::::
effects

::
as

::::
less

::::::::::
pronounced

:
compared to those that would result in representing a constant lifetime176

for NO2 which oversimplifies and misrepresents temporal and spatial dynamics by representing all situations the same177

way, whether they represent emitters or not.178

Additionally, systematic artifacts concerning advection processes were reported over regions with complex to-179

pographies, particularly when high tropospheric vertical column densities are observed over mountainous regions.180

These high values can hinder the identification and quantification of point sources, possibly due to inaccurate mean181

wind fields over mountains. A study by Sun (2022) shows that these patterns can also be caused by 3D transport182

effects which have been ignored in the simplified 2D approach which has been described so far. A "topography-wind"183

V term can be introduced in Equation 3 in order to correct for this effect using ground wind wg, the topography184

gradient ∇z0, and an inverse scale height Xe as follows:185

V = XeΩ
′wg · ∇z0 (4)

Here, we choose a uniform and constant value of Xe = 0.3 km−1. This value
::::::::
Although

::::
this

::::::
value

::
is

:::::
about

::::
one

:::::
order186

::
of

:::::::::
magnitude

::::::
lower

::::
than

:::::
that

::::
used

:::
by

:::::::::::::::::
Beirle et al. (2023)

:
,
::
it corresponds to the

:::::::::::
approximate

:
mean inverse scale used187
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by Sun (2022) who allowed for
::::::
height

:::::::::
calculated

:::
by

::::::::::
Sun (2022)

::
in

::::::
which a variability for Xe :::

was
:::::::
allowed

:
by fitting its188

value using observational data through linear regressions
::
on

::::
the

::::
basis

:::
of

:::::::
selected

:::::::::::
observations. While we acknowledge189

the fact that choosing a single value for Xe is a simplification, we note that performing the fit of its value would190

require an arbitrary selection of the cells used for that fit. We therefore compute the following equation to estimate191

NOx emissions:192

ENOx = L(∂(Ωu)
∂x

∂(Ω′u)

∂x
::::::

+
∂(Ωv)

∂y

∂(Ω′v)

∂y
::::::

+ kOH+NO2
[OH]Ω′

::
+XeΩ

′wg · ∇z0) (5)

Following de Foy and Schauer (2022)
::::::::::::::::::::::::
de Foy and Schauer (2022), we perform the calculation of derivatives directly193

on the original TROPOMI grid (along-track and across-track) to better handle pixels with low-quality or no data,194

resulting in lower discontinuities in the calculated transport term. To do so, we re-grid the wind field on the TROPOMI195

grid and linearly interpolate the estimates at the satellite timestamp. We do the same for all other parameters that196

are concerned for the calculation of the sink term (concentrations of OH, NO and NO2, and temperature). Emissions197

are thus calculated on the TROPOMI grid and are then re-gridded on a regular north-south/east-west grid with a198

0.0625°×0.0625° resolution.199

Finally, the accuracy of TROPOMI retrievals can be compromised by challenges in estimating the air mass factor200

or local effects, particularly in specific vertical distribution scenarios (Griffin et al., 2019; Lorente et al., 2019; Judd201

et al., 2020). The latest versions of TROPOMI (v2.x) showed VCD values higher than those of earlier versions (v1.x),202

with biases up to 40%, depending on pollution levels and seasonal variations (Van Geffen et al., 2022). Additionally, the203

chemistry-transport model TM5, which is integrated into the operational TROPOMI product, tends to underestimate204

pollution near the ground, while overestimating NO2 concentrations at higher altitudes over the sea (Latsch et al.,205

2023; Rieß et al., 2023). To compensate for such effects, studies like Goldberg et al. (2022) or Beirle et al. (2023)206

corrected the used VCDs by changing the corresponding vertical sensitivity over emitters. In this study, we do not207

perform such adjustment, while recognizing it could constitute a further step in the improvement of our dataset. On208

Figure 1, we sum up the functioning of our method.209

Figure 1: General overview of the mass-balance inversion.

2.3 EDGAR bottom-up inventory210

Many high-resolution datasets for air quality exist at global (Benkovitz et al., 1996; Granier et al., 2019) or regional211

scale (Kuenen et al., 2022; He, 2012). Here we compare our averaged emissions for the year 2022 to NOx emissions212

provided by The Emissions Database for Global Atmospheric Research (EDGARv6.1) for 2018. It is a global inventory213

providing 0.1°×0.1° gridded emissions of greenhouse gases and air pollutants at the monthly scale, covering different214

sectors (Crippa et al., 2020). It is based on activity data of different nature (population, industrial processes, energy215

production, fossil fuel extraction, agricultural outputs, etc.) derived from the International Energy Agency (IEA) and216

the Food and Agriculture Organization (FAO), and the emission factors corresponding to each of the covered sectors.217

5



National and regional information on technology mix data provide a better characterization of these emission factors.218

End-of-pipe measurements are also used for correcting purposes. The version 6.1 of the inventory covers the years219

1970-2018.220

3 Technical validation221

3.1 Spatial distribution of the global NOx emissions222

The global map of the averaged NOx emissions for 2022 is shown on Figure 2
:
,
:::::
while

:::::::
Figure

::
3
::::::
zooms

:::::
over

:::::
seven223

::::::::::::
macro-regions

::::
that

::::::
cover

::::
most

:::
of

:::
the

::::::::
emitters

::::
over

:::::
land

:::
and

::::
sea. Emissions are represented as density, i.e. by surface224

unit. The map is characterized by significant regional differences
:::
All

::::
the

:::::::
analyses

:::::::
carried

::::
out

::
in

::::
this

:::::
study

::::
are

:::::
based225

::
on

::::
the

::::::::
displayed

::::::::
domain,

:::
i.e.

::::::::
between

:::::::::
latitudes

::::
65°S

::::
and

:::::
65°N.

:::::
This

::::::::
discards

::::::::
frequent

:::::::
outliers

:::::
above

::::::
these

::::::::
latitudes,226

::::::::
resulting

::::
from

::::::::
monthly

::::
and

:::::::
annual

:::::::::
estimates

::::::
based

::
on

::::
too

::::
few

::::::::::::
observations.

::::::::::
Significant

::::::::
regional

::::::::::
differences

::::::
appear227

::
on

:::::
these

::::::
maps. The highest values are concentrated in developing areas such as south-eastern China, India and228

the Middle East. High values are also found in Europe, Russia and the United States, where they correspond to229

megacities and industrial areas. Transport emissions can also be highlighted where they provide the highest share230

of emissions, i.e. on highways and shipping lanes which appear in various regions. South America, Oceania and231

Sub-Saharan
:::::::::::
sub-Saharan Africa display low or zero emissions except in a small number of cities and industrial sites.232

Wildfires, which are frequent in rainforests and savannas (Mebust and Cohen, 2013; Castellanos et al., 2014; Ossohou233

et al., 2019; Opacka et al., 2022), display quasi-zero emissions in Amazonia and low emissions in the Congo basin.234

Figure 3 zooms over seven macro-regions that cover most of the emitters over land and sea
:::::::
Wildfire

:::::::::
emissions

:::::
might235

::
be

:::::::::::::::
under-estimated

::::
due

::
to

::
a

::::::
wrong

:::::::::
estimation

:::
of

:::
the

::::::::
lifetime,

::
in

:::::::::
particular

:::
in

:::::::
tropical

:::::::
regions

::::::
where

:::::
sinks

:::::
other

::::
than236

:::
the

:::::::
reaction

:::::
with

::::
OH

:::
are

::::::::::
important.

:::::
Such

:::::
other

:::::
sinks

::::
are

:::::::::
developed

::
in

:::::::
Section

::::
4.1.

::
It
:::::
must

:::
be

::::::
noted

::::
that

::
at

::
a
:::::
lower237

::::::::
temporal

:::::
scale,

:::::::
wildfire

:::::::::
emissions

:::::::
display

::
an

:::::::
annual

::::::::::
variability.

::::
The

::::::::
example

::
of

:::
the

::::
fires

:::
in

:::
the

::::::
Congo

:::::
basin

::
is
:::::::
studied238

::
in

:::
the

::::::::::::::
Supplementary

:::::::::
Materials,

:::::
with

::::
high

:::::::::
emissions

::::::
during

::::::::
summer

::::::
(JJA).

::
It

::
is
:::::
thus

:::::::
possible

::::
that

::
a
:::::
large

:::::::
number

::
of239

::::::
smaller

:::::::::
wildfires,

::::::::
occurring

:::::::
during

:::::
other

:::::::
seasons,

::::
are

:::
too

:::::
small

:::
to

::
be

::::::::
correctly

:::::::::
observed

::::
from

::::::
space,

:::
as

::::::
shown

::
by

:::::
other240

::::::
studies

:::::::::::::::::::::::::::::::::::::
(Ramo et al., 2021; Khairoun et al., 2024).241

Generally speaking, the maps highlights the industrialized areas, revealing the world’s main megacities where242

several sources of emissions (traffic, power, residential) are mixed. Some industrial facilities and large power plants243

also appear. Emissions are correctly resolved in most regions of the world. The observed spread of emissions over244

two to three pixels (i.e. about 12 to 20 km) further away from the exact location of the corresponding emitters is245

due to the turbulent spread of emissions, which is not considered in our method. Finally, we note that emissions in246

mid- and high-latitude regions (beyond about 40° from the Equator) seem to be
:::
are

:
noisy, due to an averaging over a247

smaller number of clear-sky days throughout the year. On average, countries such as Egypt, Niger and Saudi Arabia248

are observed more than 90
:::::
about

:::
70% of the time with a quality flag higher than qa,lim = 0.75, while Ireland, Canada249

and Finland are observed less than 30
::
20% of the time. This uneven sampling is also present in tropical regions where250

rainfall is frequent, as there is no measurement during cloudy scenes. Countries like Gabon, Indonesia or Peru are251

seen on average less than 40
:::::::
observed

::::
less

:::::
than

::
30% of the time

::::
year

:
with quality flags higher than the threshold. In252

some cases, this low density of observations prevents emissions from intense sources from being quantified correctly at253

the monthly scale, as it is discussed in Section 3.4.254
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Figure 2: TROPOMI-derived mean daytime NOx emission rates in 2022 estimated with the flux-divergence method. The seven frames
correspond to macro-regions whose emissions are specifically shown in Figure 3.

The statistical distribution of emissions is shown in Figure 4. Four different regimes of emissions can be distinguished255

in the red curve (note the log-log scale):256

• Very low values of emission densities (less than ∼0.02 Pmolecules.cm−2.h−1), in practice at places where there257

are almost no emissions in reality. Note that, as the calculated fluxes represent averaged emissions, such pixels258

can also represent places where high emissions occurred, but only during a small portion of the year, as it is the259

case in regions where wildfires frequently happen.260

• Residual emission densities (between ∼0.02 Pmolecules.cm−2.h−1 and ∼0.2 Pmolecules.cm−2.h−1), for which it261

is difficult to determine the corresponding source.262

• Low emission densities (between ∼0.2 and ∼2 Pmolecules.cm−2.h−1), generally high enough to be associated263

with an emitter, but too low for a reliable quantification to be possible unless heavy averaging. The upper limit264

corresponds approximately to the emission densities observed on smaller power plants.265

• High emission densities (higher than 2 Pmolecules.cm−2.h−1), where the signal-to-noise ratio is high enough to266

quantify emissions when enough observations are averaged.267
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Figure 3:
::::::::::::::
TROPOMI-derived

:::::
mean

::::::
daytime

::::
NOx:::::::

emission
::::
rates

:::
in

::::
2022

:::::::
estimated

::::
with

:::
the

::::::::::::
flux-divergence

::::::
method

:::
for

:::::
North

:::::::
America,

::::
South

::::::::
America,

:::::::::
sub-Saharan

::::::
Africa,

::::::
Europe

:::
and

:::::
North

::::::
Africa,

::::
East

::::
Asia,

:::::::
Oceania,

::::::
Middle

:::
East

::::
and

::::::
Central

::::
Asia.

Figure 4 also shows negative values (blue curve), even though negative emissions are physically impossible.268

They appear in practice because the transport term, which includes a derivative, can be negative. In calculated269
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emission densities, negative pixels of low absolute value are as numerous as positive pixels of the same amplitude;270

they correspond to numerical noise and are found in pollution-free zones where the sink term is virtually zero. Higher271

values for negative pixels are less frequent: we count about 4
:
5
:
times less pixels with emission densities lower than -0.2272

Pmolecules.cm−2.h−1 than pixels with emission densities higher than 0.2 Pmolecules.cm−2.h−1 (yellow and red parts273

of the graph in Figure 4). The locations where such high values are observed for negative pixels correspond to areas274

close to anthropogenic sources of NOx, but in situations for which the absolute transport term has been overestimated275

or the sink term has been underestimated. Such negative emissions are limited to rare cases, such as Tehran, which276

will be
:
isdiscussed in Section 4.2.277

TROPOMI-derived mean daytime NOx emission rates in 2022 estimated with the flux-divergence method for North
America, South America, Sub-Saharan Africa, Europe and North Africa, East Asia, Oceania, Middle East and

Central Asia.
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Figure 4: Distribution of positive and negative TROPOMI-inferred NOx emissions for year 2022. Four regimes can be distinguished (the
values defining the thresholds between these regimes are given as order of magnitudes).

3.2 Diffuse sources and point sources278

The assimilation of high-resolution observations with the flux-divergence method holds a significant potential for279

pinpointing emissions at small scale. As a consequence, it reveals the difference between sources that emit pollutants280

from a localized area, called point sources, from diffuse sources emitting pollutants over a wider area, such as sprawling281

urban regions like megacities. While the extent of the observed NO2 pollution created by a point source is primarily282

determined by advection and turbulent mixing, the spread of the pollution for a diffuse source is above all determined283

by the spatial extent of the source itself. Point sources are therefore characterized by a dominance of the transport284

term, while diffuse sources (the term "area sources" is also used) exhibit a balance or dominance of the sink term285

(Beirle et al., 2019). Within the flux-divergence method, these two types of sources can be identified differently, since286

the main sources of uncertainty come from wind angle in the case of a point source while they come from the OH287

concentration explaining the sink term for a diffuse source. Because this distinction remains qualitative, to classify a288

detected source as one or the other type, arbitrary thresholds must be defined, concerning the number of pixels above289

a certain value of emissions, or the share of the transport term within the emissions in Equation 5. Here, we catalog290

all sources in the averaged emissions map for 2022. Firstly, we define a source as a cluster of at least 3 contiguous291

pixels above the value of 2 Pmolecules.cm−2.h−1. We then classify these sources as "point" or "diffuse" according to292

the number of pixels in the detected cluster:
:
,
:
point sources being the clusters comprising 3 to 9 pixels, and diffuse293

sources those with more than 10 pixels. We detected 456
::::::
detect

:::
436

:
point sources and 330

:::
323 diffuse sources, whose294

locations are displayed on Figure 5. The detailed distribution is given in
::::::::
statistical

:::::::::::
distribution

:::
of

:::
the

:::::::::
emitters,

::
as295

:::
well

:::
as

:::::
their

:::::::
detailed

::::::::
location,

::::
are

::::::::
provided

::
in

::::
the Supplementary Materials and in Rey-Pommier et al. (2024).296

9



Figure 5: Location of different point sources in blue (between 3 and 9 contiguous pixels above 2 Pmolecules.cm−2.h−1) and diffuse sources
in red (more than 10 contiguous pixels) for 2022.

3.2.1 Diffuse sources297

Most point sources correspond to facilities such as power stations, cement kilns or mining sites. They can also298

correspond to concentrated urban areas. Conversely, almost all
::::
most

:
diffuse sources correspond to urban areas of299

megacities, whether they comprise industrial facilities within their extent or not. Exceptions concern mega-emitters300

like the Medupi and Matimba power plants in South Africa, mentioned in various articles (Reuter et al., 2019;301

Hakkarainen et al., 2021; Cusworth et al., 2023) or the Ain Sokhna industrial area in Egypt, already mentioned in302

Rey-Pommier et al. (2022). In both cases, such groups of industrial facilities exhibit particularly high emissions over303

more than 10 pixels and are detected as diffuse sources. Figure 6 displays the emissions of diffuse sources corresponding304

to megacities: Baghdad (32.9
::::
32.3 t.h−1, 198 pixels), Istanbul (16.3

::::
15.4

:
t.h−1, 132

::
127

:
pixels), Mexico City (17.4305

::::
17.6 t.h−1, 111

:::
114

:
pixels), Moscow (20.4

:::
19.0

:
t.h−1, 180

:::
177

:
pixels), Riyadh (33.1

:::
33.0

:
t.h−1, 172

:::
171

:
pixels) and306

Shanghai (102.0
::::
100.2

:
t.h−1, 837

:::
836 pixels).

::::
City

:::::
cores

:::
are

::::::::
denoted

::::
with

:::::::
dashed

:::::
lines,

::::
and

:::::::::
generally

::::::::::
correspond

::
to307

::::
areas

::::::
where

:::::::::
emissions

:::
are

:::::::
largely

:::::
above

::::
the

:::::::::::::::
cluster-detection

:::::::::
threshold.

:
Table 1 shows the 20 diffuse sources with the308

highest emissions.309

Map of mean daytime TROPOMI-inferred NOx emissions for 2022 for six megacities (diffuse sources), clockwise:310

Baghdad, Istanbul, Moscow, Shanghai, Riyadh, and Mexico City. The approximate boundaries of the cities are311

denoted with dashed lines and the location of power plants and cement plants are denoted with circles and squares312

respectively, except for Shanghai (unavailable data).313

These six diffuse sources differ greatly from one another: Baghdad, Mexico City and Riyadh are very dense and314

isolated, allowing their emissions to stand out from the rest of the hotspots, while Moscow and Istanbul are less315

dense, resulting in lower emission densities. The Shanghai urban area has a large spatial extent, and the associated316

cluster extends over an area much wider than the city limits. Finally, it should be noted that Moscow and Shanghai317

experience many cloudy days, resulting in a fairly low level of averaging, leading to numerical noise that is visible318

on the maps. Our averaging also explains the absence of high annual emissions due to wildfires in our analysis.319

At a lower temporal scale however, wildfire emissions display an annual variability without significant outliers. The320

example of the rainforest in the Congo basin is studied in the Supplementary Materials, with emissions higher than321

the 2 Pmolecules.cm−2.h−1 threshold during summer (JJA).322
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Number of
pixels in cluster

Latitude
(°N)

Longitude
(°E)

Mean emission density
(Pmolecules.cm−2.h−1)

Output
(t.h−1) Emitter

2818
::::
2623 37.527

:::::
37.617 116.010

::::::
116.030 2.827

::::
2.818 235.03

:::::
217.89 Beijing urban area, China

837
:::
836 31.283 120.352

::::::
120.354 3.834

::::
3.771 102.01

:::::
100.21 Shangai

::::::
Shanghai

:
urban area, China

439
:::
443 35.549

:::::
35.557 51.329

:::::
51.321 7.089

::::
6.939 94.19

::::
93.05 Tehran urban area, Iran

552
:::
554 -26.406

:::::
-26.407 28.739

:::::
28.738 4.266

::::
4.217 78.45

::::
77.79 Gauteng coal region, South Africa

425
:::
417 22.798

:::::
22.796 113.630

::::::
113.626 3.721

::::
3.691 54.22

::::
52.78 Shenzen

:::::::
Shenzhen

:
& Hong-Kong urban area, China

361
:::
364 29.653

:::::
29.648 31.126

:::::
31.129 4.127

::::
4.064 48.16

::::
47.84 Cairo & Beni Suef urban area, Egypt

303
:::
302 29.582

:::::
29.585 47.874

:::::
47.872 4.555

::::
4.496 44.64

::::
43.95 Kuwait City urban area, Kuwait

172
:::
171 24.649

:::::
24.650 46.797

:::::
46.791 5.695

::::
5.708 33.12

::::
33.01 Riyadh urban area, Saudi Arabia

198 32.771
:::::
32.775 44.298

:::::
44.301 5.319

::::
5.223 32.94

::::
32.36 Baghdad urban area, Iraq

274
:::
255 41.174

:::::
41.124 123.033

::::::
123.005 4.286

::::
4.281 32.88

::::
30.60 Anshan urban area, China

353
:::
347 39.338

:::::
39.339 110.656

::::::
110.659 2.986

::::
2.933 30.32

::::
29.31 Ordos mining region, China

224
:::
169 37.162

:::::
25.251 126.874

::::
55.348 4.312

::::
4.790 28.63

::::
27.23 Seoul

::::
Dubai

:
urban area, South Korea

:::::
United

::::
Arab

:::::::
Emirates

171
:::
193 25.316

:::::
37.162 55.342

:::::
126.822 4.809

::::
4.425 27.65

::::
25.30 Dubai

::::
Seoul

:
urban area, United Arab Emirates

::::
South

:::::
Korea

157 32.577
:::::
32.583 51.610

:::::
51.602 4.860

::::
4.796 23.92

::::
23.62 Ispahan urban and industrial area, Iran

127
:::
124 21.115

:::::
21.112 39.309

:::::
39.313 4.916

::::
4.886 21.66

::::
21.03 Djeddah urban area, Saudi Arabia

219
:::
220 37.317

:::::
37.320 112.087

::::::
112.088 3.173

::::
3.131 20.56

::::
20.39 Shanxi urban area, China

180
:::
177 55.715

:::::
55.706 37.501

:::::
37.508 5.395

::::
5.121 20.35

::::
19.02 Moscow urban area, Russia

102
:::
101 24.118

:::::
24.120 82.747

:::::
82.744 5.530

::::
5.461 19.15

::::
18.73 Jogi Chaura industrial zone, India

154
:::
158 39.329

:::::
39.327 106.809 4.258

::::
4.116 18.87

::::
18.72 Wuhai/Hainan industrial zone, China

83 -12.183 -76.853 6.189
::::
6.101 18.68

::::
18.41 Lima urban area & Pachamac mines, Peru

Table 1: List and location of the 20 diffuse sources with highest TROPOMI-inferred NOx emissions
:::::::
(expressed

::
as

:::::
NO2), and corresponding

size of the cluster and main sector responsible for the emissions.

:::::
These

:::
six

:::::::
diffuse

:::::::
sources

::::::
differ

::::::
greatly

:::::
from

::::
one

:::::::::
another:

:::::::::
Baghdad,

:::::::
Mexico

:::::
City

::::
and

:::::::
Riyadh

::::
are

:::::
very

:::::
dense

::::
and323

:::::::
isolated,

::::::::
allowing

:::::
their

:::::::::
emissions

:::
to

::::::
stand

::::
out

:::::
from

:::
the

::::
rest

:::
of

::::
the

::::::::
hotspots,

::::::
while

::::::::
Moscow

::::
and

::::::::
Istanbul

:::
are

::::
less324

:::::
dense,

:::::::::
resulting

::
in

:::::
lower

::::::::
emission

:::::::::
densities.

:::::
The

::::::::
Shanghai

::::::
urban

:::::
area

:::
has

::
a
:::::
large

:::::::
spatial

::::::
extent,

::::
and

::::
the

:::::::::
associated325

::::::
cluster

:::::::
extends

::::
over

:::
an

:::::
area

:::::
much

:::::
wider

:::::
than

::::
the

:::
city

:::::::
limits.

:::::::
Finally,

::
it
:::::::
should

::
be

::::::
noted

::::
that

::::::::
Moscow

::::
and

::::::::
Shanghai326

:::::::::
experience

::::::
many

::::::
cloudy

::::::
days,

::::::::
resulting

::
in

::
a
::::::
fairly

:::
low

:::::
level

:::
of

:::::::::
averaging,

:::::::
leading

:::
to

:::::::::
numerical

:::::
noise

:::::
that

::
is

::::::
visible327

::
on

::::
the

::::::
maps.

::::::
Many

:::::::::
industrial

::::::::
facilities

:::::
near

::::
city

:::::::
centers

:::
do

::::
not

::::
have

:::::
high

::::::::::
emissions,

::::::::
possibly

:::
due

:::
to

:::
an

::::::::
irregular328

::::::::::
production

::::::::::
throughout

:::
the

:::::
year,

:::::
with

::::::::::::
high-activity

:::::::
periods

:::::::
covered

:::
by

::::::
clouds.

:
329
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Figure 6:
:::
Map

:::
of

::::
mean

:::::::
daytime

:::::::::::::::
TROPOMI-inferred

:::::
NOx :::::::

emissions
:::
for

::::
2022

:::::::::
(expressed

::
as

:::::
NO2):::

for
:::
six

::::::::
megacities

::::::
(diffuse

:::::::
sources),

:::::::
clockwise:

::::::::
Baghdad,

:::::::
Istanbul,

:::::::
Moscow,

::::::::
Shanghai,

::::::
Riyadh,

:::
and

::::::
Mexico

::::
City.

:::
The

::::::::::
approximate

:::::::::
boundaries

:
of
:::
the

:::
city

:::::
cores

::
are

:::::::
denoted

:::
with

:::::
dashed

::::
lines

:::
and

:::
the

::::::::::
approximate

::::::
location

::
of
:::::
power

:::::
plants

::::
and

::::
other

::::::::
industrial

::::::
facilities

:::
are

:::::::
denoted

:::
with

::::::
circles

:::
and

::::::
squares

:::::::::
respectively,

:::::
except

::
for

::::::::
Shanghai

:::::::::
(unavailable

:::::
data).

3.2.2 Point sources330

With a manual verification of the 456
:::
436

:
detected point sources, we identify 61 outliers, 30

::
48

::::::::
outliers,

::
26

:
of which331

being points in places totally empty from any anthropogenic activity, and 31
::
22

:
points in areas with anthropogenic332

activity but without significant source (no facility of significant size). Most of these outliers are located in high-latitude333

regions, with 34
::
29 of them being located north to the 50°N parallel.334

Because a threshold has been introduced in the classification of
::
to

::::::
detect

:
emitters,

::::::::
classified sources classified as335

"point sources" are isolated from other emitters, and their emissions constitute a peak in the displayed map
::::
each

:::::
other.336

:::
For

:::::
many

:::
of

:::::
them,

:::::::::
emissions

:::::
peak

::::::
within

:::
the

::::::::::
associated

::::::
cluster. With a threshold set at 2 Pmolecules.cm−2.h−1, the337

corresponding signal-to-noise
:::::
ratio is generally high enough to perform a peak-fitting around the source,

::::::::
enabling338

:::::::
accurate

::::::::
emission

:::::::::::
derivation.

::::::
While

::::
this

::::::::
method

:::::
works

:::::
well

:::
for

:::::
most

:::::
point

::::::::
sources,

::
it

::
is

::::
not

:::::::
directly

::::::::::
applicable

::
to339

:::::
many

::::::
diffuse

:::::::
sources. Since the observed spread of the emissions around the source is given

::::::::
emissions

:::::::
around

:
a
::::::
source340

:
is
:::::::
caused by turbulent diffusion, we try to fit a 2D-Gaussian function on the detected point sources over a zone of 14341
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:
is
:::::::
applied

:::
to

::
fit

::::
the

::::::::
detected

:::::::
sources

::::::
within

::
a

::
15

:
× 14 pixels around the detected

::
15

:::::
pixel

:::::
zone

:::::::
around

:::
the

:
maximum342

emission density within the corresponding cluster. Three examples are shown for the city of Medina, Saudi Arabia,343

the Shar
:::::
Sohar

:
Industrial zone, Oman and the Western Mountain power plant, Libya on Figure 7. Note that these344

locations correspond to pointsources well-isolated from other industrial activities, in countries with frequent cloud-free345

conditions that allowed an averaging over a high number of days in 2022.346

We acknowledge the fact that the value of 2 Pmolecules.cm−2.h−1
:::::::::::::
(corresponding

:::
to

:::
37

:::::::
kg.h−1

:::
for

::
a

:::::
pixel

::
at347

::::
60°N

:::
or

:::::
60°S,

::
to

:::
74

::::::
kg.h−1

:::
for

::
a
:::::
pixel

::
at

::::
the

::::::::
equator)

:
to mark the limit between high and low emissions is arbitrary,348

as other values for this threshold could be used. For instance, the Beijing cluster, identified on Table 1, with a size349

of 2818 pixelsrespectively, is broke down into 31
::::
2623

::::::
pixels,

::
is

:::::::
broken

:::::
down

::::
into

:::
35

:
smaller clusters (12

::
13

:
diffuse350

sources and 19
::
22

:
point sources) when changing the threshold from 2 Pmolecules.cm−2.h−1 to 3 Pmolecules.cm−2.h−1.351

These new clusters represent better urban sprawling around the various megacities and industrial facilities in Eastern352

China. However, in the same regions
::::::
region, three point sources disappear when performing this threshold change.353

Such differences are displayed in the Supplementary Materials. To determine the sensitivity of the point source354

and diffuse source detection and classification method, we carry out the detection by changing this threshold from355

2 Pmolecules.cm−2.h−1 to 3 and 4 Pmolecules.cm−2.h−1.
::
A

:::::::::::
comparative

:::::
map

::
is

:::::::::
displayed

:::
in

:::
the

::::::::::::::
Supplementary356

:::::::::
Materials.

:
The point sources and diffuse sources are identified, and a fit with a 2D-Gaussian is carried out on point357

sources to estimate better emissions by accounting for the Gaussian nature of turbulent diffusion around the source.358

We then count the number of point sources with a fit of correct quality (with a correlation coefficient R2 higher than359

0.4). The results are shown in Table 2 for the different thresholds, and we compare the countries with the most360

point sources. Note that among the 61
::
48

:
outliers identified in the detected point sources with the threshold of 2361

Pmolecules.cm−2.h−1, only 10
::
11

:
reached a value of R2 higher than 0.4.362

Figure 7: Calculated mean daytime NOx emissions in 2022
::::::::
(expressed

::
as

:::::
NO2) for point

::::::
different

:
sources (left) and fitted emissions using

a 2D-Gaussian function (right) for the city of Medina, Saudi Arabia (a), the Sohar Industrial Zone, Oman (b) and the Western Mountain
power plant, Libya (c).
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Threshold value 2 Pmolecules.cm−2.h−1 3 Pmolecules.cm−2.h−1 4 Pmolecules.cm−2.h−1

Number of point sources 456
:::
436 303

:::
287 172

:::
163

Point sources with R2 > 0.4 237 189
:::
179 114

:::
111

China 24
::
23 27

::
23 18

::
17

India 37
::
38 33 22

::
23

Russia 23
::
29 18

::
20 12

:
9

United States 18
::
17 6 4 3

Türkiye 7 8 6 5 1 2
Iran 7 9 8 9
Saudi Arabia 5 4 5 6 5
Japan 2 5 4
Egypt

:::::::
Australia 3 2 5 4 1

Germany 6 3 1 1
Iraq 5 6 5 4 2
Mexico 7 5 3
Algeria 5 2

:::::::::
Kazakhstan 0Pakistan 5 6 12

Table 2: Analysis of the number of point sources detected as a function of the threshold applied for cluster detection, and the number of
point sources whose fit with a 2D-Gaussian was of acceptable quality (R2 > 0.4). Countries with at least 5 point sources with one of the
thresholds are displayed.

As seen with the example of Beijing, moving to a higher threshold can reduce the number of point sources by not363

including some emitters with lower emissions, but it can also increase the number of detected point sources by364

reducing the number of pixels corresponding to the cluster and moving certain emitters from the "diffuse source"365

category to the "point source" category. For example, with a limit of 2 Pmolecules.cm−2.h−1, the group of the Ras366

Laffan power stations in Qatar does not appear as a point source because its emissions are associated to a greater367

cluster corresponding to a diffuse source which includes the nearby Doha megacity. Conversely, with limits of 3 or 4368

Pmolecules.cm−2.h−1, these power plants appear as a point source, and a good quality Gaussian fit provides their total369

emissions of 1.69
::::
1.66

:
t.h−1, close to the value of 1.86.h−1 reported for the four-year average between 2019 and 2022370

in Rey-Pommier et al. (2023). Finally, it should be noted that lowering the threshold to 1 Pmolecules.cm−2.h−1 also371

reduces the number of diffuse sources because several nearby urban areas become linked by residual emission zones372

into a single, larger, diffuse source. Conversely, lowering the threshold detects a very large number of source points373

:::::
point

::::::
sources

:
, but many of these additional points are outliers. In the rest of the study, we therefore choose to keep374

the lowest value of the threshold, i.e. 2 Pmolecules.cm−2.h−1, to optimise the number of correct emitters we work375

with. These emitters account for a total output of 2,388
:::
303 t.h−1 (370

:::
352 t.h−1 for point sources and 2018

::::
1951

:
t.h−1

376

for diffuse sources). This represents about 17% of all emissions with densities higher than 0.2 Pmolecules.cm−2.h−1
377

(with a total output of 14,335 t.h−1). As urban areas with more than 1 million inhabitants gather around 16% of378

the global population (Zimmer et al., 2023), this share of emissions from point and diffuse sources seems consistent379

with the detection limit of the flux-divergence method using TROPOMI retrievals, as urban areas lower than 1 million380

inhabitants are generally not detected as diffuse sources here.381

The full list of the 456
:::
436

:
point sources and 330

:::
323

:
diffuse sources are given in Supplementary Materials. This382

list can be compared with the catalog provided by Beirle et al. (2023). Of the 237 point sources for which the Gaussian383

fit is of correct quality (with R2 > 0.4), 144
:::
137

:
also appear in their catalog. For these points, we generally obtain384

higher emissions (with a median of 409
:::
441

:
t.h−1 and an average of 479

:::
487 t.h−1 in our case, whereas they have a385

median of 296
:::
303 t.h−1 and an average of 344

:::
353

:
t.h−1). The two datasets have no particular reason to exhibit any386

clear correlation because they concern different years, and because while their approach focused on monthly averages,387

:::::
while ours presents annual averages. For example, a site designated as a point source by Beirle et al. (2023) might388

not be detected if averaged over a whole year, especially if it stays inactive during certain periods. For instance, their389

catalog shows 187 occurrences where the signal of NOx emissions was significant for 6 months out of 12, and 348390

occurrences for 5 months.391

3.3 National and regional outputs and comparison with bottom-up emissions392

We perform an analysis of emissions at the scale of countries by comparing them to the NOx emissions provided by393

EDGARv6.1 for 2018. For our TROPOMI-inferred emissions, we calculate the total mean NOx output, representing394

daytime emissions for 2022, for each country using country masks at the 0.0625°×0.0625° resolution. To avoid any395

over-estimation of the total output due to a very high number of pixels with very low emissions, we exclude from396

the calculation pixels with emission densities below 0.2 Pmolecules.cm−2.h−1. For emissions in EDGARv6.1, we sum397
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the gridded emissions, representing monthly averages in 2018, for all sectors covered by the inventory and calculate398

the average flux for the year 2018. The output for each country is calculated using country masks at the 0.1°×0.1°399

resolution. In both cases, we include pixels that directly touch coastlines because marine regions close to the shore400

see
::::::
receive

::::
the

::::::
spread

::
ofanthropogenic emissions spread due to turbulent diffusion. This can result in over-estimating401

total emissions for smaller countries, especially those with low emission densities. In order not to account for such402

outliers, we exclude countries with a population lower than 300,000 inhabitants or with a size lower than 1,000 km2
403

from our analysis. This concerns many insular countries in the Caribbean and the Pacific, as well as micro-states like404

Andorra or Singapore.
:::::::
Overseas

::::::::::
territories

:::
are

::::::::::
considered

::::::::
together

::::
with

:::::
their

:::::::::
mainland

::::::::
country.

:
Figure 8 shows the405

country-wise comparison, covering 164
:::
165

:
countries, and Table 3 provides a comparison at the scale of eight different406

macro-regions: Europe, North America and
::
&

:
the Caribbean, South America, Middle East and

:::
the

::::::
Middle

:::::
East

::
&407

North Africa, Former
::::::
former USSR countries, Oceania, Sub-Saharan

:::::::::::
sub-Saharan

:
Africa and the rest of Asia.

:::
For408

::::
each

::::::::::::
macro-region,

::::::::::
differences

::::
are

:::::::::
evaluated

::::
with

::::
the

:::::::
relative

::::
bias

:::
for

::::
the

:::::
total

::::::
region,

::::
and

::::
the

:::::
mean

::::::::
absolute

:::::
error409

:::
(for

::::::
which

::::
each

::::::::
country

:::
has

::::
the

:::::
same

:::::::
weight).

:::::
The

:::
use

::
of

:::::
these

::::::::
different

:::::::
metrics

:::::::
enables

:::
to

:::::
assess

::::
the

:::::::::::
performance

::
of410

:::
the

:::::::
method

:::
on

:
a
:::::
large

:::::
scale

::::
with

:::::::
respect

::
to

:::
an

:::::::::
inventory,

:::::
while

::::::::::::::
simultaneously

:::::::::
evaluating

:::
its

:::::::::::
performance

:::
on

::
a

::::::
smaller411

::::
scale

:::
to

:::::::
identify

::::::::::
systematic

::::::
effects

::::
that

::::::
might

:::::
offset

:::::
each

:::::
other

::
at

::::
the

:::::
larger

::::::
scale.

:
412

TROPOMI-inferred emissions are generally close to EDGAR estimates for high income level countries
::::::::::
high-income413

::::::::
countries,

::::::
which

::::::::
generally

:::::
have

::::::::
localized

::::
and

::::::::
powerful

:::::::
sources,

:
or countries with a majority of sources located in areas414

with high observation densities. This is the case
::
As

::
a
::::::::::::
consequence,

:::
the

:::::::::::::
macro-regions

:::::
that

:::::::
perform

:::::
best

:::::
with

::::
both415

::::::
metrics

::::
are

:::::::
Europe,

::::::
North

::::::::
America

::
&
::::
the

::::::::::
Caribbean,

::::
the

::::::
Middle

:::::
East

::
&
::::::
North

:::::::
Africa,

::::
and

:::
the

::::
rest

:::
of

:::::
Asia.

:::
At

:::
the416

::::
scale

::
of

:::::::::
countries,

::::::::::::::::::
TROPOMI-inferred

:::::::::
emissions

:::
are

::::
close

:::
to

::::::::
EDGAR

::::::::
estimates

:
for the three largest emitting countries,417

:::::::
nations,

:::
i.e.

:
China, the United States and India, with TROPOMI-inferred emissions 11, 16 and 6

:
6,

:::
14

::::
and

:
4% lower418

than EDGAR estimates respectively. These three countries account for 44
::
45% of global

::::::::
estimated

:
emissions. However,419

for the fourth highest emitting country, Russia, we estimate emissions 79
::
52% higher than EDGAR. We interpret this420

discrepancy as
::
in

:::::::::
EDGAR.

::::
This

:::::::::
difference

::::
can

:::
be due to the low density of observations there, which leads to errors421

in calculating emissions over a large area. This is consistent with the large discrepancies
:::
for

:::::
major

::::::::
emitters

::
in
:::::::
Russia,422

::::::
leading

:::
to

:::
the

::::::::::
estimation

::
of
::::::::
monthly

:::::::::
emissions

:::
on

::::
the

:::::
basis

::
of

:::::
only

:
a
::::
few

:::::::::
estimates.

::::
To

::::::::
illustrate

:::::
this,

:::
the

::::::::
monthly423

::::::::
emissions

::
of

::::
the

:::
two

:::::::
largest

:::::::
Russian

::::::
cities,

:::::::
Moscow

::::
and

::::::::::::::::
Saint-Petersburg,

:::
are

:::::::
studied

::
in

:::
the

::::::::::::::
Supplementary

:::::::::
Materials.424

::
In

::::::::
extreme

:::::
cases,

:::::
such

::::
key

::::::::
emitters

::::
can

::::
have

:::
no

:::::::::
estimates

:::
at

:::
all

:::
for

::::::::
months,

:::::::
making

:::
the

:::::::::::
calculation

::
of

::::
the

::::::
annual425

:::::::
average

::::::::::::
representative

:::
of

::::
only

::
a
:::::
part

::
of

::::
the

:::::
year,

::::
even

::::::
when

:::
its

:::::
order

::
of

::::::::::
magnitude

::
is
::::::::
correct.

:::::::::
Generally

:::::::::
speaking,426

::::
large

::::::::::
differences

::::::::
between

:::
our

:::::::::
top-down

:::::::::
estimates

::::
and

::::::::
EDGAR

:::::::::
emissions

:::
are

:
found for many countries that also have427

low observation densities .
::
for

::::
this

:::::::
reason.

::::::::
Without

:::::
prior

:::::::::
knowledge

::
of
::::
the

::::::
annual

::::::::
emission

:::::::
profiles

::
in

:::::
these

:::::::::
countries,428

::::
these

::::::
biases

:::::::
cannot

:::
be

:::::::::
corrected,

:::::::
leading

::
to

::
a

::::::::::
systematic

:::::::::::::
mis-estimation

::
of

:::::
total

:::::::::
emissions.

:
429
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Figure 8:
:::::::::
Comparison

:::::::
between

::::::::::::::::
TROPOMI-inferred

:::::::
daytime

::::
NOx::::::::

emissions
:::
for

::::
2022

::::::::
(expressed

:::
as

:::::
NO2):::

and
:::::

mean
::::::::
emissions

::::
from

:::::::::
EDGARv6.1

::
in
::::
2018

:::
for

::
all

::::::::
countries,

:::::::
classified

::
by

::::::::::::
macro-regions.

The other countries for which the difference between our emissions and the
:::::::::::::::::
TROPOMI-inferred

:::::::::
emissions

:::
and

:
EDGAR430

estimates is significant are low-income countries. It
:::
For

::::
such

:::::::::
countries,

::
it
:
is possible that the sources there are small431

and difficult to
:::::
most

:::::::
sources

:::
are

::::
too

:::::
small

:::
to

:::
be

::::::::
detected

:
with our method; ,

:::::::::
resulting

::
in

:::
an

::::::::::::::::
under-estimation

::
of432

:::::::::
emissions.

:::::::::
Countries

:::
for

:::::
which

::::::::::::::::::
TROPOMI-inferred

:::::::::
estimates

:::
are

:::::
lower

:::::
than

::::::::
EDGAR

:::::::::
estimates

::
by

:::::
more

:::::
than

::
an

:::::
order433

::
of

::::::::::
magnitude

:::
are

::::::::::::::
Guinea-Bissau,

::::::::::
Equatorial

:::::::
Guinea,

::::::
Togo,

:::::::
Guinea,

::::::::
Gabon,

:::::::::::
Montenegro,

:::
El

:::::::::
Salvador,

:::::::
Liberia,

:::::
Ivory434

:::::
Coast

::::
and

::::::::::
Myanmar.

:::
Of

:::
all

:::::
these

:::::::::
countries,

:::::
only

:::::::::::
Montenegro

::::
and

:::::::
Gabon

:::
are

::::
not

::::::::::
considered

::::::::::
low-income

:::::::::
countries.435

::::::::::
Conversely,

::::::::
although

:::
no

:::::::
country

::::
has

::::::::::::::::::
TROPOMI-inferred

:::::::::
estimates

::::::
higher

:::::
than

::::::::
EDGAR

:::::::::
estimates

:::
by

:::::
more

:::::
than

::
an436

:::::
order

::
of

::::::::::
magnitude,

:::::::
notable

::::::
biases

:::::
exist.

:::
In

::::
this

:::::::
respect,

:::::::
largest

:::::::::
differences

::::
are

:::::
found

:::
in

::::::
central

:::::
Asia

::::::
(ratios

::
of

:::
3.8

:::
for437

:::::::::::
Kyrgyzstan,

:::
3.2

:::
for

:::::::::::
Uzbekistan,

:::
3.4

::::
for

::::::::::
Tajikistan),

:::
in

:::::::
central

::::
and

::::::::
southern

::::::
Africa

::::::
(ratios

:::
of

:::
5.6

:::
for

::::::::
Zambia,

:::
4.7

:::
for438

::::::::::
Democratic

::::::::
Republic

:::
of

::::::
Congo,

::::
4.0

:::
for

:::::::::
Eswatini,

:::
4.1

:::
for

::::::::::::
Mozambique,

:::
3.0

:::
for

:::::::::
Angola),

::::
and

::::::
Yemen

::::::
(ratio

::
of

:::::
3.2).

:::
For439

::::
these

::::::::::
countries, it is also possible that the corresponding EDGAR estimates are imprecise, due to the incomplete or440

outdated nature of the reported sources in these countries. The macro-regions with the highest discrepancies are thus441

Sub-Saharan Africa and the former USSR
::::::::
presence

::
of

::::::
many

:::::::::::
sub-Saharan

:::::::
African

:::::::::
countries

:::::
with

::::::::
extreme

:::::::::
differences442

:::::::
between

::::::::::::::::::
TROPOMI-inferred

::::
and

::::::::
EDGAR

:::::::::
estimates

::::::::
explains

:::::
why

:::
the

::::::::::::
macro-region

::::
has

::::
the

:::::::
highest

:::::
mean

::::::::
absolute443

::::
error

:::::::
despite

::::::
having

::::
the

::::::
lowest

:::::
total

:::::::
relative

::::
bias.444

Comparison between TROPOMI-inferred daytime NOx emissions for 2022 and mean emissions from EDGARv6.1 in445

2018 for all countries, classified by macro-regions.446

At the global scale, our TROPOMI-inferred daytime emissions for all considered countries (i.e., excluding emissions447

which take place at sea and in smaller countries) reach a total value of 11,209
:::
168

:
t.h−1. This value is consistent with448

that of EDGAR at 12,243
:::
254 t.h−1, i.e around 107 Mt per year, close to

:::
and

:::::
lower

:::::
than the value of 123 Mt calculated449

by Stocker (2014) for global anthropogenic emissions in 2000 (which include shipping and aircraft emissions). We450

should however
:
If
::::
the

:::::
lower

:::::
value

::::
can

::
be

::::::::::
interpreted

:::
as

::
a

::::::::
reduction

:::
of

::::
NOx:::::::::

emissions
::::::::
between

:::
the

::::
two

:::::
dates,

::
it
::
is
::::
also451

:::::::
possible

::::
that

:::
our

:::::::::
emissions

:::
are

:::::::::::::::
under-estimated

::::
due

::
to

::::::::::
biased-low

:::::::
columns

::
in

::::
the

::::::::::
TROPOMI

:::::
NO2 ::::::::::

operational
:::::::
product452

::::::::::::::::::::
(Verhoelst et al., 2021)

:
.
:::
We

::::::
detail

::::
this

:::::::::::
uncertainty

::
in

:::::::
Section

::::
4.2.

::::
We

::::::
should

::::
also

:
note that our TROPOMI-inferred453

emissions only represent daytime emissions taken around 13:30 LT
::
for

:::::
each

:::::
pixel, which are generally lower during454

mid-day than other times of the day, where
:::::
when pollution peaks in the early morning and late afternoon are reported455

for most trafic in many cities and for power generation (Menut et al., 2012). Conversely, emissions during daytime456

are generally much higher than nighttime emissions
:::::
traffic

:::
in

:::::
most

:::::
cities

::::::::::::::::::::::::::::::::::::::
(Menut et al., 2012; Goldberg et al., 2019).457

:::
For

:::
the

::::::
power

:::::::
sector,

:::::::::
emissions

::
at

:::::
13:30

::::
are

::::::::
generally

:::::::
similar

::
to

::::
the

:::::
daily

:::::
mean

:::
for

::::::
power

::::::
plants

:::::
used

:::
for

:::::::::
electricity458

::::::::
baseload,

::::
but

:::
for

::::::
power

::::::
plants

:::::
whose

::::::::
purpose

::
is

::
to

:::::
meet

:::::
peak

::::::::
demand,

::::
the

:::::::
mid-day

:::::::::
emissions

::::
can

::::::
largely

::::::
differ

::::
from459
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:::
the

:::::
daily

::::::
mean.

::::
For

:::::
other

:::::::
sectors

::::
such

:::
as

:::::::
cement,

::
it

::
is

:::::::
difficult

:::
to

::::::
assess

:::::::
whether

::::::::
mid-day

:::::::::
emissions

::::
are

::::::
higher

::::
than460

:::
the

:::::
daily

:::::::
average,

:::::
since

:::::::
cement

::::::::::
production

::::
can

:::
be

::::::
driven

:::
by

::::::
factors

::::
that

::::
are

:::::
more

::::::::
irregular

::::
than

::::::
those

:::::::
driving

:::::
power461

:::::::::
generation

:::
or

:::::
traffic.462

Region TROPOMI
2022 (t.h−1)

EDGAR
2018 (t.h−1)

Relative bias
VS EDGAR

(weighted average)

Mean absolute
error VS EDGAR

(unweighted average)
Subsaharan

::::::::::
Sub-Saharan Africa 656

:::
660 702

:::
712 -6.5

::
-7.4

:
% 90.2

:::
95.0%

Rest of Asia 4424
::::
4584 5482 -19.3

::::
-16.4

:
% 49.3

:::
54.4%

Europe 842
:::
830 1092 -22.9

::::
-24.0

:
% 38.7

:::
40.3%

Middle East & North Africa 1509
::::
1531 1125 34.2

:::
36.1 % 49.0

:::
52.1%

North America & the Caribbean 1729
::::
1690 1944 -11.0

::::
-13.1

:
% 48.9

:::
48.8%

Oceania 104
::
92 282 -63.2

::::
-67.5

:
% 52.6

:::
62.9%

South America 512
:::
514 762 -32.8

::::
-32.5

:
% 53.4

:::
61.8%

Former USSR 1433
::::
1268 856 67.6

:::
48.2 % 74.8

:::
77.4%

Total 11209
:::::
11168 12243

:::::
12254 -8.4

:::
-8.8

:
% 60.6

:::
64.7%

Table 3: Comparison between TROPOMI-inferred daytime NOx emissions for 2022
::::::::
(expressed

:::
as

:::::
NO2) :

and mean emissions from
EDGARv6.1 in 2018 for macro-regions. For each macro-region, the relative bias between total TROPOMI-inferred emissions and to-
tal EDGAR emissions is calculated. The mean absolute bias for all countries of these macro-regions is also calculated.

:
A
:::::::
source

::
of

:::::::::::::::
underestimation

::::
can

::::
also

:::::
come

:::::
from

::::
the

:::::::::
threshold

::::
used

:::
to

:::::
filter

:::
out

::::::::::
emissions.

::::::
Here,

:::
the

:::::
limit

:::::
used

::
of463

:::
0.2

:::::::::::::::::::
Pmolecules.cm−2.h−1

::::::
makes

::
it
::::::::
possible

::
to

:::::::::
eliminate

:::::::
residual

:::::::::
emissions

:::::
that

:::
are

:::::::
difficult

:::
to

::::::::
attribute

:::
to

::
a

::::::
source.464

::::
This

:::::::
filtering

::::
also

::::::::::
eliminates

::::::
pixels

::::
with

::::::::
negative

:::::::::
emissions

::::
that

::::
are

:::::::::
physically

::::::::::
impossible.

:::::::::::::
Nevertheless,

::
as

::::::::
negative465

::::::::
emissions

:::::
may

::::::::
represent

:::::
NOx::::::::::

incorrectly
::::::::::
distributed

:::::::::
spatially

::
in

:::
the

:::::::::
transport

:::::
term

::::
due

:::
to

:::::
errors

:::
in

:::
the

:::::
wind

:::::
field,466

:::::::::
calculating

::::
the

::::
sum

::
of

:::::::::
emissions

:::::::
without

::::
the

:::
use

::
of
::::::::::
thresholds

::::
may

:::
be

:::::::::
important

:::
for

::::::::::
identifying

:::::::::
countries

::::
and

::::::
regions467

:::::
where

::::
the

:::::::::::::
flux-divergence

:::::::
method

::
is
::::::::
limited.

::
In

::::
this

:::::
case,

:::::
total

::::::::
emissions

::::::
reach

::::::
14,835

::::::
t.h−1,

:::::
which

:::::::::::
corresponds

:::
to

::
an468

:::::::
increase

::
of

::::::
32.8%

:::::::::
compared

:::
to

:::
the

:::::
total

::::
with

::::
the

::::::::::
application

:::
of

:::
the

:::::::::
threshold.

:::::
This

::::::::
estimate

::
is
:::::::::
therefore

::::::
higher

::::
than469

:::
the

:::::
total

::::::::
EDGAR

:::::::
budget.

::::
The

::::::::::
differences

:::::::
between

::::
the

:::
two

:::::::::
estimates

:::::
vary

::::::
greatly

:::
by

:::::::::::::
macro-region:

::
it

::::
rises

:::
to

::::::
149.6%470

::
for

::::::::::::
sub-Saharan

:::::::
Africa,

:::::::
126.7%

:::
for

::::::::
Oceania

::::
and

::::::
95.5%

:::
for

::::::
South

::::::::
America.

:::::
The

::::::::
increase

::
is

:::::::::
moderate

::
in

::::
the

::::::
Middle471

::::
East

::
&

::::::
North

::::::
Africa

::::::
region

::::
and

:::
the

::::::
North

::::::::
America

::
&

:::
the

:::::::::::
Caribbean,

::::::
(41.7%

::::
and

::::::
33.3%

::::::::::::
respectively).

::::
The

:::::::::
difference472

:::::::
between

::::
the

:::
two

:::::::::
estimates

::
is
::::
the

::::::
lowest

::
in

:::::::
former

::::::
USSR

:::::::::
countries,

:::::::
Europe

::::
and

:::
the

::::
rest

:::
of

::::
Asia

::::::::::
(increases

::
of

::::::
16.4%,473

:::::
14.1%

::::
and

::::::
12.1%

::::::::::::
respectively).

::::
The

::::::
trends

:::::::::
observed

:::::::::
previously

:::::::::
regarding

:::
the

:::::::
reasons

:::
for

::::
the

::::::::::
discrepancy

::::::::
between

:::
the474

:::::::::::::::::
TROPOMI-inferred

:::::::::
estimates

::::
and

::::::::
EDGAR

:::::::
remain

::::::::::
unchanged.

:
475

3.4 Temporal distribution and averaging size476

The results presented so far concerned daytime emissions averaged on the entire year 2022 (at around 13:30 local time477

for each pixel).
:::::
2022.

:
They therefore show a certain potential for mapping the sources of pollution, quantifying the478

corresponding emissions and characterising their type (by size and country or region). Several studies have shown the479

possibility to characterise a weekly cycle of NOx emissions (Stavrakou et al., 2020; Rey-Pommier et al., 2022). The use480

of geostationary satellites, such as the Geostationnary Environment Monitoring Spectrometer (GEMS) in East Asia481

(Kim et al., 2020), the Tropopheric Emissions Monitoring of Pollution (TEMPO) in North America (Zoogman et al.,482

2017) and Sentinel-4 (launch planned in September 2024
:::::::
planned

::
in

:::::
June

::::
2025) in Europe (Gulde et al., 2017), could also483

prove promising for characterising
::
be

::::
used

::
to

:::::::::::
characterise the daily cycle of emissions, which would significantly improve484

::::::
leading

:::
to

:
a
::::::::::
significant

::::::::::::
improvement

:::
of forecasting capabilities. In our case, TROPOMI can only monitor pollution485

on a daily basis provided that retrievals are of high quality, and the analyses presented so far could theoretically486

be carried out at this temporal resolution. In practice however
::
the

::::::::::::::
Supplementary

::::::::::
Materials,

:::
we

::::::::
monitor

:::
the

:::::
daily487

::::::::
emissions

::
of

::::
the

::::::::::
Zaporizhia

:::::::
thermal

::::::
power

:::::
plant

::
in

:::::::::
Ukraine,

:::::
whose

::::::::
activity

:::
was

:::::::
altered

:::::::::
following

:::
the

:::::::
ongoing

:::::::
conflict488

::
in

:::
the

:::::::
country

:::::
that

::::::
started

:::
in

::::::::
February

:::::
2022.

:::::::::
However,

::::
this

::::
type

:::
of

::::::::::
monitoring

:::::::
remains

::::
rare

::::
and

::
is

:::::
more

:::::::::
indicative

::
of489

:::::::::::::::::
order-of-magnitude

:::::::::
variations

::::::
rather

:::::
than

::::::
precise

::::::::
emission

::::::::::
estimates.

:::
In

:::::::
practice, the high sensitivity of the method490

to wind direction and the low signal-to-noise ratio around sources at high latitudes leads to daily emission maps that491

are very noisy in most cases, making it difficult to
:::::::
precisely

:
monitor activity at this temporal resolution. Averaging

:
In492

:::::::
general,

:::::::::
averaging is therefore required to limit

:::::
reduce

:
noise effects and limit the uncertainties associated to emission493

estimates. Here, we try to evaluate what level of averaging is necessary to limit noise effects and allow a monitoring of494

emissions. To this end, we consider the average daily emissions obtained for 2022 (i.e. over a maximum of 52 weeks) to495

be the most accurate estimate of daytime emissions. We compare this maximum averaging value with averages based496

on a smaller number of estimates. We compare the emissions of various emitters, calculated with an averaging period497
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of 12, 24, 36 and 48 weeks. Figure 9 shows the results for diffuse sources, which are all
::::
eight

:
urban areas, but with498

different latitudes, populations, levels of development and energy mixes: Ankara (Turkey), Cape Town (South Africa),499

Madrid (Spain), Portland (
:::::::
Oregon,

:
United States), Chaguanas (Trinidad and Tobago), Saint Petersburg (Russia),500

Manila (Philippines) and Muscat (Oman).
::::::::
Portland

::::
and

::::::
Manila

::::
are

:::::
urban

::::::
areas

::::::::
classified

::
as

::
a
:::::
point

::::::::
sources.

:
Figure501

10 shows the results for the source points
::
six

:::::::::
industrial

::::::::
facilities, which are industrial facilities

:::
all

:::::
point

:::::::
sources

::::::
located502

in Egypt, Australia, Mexico, Chile, India and Germany. The sources were chosen for their relative isolation from other503

sources
:::::::
emitters. Calculated emissions correspond to the sum of pixels around the source with densities greater than504

2 Pmolecules.cm−2.h−1. There are two pitfalls to be avoided in this comparison:505

- The first pitfall would be not to account for the seasonal cycle of emissions, which is very pronounced in some506

cases, and to compare chronological averages. For example, comparing the first 12 weeks of the year with the507

first 24 weeks of the same year would not make sense in terms of the difference with emissions averaged over508

the whole year, because in the first case, emissions would essentially be calculated in boreal winter, whereas in509

the second case, emissions would be included during spring and summer. To avoid this seasonal bias, emissions510

averaged over 12 weeks correspond to an average over the first week of each of the 12 months of 2022, and511

emissions averaged over 24 weeks correspond to the first two weeks of these same 12 months, and so on.512

- The second pitfall would be not to account for the weekly cycle of emissions. NOx emissions are generally lower513

at weekends due to a reduction in human activity in most areas (i.e. on Saturday and Sunday, or Friday and514

Saturday in most Arabian and North-African countries). It is therefore necessary to ensure that the proportion of515

weekend days and weekdays in each of the averages calculated remains the same, hence the interest in averaging516

by weeks (these proportions are therefore 2/7 and 5/7 respectively). We also carry out a final
::::
fifth set of averaging517

over 24 days, i.e. 2 days per month. Since the seasonal effect (first pitfall) is generally stronger than the weekly518

bias (second pitfall), we therefore choose to retain the principle of selecting the same number of days in each519

month, even if it means making comparisons between averages where the weekend and weekday rates differ by520

::::
from

:
2/7 and 5/7. This last averaging set will be indicated as "irregular".521

NOx emissions for 8 different urban areas (diffuse sources), averaged over a period of 24, 84, 168, 252 and 336 days,522

evenly distributed throughout the year. The proportion of weekend days and weekdays is identical in all the averaging523

sets except the first one of 24 days.524

NOx emissions for 8 different industrial facilities (diffuse sources), averaged over a period of 24, 84, 168, 252 and 336525

days, evenly distributed throughout the year. The proportion of weekend days and weekdays is identical in all the526

averaging sets except for the first set of 24 days.527

In the case of urban areas, the different averages uniformly distributed over time show a similarity in the emissions528

calculated over the time horizons for Ankara, Muscat, Cape Town, and , to a certain extent, Madrid. For these cities,529

the low cloud cover allows a high density of observations and optimal averaging. The 84-day averaging, and to some530

extent the 24-day irregular averaging, seems sufficient for monitoring emissions. This is not the case for the other531

urban areas studied, for which the observation density is lower, such as Manila, Saint Petersburgand, to a certain532

extent, ,
::::
and

:
Chaguanas. For these cities, emissions monitoring with

:
a
::::::::::
monitoring

::::::::::
performed

::::
with

:::
an

:
averaging below533

168 days (or even 252 days in the case of Saint Petersburg
::::::
Manila) is therefore limited by noise effects. In the case534

of the studied
:::
The

:::::::::
limit-case

::
is
:::::::::
Portland,

::::::
which

::::
has

:::
the

::::::
larger

:::::::::
difference

::::::::
between

:::
84-

::::
and

::::::::
336-days

::::::::::
averagings.

:::::
This535

:
is
::::
due

:::
to

::
a
:::::::
limited

:::::::
number

:::
of

:::::::::::
observations

:::::
over

::
a

:::::
small

::::::
urban

:::::
area

::::::
which

:::
are

::::
not

::::::::::::
compensated

:::
by

:::::::::::::
high-emissions536

:::
like

:::::
other

::::::
point

:::::::
sources

::::::
shown

::
on

:::::::
Figure

:::
10.

::::
For

:::::
those

:
point sources, similar emissions are observed after an 84-day537

:::::::
168-day averaging. In some cases, a 24-day averaging is also sufficient, while in others it is not. The representativeness538

of emissions on such a low level of averaging should be considered with caution, as emissions from industrial plants539

are always more irregular than those from cities, with the exception of power stations used for baseload electricity540

generation. The averages over 84 days presented here represent emissions that include several days of activity and541

several moments of inactivity.542
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Figure 9:
:::
NOx::::::::

emissions
:::
for

:
8
:::::::
different

:::::
urban

:::::
areas

::::::
(diffuse

:::::::
sources),

:::::::
averaged

::::
over

:
a
::::::

period
::
of

:::
24,

:::
84,

:::
168,

::::
252

:::
and

:::
336

:::::
days,

:::::
evenly

::::::::
distributed

:::::::::
throughout

:::
the

::::
year.

::::
The

::::::::
proportion

::
of

:::::::
weekend

::::
days

:::
and

:::::::
weekdays

::
is

:::::::
identical

::
in

::
all

:::
the

:::::::
averaging

::::
sets

:::::
except

:::
the

:::
first

:::
one

::
of

::
24

::::
days.

::::::
Masses

:::
are

:::::::
expressed

:::
as

::::
NO2.

Sinai White & Alarish
Cement (EGY)

Morwell & Loy Yang
Power Stations (AUS)

Central Termoeléctrica
Carbón I and II (MEX)

BHP Mina Zaldivar (CHL) Tuticorin Thermal
Power Station (IND)

Boxberg Thermal
Power Station (GER)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

To
ta

l N
O x

 e
m

iss
io

ns
 (t

.h
1 )

24 days (irregular)
84 days
168 days
252 days
336 days

Figure 10:
:::
NOx::::::::

emissions
::
for

::
8
:::::::
different

::::::::
industrial

::::::
facilities

::::::
(diffuse

::::::::
sources),

:::::::
averaged

::::
over

:
a
:::::
period

:::
of

::
24,

:::
84,

::::
168,

:::
252

::::
and

:::
336

::::
days,

:::::
evenly

::::::::
distributed

:::::::::
throughout

:::
the

::::
year.

::::
The

::::::::
proportion

::
of
:::::::
weekend

::::
days

:::
and

::::::::
weekdays

:
is
:::::::
identical

::
in
:::
all

:::
the

:::::::
averaging

::::
sets

:::::
except

::
for

:::
the

:::
first

:::
set

::
of

::
24

::::
days.

::::::
Masses

:::
are

::::::::
expressed

::
as

::::
NO2.

Overall, this analysis seems to indicate that tracking emissions from source points
::::
point

:::::::
sources

:
or diffuse sources543

using the flux-divergence method requires an averaging effort to limit the noise obtained in the daily emissions. This544

averaging effort, which
::
is

:::::
made

:::::
more

::::::::
difficult

:::
for

:::::::
smaller

::::::::
sources,

:
increases with the density of observations, is of545

about a month in countries with frequent high-quality observations, but of about a
::::
year quarter in regions with low546

observation densities, such as tropical regions and high-latitude regions.547

4 Uncertainties and assessment of results548

4.1 Model uncertainties549

Our top-down emissions are calculated here using a flux-divergence model, based on a simplified calculation of a550

transport term, a sink term and a conversion factor from NO2 to NOx. This simplicity reduces the computation time551

to calculate emissions and the dependence on external datasets, at the cost of increased model uncertainties. Here,552

although a "topography-wind" term has been introduced in this article to refine the transport term, the sink term553

remains simple and only represents the reaction between NO2 and OH. While this reaction is the first contributor of554

NOx loss, other sinks may be significant. For instance, organic peroxy radicals can oxidise NOx to form peroxy nitrates,555

making the corresponding sink important in the presence of VOCs (Stavrakou et al., 2013), especially in biomass fires.556

In different conditions, the formation of peroxyacetyl nitrate from NO2 (Moxim et al., 1996), can also contribute557

to a significant share of the NOx loss.
::::
The

:::::::
vertical

:::::::::
averaging

:::
of

::
is

::::
also

::::::
made

::::::
simple

:::::
here,

::::
and

::::::::
alhough

::::
the

::::
sink558
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::::
term

::::::
varies

:::::
little

::::
with

::::
the

::::::::
thickness

:::
of

:::
the

:::::
layer

::::::
within

::::::
which

::::
the

:::::::::::
temperature

::::
and

::::
OH

::::::::::::
concentration

::::
are

:::::::::
calculated559

::::::::::::::::::::::::
(Rey-Pommier et al., 2022),

:::::
this

:::::::
assumes

::::
the

::::
OH

:::::
field

::
is

::::::::
correctly

::::::::::::
represented.

:::::
This

:::::::::::
assumption

::::
may

:::
be

::::::
wrong

::
if560

::::
large

:::::
NOx::::::::

emitters
:::
are

::::
not

:::::
taken

::::
into

::::::::
account,

::
as

::::
this

::::::
would

:::::::
distort

:::
the

:::::::::::::
corresponding

::::
NO2:::::

field
::::
and

:::
the

::::::::::
subsequent561

:::
OH

:::::
field.

:::
A

:::::::
possible

::::::::::::
improvement

:::
to

::::
our

:::::::
dataset

:::::
could

:::
be

::
to

::::::::
compare

::::
the

::::::::
columns

:::::::::
calculated

:::::
from

::::
the

::::::::::
TROPOMI562

:::::::::::
observations

::::
with

::::
the

::::
NO2:::::::

column
::::::::::
represented

:::
by

:::::::
CAMS

:::
and

:::::::
correct

:::::::
outliers

::::::::
detected

:::::
from

:::
this

:::::::::::
comparison.

::::::::
Another563

::::::
refined

:::::::
version

:::::
could

:::::
infer

:::::::
directly

:::
the

::::::::
effective

:::::
NOx:::::::

lifetime
:::::
from

:::
the

:::::
NO2:::::::::::

observations
:::::::::::
themselves,

:::
as

:::::::::
suggested

::
by564

:::::::::::::::::::::::::
Laughner and Cohen (2019).

:
565

Another model uncertainty comes from the calculation of the conversion of NO2 production to total NOx. The566

majority of NOx is emitted in the form of NO, which is not observed from space. A common assumption is that NO567

is rapidly transformed into NO2 through its reaction with ozone, reaching a stationary state within a few minutes.568

Numerous studies (Beirle et al., 2019; de Foy and Schauer, 2022) assumed a photostationary state in typical urban569

conditions and used a ratio of 1.32 based on Seinfeld and Pandis (2006). Here, the values of this ratio calculated570

from CAMS data did not differ much from this value. However, the photostationary state is a hypothesis which is571

potentially not verified on the scale of a NOx source like a power plant stack. Li et al. (2023b) calculated values of572

this conversion ratio correlated with the combustion temperature and energy efficiency for sources in China that are573

highly intensive in energy such as power plants, and found a median value of 3.3. Biases in the calculation of the574

NOx:NO2 ratio can also arise in highly polluted environments, in which the Leighton relationship used to calculate575

this ratio is no longer valid. In particular, OH can also react with VOCs and form oxygenated VOCs. Further studies576

estimating this ratio at various spatial and temporal scales would thus provide a better implementation of our model.577

4.2 Data uncertainties578

The NO2 column densities are the main input quantity in our estimation of NOx emissions, making the its calculation579

within the TROPOMI product the first element to examine when considering the data uncertainties in our estimates.580

Columns are calculated from measurements of solar backscattered radiation and comparison with a specific UV-Visible581

band using the Differential Optical Absorption Spectroscopy method, before being assimilated to derive a tropospheric582

vertical component. The corresponding uncertainty under polluted conditions is dominated by the sensitivity of583

satellite observations to air masses near the ground, and is expressed through the calculation of the tropospheric air-584

mass factor (AMF). To assess the significance of such effects, vertical profiles within the TROPOMI product can be585

replaced by any other profile information, resulting in a new retrieved tropospheric NO2 column. Douros et al. (2023)586

replaced the a priori TROPOMI OFFL NO2 profile by high-resolution air quality forecasts for Europe. As compared587

to the standard TROPOMI NO2 data, this new product was found to be biased-low by 5% to 12% for most European588

cities. The air mass factor (AMF) itself can be replaced: for instance, Lama et al. (2022) re-calculated the AMF589

by replacing the tropospheric AMF of the original TROPOMI OFFL product by an AMF taken from WRF-Chem590

simulations. Similarly, Beirle et al. (2023) re-calculated the AMF above different emitters from the corresponding591

averaging kernel based on a peak profile at plume height to better reflect the distribution of NO2 close to ground,592

which resulted in an AMF correction of about 1.61. Here, we did not perform any of such corrections, and we consider593

a relative uncertainty for the column of 30% (Boersma et al., 2004) , consistent with
:::
for

::::::
pixels

:::::::::::::
corresponding

::
to594

::::::::::::
non-urbanized

::::::
areas.

:::::
For

:::::
pixel

:::::::::::::
corresponding

:::
to

::::::
cities,

:
S-5P validation activities which indicate that TROPOMI595

tropospheric NO2 columns are systematically biased low by about 30%–
:::::
higher

:::::
rates

:::::::::::::::::::::
(Verhoelst et al., 2021),

:::::
and

:
a596

:::::
higher

::::::::
relative

::::::::::
uncertainty

::
of
:
50% over cities (Verhoelst et al., 2021). Such a bias seems

:
is

:::::
used.

:::::
Such

::::::
biases

:::::
seem

:
to597

run counter to our comparison with the catalog by (Beirle et al., 2023)
:::::::::::::::::
Beirle et al. (2023), for which this change in598

sensitivity was performed but leading to emissions generally lower than ours. A more detailed analysis of the concerned599

emitters seems necessary to better understand the parameters that have the largest impact on the vertical sensitivity600

of TROPOMI retrievals and our inversion model.601

Other data uncertainties can arise from other parameters that play a crucial role in the estimation of advection602

and chemistry effects. An accurate representation of the wind is critical to estimate the transport term correctly.603

For a given plume, the poor representation of wind speed leads to an under-or over-estimation of transport, but the604

correct orientation of positive and negative values around the source remains. However, an incorrect representation605

of the wind direction, such as a non-alignment with the main direction of the plume, fails to represent a correct606

orientation of positive and negative values. The estimation of the transport term significantly thus relies heavily on607

the representation of the wind angle. Higher errors are therefore expected to be high in regions having winds that608

vary rapidly in time, or regions with complex horizontal wind variations, such as mountainous regions. In particular,609

situations where sub-grid scale-phenomena occur, not accounted for in ERA5 wind fields, might display even higher610

errors in the estimation of transported NOx. For instance, Tehran, Iran, has an extremely complex topography,611

and in the calculated emissions, the transport term is particularly high compared with the sink term, with high and612
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unrealistic negative values on large scales around the Tochal mountain immediately to the north of the city. Other613

megacities such as Seoul, South Korea, Jeddah, Saudi Arabia, Chittagong, Bangladesh, also exhibit unrealistically614

high values for the transport term. Such
:::::::
Besides,

::::::
these

::::::
values

:::
are

::::
not

::::::::::::
compensated

:::
by

:::
the

::::::::::::::::
topography-wind

:::::
term,615

::
for

::::::
which

:::
an

:::::::
inverse

:::::
scale

::::::
height

::
of
::::
Xe::

=
::::
0.3

:::::
km−1

::
is
:::::
used

::::::
based

:::
on

::::::::::
Sun (2022)

:
.
::::
For

::::
this

:::::
term

::
to

:::
be

:::::::::
sufficient

::
to616

::::::::::
compensate

:::
for

::::
the

::::::::
negative

::::::
values

:::::::::
observed,

::
a
::::::
higher

:::::::
inverse

:::::
scale

::::::
height

::::::
would

:::
be

:::::::::
required.

:::::
Such

:::::::::::
observation

::
is617

:::::::::
consistent

::::
with

:::::::::::::::::
Beirle et al. (2023)

:
,
::::
who

:::::
used

::::::::
empirical

::::::
values

:::
of

:::
Xe :::

up
::
to

::
2
:::::
km−1

::::
and

::::::::
reduced

:::
the

::::::::::
amplitude

::
of

:::
the618

:::::::
negative

::::::::
patterns

::::::::
observed

:::
for

::::
Los

::::::::
Angeles,

::::::
United

:::::::
States,

:::::::
Tehran,

:::::
Iran,

:::
or

:::::
Seoul,

::::::
South

:::::::
Korea.

:::::::
Finally,

:
errors in the619

estimation of emission
::::::::
emissions

:
can also come from a wrong estimation of the air composition when calculating the620

sink term. The NO2 lifetime relies heavily on the representation of the OH concentration field, which varies with NOx621

itself through a non-linear mechanism. An incorrect representation of the sink term can occur at the scale of a plume622

by not capturing this relationship due to an incorrect knowledge of emitters on the ground. This can also be due to623

the 0.4°×0.4° resolution of CAMS that do not always capture the NO2 gradients adequately in plumes near a known624

emitter (Valin et al., 2011; Li et al., 2023a). For the OH concentration, a relative uncertainty of 30% has been used625

(Huijnen et al., 2019), representing the largest component of absolute uncertainty apart from the vertical columns.626

Large errors in the annual cycle of OH, and therefore in the sink term, can thus be expected. As a consequence, a627

wrong estimation of wind angle and OH concentration can lead to unrealistically high emissions, or even negative628

emissions.629

5 Conclusion630

In this study, we present a global quantification of NOx emissions by performing a mass-balance inversion based631

on the flux-divergence method, based. This approach offers a rapid alternative to traditional 3D inversion methods632

using Chemical Transport Models. The foundation of this method lies in the observation of tropospheric vertical633

column densities of NO2 provided by TROPOMI. Our methodology incorporates several components in the calculation634

of emissions: a transport term driven by horizontal wind, a sink term largely driven by OH concentrations, and635

a topography-wind correction term. The emissions calculated represent mean daytime fluxes for the year 2022,636

allowing us to map emissions on a global scale. The results highlight that the primary sources of NOx emissions637

are industrialized and developing countries. Our emission estimates are consistent with global estimates, as well as638

the EDGARv6.1 inventory, though notable discrepancies are observed at the national level, particularly in former639

USSR countries and sub-Saharan Africa. Besides, we performed a pinpointing of emitters by distinguishing between640

diffuse sources, typically large metropolitan areas with extensive spatial distribution(456 identified emitters), and point641

sources, generally isolated industrial facilities with emissions that often exhibit a Gaussian spread. 456
:::
436

:
diffuse642

sources and 330
:::
323

:
point sources are identified. Significant uncertainties remain, especially in regions where OH is not643

the only source of NOx removal, regions where wind representation is inaccurate, and regions where TROPOMI data644

exhibit substantial biases. Nonetheless, our
::::
this work demonstrates the feasibility of annual NOx emission monitoring645

with reduced latency and fewer mis-allocation issues compared to traditional inventories. Our approach enables the646

monitoring of emissions at the monthly scale in regions with high observation densities, that usually correspond to dry,647

mid-latitude countries. Conversely, the effect of numerical noise, combined with low-observation densities, restricts648

such monitoring to a higher averaging period of up to months, generally in tropical and high-latitude regions. Efforts649

should be made to further develop this method to provide a near-real time monitoring tool a higher temporal resolution650

for these regions. The results of this study were obtained from the calculation of daily NOx emissions in 2022 and651

their annual average.652

6 Data availability653

The monthly NOx emission maps can be accessed at https://doi.org/10.5281/zenodo.13957837
:::::::::::::::::::::::::::::::::::::::::
https://doi.org/10.5281/zenodo.13758447(Rey-654

Pommier et al., 2024). Data is made available as emission grid maps as .nc files with emissions expressed in655

petamolecules per square centimetre per hour (Pmolecules.cm−2.h−1)
:
.
:::::::::::
Conversion

::::::
factors

:::
to

:::::
mass

::::::
terms

:::::::::
(expressed656

::
as

:::::
NO2,::::

NO
::
or

:::
N)

:::
are

::::::::
included. The lists of diffuse and point sources are also provided.657
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