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Abstract 

Since 1950, anthropogenic activities have altered climate, land cover, soil properties, channel 

morphologies and water management in the river basins of Europe. This has resulted in significant 

changes in hydrological conditions. The availability of consistent estimates of river flow at global and 

continental level is a necessity to assess changes in the hydrological cycle. To overcome limitations 15 

posed by observations (incomplete records, inhomogeneous spatial coverage), we simulate river 

discharge for Europe for the period 1951 – 2020 using a state-of-the-art hydrological modelling 

approach. We use the new European set up of the OS LISFLOOD model, running at 1 arcminute (≈1.8 

km) with six-hourly time steps. The hydrological model is forced by climate reanalysis data (ERA5-

land) that is bias-corrected and downscaled to the model resolution with gridded weather observations. 20 

The model also incorporates 72 surface field maps representing catchment morphology, vegetation, soil 

properties, land use, water demand, lakes and reservoirs. Inputs related to human activities are evolving 

through time to emulate societal changes. The resulting Hydrological European ReAnalysis (HERA), 

provides six-hourly river discharge for 282,521 river pixels with an upstream area > 100 km2. We assess 

its skill using 2,448 river gauging stations distributed across Europe. Overall, HERA delivers satisfying 25 

results (median KGE’ = 0.55), despite a general underestimation of observed mean discharges (mean 

bias = -13.1%), and demonstrates the capacity to reproduce statistics of observed extreme flows. The 

performance of HERA increases through time and with catchment size, as well as varies in space 

depending on reservoir influence and model calibration. The fine spatial and temporal resolution results 

in an enhanced performance compared to previous hydrological reanalysis based on OS LISFLOOD 30 

for small-to-medium-scale catchments (100 - 10,000 km2). HERA is the first publicly available long-

term, high-resolution hydrological reanalysis for Europe. Despite its limitations, HERA enables the 

analysis of hydrological dynamics related to extremes, human influences, and climate change at a 

continental scale while maintaining local relevance. It also creates the opportunity to study these 

dynamics in ungauged catchments across Europe.  35 
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1 Introduction 

In the last century, Europe has experienced a growth in its population, economy and urbanized area (Li 

et al., 2021; Paprotny and Mengel, 2023). Recent decades also witnessed a rapid rise in global air 

temperature, attributable to anthropogenic activities (IPCC, 2023). These evolving conditions have 

significantly changed flows in European streams and rivers (Barker et al., 2019; Gudmundsson et al., 40 

2021; Vicente-Serrano et al., 2019; Wang et al., 2024), leading to multiple challenges for hydrological 

sciences, related, for example, to long term variability, climate change, extremes or human alterations 

of the water cycle (Blöschl et al., 2019b). In order to assess the impacts of these changes, hydrologists 

need consistent, reliable and long hydrological series. Observations, despite continuous improvements 

(Blöschl et al., 2019a; Ekolu et al., 2022), can hamper the analysis Pan-European long-term trends due 45 

to sparse spatial distribution in some regions and temporal discontinuities. One option to overcome 

these limitations is to rely on a suit of models (climate, hydrological, land use) to simulate past 

hydrological conditions and interpret changing dynamics in the hydrological cycle in connection with 

rapidly changing human systems (e.g., Richards and Gutierrez-Arellano, 2022). This article introduces 

the Hydrological European ReAnalysis (HERA) for the period 1951-2020, providing consistent 50 

estimates of river flow for European rivers at high spatial and temporal resolution. 

 

Hydrological models are essential tools to understand and characterise processes related to the water 

cycle (e.g., flood and drought forecasting). In the past three decades, there have been efforts in 

developing models that are able to simulate hydrological processes at large scale (continental to global 55 

scale). A myriad of these Global Hydrological Models (GHMs), differing in their conceptualization, 

now exist (Beck et al., 2017; Sood and Smakhtin, 2015; Kauffeldt et al., 2016; Prudhomme et al., 2011). 

The nature of GHMs implies that they are usually run at coarse spatial resolution (e.g., 0.5º), limiting 

their relevance for local and regional water resource problems (Sood and Smakhtin, 2015). Nonetheless, 

the development of GHMs has been fuelled by continuous improvements in remote sensing 60 

technologies and processing power (Yang et al., 2021). Remote sensing technologies provide high 

resolution input for hydrological models such as land use and vegetation properties. The advancements 

in computational capabilities have allowed to refine the spatial and temporal scale of hydrological 

models, enabling a more accurate representation of surface and subsurface processes and reducing 

modelling uncertainties (Wood et al., 2011). In this context, HERA falls within a global effort towards 65 

the development of hyper-resolution (1 km and below) land surface and hydrological models at 

continental (Hoch et al., 2023; O’Neill et al., 2021) and global (Hanasaki et al., 2022) scales. 

 

A key hindrance to simulating past river flows has been the availability of meteorological inputs for 

hydrological models. Among potential inputs, climate reanalysis offers several advantages: temporal 70 

coverage (typically spanning several decades), a large number of variables (e.g., precipitation, wind 
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speed, temperature) that are physically consistent with homogeneous spatiotemporal resolution. 

Reanalysis data are outputs of climate models calibrated on observed data worldwide (Brönnimann et 

al., 2018). Here we use ERA5-land, the land component of ERA5 (Muñoz-Sabater et al., 2021). A main 

advantage of ERA5-Land compared to ERA5 is its horizontal resolution, which is 9 km globally, 75 

compared to 31 km in ERA5. This enhanced resolution is obtained by downscaling meteorological 

variables from ERA5. The temporal resolution is hourly as in ERA5. Nonetheless, reanalysis data are 

obtained from short-term model forecasts and can be affected by forecast errors (Pfahl and Wernli, 

2012). Variables produced in ERA5 are averages over grid cells. This averaging combined with the 

relatively coarse resolution of ERA5/ERA5-land often smooths local extremes (Donat et al., 2014, 80 

Tilloy et al., 2022). To tackle this issue, we downscale and bias-correct ERA5-land with a gridded 

observational dataset, EMO-1 (Thiemig et al., 2022) (Section 2.2). 

 

In the context of the European Flood Awareness System (EFAS), an operational system for European 

flood monitoring and forecasting (https://www.efas.eu), there have been recent efforts to develop more 85 

detailed surface fields (e.g., land use, vegetation) (Choulga et al., 2023) and observational climate inputs 

(Thiemig et al., 2022) at a spatial resolution of 1 arcminute (1’, 0.0167º, typically 1.5-3 km² over 

Europe). These developments come alongside improvements on the OS LISFLOOD hydrological 

model underpinning EFAS. OS LISFLOOD is a spatially distributed grid-based hydrological and 

channel routing model which was initially developed for flood forecasting and flood risk assessment 90 

(Burek et al., 2013). However, it is also able to model effects of land use change, climate change and 

river regulation measures and has been used in a wide range of hydrological applications, such as 

mapping population under water stress in relation to how much water is reserved for the environment 

(Vanham et al., 2021) and projecting droughts in view of climate change (Cammalleri et al., 2020a). It 

is also used in the generation of the GLOFAS-ERA5 hydrological reanalysis (Harrigan et al., 2020).  95 

 

Therefore, this article brings together improvements from diverse fields (i.e., remote sensing, climate 

modelling, machine learning, hydrology) to generate a state-of-the-art hydrological reanalysis for a 

European domain that covers EU27 countries, UK, Switzerland, Iceland, Norway and the Balkan 

countries (Serbia, Montenegro, Bosnia-Herzegovina, Kosovo, North Macedonia and Albania) over the 100 

past 70 years. HERA aims to reproduce as accurately as possible the evolution of the hydrological 

landscape of Europe by using the latest development of OS LISFLOOD (improvements in processing 

speed, spatial and temporal resolutions and calibration), also used in the generation of the latest EFAS 

v5.0 reanalysis (1991-2022) (Decremer et al., 2023) (Section 2.1). Climate inputs are derived from 

ERA5-land, bias corrected and downscaled to 1 arcminute to improve the representation of extremes 105 

(Section 2.2). We generated dynamic socioeconomic inputs (water demand, land use and reservoir 

maps) to capture the effect of human activities on the water cycle (Section 2.3). These developments 

make this dataset the first publicly available long-term Pan-European hydrological reanalysis taking 

https://www.efas.eu/
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into account the evolving socioeconomic conditions that have altered the hydrological cycle since 1951. 

In Section 3, we assess the performance of HERA against observations from 2448 river gauges in 110 

Europe.  

2 Method 

The modelling framework developed to generate the HERA dataset is presented in a flowchart in Figure 

1. The framework is organized around the OS LISFLOOD hydrological model that is used to simulate 

river discharge. For this run, we use calibrated parameters for the European setting of OS LISFLOOD 115 

developed by ECMWF in the context of the EFAS-5 calibration (CEMS-Flood online documentation, 

2023). We first introduce OS LISFLOOD and its calibration procedure (Section 2.1). Figure 1 also 

displays the main input of OS LISFLOOD: high-resolution climate inputs (Section 2.2), state-of-the-

art static (Section 2.3.1) and dynamic socioeconomic maps (Section 2.3).  

 120 

 

Figure 1: Flowchart of the framework employed in the generation of HERA. Numbers relate to the section in which 

each component of the framework is presented. 

2.1 Hydrological modelling 

2.1.1 The OS LISFLOOD model 125 

Here, we simulate sub-daily continuous streamflow time series over Europe by means of the OS 

LISFLOOD model (Burek et al., 2013; Knijff et al., 2010). This is a spatially distributed, semi-physical 

rainfall-runoff model combined with a routing module for river channels (Dottori et al., 2022). The 

model has been developed by the Joint Research Centre (JRC) since the late 1990s and is used 

operationally for large-scale flood forecasting in the European Flood Awareness System (EFAS) and 130 
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the Global Flood Awareness System (GLOFAS). OS LISFLOOD has also been used in drought 

monitoring (Cammalleri et al., 2020b, 2017), to assess the effect of flood adaptation measures, 

environmental flow protection, or climate change (Mentaschi et al., 2020; Vanham et al., 2022). Since 

2019, the model is open source and available on GitHub along with a set of auxiliary tools 

(https://github.com/ec-jrc/lisflood-code). OS LISFLOOD is composed of the following main 135 

components: 

 3 soil layers (superficial, upper, lower) for water balance modelling; 

 sub-models for the simulation of groundwater and subsurface flow (using 2 parallel 

interconnected reservoirs); 

 a sub-model for the routing of surface runoff to the nearest river channel; 140 

 a sub-model for the routing of channel flow. 

Other processes such as snow melt, infiltration, rainfall interception, leaf drainage, evaporation and 

water uptake by vegetation, surface runoff, and exchange of soil moisture between soil layers are also 

simulated by the model (OS LISFLOOD online documentation, 2023). OS LISFLOOD is also able to 

model lakes and reservoirs. 145 

 

In this work, we use the latest version of OS LISFLOOD (v4.1.2, January 2023), which includes 

upgrades compared to previous versions in the hydrological routines and improvements in the 

modelling of water abstraction for anthropogenic use. Moreover, OS LISFLOOD v4.1.2 benefits from 

improvements in the management of large inputs and in computational performance. Figure 2 displays 150 

the domain for which data was retained in HERA. This comprises 42 European countries and excludes 

non-EU countries of the former Soviet Union, countries in North Africa and Middle East, and Turkey, 

that are included in the EFAS domain. Moreover, HERA uses the same domain as the Historical 

Analysis of Natural Hazards in Europe (HANZE) database (Paprotny and Mengel, 2023; Paprotny et 

al., 2023). We run the model using the 1’ grid used in EFAS v5.0 (Decremer et al., 2023). The temporal 155 

resolution of the simulation is 6-hourly, which is the standard for EFAS since 2020. Due to the size and 

spatial resolution of our domain combined with the 6-hourly time-steps, we divide the simulations in 

71 yearly chunks based on calendar year starting on 3 January 1950. To estimate the initial model state, 

we performed a 71-years pre-run . More in particular, we used the pre-run to initialize the soil and upper 

groundwater zone storages and to derive average inflow into the lower zone and discharge, which 160 

represent theoretical steady state storage. Due to the rapidly evolving socioeconomic conditions in 

catchments of Europe, we change the input socioeconomic maps at the start of every new calendar year 

of the simulation (Section 2.4). This differs from the standard EFAS settings, which assume static land 

use and reservoir network, and only varies the water demand values. At the start of every calendar year, 

the model is initialized with the state variables from the last time step of the previous year (warm start). 165 

As water volumes at the first time step in the channels are not known, the model sets a conventional 

https://github.com/ec-jrc/lisflood-code
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initial volume (OS LISFLOOD uses half-bankful), leading to unrealistic initial discharge in some 

catchments. We therefore removed the first simulation year (1950) from the final dataset. Further, we 

only retained simulations for river pixels with an upstream area greater than 100 km2, resulting in 

simulations in the 282,521 river pixels displayed in Figure 2. 170 

 

Figure 2 River network (rivers with an upstream area > 100 km2) on which discharge data has been generated. The 

HERA domain (in which data is provided) is confined by the red bordered area. 

2.1.2 Model Calibration 

In this work, we also take advantage of the new EFAS v5.0 calibration that was completed in December 175 

2022 by ECMWF. The calibration was performed using the EMO-1 meteorological dataset (Thiemig 

et al., 2022) over the period 1990-2021, with a focus on high flows. The modified Kling-Gupta 

Efficiency (KGE’, Gupta et al., 2009; Kling et al., 2012) was used as a skill metric. Discharge data at 

1903 stations, identified through a selection process based on several criteria (CEMS-Flood online 
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documentation, 2023), were used to calibrate the LISFLOOD model over Europe. Sub-daily data is 180 

always preferred when available (994 over 1903 stations). For stations where only daily observations 

were available, the 6 hourly discharge simulations were first aggregated to daily steps (daily mean) 

before evaluating the objective function. The calibration was performed at catchment level, with the 

1903 selected stations covering 69.6% of the HERA domain. A map showing the calibrated catchments 

is provided in Supplementary Figure S1. The calibration was performed on 14 parameters that 185 

influence the modelling of snow melt, water infiltration into the soil, surface water flow, groundwater 

flow, lakes and reservoirs dynamics. A list of the calibration parameters is provided in Supplementary 

Table S1. Parameter values were identified using the Distributed Evolutionary Algorithm for Python 

(DEAP, Fortin et al. 2012) within a physically realistic range. The calibration protocol went from head-

catchments to downstream catchments in a top-down manner, prescribing physical dependencies 190 

between upstream and downstream catchments within the same basin. 

 

Coastal and endorheic catchments with drainage area smaller than 150 km2, representing 6.5% of the 

HERA domain, are modelled with default parameter values. Parameter values for other ungauged 

catchments were estimated by parameter regionalisation. These catchments are mostly located near the 195 

coastlines, with a high concentration in southern Italy and Greece, and represent 23.9% of the HERA 

domain. The parameter regionalization here consists of transferring parameter values (except the ones 

linked to reservoirs and lakes) from a calibrated catchment to an ungauged catchment. Catchments are 

matched according to climatic and geographical similarities (Beck et al., 2016). We discuss the impact 

of calibration on the skill of HERA in Section 3.1.1. For more information on the calibration of EFAS 200 

v5.0, we refer to the online documentation of the Copernicus Emergency Management Service for 

floods (CEMS-Flood online documentation, 2023). 

 

2.2 Climate inputs: Bias-adjusted climate reanalysis data 

To force the hydrological model OS LISFLOOD, we used a bias-adjusted and downscaled climate 205 

dataset based on the ERA5-land climate reanalysis (Muñoz-Sabater et al., 2021). The main steps 

involved in the preparation of the climate inputs are summarized in Figure 3. The following variables 

are retrieved from ERA5-land at hourly temporal resolution for 1950-2020: 

 Total precipitation (tp) 

 Mean temperature (ta) 210 

 Mean zonal and meridional wind speed (u, v) 

 Mean dew point temperature (td) 

 Total surface solar radiation downwards (ssrd) 
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Precipitation and temperature data were aggregated to 6-hourly resolution, and the other variables to 

daily resolution (Figure 3). All variables were averaged, except precipitation, which was summed to 215 

reach the target temporal resolution. Minimum and maximum daily temperature were also calculated, 

while dew point temperature was converted into relative humidity and actual vapour pressure. 

 

Our setting of OS LISFLOOD requires meteorological data with a 1’ resolution. To downscale ERA5-

Land data from 0.1° = 6’ to 1’, we performed a statistical downscaling and bias adjustment using 220 

ISIMIP3BASD v3.0.0 (Lange 2019, Lange et al. 2024, Frieler et al. 2024). The ISIMIP3BASD method 

was initially developed for phase 3 of the Inter-Sectoral Impact Model Intercomparison Project 

(ISIMIP) and aims to provide robust bias adjustment of extreme values, preservation of trends across 

quantiles, and a clearer separation of bias adjustment and statistical downscaling compared to its 

predecessors (Lange, 2019). We used the new EMO-1 gridded observational dataset (1’ version of 225 

EMO-5, Thiemig et al. 2022) developed for the operational EFAS-v5.0 as the high-resolution reference 

dataset. EMO-1 covers the period 1990−2020 and has also been used directly as climate inputs in the 

calibration (Section 2.1.2). We used 1990−2020 as the training period for the algorithm since both 

datasets overlap for this period. The trained algorithm is then applied to ERA5-Land to produce high-

resolution data for both the training period and for 1950−1989, where high-resolution data comparable 230 

to EMO-1 are not available. The resulting climate data consistently covers 1950−2020. The 

ISIMIP3BASD method is applied on the following variables: 

 daily mean near-surface relative humidity (hurs), obtained from actual vapor pressure (vp),  

 daily and 6-hourly total precipitation (pr), 

  daily total surface downwelling shortwave radiation (rsds),  235 

 daily mean near-surface wind speed (ws),  

 daily and 6-hourly mean near-surface air temperature (tas),  

 diurnal near-surface air temperature range (tasrange = tasmax − tasmin), 

 diurnal near-surface air temperature skewness (tasskew = (tas − tasmin)/tasrange).  

Here, tasmin and tasmax are the daily near-surface air temperature minimum and maximum, 240 

respectively. 

 

Version 3.0.0 of ISIMIP3BASD differs technically from version 2.5.0 that was used to produce the 

climate forcing data for phase 3b of the Inter-Sectoral Impact Model Intercomparison Project 

(ISIMIP3b, Frieler et al. 2024), yet both versions produce the same results, and we apply version 3.0.0 245 

using the same climate variable-specific parameter settings as for the ISIMIP3b data production (Lange 

et al. 2024, Frieler et al. 2024). ISIMIP3BASD has been designed for daily data but it is applied here to 

bias-adjust and statistically downscale sub-daily (6-hourly pr and tas) data as if these are daily values. 

For the bias adjustment, a parametric trend-preserving quantile mapping method was applied to pr, 



 

9 

 

sfcwind, tas, and tasrange, while non-parametric quantile mapping was applied to hurs, rsds, and 250 

tasskew. The bias adjustment was done at the spatial resolution of ERA5-Land, 6’, using spatially 

aggregated EMO-1 data (spatial averaging). Data resulting from the bias-adjustment were then 

statistically downscaled to 1’ spatial resolution by using an algorithm based on the MBCn bias-

adjustment method (Cannon et al., 2018) (Figure 3). The downscaling method is conservative in the 

sense that the 1’ output data would be identical to the 6’ input data in case the former is spatially 255 

aggregated back to 6’ resolution. 

 

Finally, potential evapotranspiration (et0), potential open-water evapotranspiration (e0) and potential 

bare soil evapotranspiration (es0) are computed with bias-adjusted and downscaled data at pixel level 

using an approach based on the Penman-Monteith equation with the LISVAP model (LISVAP online 260 

documentation, 2023).  

 

Figure 3: Climate inputs pre-processing scheme, including temporal aggregation, bias-adjustment, statistical 

downscaling and processing of evapotranspiration. 

2.3 Surface field maps 265 

OS LISFLOOD requires a set of surface fields maps. Depending on the model set-up it can ingest up to 

108 surface fields divided in six categories: 

(i) Catchment morphology and river networks 

(ii) Vegetation cover types and properties 

(iii) Soil properties 270 

(iv) Land use 

(v) Water demand 
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(vi) Lake and reservoir information  

The first three categories, hereafter referred to as static maps, were directly taken from the 

CEMS_SurfaceFields_2022 open-source dataset of the Copernicus Emergency Management Service, 275 

developed for the European domain at 1 arc min resolution, which can be found in the JRC Data 

Catalogue (Choulga et al., 2023). The last three categories were derived from 

CEMS_SurfaceFields_2022 and modified to take into account socioeconomic changes (hereafter 

referred to as dynamic socioeconomic maps). This section briefly presents each of the map categories, 

with an emphasis on dynamic socioeconomic maps, which are original to this work. 280 

2.3.1 Static maps 

Static maps include surface fields of morphology and channel shapes (14 maps), vegetation properties 

(18 maps) and soil properties (29 maps).  

 

Morphology and river network information were directly used for the computation of snow melting, 285 

temperature scaling, river routing and open water evapotranspiration. Morphologic information was 

derived from elevation and includes elevation gradient, within-grid standard deviation of elevation, and 

Manning’s roughness coefficient. Maps representing channel shapes and river networks provide 

information on grid cell area (which varies with latitude as the grid projection is WGS84), local drainage 

direction, upstream area and channel dimensions. All morphology and river network maps were derived 290 

from the Multi-Error-Removed Improved-Terrain Digital Elevation Model v.1.0.3 (MERIT DEM) 

(Yamazaki et al., 2019) and the Catchment-based Macro-scale Floodplain (CaMa-Flood) Global River 

Hydrodynamics Model v4.0 maps (Yamazaki, 2023). 

 

Vegetation cover types and property maps are involved in the computation of precipitation interception, 295 

evaporation, transpiration, surface runoff and root water uptake. These properties are described though 

four variables: crop coefficients (transpiration), crop groups (water uptake), manning roughness 

(surface runoff) and leaf area index (interception and evaporation). Each of these variables were mapped 

for three different land cover types: forest, irrigated and other. Further, maps of planting and harvesting 

days for rice, which has specific water demands, are also available. Vegetation properties were derived 300 

from several data sources including the Copernicus Global Land Service (CGLS) Leaf Area Index (LAI) 

at 1 km (Copernicus, 2021), the Spatial Production Allocation Model (SPAM) – Global Spatially-

Disaggregated Crop Production Statistics Data for 2010 (Yu et al., 2020; International Food Policy 

Research Institute, 2019), and the Food and Agriculture Organisation (FAO) of the United Nations 

Irrigation and Drainage Paper No.56 (Allen et al., 1998). 305 

 

Soil properties refer to physical characteristics of the soil and aim to describe the water dynamics 

through a vertical soil profile. In OS LISFLOOD, the soil profile is composed of three layers: superficial 
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(0 – 5cm), upper (5 – varying (30 – 50) cm) and lower soil layer. For each layer, variables representing 

soil hydraulic properties (e.g., soil moisture content, pore size index) are provided. Similarly to 310 

vegetation property maps, variables were mapped for two categories of land cover, ‘forest’ and ‘other’. 

Soil properties were derived from the International Soil Reference and Information Centre (ISRIC) 

global gridded SoilGrids dataset (release 2017) available at 250m  (Hengl et al., 2014), which is based 

on more than 150,000 observation sites and covariate data.  

 315 

A table summarizing all the static and dynamic surface field maps used to produce HERA is provided 

in Supplement Table S2. For more details on these surface fields maps, their production and input 

datasets used, we refer to (Choulga et al., 2023). 

2.3.2 Dynamic land use 

OS LISFLOOD includes six land use classes as inputs: rice, other irrigated land, forest, sealed surfaces, 320 

open water, and other (non-irrigated agriculture, non-forest natural, pervious artificial); these land use 

classes are mostly based on CLC-Refined 2006 dataset by Batista e Silva et al. (2013) in the default 

setting. Among hydrological processes, interception, evapotranspiration, infiltration, and surface runoff 

respond differently to each land use type. With the aim to better represent complex rainfall-runoff 

processes, OS LISFLOOD accounts for the sub-grid variability in land use. Therefore, the spatial 325 

distribution of each land use class is defined as a percentage of the whole represented area of a given 

pixel (OS LISFLOOD online documentation, 2023). The magnitude of the variation of hydrological 

response is tied to the magnitude of the changes in land cover. De Roo et al., (2001), for instance, 

investigated the effects of land use changes on floods in two European catchments and identified 

different results depending on the magnitude of the land cover change. While such changes tend to have 330 

a limited impact on river discharge, they can locally increase flood magnitude (Merz et al., 2021; 

Sajikumar and Remya, 2015; Van Lanen et al., 2013; Van Loon, 2015). We modified here the grid cell 

fractions of each land use class using HANZE-Exposure land use maps at 100 m resolution (Paprotny 

and Mengel, 2023) for 42 countries in the study area. In the remaining part of the domain, we used 

coarser, 5’ resolution maps from HYDE 3.2 (Klein Goldewijk et al., 2017) to modify the 2006 values. 335 

The temporal evolution of land area of each class is displayed in Figure 5.a. There has been a strong 

increase in sealed surfaces (+40%), while for the other relevant land use classes the changes are less 

than 10%, with more land occupied by irrigated agriculture (except rice), water surface (due to reservoir 

construction) and forests.  

2.3.3 Dynamic water abstraction 340 

Human water use, representing water withdrawal from the natural environment (e.g., rivers, reservoirs, 

groundwater) for human needs, is grouped into four main sectors: livestock, domestic, manufacturing 

industry, and energy production. In OS LISFLOOD, water use is supplied by surface water bodies and 
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groundwater depending on the sector (Choulga et al., 2023). A considerable increase in water 

abstraction in a region can diminish surface water resources within the same area. The model also 345 

accounts for groundwater abstraction for human use, except for flooded irrigation and cooling 

processes. Increased groundwater abstraction can locally reduce (or halt) baseflow. To derive monthly 

historic sectoral water withdrawal maps, we followed the methodology of Huang et al. (2018) and used 

the Food and Agriculture Organization (FAO) AQUASTAT sectoral water withdrawal data (Food and 

Agriculture Organisation, 2023) as a starting point. These data were subsequently spatially and 350 

temporally disaggregated using a variety of datasets. These include the Global Human Settlement Layer 

(Schiavina et al., 2019; Florczyk et al., 2019) for population estimates, the Global Change Analysis 

Model (GCAM; Calvin et al., 2019) for regional water withdrawal and electricity consumption, and the 

Gridded Livestock of the World (GLW; Gilbert et al., 2018) for livestock distribution. Additional 

datasets included the Multi-Source Weather (MSWX; Beck et al., 2022) for air temperature data, United 355 

States Geological Survey (USGS) water withdrawal estimates, and Vassolo and Döll (2005) industrial 

and thermoelectric withdrawal maps. More information on water demand and input datasets used is 

provided in Choulga et al. (2023).  

 

We extrapolated the water withdrawal maps to the period 1950-1978 using annual gridded 0.5 degree 360 

data from ISIMIP 3a (Frieler et al., 2024; Wada et al., 2016) that were downscaled to 1’ resolution 

using historical population data from HANZE (Paprotny and Mengel, 2023) and HYDE 3.2 (Klein 

Goldewijk et al., 2017) for other parts of the domain. More precisely, the ratio between EFAS high-

resolution water demand maps and the ISIMIP 3a dataset for 1979 was used to adjust water withdrawal 

data in each grid cell. Intra-annual (monthly) cycling of water use in the energy and domestic sectors 365 

was estimated for 1950–1978 using the same approach as for 1979–2020, informed by temperature data 

from our input meteorological dataset (section 2.3.1). Livestock water use was assumed constant before 

1979. Water demand and use for irrigation was computed directly by the hydrological model based on 

land use data and available water. The evolution of water use by sectors between 1950 and 2020 is 

displayed in Figure5.c as well as Supplementary Table S4. Total water use peaked in 1990 after more 370 

than doubling since the 1950s, before declining due to a drop in demand from manufacturing and energy 

sectors. Nonetheless, there are usually much stronger trends at country or catchment levels.  

 

2.3.4 Dynamic reservoir maps 

Reservoir maps contain the location and an identifier of reservoirs and are linked to tables containing 375 

metadata on storage capacity, construction year and a set of values associated to reservoir operation 

rules. Normal reservoir outflow rates were further adjusted through the model calibration (Section 

2.1.2). The year of construction for each reservoir was taken from the EFAS reservoirs database, 

HANZE (Paprotny and Mengel, 2023), Global Reservoir and Dam Database (GRanD) v1.3 (Lehner et 
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al., 2011), or additional manual research for reservoirs not covered by the three datasets. The reservoir 380 

maps are updated every simulation year (January 1st) by adding newly built reservoirs. When a reservoir 

is added, it is considered as empty and fills up according to its associated metadata. Figure5.b shows 

the evolution of the number of reservoirs in Europe during the period 1950 – 2020. The number of 

reservoirs in the model increased six-fold from 244 in 1950 to 1419 in 2020, though few were built 

since the late 1980s.  385 

 

 
Figure 4: Variation in socioeconomic inputs in the hydrological model, averaged over the entire EFAS domain: (a) land 

area by use category, 1950=100, (b) number of existing reservoirs, (c) water demand by sector in mm per grid cell per 

year, (d) shares of land use between the different classes in 2020.  390 

3 Results 

3.1 Technical validation 

We evaluated our hydrological reanalysis by comparison against a dataset of daily river discharge 

observations from 3,442 stations across Europe. Of the data obtained, 60% were from the Global Runoff 

Data Centre (GRDC) and 40% from national public datasets of France, Norway, Poland, Spain, Sweden 395 

and the United Kingdom. Furthermore, this dataset was compiled independently from the one used in 
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the EFAS calibration (Section 2.1.2). The stations’ record duration varies between 1 and 71 years. The 

selection of stations used for validation is based on several criteria: 

 Spatial matching: To link stations to their corresponding river pixel, we scanned the nine 

modelled pixels around the river gauge location. When information on the upstream area was 400 

available (for 60% of the stations), we retained the pixel with the closest upstream area to the 

reported one. For pixels without information on the upstream area, we retained the one with the 

closest simulated mean discharge (Qmean) to the observed one. For a more accurate spatial 

matching, we used the available LISFLOOD coordinates from the EFAS calibration (1026 

stations). A total of 546 stations did not match with LISFLOOD river pixels, mostly due to their 405 

upstream area being lower than 100 km2.  

 Upstream area verification: The spatial matching selected the closest upstream area for stations 

where we have information on catchment area. It is however possible that the reported 

catchment differs largely from its matched pixel upstream area. We removed stations where the 

difference between the pixel and observed upstream area was larger than 50% (51 stations). 410 

 Mean discharge comparison: For some stations, the ratio between observed and simulated Qmean 

was suspicious. This could be due to an erroneous spatial match (i.e., matching of a river with 

a station on a tributary). As uncertainty grows with smaller streams, we decided to remove those 

with a suspicious Qmean ratio ( rQmean >6 or rQmean >3 if Qmean,obs>10 m3/s) (49 stations) 

 Manual check: A manual verification was performed on 66 stations with KGE’<-0.41. Each 415 

station and its matching pixel were individually checked, resulting in the removal of 13 more 

stations due to wrong spatial matching, erroneous station location, and doubtful observations. 

The corresponding river pixel was manually set for 8 stations. Manually checked stations and 

the reason for their exclusion/inclusion are provided in Supplementary Table S5. 

 Finally, we removed stations with a record length shorter than 30 years (334 stations). This 420 

enabled a meaningful comparison between different locations in the validation process. 

 

This procedure resulted in the selection of 2,448 river stations across Europe, with an upstream area 

ranging from 100 to 785,421 km2. Among these stations, more than half (1,507) have an upstream area 

of less than 1000 km2 and a fifth (498) have an upstream area of less than 200 km2.  425 

 

The HERA reanalysis comes at a sub-daily resolution (6-hourly), but the performance could only be 

evaluated at the daily time step of the observational dataset. Discharge data from HERA was therefore 

aggregated (daily mean) for the technical validation. We expect performance to be slightly higher at 

daily scale, as the temporal aggregation tends to increase the correlation between observed and modelled 430 

discharge. Performance was assessed using the KGE’ on discharge data (Gupta et al., 2009; Kling et 

al., 2012). KGE’ was used as the standard performance metric in EFAS and GLOFAS (Harrigan et al., 
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2020; Cammalleri et al., 2020b), as well as in other hydrological model assessments (Lin et al., 2019; 

Harrigan et al., 2020; Beck et al., 2017) and is composed of three components: correlation, bias errors, 

and variability errors: 435 

𝐾𝐺𝐸′ = 1 − √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2 (1) 

𝛽 =  
𝜇𝑠

𝜇𝑜
 (2) 

𝛾 =  

𝜎𝑠
𝜇𝑠

⁄
𝜎𝑜

𝜇𝑜
⁄

 (3) 

where r is the Pearson correlation coefficient between simulated (s) and observed (o) flow, β is the bias 

ratio, γ is the variability ratio, μ the mean discharge, and σ the discharge standard deviation. KGE’ and 

its three components are dimensionless with an optimal value on 1. It is important to note here that 

KGE’ values should not be interpreted like the more traditional Nash-Sutcliff efficiency (NSE, Nash 

and Sutcliffe, 1970). Indeed, for KGE’ the mean flow benchmark has a value of 𝐾𝐺𝐸′ = 1 − √2 =440 

−0.41. Any value above -0.41 therefore exceeds the benchmark (Knoben et al., 2019), meaning that the 

model performs better than simply taking the mean.  

 

In Section 3.1.1, we assessed model performance across space, time (1951-2020) and catchment size, 

in order to identify strengths and weaknesses of HERA. Despite covering many aspects of the 445 

performance of hydrological models, KGE’ mainly focuses on mean values and give a higher weight to 

high extremes compared to low ones. As this dataset also aims to be used for long term analysis of 

hydrological extremes, we also evaluated how well high and low extremes are reproduced, including 

their timing and seasonality. 

 450 

3.1.1 Hydrological performance 

We quantified here the overall performance of HERA in terms of KGE’ as well as the decomposition 

of this indicator into its three components: correlation, bias and variability. Figure 5 displays the 

distribution of KGE’ and its three components across the 2,448 validation stations. We obtained a 

KGE’>-0.41 for 2,411 (98.5%) of them, meaning the reanalysis is skilful for these stations (Figure 5.a). 455 

The median KGE’ across all catchments is 0.55 while the mean is 0.46, although this value varies widely 

across catchments (Figure 5.a, Figure 6.a). The mean correlation value is relatively high (�̅�= 0.69) 

with 90% of the stations having r>0.5 (Figure 5.b). From Figure 5.c and Figure 5.d, we can observe 

that there is a tendency to slightly underestimate flows (�̅�= -13.1 %) and flow variability (�̅�= -14.2%). 

The bias ranges between 0.8 – 1.2 (0.5 – 1.5) in 50% (91%) of the river gauges, which is considered as 460 

very good for hydrological reanalysis (Harrigan et al., 2020; Alfieri et al., 2020; Lin et al., 2019; Yang 

et al., 2021).  

 



 

16 

 

 

Figure 5: HERA hydrological skill for the 2,448 selected stations in terms of (a) KGE’ and its three components: (b) 465 
Pearson correlation, (c) bias ratio, (d) variability ratio. In (a), the green dashed vertical line represent the benchmark 

KGE’ value (‘-0.41). The red vertical line represents the ideal values and the blue dot represents the median for all 

stations. 

 

Figure 6 shows the spatial performance of the model in terms on KGE’ and its components. The highest 470 

skill can be observed in central and north-western Europe. The vast majority of stations in UK, 

Germany, France, Austria, Switzerland (which together account for 51% of all 2,448 stations) exhibit a 

good (>0.5) to very good (>0.75) KGE’. On the other hand, performance is relatively poor in Spain, 

Cyprus, Scandinavia and Northern Poland. Factors that can explain the poor performances in southern 

Europe include the combination of arid climates and the strong influence of lakes and reservoirs (Figure 475 

7.c). Dry catchments where precipitation events are separated by long dry spells are in general very 

difficult to model (Cantoni et al., 2022). In Scandinavia, the negative bias (Figure 6.c) could be linked 

to an underestimation of precipitation and snowmelt in Scandinavian mountains (Beck et al., 2017, 

2020). Figure 6.d presents the variability ratio of simulated to observed flow. Overall, our reanalysis 

exhibits lower variability than observations, with 83% of the catchments having a variability ratio below 480 

one. The underestimation of variability was also found in the EFAS v5.0 run, although it is more 

pronounced in HERA. This could be explained by the different meteorological forcing used in the two 

runs. 
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Figure 6: KGE’ and its three components: (b) Pearson correlation, (c), bias ratio, (d) variability ratio at the 2448 river 485 
gauges considered in the validation of HERA. Point size are proportional to catchment size. 

 

We validate HERA on stations with a wide range of catchment area (mean upstream area of 7,615 km2), 

which has an impact on OS LISFLOOD performance (Harrigan et al., 2020). The set of 2,448 validation 

stations includes stations that were used in the calibration process (596) as well as stations in 490 

uncalibrated catchments (36) (See Supplementary Figure S1). In Figure 7, we break down the 

performance of the reanalysis according to different attributes of each catchment: time (Figure 7.a), 

catchment area (Figure 7.b), reservoir impact (Figure 7.c) and calibration status (Figure 7.d).  
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 495 

Figure 7: Boxplot of HERA KGE' according to different classifications of the 2,448 river stations used in the validation, 

(a) time, (b) catchment area and (c) reservoir impacts. Numbers inside boxplot represent the amount of river gauges 

for each category, while the colour of the boxplot represent the median performance of the group from low (light blue) 

to high (dark blue). 

Overall, the skill of HERA shows a slight increase through time with an increase of 21% of the KGE’med 500 

between the 1950s in the 2010s. The skill increases between 1951 and 1980 and then stabilizes from 

1981 to 2020, though the results are influenced by changes in gauge data availability over time. It could 

also be driven by improved climate inputs. Figure 7.b shows that model skill increases with catchment 

size, from a KGE’med of 0.44 (IQR 0.25 – 0.59) for the 498 smallest catchments (<200 km2) to 0.77 

(IQR 0.68 – 0.84) for the 28 largest catchments (>100,000 km2). Such patterns have already been 505 

observed at global scales (Harrigan et al., 2020). It is important to note here that the majority of stations 

used in this validation (62%) have an upstream area below 1000 km2 and the median upstream area of 

the 2448 stations is 583 km2. This is half of the median upstream area of the 1903 stations used in the 

calibration of EFAS-5 (CEMS-Flood online documentation, 2023).  

 510 

We also divided stations according to reservoir influence. From the 1420 reservoirs active in 2020 

(which represent the maximum amount over the considered time window), we estimated the impact of 

reservoirs on streamflow at grid-cell level. This was done by computing the ratio (c [-]) of reservoir 

volume to mean discharge (Nilsson et al., 2005) at every grid cell. The ratio has been computed with 

the accuflux function from PCRaster and compares the upstream cumulative reservoir capacity [m3] 515 

and the cell-specific annual volume of annual streamflow [m3] (Zajac et al., 2017). This ratio varies 
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between 0 and 1608 downstream of Embalse de Finisterre in central Spain. Most of the river grid-cells 

highly impacted by reservoirs are found in southern Europe, particularly in Spain and Bulgaria. Figure 

7.c highlights the influence of reservoirs on the skill of the reanalysis. River cells affected (medium and 

high, c >0.5) only represent 6% of stations and grid cells in the domain (Figure 2). Median skill is the 520 

lowest for highly impacted (c > 1) stations, with KGE’med = 0.24, whereas minimally impacted stations 

have a KGE’med of 0.55. This highlights the difficulty of large-scale hydrological models such as OS 

LISFLOOD to accurately simulate reservoir outflows (Zajac et al., 2017).  

 

Finally, we investigated the influence of calibration on the model skill. In Figure 7.d, River gauges are 525 

divided into four groups according to their calibration status. As displayed in Supplementary Figure 

S1, 83% of the stations considered in the validation fall into the domain calibrated for EFAS v5.0. We 

find a better performance for calibrated stations, (KGE’med = 0.64) and a comparable skill for stations 

within the calibrated domain (KGE’med = 0.52) and stations benefitting from the parameter 

regionalization (KGE’med = 0.47). The performance is much lower for catchments with default 530 

parameters, which here are limited to small (< 150 km2) coastal and endorheic catchments. 

 

3.1.2 Reproduction of extremes 

Large scale hydrological models forced by climate reanalysis often fail to reproduce extreme 

hydrological event characteristics in part due to the coarse spatial and temporal resolution (Brunner et 535 

al., 2021b; McClean et al., 2023). Here, we analyse how well HERA reproduces different flow quantiles 

(q05, median, q95) through the Person correlation coefficient and the coefficient of determination (R2) 

(Figure 8) for the 2448 considered catchments. The ability to capture annual maxima/minima and their 

seasonality is also assessed (Figure 9).  
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 540 

Figure 8: Scatterplot of observed versus simulated river flow quantiles [m3/s]: (a) 5% quantile, (b) median (q50), (c) 

95% quantile (q95) for the 2448 River gauges. 

Figure 8 displays scatter plots of observed versus simulated quantiles. Each point represents one of the 

2448 stations. We observe that low (5% quantile: Q05) and median (Q50) flows are generally well 

represented with R2 > 0.99 (Figure 8.a and Figure 8.b), especially for larger discharge values. 545 

However, despite this generally good agreement, there is a more pronounced deviation of simulated 

values from observations for lower flow values, expressed by a higher dispersion for Q05. These 

deviations can be attributed to bias in climate inputs (McClean et al., 2023), the hydrological model 
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(Feyen and Dankers, 2009), but also to errors in flow measurements, especially for Q05 (Despax, 2016; 

Tomkins, 2014) and anthropogenic impacts on low and median flow regimes (Brunner, 2021a) that are 550 

not accurately represented in the model (see Figure 8.c). The number of stations with large deviations 

in the reproduction of high flow statistics (Q95) is minor compared to Q05 and Q50. Nonetheless, despite 

a relatively high R2 (0.99), there is a general underestimation in the simulated values (Figure 8.c), 

which is common for large scale hydrological models. Similarly to low and median flows, errors in high 

flow statistics can be due to biases and smoothing of extremes in climate inputs and errors in the 555 

hydrological modelling. Uncertainty associated to flow measurements also play a major role for high 

flows, as rivers discharge are usually not directly measured during floods (Despax, 2016). Finally, the 

spatial and temporal resolution of the model can affect its ability to reproduce high flows, particularly 

for flash floods in small catchments. 

 560 

We also assessed the ability of the reanalysis to reproduce the timing of annual maxima and minima of 

discharge as well as their overall seasonality. As the daily temporal scale is not the most relevant when 

it comes to drought analysis with discharge data (Hannaford and Marsh, 2006; Kohn et al., 2019), 

annual minima were computed from 30-day moving average flows. Figure 9.a displays the mismatch 

in mean day of occurrence computed with circular statistics following Berghuijs et al. (2019). We 565 

observe that the median error in the mean day is very close to zero for both maxima (median = 0.1, 

IQR=-12 – 18) and minima (median= -1, IQR = -28 – 41), but with a much higher dispersion for annual 

minima compared to the annual maxima. The higher dispersion for low flows is due to the slow-onset 

nature of these events (Brunner et al., 2021a). Figure 9.b shows the difference in timing between 

simulated and observed annual maxima across the 2448 considered stations. Differences in timing are 570 

smaller over the Atlantic coast though a particularly high lag (simulated maxima delayed by 30 days or 

more in HERA) is observed over Poland and central Spain. For low flows (Figure 9.c), delays in central 

Europe are larger than 30 days, while in Scandinavia the timing can be up to several months too early. 

This can be explained by the high hybridity of river regimes (several high and low flow seasons) in 

these regions, which may be captured with varying accuracy in HERA. 575 
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Figure 9: Assessment of the ability of HERA to reproduce the timing of annual maximum and minim flows. (a) Violin 

plot of error in mean day of occurrence of annual maxima (daily discharge) and minima (30-day averaged discharge) 

computed with circular statistics. Inside each violin plot, boxplots display the median, 1st and 3rd quantiles. (b) 580 
Difference between the modelled and observed mean annual maxima date (positive value means a later occurrence in 

HERA). (c) Difference between the modelled and observed mean annual minima date (positive value means a later 

occurrence in HERA) 

 

In addition to the validation protocol presented in this section, we compared reported performances of 585 

HERA with other recent hydrological datasets and carried out a comparison between HERA and another 

recent hydrological simulation done with the grid-based conceptual mesoscale Hydrological Model 

(mHM) (Kumar et al., 2013; Samaniego et al., 2010; Samaniego et al., 2019, Thober et al., 2019) for 

Europe for the period 1960-2010. More details on the comparison are provided in Supplementary 

material (Figure S3-S6).  590 

 

3.2 Usage notes 

HERA brings together several improvements (climate, scale, socio-economic dynamics) to better 

simulate river discharge in catchments of Europe over the past 70 years. Despite covering still a 

relatively short period of time compared to human history on earth, these 70 years capture a very intense 595 

period of climate and socioeconomic change, often called the Anthropocene, and offers multiple 

research opportunities: 

 Assessment of long-term trends in European river regimes  
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 Provide benchmark data for “data poor” areas 

 Generate catalogues of flood and drought events 600 

 Identification of spatial and temporal correlations between European catchments 

 Identification of changes in hydrological extremes characteristics (frequency, magnitude, 

timing) 

 Combination with other data products for compound hazard analysis 

 Provide scenarios for flood inundation simulations 605 

In this section, we briefly present a possible usage of the data, addressing changes in regime for diverse 

rivers across Europe (Figure 10). 

 

Figure 10: Changes in flow regime between 1951-1981 (blue) and 1990-2020 (red) for six diverse European rivers: (a) 

Ardèche, (b) Schelde, (c) Ebro, (d) Rhone, (e) Danube and (f) Vistula. The regime is computed here as the 30-day 610 
moving average. Shaded coloured areas represent the IQR of discharge for every day of the year. The grey shaded area 

represents the absolute difference between the two regimes corresponding to different periods.  



 

24 

 

Figure 10 displays hydrological regimes, here represented as the mean of a 30 day’s average moving 

window over a given period, for six European rivers. These rivers differs in terms of hydrological 

regimes, with three main regimes represented: 615 

 Mediterranean pluvial regime for the Ardèche (a), with its recognisable high flows in autumn. 

 Pluvial or oceanic regime for the Schelde in Ghent (b) and the Ebro in Zaragoza (c) 

 Nival regime for the upper Rhone in Lyon (d), the Danube in Vienna (e) and the Vistula in 

Warsaw (f).  

These six rivers also vary in terms catchment area, geographic location (France, Austria, Poland, 620 

Belgium, Spain), climate (Mediterranean, Continental, Oceanic, Alpine) and geomorphological 

conditions. For each river the flow regime for 1951 - 1981 (in blue, first 30 years of HERA) and 1990 

– 2020 (in red, last 30 years of HERA) are shown. By comparing the two regimes, one can observe 

diverging patterns of changes among these rivers. For the two pluvial rivers, the Schelde and the Ebro 

(Figure 10.b-c), both pluvial rivers, we observe opposite patterns of change, the Schelde saw an 625 

increase of its average discharge throughout the year while the Ebro experienced a downward shift in 

regime. For the upper Rhone and Danube (Figure 10.d-e), which are influenced by snowmelt in their 

upper catchments, we see lower and earlier flow peaks in spring and summer. The Vistula (Figure 10.f) 

saw an overall increase in flow throughout the year. Finally, the Ardèche (Figure 10.a) has seen reduced 

flow throughout the year with a notable decrease in late winter which can be associated to the reduction 630 

of snowfall in the Massif Central where the Ardèche has its up waters (François et al., 2023). The timing 

of the autumn peak seem to have slightly shifted towards earlier dates, in agreement with a recent study 

on trends in Mediterranean floods (Tramblay et al., 2023). 

 

4 Discussion 635 

Recent developments in diverse fields, including climate, hydrology, remote sensing and computational 

sciences, have made the generation of high-resolution reanalysis products possible (Aerts et al., 2022; 

Hanasaki et al., 2022; Hoch et al., 2023). In this context, HERA brings discharge data for all European 

rivers with upstream area larger than 100 km2 for the period 1951-2020. With its refined spatial and 

temporal resolution, HERA represents hydrological processes in Europe with more detail than previous 640 

publicly available hydrological reanalysis products (Harrigan et al., 2020; Schellekens et al., 2017). 

Calibrating hydrological models can significantly improve river flow simulation (Beck et al., 2017; 

Kauffeldt et al., 2016). Parameters in 93.5% of the HERA domain were adjusted during a calibration 

process (Section 2.1.2) or parameter regionalization (Beck et al., 2016). This is a very high calibration 

coverage for a GHM (Beck et al., 2017), that can be explained by the relatively high coverage in river 645 

gauging stations in Europe. 
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It is difficult to compare HERA with other recent hydrological reanalyses such as GLOFAS-ERA5 

(Harrigan et al., 2020) and GRFR (Yang et al., 2021), for several reasons: (i) spatial coverage (global 

vs continental), (ii) spatial resolution (0.25º, 0.05º, 0.0167º), (iii) temporal coverage (iv) dynamic vs 650 

static socioeconomic conditions. We provide however a short summary of reported performances of 

HERA, GLOFAS-ERA5, GRFR and a European-scale hydrological simulation with the mHM model  

(EUmHM) in Supplementary Table S6. While the reported performances of HERA are higher than its 

global counterparts, thse are very close to the performance of EUmHM. In a more detailed comparison 

with EUmHM over 515 European river gauges (see Supplementary Material Figure S3-S6), we show 655 

that HERA generally outperforms the EUmHM run in terms of KGE’ (Figure S4) but both models 

exhibit strengths and weaknesses spatially (Figure S5) and in terms of the components of KGE’ (Figure 

S6). Differences in performances between the HERA and EUmHM run can be attributed to the many 

different features in the two runs, such as meteorological forcing, resolution, calibration, and flow 

routing within the hydrological model. Conversely, HERA shares a great number of features with the 660 

EFAS v5.0 reanalysis (Decremer et al., 2023), with slightly lower performance (not shown here). 

Nonetheless, EFAS v5.0 only covers the period 1990 – 2022 and assumes static socioeconomic 

conditions (land use, water abstraction, reservoirs).  

 

Similarly to other aforementioned hydrological reanalyses, HERA exhibits reduced performance in cold 665 

and semi-arid catchments. This can be related to deficiencies in the representation of snow processes 

within OS LISFLOOD or the underestimation of precipitation at northern latitudes (Beck et al., 2017, 

2020). Semi-arid environments are notoriously challenging areas for hydrological models due to the 

highly non-linear rainfall-runoff response and lower precipitation data quality (Cantoni et al., 2022). 

GHMs tend to poorly represent runoff in small-to-medium size catchments (10-10,000 km2) (Harrigan 670 

et al., 2020; Sood and Smakhtin, 2015), and nearly 90% of the catchments used in the validation of 

HERA (Section 3.1) are small-to-medium size catchments. The drop in performance with smaller 

catchment area in HERA remains, however, moderate compared to the GLOFAS-ERA5 global 

hydrological reanalysis (Harrigan et al., 2020). The presence of reservoirs also influences the 

performance of reanalyses. While including reservoirs in the hydrological modelling has a positive 675 

impact on model performance (Zajac et al., 2017), there is still a high level of uncertainty regarding the 

operating rules of each reservoir. Moreover, the 1422 reservoirs used to generate HERA most likely 

represent just a fraction, mainly the largest ones, of all operational reservoirs in the modelled domain 

(Speckhann et al., 2021). In summary, the main strength of HERA lies in its relatively low bias in 

comparison to the other hydrological datasets considered here (Table S6, Figure S6), while its 680 

performances are hampered by its underestimation of variability. 
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HERA is generated through hydrological modelling, which brings a suite of uncertainties that can be 

divided into four categories: (i) model inputs, (ii) model structure, (iii) parameter values and (iv) 

observations. It remains challenging to quantify these uncertainties, however, the quality of inputs, and 685 

more in particular climate inputs is often referred to as an important factor of uncertainty (Beck et al., 

2017; Sood and Smakhtin, 2015). Despite efforts in bias correction and downscaling of the climate 

input, it seems that on average, HERA slightly underestimates river discharges, with a more pronounced 

bias for high flows. As reported in other studies, negative biases can be related to an underestimation 

of precipitation in the climate inputs, in particular for extreme events (McClean et al., 2023; Mahto and 690 

Mishra, 2019), in high latitudes and  in (semi-)arid catchments (Beck et al., 2016; Sood and Smakhtin, 

2015, Hirpa et al., 2018). Model structure can also play an important role, as shown in Figure S6, where 

EUmHM is the best model in terms of correlation while HERA exhibits smaller bias ratio. This can be 

the result of different choices made in the main equation behind the two models, resulting in different 

responses to forcings and calibration. The large impact of model selection on streamflow and trend 695 

estimates is now increasingly acknowledged (Karlsson et al., 2016; Clark et al., 2016). Calibration 

generally improves streamflow simulations (Hirpa et al., 2018) and HERA also shows a better 

performance for stations used in the calibration process (Figure 7.d). The negative biases and variability 

ratios can be related to the different meteorological forcing (EMO-1) used in the calibration, although 

an underestimation of the variability was also found in the EFAS v5.0 run (that is forced by EMO-1). 700 

The method, parameters and skill metrics used for calibration further affects the uncertainties. Despite 

its qualities, the skill metric used for the calibration presented in Section 2.1.2 (KGE’) is known to 

result in an underestimation of variability (Brunner et al., 2021b) and to put more weight on high values 

(Garcia et al., 2017). This could partly explain the reduced performances in reproducing extreme low 

flows observed in Figure 8 and Figure 9. Other uncertainties can arise from surface field maps (Section 705 

2.3) and measuring of river discharges (instruments and rating curves). With sparser gauging and more 

complex hydraulic conditions for high and low flows, uncertainty rises (Despax, 2016).  

 

5 Data availability 

The HERA hydrological reanalysis and its climate and dynamic socioeconomic inputs are available via 710 

the JRC data catalogue (doi 10.2905/a605a675-9444-4017-8b34-d66be5b18c95). Table 1 provides a 

brief description of the dataset and Table 2 gives a general overview of the content of the dataset.  

 



 

27 

 

Table 1: Description of the HERA dataset 

DATASET DESCRIPTION 

Data type Gridded 

Projection WGS 1984 – EPSG 4326 

Spatial coverage EU27, UK, Switzerland, Iceland, Norway, Serbia, Montenegro, Bosnia-Herzegovina, 

Kosovo, North Macedonia, Albania 

Temporal coverage 01-01-1951 to 31-12-2020 

Temporal resolution Six-hourly data 

File format netcdf 

The dataset consists of three distinct folders that are described here and in Table 2: 715 

 Climate inputs: folder containing the climate forcing for the LISFLOOD hydrological model. 

Out of the five variables provided, three are at daily temporal resolution, potential 

evapotranspiration, potential evaporation and potential evaporation from bare soil (obtain with 

LISVAP, LISVAP online documentation, 2023), while two have a six-hourly time step, 

precipitation and temperature. The spatial resolution of the climate inputs is 1’. The files are in 720 

netcdf format with one file per year per variable for a total of 355 files (2.3 TB of data). 

 Socioeconomic inputs: folder containing the dynamic surface fields maps (Section 2.3), divided 

into three categories: land use, reservoirs and water demand. The land use subfolder contains 

426 yearly files (4.6 GB) of land use fraction maps for each six land use classes. The reservoir 

subfolder hosts 71 yearly files (3.6 GB) of reservoir location and identifier. Reservoirs are 725 

added/discarded from the simulation every year according to their construction/destruction 

data. Finally, the water demand subfolders contain four files (3.9 GB) representing water 

demand for the considered sectors (Section 2.3.3). Each file contains monthly maps of water 

abstraction for a given sector. All socioeconomic inputs are provided in the netcdf format. 

 River discharge: this folder contains river discharge netcdf files for each year at six-hourly time 730 

step for all European rivers with an upstream area greater than 100 km2 (2.3 GB per file, 166 

GB total). 

All data share the same projection (WGS 84) grid and spatial resolution (1’). Static surface fields maps 

were directly retrieved from the OS LISFLOOD static and parameter maps for Europe (2024) dataset, 

which were developed in the context of the new EFAS deployment (Decremer et al., 2023). It is 735 

important to note that HERA simulates discharge on a slightly smaller domain than the original EFAS 

domain, the mask used for HERA is also provided in the dataset.  

 

 

 740 
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Table 2: List of inputs and outputs of LISFLOOD provided in the HERA database (link here). 

Subfolder File Resolutions Variable/content Unit 

 area_hera_01min.nc 1’ mask of the hera domain  

climate_inputs/ 

e0 

e0_yyyy.nc 1’, daily potential evaporation computed with lisvap 

from downscaled and bias-corrected actual 

vapour pressure, solar radiations, min/max 

daily temperature and 10m wind speed.com 

mm.d-1 

climate_inputs/ 

et0 

et0_yyyy.nc 1’, daily potential evapotranspiration computed with 

lisvap from downscaled and bias-corrected 

actual vapour pressure, solar radiations, 

min/max daily temperature and 10m wind 

speed.com 

mm.d-1 

climate_inputs/ 

es0 

es_yyyy.nc 1’, daily potential evaporation from bare soil 

computed with lisvap from downscaled and 

bias-corrected actual vapour pressure, solar 

radiations, min/max daily temperature and 

10m wind speed. 

mm.d-1 

climate_inputs/ 

pr6 

pr6_yyyy.nc 1’, six-

hourly 

downscaled and bias-corrected six-hourly 

precipitation 

mm.d-1 

climate_inputs/ 

tp6 

ta6_yyyy.nc 1’, six-

hourly 

downscaled and bias-corrected six-hourly 

average temperature 

ºc 

socioeconomic_

maps/landuse 

fracforest_european

_01min_yyyy.nc 

1’, yearly fraction of pixel area covered by evergreen 

and deciduous needle leaf and broad leaf 

tree areas 

 

socioeconomic_

maps/landuse 

fracsealed_europea

n_01min_yyyy.nc 

1’, yearly fraction of pixel area covered by urban 

areas, characterizing the human impact on 

the environment 

 

socioeconomic_

maps/landuse 

fracirrigated_europ

ean_01min_yyyy.nc 

1’, yearly fraction of pixel area covered by irrigated 

areas of all possible crops excluding rice 

 

socioeconomic_

maps/landuse 

fracwater_european

_01min_yyyy.nc 

1’, yearly fraction of pixel area covered by rivers, 

freshwater and saline lakes, ponds and other 

permanent water bodies over the continents 

 

socioeconomic_

maps/landuse 

fracrice_european_

01min_yyyy.nc 

1’, yearly fraction of pixel area covered by irrigated 

areas of rice 

 

socioeconomic_

maps/landuse 

fracother_european

_01min_yyyy 

1’, yearly fraction of pixel area covered by 

agricultural areas, non-forested natural 

area, pervious surface of urban areas 

 

socioeconomic_

maps/reservoirs 

res_european_01mi

n_yyyy.nc 

1’, yearly location and identifier of each reservoir  



 

29 

 

socioeconomic_

maps/water_de

mand 

dom_1950_2020.nc 1’, monthly daily supply of water volume for indoor and 

outdoor household purposes and for all the 

uses that are connected to the municipal 

system (e.g., water used by shops, schools, 

and public buildings) 

mm.d-1 

socioeconomic_

maps/water_de

mand 

ene_1950_2020.nc 1’, monthly daily supply of water volume for fabricating, 

processing, washing and sanitation, cooling 

or transporting a product, incorporating 

water into a product 

mm.d-1 

socioeconomic_

maps/water_de

mand 

ind_1950_2020.nc 1’, monthly daily supply of water volume for the cooling 

of thermoelectric and nuclear power plant 

mm.d-1 

socioeconomic_

maps/water_de

mand 

liv_1950_2020.nc 1’, monthly daily supply of water volume for domestic 

animal need 

mm.d-1 

river_discharge dis.herayyyy.nc 1’, six-

hourly 

river discharge for river pixels with 

upstream area>100km2. 

m3.s-1 

 

6  Conclusion 

Despite the limitations discussed above, HERA represents a state-of-the-art, high-resolution, long-term 

hydrological reanalysis for Europe in the form of homogeneous river flow data generated with the OS 745 

LISFLOOD model. To our knowledge, no other publicly available hydrological reanalysis currently 

provides discharge data at similar scales and spatiotemporal coverage for Europe. The inclusion of 

dynamic socioeconomic conditions provides a more realistic reanalysis of river flows in heavily 

managed European catchments. The increased spatial resolution improves the performance due to a 

better representation of hydrological processes and inputs required to simulate them, including the river 750 

network (Hoch et al., 2023; Thober et al., 2019). HERA advances the reanalysis of extreme hydrological 

events, notably by the sub-daily temporal resolution and high-resolution bias corrected climate input. 

The magnitude and seasonality of extremes are fairly reproduced, even if biases exist in some regions 

(e.g., central Poland, southern Spain). The dataset covers 70 years and is therefore suited for the analysis 

of long-term trends of several hydrological signatures. The modelling framework developed here 755 

further forms a basis for creating alternative (counterfactual) time series of river discharges where 

climatic or socioeconomic conditions can be kept static, enabling the attribution of changes in 

hydrological regimes across Europe (Kreibich et al., 2019; Sauer et al., 2021; Scussolini et al., 2023).  
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