Supplement of: HERA: a high-resolution pan-European hydrological reanalysis (1950-2020)

Tilloy et al. (2024)

Corresponding to Aloïs Tilloy (alois.tilloy@ec.europa.eu)

Figure S1: HERA domain with spatial distribution of catchments with calibrated (blue, 69.6% or domain area), regionalized (orange, 23.9% of domain area) and default (red, 6.5% of domain area) parameters.

Parameter name	Description	Default	Parameter
		value	range
SnowMeltCoef	Snow melt rate in degree day model equation [mm/(C day)]	4	[2.5 - 6.5]
b_Xinanjiang	Exponent in Xinanjiang equation for infiltration capacity of the soil [-]	0.5	[0.01 – 5]
PowerPrefFlow	Exponent in the empirical function describing the preferential	4	[0.5 - 8]
	flow (i.e. flow that bypasses the soil matrix and drains directly to the groundwater) [-]		
UpperZoneTimeC onstant	Time constant for upper groundwater zone [days]	10	[0.01 - 40]
GwPercValue	Maximum percolation rate from upper to lower groundwater zone [mm/day]	0.8	[0.01 – 2]
LowerZoneTimeC onstant	Time constant for lower groundwater zone [days]	100	[40-500]
LZThreshold	Threshold to stop outflow from lower groundwater zone to the channel [mm]	10	[0-30]
GwLoss	Maximum loss rate out of lower groundwater zone expressed as a fraction of lower zone outflow [-]	0	[0-1]
QSplitMult	Multiplier to adjust discharge triggering floodplains flow [-]	2	[0 - 20]
CalChanMan1	Multiplier for channel Manning's coefficient n for riverbed [-]	1	[0.5 - 2]
CalChanMan2	Multiplier for channel Manning's coefficient n for floodplains [-]	1	[0.5 - 5]
adjust_Normal_Fl	Multiplier to adjust reservoir normal filling (balance between	0.8	[0.01 – 0.99
ood	lower and upper limit of reservoir filling). [-]		
ReservoirRnormq Mult	Multiplier to adjust normal reservoir outflow [-]	1	[0.25 – 2]
LakeMultiplier	Multiplier to adjust lake outflow [-]	1	[0.5 - 2]

Table S1: LISFLOOD calibration parameter for EFAS-5 (for more details, refer to CEMS-Flood online documentation, 2023)

Description Surface field name Main data **Data location** source Morphology and river network Mask area Boolean map defining model boundaries HERA Local drainage Connects every grid-cell forming a river network from CaMa-LF-EU maps direction (LDD) Flood springs to mouth Grid-cell area Area of every grid cell CaMa-LF-EU maps (pixArea) Flood Grid-cell length Length of every grid cell Grid-cell LF-EU maps area Upstream area Accumulated area of all connected grid-cells of the LDD LDD, LF-EU maps (upArea) from springs to mouth **pixArea** Standard deviation of Amount of elevation variation within a grid-cell **MERID** LF-EU maps elevation DEM MERIT Gradient Elevation gradient between two connected grid-cells LF-EU maps DEM, LDD Channel bottom width Width of the bottom of the channel CaMa-LF-EU maps Flood Channel length Length of river channel in each grid-cell CaMa-LF-EU maps Flood Channel gradient Gradient (slope) of river channel inside a grid-cell MERIT LF-EU maps DEM, CaMa-Flood, LDD Manning's roughness Manning's roughness coefficient of river channel for each MERIT LF-EU maps coefficient for grid-cell DEM,upAre channels a Channel mask HERA Channel presence in the grid-cell indicator Mask Slope of river banks LF-EU maps Side slope Channel depth Bankful channel depth upArea LF-EU maps Vegetation types and properties LF-EU maps Crop coefficient for Ratio between the potential (reference) CGLSevapotranspiration rate, in mm/day, and the potential LC100, forest forest (averaged by time and SPAM, evaporation rate of FAO ecosystem type) (reference) CGLS-LF-EU maps Crop coefficient for Ratio between the potential irrigated crops evapotranspiration rate, in mm/day, and the potential LC100,

Table S2: Surface fields maps used as input to the LISFLOOD model to general the hydrological reanalysis. HERA refers to the HERA dataset while LF-EU maps refers to the LISFLOOD static and parameter maps for Europe (2024) dataset. More information on main data source is provided in Table S3.

	evaporation rate of irrigated crops (averaged by time and	SPAM,	
	ecosystem type)	FAO	
Crop coefficient for	Ratio between the potential (reference)	CGLS-	LF-EU maps
other cover type	evapotranspiration rate, in mm/day, and the potential	LC100,	
	evaporation rate of other cover type (averaged by time	SPAM,	
	and ecosystem type)	FAO	
Crop group number	Represents a vegetation type and is an indicator of its	CGLS-	LF-EU maps
for forest	adaptation to dry climate (forest)	LC100,	
		SPAM,	
		FAO	
Crop group number	Represents a vegetation type and is an indicator of its	CGLS-	LF-EU maps
for irrigated crops	adaptation to dry climate (irrigated crops)	LC100,	
		SPAM,	
		FAO	
Crop group number	Represents a vegetation type and is an indicator of its	CGLS-	LF-EU maps
for other cover type	adaptation to dry climate (other)	LC100,	
		SPAM,	
		FAO	
Manning's surface	Roughness or friction applied to the flow by the surface	CGLS-	LF-EU maps
roughness coefficient	on which water is flowing (forest)	LC100,	
for forest		SPAM,	
		FAO	
Manning's surface	Roughness or friction applied to the flow by the surface	CGLS-	LF-EU maps
roughness coefficient	on which water is flowing (irrigated crops)	LC100,	
for irrigated crop		SPAM,	
		FAO	
Manning's surface	Roughness or friction applied to the flow by the surface	CGLS-	LF-EU maps
roughness coefficient	on which water is flowing (other)	LC100,	
for other cover types		SPAM,	
		FAO	
Leaf area index for	Defined as half the total area of green elements of the	CGLS-LAI	LF-EU maps
forest	canopy per unit horizontal ground area m2/m2 (10-day		
	average; 36 fields in total)		
Leaf area index for	Defined as half the total area of green elements of the	CGLS-LAI	LF-EU maps
irrigated crop	canopy per unit horizontal ground area m2/m2 (10-day		
	average; 36 fields in total)		
Leaf area index for	Defined as half the total area of green elements of the	CGLS-LAI	LF-EU maps
other cover types	canopy per unit horizontal ground area m2/m2 (10-day		
	average; 36 fields in total)		
Rice planting day 1	Most probable day of the year when rice is planted for the	Dias Atlas	LF-EU maps

	first time		
Rice planting day 2	Most probable day of the year when rice is planted for the second time	RiceAtlas	LF-EU maps
Rice planting day 3	Most probable day of the year when rice is planted for the third time	RiceAtlas	LF-EU maps
Rice harvesting day 1	Most probable day of the year when rice is harvested after planting for the first time	RiceAtlas	LF-EU maps
Rice harvesting day 2	Most probable day of the year when rice is harvested after planting for the second time	RiceAtlas	LF-EU maps
Rice harvesting day 3	Most probable day of the year when rice is harvested after planting for the third time	RiceAtlas	LF-EU maps
	Soil properties		
Soil depth layer 1 for forest	Forest soil depth for surface soil [layer 1]	SoilGrids	LF-EU maps
Soil depth layer 1 for other	Other soil depth for surface soil [layer 1]	SoilGrids	LF-EU maps
Soil depth layer 2 for forest	Forest soil depths for middle soil [layer 2]	SoilGrids	LF-EU maps
Soil depth layer 2 for other	Other soil depths for middle soil [layer 2]	SoilGrids	LF-EU maps
Soil depth layer 3 for forest	Forest soil depths for subsoil [layer 3]	SoilGrids	LF-EU maps
Soil depth layer 3 for other	Other soil depths for subsoil [layer 3]	SoilGrids	LF-EU maps
Saturated volumetric soil moisture content layers 1 for forest	Maximum water content in surface soil for forest	SoilGrids	LF-EU maps
Saturated volumetric soil moisture content layers 1 for other	Maximum water content in surface soil for other	SoilGrids	LF-EU maps
Saturated volumetric soil moisture content layers 2 for forest	Maximum water content in middle soil for forest	SoilGrids	LF-EU maps
Saturated volumetric soil moisture content layers 2 for other	Maximum water content in middle soil for other	SoilGrids	LF-EU maps
Saturated volumetric soil moisture content	Maximum water content in subsoil	SoilGrids	LF-EU maps

Residual volumetric	Minimum water content in the surface soil	SoilGrids	LF-EU maps
soil moisture content			
layer 1			
Residual volumetric	Minimum water content in the middle soil	SoilGrids	LF-EU maps
soil moisture content			
layer 2			
Residual volumetric	Minimum water content in the subsoil	SoilGrids	LF-EU maps
soil moisture content			
layer 3			
Pore size index layer 1	pore size index of the surface soil for forest	SoilGrids	LF-EU maps
for forest			
Pore size index layer 1	Van Genuchten parameter λ representing the pore size	SoilGrids	LF-EU maps
for other	index of the surface soil for other		
Pore size index layer 2	Van Genuchten parameter λ representing the pore size	SoilGrids	LF-EU maps
for forest	index of the middle soil for forest		
Pore size index layer 2	Van Genuchten parameter λ representing the pore size	SoilGrids	LF-EU maps
for other	index of the middle soil for other		
Pore size index layer 3	Van Genuchten parameter λ representing the pore size	SoilGrids	LF-EU maps
	index of the subsoil		
Van Genuchten	Van Genuchten parameter α of the surface soil for forest	SoilGrids	LF-EU maps
equation parameter			
layer 1 for forest			
Van Genuchten	Van Genuchten parameter α of the surface soil for other	SoilGrids	LF-EU maps
equation parameter			
layer 1 for other			
Van Genuchten	Van Genuchten parameter α of the middle soil for forest	SoilGrids	LF-EU maps
equation parameter			
layer 2 for forest			
Van Genuchten	Van Genuchten parameter α of the middle soil for othert	SoilGrids	LF-EU maps
equation parameter			
layer 2 for other			
Van Genuchten	Van Genuchten parameter α of the subsoil	SoilGrids	LF-EU maps
equation parameter			
layer 3			
Saturated soil	Ease with which water moves through pore spaces of the	SoilGrids	LF-EU maps
conductivity for layer	surface soil for forest		-
1 forest			
Saturated soil	Ease with which water moves through pore spaces of the	SoilGrids	LF-EU maps
conductivity for layer	surface soil for other		1

1 other			
Saturated soil	Ease with which water moves through pore spaces of the	SoilGrids	LF-EU maps
conductivity for layer	middle soil for forest		
2 forest			
Saturated soil	Ease with which water moves through pore spaces of the	SoilGrids	LF-EU maps
conductivity for layer	middle soil for other		
2 other			
Saturated soil	Ease with which water moves through pore spaces of the	SoilGrids	LF-EU maps
conductivity for layer	subsoil		
3			
	Land use		
Forest surface fraction	Evergreen and deciduous needle leaf and broad leaf tree	CGLS-	HERA/socioeco
	areas	LC100,	nomic_maps
		HANZE,	
Sealed surface fraction	Urban areas, characterizing the human impact on the	CGLS-	HERA/socioeco
	environment	LC100,	nomic_maps
		HANZE,	
Irrigated surface	Irrigated areas of all possible crops excluding rice	CLC2018,	HERA/socioeco
fraction		HANZE	nomic_maps
Inland water fraction	Rivers, freshwater and saline lakes, ponds and other	CGLS-	HERA/socioeco
	permanent water bodies over the continents	LC100,	nomic_maps
		HANZE	
Irrigated rice fraction	Irrigated areas of rice	CLC2018,	HERA/socioeco
		SPAM,	nomic_maps
		HANZE	
Other land cover	Agricultural areas, non-forested natural area, pervious		HERA/socioeco
fraction	surface of urban areas		nomic_maps
	Water demand		
Water demand for	Daily supply of water volume for indoor and outdoor	GHS-POP,	HERA/water_d
domestic use	household purposes and for all the uses that are	AQUASTA	emand
	connected to the municipal system (e.g., water used by	T, MSWX	
	shops, schools, and public buildings)		
Water demand for	Daily supply of water volume for fabricating,	GHS-POP,	HERA/water_d
industrial use	processing, washing and sanitation, cooling or	AQUASTA	emand
	transporting a product, incorporating water into a	T, GCAM	
	product		
Water demand for	Daily supply of water volume for the cooling of	GHS-POP,	HERA/water_d
thermoelectric use	thermoelectric and nuclear power plant	AQUASTA	emand
		T, GCAM,	

		MSWX	
Water demand for	Daily supply of water volume for domestic animal need	AQUASTA	HERA/water_d
livestock use		T, GCAM,	emand
		GLW3	
	Lakes and reservoirs		
Lake mask	Area covered by lakes only (binary representation)	GLWD	LF-EU maps
Reservoir map	Location and identifier of each reservoir	EFAS,	HERA/reservoi
		HANZE,	rs
		GranD	

Dataset name	Description	Data source
AQUASTAT	FAO's global information system on water resources and	https://www.fao.org/la
	agricultural water management.	nd-water/databases-
		and-
		software/aquastat/en/
CaMa-Flood	The Catchment-based Macro-scale Floodplain (CaMa-Flood)	http://hydro.iis.u-
	Global River Hydrodynamics Model v4.0 265 maps (CaMa-	tokyo.ac.jp/~yamadai/c
	Flood) is a global hydrography dataset.	<u>ama-flood/</u>
CGLS-LAI	The Copernicus Global Land Service (CGLS) Leaf Area Index	https://land.copernicus.
	(LAI) 1km Version 2 collection (CGLS-LAI) is a set of global	eu/global/products/lai
	maps data describing vegetation dynamics – the annual evolution	
	of LAI at 10-day intervals over the period of 1999-2020.	
CGLS-LC100	The Copernicus Global Land ServiceLand Cover (LC) 100m map	https://land.copernicus
	(CGLS-LC100) 283 is a global land cover map of the year 2015.	eu/global/products/lc
CLC2018	The Coordination of Information on the Environment (CORINE)	https://land.copernicus.
	Land Cover (CLC) inventory for 2018 (CLC2018) is a set of maps	eu/en/products/corine-
	describing the land cover/ land use status of 2018 covering 39	land-cover/clc2018
	countries in Europe.	
FAO	The FAO Irrigation and Drainage Paper No. 56 (FAO) is a	https://www.fao.org/la
	publication covering geographically referenced statistics for crop	nd-water/databases-
	development stages, crop coefficients, crop height, rooting depth,	and-software/crop-
	and soil water depletion fraction for common crops found across	information/en/
	the world.	
GCAM	Global Change Analysis Model (GCAM) is an integrated, multi-	https://github.com/JGC
	sector model developed by the Joint Global Change Research	RI/gcam-core
	Institute (JGCRI) to explore the overall behaviour of human and	
	physical systems dynamics and interactions.	
GHS-POP	The Global Human Settlement Population Grid multitemporal	https://ghsl.jrc.ec.euror
	version R2019A (GHS POP) is a spatial raster dataset that depicts	a.eu/ghs_pop2019.php
	the distribution of population, expressed as the number of people	
	per grid-cell.	
GLWD	The Global Lakes and Wetlands Database (GLWD) is a global	https://www.worldwild
	database of water bodies.	life.org/pages/global-
		lakes-and-wetlands-
		database
GRanD	The Global Reservoir and Dam Database (GRanD) is a product of	https://www.globaldan
	the Global Water System Project. It collates existing dam and	watch.org/directory
	reservoir datasets with the aim of providing a single,	

Table S3: Main datasets used in the creation of surface fields inputs for LISFLOOD model. For more information on the generation of surface fields, the author can refer to Choulga et al. (2023).

	geographically explicit and reliable database for the scientific	
	community.	
HANZE	The Historical Analysis of Natural Hazards in Europe (HANZE) is	https://data.4tu.nl/colle
	a pan-European database of exposure to natural hazards and	ctions/_/5065346/1
	damaging historical floods since 1870.	
MERIT DEM	Multi-Error-Removed Improved-Terrain Digital Elevation Model	http://hydro.iis.u-
	v.1.0.3 (MERIT DEM) is a high accuracy global DEM at 3 arc	<u>tokyo.ac.jp/~yamadai/</u>
	second resolution (~90 m at the Equator).	MERIT DEM/
MSWX	Multi-Source Weather (MSWX) is a high-resolution (3-hourly,	https://www.gloh2o.or
	0.1°), bias-corrected meteorological product with global coverage	<u>g/mswx/</u>
	from 1979 to present.	
RiceAtlas	The RiceAtlas v3 (RiceAtlas) is a spatial database of global rice	https://dataverse.harvar
	calendars and production.	d.edu/dataset.xhtml?pe
		rsistentId=doi:10.7910/
		DVN/JE6R2R
SPAM	The Spatial Production Allocation Model (SPAM) – Global	https://mapspam.info/d
	Spatially-Disaggregated Crop Production Statistics Data for 2010	<u>ata/</u>
	v2.0 (SPAM2010) is a global dataset which redistributes crop	
	production information from country and sub-national provinces	
	level to a finer grid-cell level.	
SoilGrids	The International Soil Reference and Information Centre (ISRIC)	https://www.isric.org/e
	SoilGrids250m global gridded soil information release 2017	xplore/soilgrids/faq-
	(fSoilGrids) is as a set of global soil property and class maps at	soilgrids-2017
	250 m resolution.	

Upstream area (km²) · 100 · 1000 • 10 000 • 100 000 • 500 000

Figure S2: Metadata of the 2901 river gauging stations used in the validation of HERA. It shows (a) the location, upstream area and record length associated to each stations and (b) the distribution of upstream area of the selected river gauging stations.

References

LISFLOOD static and parameter maps for Europe: http://data.europa.eu/89h/f572c443-7466-4adf-87aa-c0847a169f23, last access: 11 January 2024.

CEMS-Flood online documentation: https://confluence.ecmwf.int/display/CEMS/CEMS-Flood, last access: 14 December 2023.