Soil and tree stem xylem water isotope data from two pan-

2 European sampling campaigns

- 3 Marco M. Lehmann^{1,*}, Josie Geris², Ilja van Meerveld³, Daniele Penna⁴, Youri Rothfuss⁵, Matteo Verdone⁴, Pertti
- 4 Ala-Aho⁶, Matyas Arvai⁷, Alise Babre⁸, Philippe Balandier⁹, Fabian Bernhard¹, Lukrecija Butorac¹⁰, Simon D.
- 5 Carrière¹¹, Natalie C. Ceperley¹², Zuosinan Chen⁶, Alicia Correa¹³, Haoyu Diao¹, David Dubbert¹⁴, Maren
- 6 Dubbert¹⁴, Fabio Ercoli¹⁵, Marius G. Floriancic¹⁶, Alligin Ghazoul¹, Teresa E. Gimeno¹⁷, Damien Gounelle¹⁸,
- 7 Frank Hagedorn¹, Christophe Hissler¹⁹, Frédéric Huneau²⁰, Alberto Iraheta²¹, Tamara Jakovljević²², Nerantzis
- 8 Kazakis²³, Zoltan Kern²⁴, Laura Kinzinger²⁵, Karl Knaebel²⁶, Johannes Kobler²⁶, Jiri Kocum²⁷, Charlotte Koeber¹⁴,
- 9 Gerbrand Koren²⁸, Angelika Kübert²⁹, Dawid Kupka³⁰, Samuel le Gall⁵, Aleksi Lehtonen³¹, Thomas Leydier²⁰,
- 10 Philippe Malagoli⁹, Francesca Sofia Manca di Villahermosa⁴, Chiara Marchina³², Núria Martínez-Carreras¹⁹,
- Nicolas Martin-StPaul¹⁸, Hannu Marttila⁶, Aline Meyer Oliveira³, Gael Monvoisin³³, Natalie Orlowski³⁴, Kadi
- Palmik-Das¹⁵, Aurel Persoiu³⁵, Andrei Popa³⁶, Egor Prikaziuk³⁷, Cécile Quantin³³, Katja T. Rinne-Garmston³⁸,
- Clara Rohde¹⁴, Martin Sanda³⁹, Matthias Saurer¹, Daniel Schulz⁵, Michael P. Stockinger⁴⁰, Christine Stumpp⁴⁰,
- 14 Jean-Stéphane Vénisse⁹, Lukas Vlcek²⁸, Stylianos Voudouris⁴¹, Björn Weeser¹³, Mark Wilkinson⁴², Giulia
- 15 Zuecco³³, Katrin Meusburger¹
- *Correspondence to: Marco M. Lehmann (<u>marco.lehmann@wsl.ch</u>)
- 19 ¹Forest and Soil Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf,
- 20 Switzerland
- ²School of Geosciences, University of Aberdeen, Aberdeen, United Kingdom
- ³Department of Geography, University of Zurich, Zurich, Switzerland
- ⁴Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence/Firenze,
- 24 Italy

16

- ⁵Institute of Biogeosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany
- ⁶Water, Energy and Environmental Engineering Research Unit, University of Oulu, Oulu, Finland
- ⁷Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Budapest, Hungary
- 28 Faculty of Science and Technology, University of Latvia, Riga, Latvia
- ⁹Université Clermont Auvergne, INRAE, UMR PIAF 63000 Clermont-Ferrand, France
- 30 ¹⁰Department of Forestry, Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
- 31 ¹¹UMR HSM, IRD, UM, CNRS, 34093 Montpellier, France
- 32 ¹²Hydrology Group, Institute of Geography & Oeschger Centre for Climate Change Research, University of Bern,
- 33 Bern, Switzerland
- 34 ¹³Centre for International Development and Environmental Research (ZEU), Justus Liebig University Giessen,
- 35 Germany
- 36 ¹⁴Ecophysiology of Water and Matter Cycling, Leibniz Centre for Agricultural Landscape Research (ZALF),
- 37 Müncheberg, Germany

- 38 ¹⁵Chair of Hydrobiology and Fisheries, Institute of Agricultural and Environmental Sciences, Estonian University
- 39 of Life Sciences, Tartu, Estonia
- 40 ¹⁶Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, Switzerland
- 41 ¹⁷CREAF, Bellaterra, Spain
- 42 ¹⁸URFM, INRAE, Domaine Saint Paul, Site Agroparc, Avignon, France
- 43 ¹⁹Catchment and Ecohydrology group, Environmental Sensing and Modelling unit, Luxembourg Institute of
- 44 Science and Technology, Belvaux, Luxembourg
- 45 ²⁰Université de Corse, CNRS UMR 6134 SPE, Campus Grimaldi, BP52, 20250 Corte, France
- 46 ²¹Institute for Geoecology, TU Braunschweig, Braunschweig, Germany
- 47 ²²Division for Forest Ecology, Croatian Forest Research Institute, Jastrebarsko, Croatia
- 48 ²³Laboratory of Hydrogeology, Department of Geology, University of Patras, Faculty of Natural Sciences, Rion,
- 49 Patras, Greece
- 50 ²⁴Institute for Geological and Geochemical Research, HUN-REN Research Centre for Astronomy and Earth
- 51 Sciences, Budapest, Hungary
- 52 ²⁵Ecosystem Physiology, Faculty of Environment and Natural Resources, Albert-Ludwig-University of Freiburg,
- 53 Freiburg, Germany
- 54 ²⁶Ecosystem Research & Environmental Information Management, Environment Agency Austria, Vienna, Austria
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czech
- 56 Republic
- 57 ²⁸Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
- 58 ²⁹Institute for Atmospheric and Earth System Research / Physics, University of Helsinki, Helsinki, Finland
- ³⁰Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Kraków, Poland
- 60 ³¹Natural Resources Institute Finland (Luke), Helsinki, Finland
- 61 ³²Department of Land, Environment, Agriculture and Forestry, University of Padova, Legnaro, Italy
- 62 ³³Université Paris-Saclay, UMR8148 GEOPS, Orsay, France
- 63 ³⁴Chair of Forest Sites and Hydrology, Institute of Soil Science and Site Ecology, TU Dresden, Tharandt, Germany
- 64 35Emil Racovita Institute of Speleology, Romanian Academy, Cluj-Napoca, Romania and Stable Isotope
- 65 Laboratory, Stefan cel Mare University, Suceava, Romania
- 66 ³⁶National Institute for Research and Development in Forestry "Marin Dracea", Bucharest, Romania
- 67 ³⁷Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, Netherlands
- 68 38Stable Isotope Laboratory of Luke (SILL), Natural Resources Institute Finland (Luke), Finland
- 69 ³⁹Dept. of Landscape Water Conservation, Faculty of Civil Engineering, Czech Technical University in Prague,
- 70 Prague, Czechia
- 71 ⁴⁰Institute of Soil Physics and Rural Water Management, Department of Landscape, Water and Infrastructure,
- 72 BOKU University, Muthgasse 18, 1190 Vienna, Austria
- 73 ⁴¹Earth Sciences and Environmental Technologies Division, IFP Energies Nouvelles, Rueil-Malmaison, France
- 74 ⁴²Environmental and Biochemical Sciences, James Hutton Institute, Aberdeen, United Kingdom

Abstract. The stable isotope ratios of hydrogen (δ^2 H) and oxygen (δ^{18} O) are useful for studying ecohydrological dynamics in forests. However, most isotope-based studies are limited to single sites, resulting in a lack of largescale isotope data for understanding tree water uptake. Here, we provide a first systematic isotope dataset for soil and stem xylem water collected during two pan-European sampling campaigns at 40 beech (Fagus sylvatica), spruce (Picea abies), or mixed beech-spruce forest sites in spring and summer 2023 (Lehmann et al., 2024). The dataset is complemented by additional site-, soil-, and tree-specific metadata. The samples and metadata were collected by different researchers across Europe following a standardized protocol. Soil samples were taken at up to 5 depths (ranging from 0 to 90 cm) and stem xylem samples from the trunks of three beech and/or spruce trees per site. All samples were sent to a single laboratory, where all analytical work was conducted. Water was extracted using cryogenic vacuum distillation and analyzed with an isotope laser spectrometer. Additionally, a subset of the samples was analyzed with an isotope ratio mass spectrometer. Data quality checks revealed a high mean total extraction efficiency, mean water amount (> 1 mL), accuracy, and precision. The isotopic signature of soil and stem xylem water varied as a function of the geographic origin and changed from spring to summer across all sites. While δ^2 H and δ^{18} O were strongly correlated, the soil water data plotted closer to the Global Meteoric Water Line (GMWL) than the stem xylem water. Specifically, the δ^2H values of the xylem water were more enriched than those of the soil water, leading to a systematic deviation from the GMWL. Isotopic enrichment of the stem xylem water was larger for spruce than for beech trees at mixed forest sites. This dataset is particularly useful for largescale studies on plant water use, ecohydrological model testing, and isotope mapping across Europe.

Keywords: Critical Zone Science, Europe, Forest, Hydrology, Hydrogen Isotopes, Oxygen Isotopes, Root Water
 Uptake, Soil Water Recharge, Water Stable Isotopes, Isoscape, Water Sources.

1 Introduction

7576

77

78

79

80

81

82

83

84

85

86

87

88 89

90

91

92

95

96

97

98

99

100

101

102

103

104105

106

107

108

109

110

111

112

113

Understanding how tree water uptake from soils varies with species, site characteristics, time, and across climate zones is essential to assess forest resistance and resilience to climate change; particularly the response of forests to the increasing frequency and intensity of droughts (Lindner et al., 2010; Spinoni et al., 2014; Büntgen et al., 2021). Despite some uncertainties, the stable isotope ratios of hydrogen ($\delta^2 H$) and oxygen ($\delta^{18} O$) in water extracted from soil and plants allow for the estimation of the sources of water that are used by plants and to quantify the relative contributions of different water sources to plant water use (Rothfuss and Javaux, 2017; Beyer and Penna, 2021). Estimates of water uptake patterns based on isotope data assume that roots do not discriminate against the heavier stable isotopes during water uptake (Poca et al., 2019). Additionally, it is assumed that: (i) the sampling design captures all end-members with a proper representation of the spatiotemporal variability of their isotopic composition, (ii) the water extracted from the plant xylem is a mixture of the different water sources taken up from the soil profile without isotopic alteration (e.g., due to stem evaporation, see Ellsworth and Sternberg (2015)), and (iii) soil and xylem samples are collected, transported, stored, and extracted in a manner that avoids isotope fractionation (Ceperley et al., 2024). Although these assumptions are not always met, the method can either independently or in combination with other measurements (e.g., in combination with assessment of physiological or hydraulic traits) be used to effectively determine plant responses to both short- and long-term droughts. Isotopebased analyses in forest ecosystems have, for example, been used to determine the changes in root water uptake depths of trees in response to drought (Brinkmann et al., 2018; Gessler et al., 2022), whether trees use summer or winter precipitation (Allen et al., 2019; Floriancic et al., 2024a), soil water, groundwater, or streamwater (Bowling 3

114 et al., 2017; Engel et al., 2022), or to assess competitive or complementary water use strategies (Penna et al., 2020; 115 Kinzinger et al., 2024). The method is now also affordable enough for practical applications beyond the field of 116 isotope ecohydrology (Penna et al., 2018). 117 However, systematic datasets at large scales, i.e., spanning continents or multiple countries, are lacking. This 118 hampers our understanding of how water uptake strategies for the same tree species vary across space and time 119 (Beyer and Penna, 2021; Orlowski et al., 2023; Dubbert and Werner, 2019; Bachofen et al., 2024). There are 120 established networks for the observation of isotopes in freshwater systems, such as precipitation by the 121 International Atomic Energy Agency (IAEA) Global Network of Isotopes in Precipitation (GNIP), which currently 122 contains data for 300 active sites in 93 countries (Terzer-Wassmuth et al., 2023). The Global Network of Isotopes 123 in Rivers (GNIR) contains data from 750 sites in 35 countries (Halder et al., 2015). Both networks provide valuable 124 input data for modeling of local to regional climate or surface-atmosphere water interactions with process-based 125 (e.g., CLM, Wong et al. (2017), ISOLSM Cai et al. (2015), ECHAM5-JSBACH Haese et al. (2013)) or statistical 126 models (e.g., Isoscapes; (Bowen, 2010; Terzer et al., 2013; Allen et al., 2018; Koeniger et al., 2022)), and time 127 series analyses (Nelson et al., 2021; Erdélyi et al., 2023; Reckerth et al., 2017). They have furthermore helped to 128 assess water flow pathways and the fraction of young water in streamflow (Von Freyberg et al., 2018; Floriancic et al., 2024b). The Moisture Isotopes in Biosphere and Atmosphere (MIBA) network, initiated by the IAEA in 129 130 2003-2004, is a rare example of an international network to survey the isotopic composition of water across different ecosystem compartments (i.e., soil, plant stems and leaves, and atmospheric vapor). However, despite 131 132 the global distribution of sites at the time of the establishment and a local application in Australia (Twining et al., 133 2006), the network is currently inactive. 134 Building on the idea of the MIBA and the proven usefulness of national large-scale sampling campaigns to 135 determine regional differences in tree water uptake (Allen et al., 2019), the COST Action "WATer isotopeS in the 136 critical zONe: from groundwater recharge to plant transpiration WATSON" (CA19120) organized two sampling 137 campaigns across Europe in 2023. The effort took advantage of the European network of researchers to establish a unique systematic water isotope dataset and corresponding metadata. More specifically, the goal of the sampling 138 campaigns was to obtain soil and stem xylem water isotope data of two tree species, namely beech (Fagus sylvatica 139 L.) and spruce (Picea abies (L.) H. Karst) across a large climate gradient for the spring (25th May to 16th June) and 140 summer (17th August to 18th September) of 2023. The two time points were selected to compare tree water uptake 141 142 patterns under different soil moisture conditions (i.e., expected lower soil moisture in summer). The two species 143 were selected because of their wide geographical distribution across Europe (Figure 1), their ecological and 144 economical relevance, and the expected differences in water uptake depth (Allen et al., 2019; Brinkmann et al., 145 2018; Goldsmith et al., 2019) because beech trees typically have a deeper rooting system than spruce trees. 146 During the sampling campaigns, a total of 381 soil and 311 stem (i.e., trunk) xylem samples were taken from 40 147 sites in 18 countries, following a standardized protocol. The water of these samples was cryogenically extracted 148 and analyzed for its isotopic composition in a single laboratory. The simultaneous collection of soil and stem xylem samples across all sites, combined with the centralized processing of the samples, results in a unique dataset. 149

Using one laboratory prevents inconsistencies that might arise from varying sample handling and analysis methods, which can lead to isotopic offsets (Orlowski et al., 2016; Orlowski et al., 2018). The isotope dataset is

accompanied by site-, soil-, and tree-specific metadata for each site. This includes geographic details, information

150

- on soil type, texture and maximum depth, details on forest stands, tree diameter and height, sampling information, 154 as well as data on canopy cover/gap fractions as indicators for stand density and tree health and crown defoliation 155 (Bussotti et al., 2024). Together, the metadata and isotope data provide a strong foundation for future research on 156 tree water use, model testing, and isotope mapping. This manuscript outlines the sample collection process, 157 cryogenic water extraction method and isotope analysis, and details on the dataset organization and metadata. 158 Finally, we give an overview of the data and discuss potential applications. The full dataset is freely available from the Envidat repository (Lehmann et al., 2024).
- 159

2 Material and Methods

153

160

161

162

163

164

165

166

167

168 169

170

171

172

173

174

175

176

177

178

179

180

2.1 Organization of the WATSON pan-European sampling campaigns

During the initial phase (spring 2023), the members of the WATSON community (~200 members at that time) were contacted to assess their interest in participating in a coordinated sampling campaign. Based on the large interest, a core team was formed. The core team asked researchers from a similar region to form one team and decide on a single sampling location to keep the laboratory and analytical work manageable, while still obtaining samples from a broad geographic region. The core team wrote detailed instructions to ensure a consistent sampling procedure at all sites. The instructions provided detailed standardized protocols for collecting the soil samples and stem xylem samples from trunks, including specifications for sampling depths, core dimensions and numbers, and the maximum number of samples. The protocols also covered short-term sample storage and shipment to the Swiss Federal Institute for Forest, Snow, and Landscape Research in Birmensdorf, Switzerland (WSL Birmensdorf), where all cryogenic water extractions and isotopic analyses were performed. In addition, participants were given instructions on how to take pictures for canopy cover analysis and the list of required metadata (e.g., geographical location, soil properties, tree diameter and height). The instructions were emailed to all interested contributors prior to the first sampling campaign in spring 2023 (Supplementary materials S1). For the second campaign in summer 2023, the sampling protocol was slightly updated for clarity (i.e., addition of the weather conditions on the sampling day, bark removal during stem xylem sampling, a reminder to avoid sampling the heartwood, labelling of exetainers, taking photos) and was again sent to all interested contributors by email (Supplementary materials S2). In addition, we held an online meeting between the two sampling campaigns to provide feedback to the participants, clarify any field issues, and answer questions.

2.2 Description of the sampling sites

- 181 Samples were taken from different mono-specific forest sites with beech trees (Fagus sylvatica; 14 sites), spruce 182 trees (*Picea abies*; 13 sites), or mixed forest sites with both tree species (13 sites). Of the 40 sites located in 18 183 European countries (Figure 1; Table 1), 36 were sampled in the spring and 39 in the summer. For 35 of the 40 sites, samples were collected during both campaigns. At three of the sampling sites, beech (LIZ1, GLS1, WEI1) 184 185 and spruce (LIZ2, GLS2, WEI2) stands were found close to each other (i.e., the sampling sites share the same
- 186 geographic coordinates).
- 187 Although there was a good cover of sites across central Europe for both species, most north-eastern sites were sampled for spruce only; the sampled beech trees extended more to south-western Europe. The sampling sites 188 189 correspond to the natural and naturalised ranges of the tree species across Europe (Figure 1) and cover a range of 190 temperate (Köppen-Geiger Cfa, Cfb, Csb) and cold (Köppen-Geiger Dfb, Dfc) climates. The sampling sites

differed in elevation (14 to 1870 m a.s.l.; Table 1). The sampling sites were evenly distributed across different slope categories (i.e., flat, gentle, and steep). Most sites were located on Cambisols or Leptosols; with just one Histosol (i.e., peat at the ROT site in Finland). The maximum soil depth varied between 0.3 m and > 1 m. For half of the sites was the maximum soil depth > 0.6 m.

Canopy cover was estimated for 30 of the 40 sampling sites from non-hemispherical photographs taken systematically at varying distances from the stem with a smartphone camera (Supplementary materials S3). Most of the pictures were taken during the spring campaign, however, for some sites, pictures were taken during the summer campaign or both campaigns. For the sites for which canopy cover could be determined, it was generally higher for the beech trees than the spruce trees (Table 1).

Table 1: Summary statistics for the two sampling campaigns across 18 European countries.

* these numbers include the 13 sites with both species.

- **Köppen-Geiger classification based on Beck et al. (2023)
 - *** based on the average value for all photos for each sampling site

		Beech	Spruce
Number of sites*		27	26
Number of sites sampled during both campaigns*		24	23
Elevation [m a.s.l.]	Min	63	14
	Mean	756	648
	Max	1541	1870
Climate** (Köppen-	Cfa	1	0
Geiger classification) [number of sites]	Cfb	10	6
	Csb	1	0
	Dfb	14	14
	Dfc	1	6
Tree height [m]	Min	7	4
	Mean	22	23
	Max	44	39
Diameter at breast	Min	11	8
height (DBH) [cm]	Mean	39	36
	Max	87	65

Canopy cover*** (%)	Min	58	54
	Mean	88	80
	Max	100	94

207

208

209

210211

212

213

214

215

216

217

218

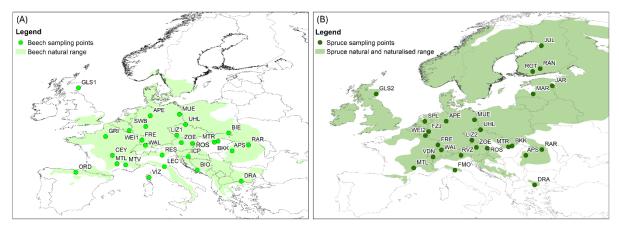
219

220

221

222

223


224225

226

227

228

229

Figure 1. Maps showing the sampling sites (circles) for beech (A) and spruce (B) trees and their natural and naturalised ranges across Europe (shaded areas; data from Caudullo et al. (2017)).

2.3 Sampling, transport, and storage of stem xylem and soil samples

At each sampling site, three beech (Fagus sylvatica) and/or three spruce (Picea abies) trees were selected based on their representativeness for the stand. The selected spruce and beech trees ranged in size but were similar in mean height (22-23 m) and diameter at breast height (36-39 cm, Table 1). Stem xylem samples were taken from the trunk of each selected tree at breast height using a 0.5 cm increment borer. Thus, in this study, "stem" refers specifically to the trunk of the tree, excluding branches and other aboveground components. The same three trees were sampled during both campaigns at each site, except at the beech site GRI, where different trees were sampled in spring and summer, and at the beech site MTV, where samples were taken from six trees. This resulted in a total of 311 stem xylem samples. Each stem xylem sample (one per selected tree) consisted of two to three generally fully intact wood cores, with an average length of 5.5 ± 1.5 cm for beech and 4.8 ± 1.6 cm for spruce (mean \pm SD). The outer and inner bark of the wood cores were removed from the cores, yet, bark residue was observed in 40% of all stem xylem samples after cryogenic water extraction. The wood cores mainly reflect sapwood as participants were instructed to avoid sampling the heartwood because there are indications of isotopic differences between sapwood and heartwood (Fabiani et al., 2022). However, we cannot fully rule out the presence of heartwood in some samples as visual determination of the heartwood after water extraction was not possible. A heartwood correction based on mean wood core length and tree diameter could be developed. Such an adjustment may be particularly important for samples from smaller spruce trees, which are likely to have limited sapwood depth (Peters et al., 2019).

In addition to the stem xylem samples, soil samples were taken with a manual soil auger at a location between the selected trees. The samples were taken from a single soil core at three to five depths, typically at 10 cm intervals (0-10, 10-20, 20-30, 50-60, and 80-90 cm below the surface). In some cases, other depths were sampled, or the sampling interval was 20 cm. The number of soil samples and the depth of the deepest soil sample depended on

230 the soil properties (e.g., rocky soils) and the maximum soil depth at the sampling location. The litter was removed

before taking the 0-10 cm soil sample. At some sites and during certain campaigns, soil samples were also taken

from two to three additional nearby locations (up to four in total), resulting in a varying number of samples and

sampling depths. For a few sites with both species (i.e., DRA, FRE, UHL, ZOE), soil cores were taken separately

for beech, spruce, and both species. In total 381 soil samples were taken.

235 Stem xylem and soil samples were transferred into 12 mL gas-tight glass vials ("Exetainers", Labco, Lampeter,

UK). For the soil samples, exetainers were filled with 50-80% of their volume with soil. Some soil and stem xylem

samples (13% of all 692 samples) were stored in other types of gas-tight plastic or glass vials. Most samples were

taken midday on dry and sunny days. Samples were handled as quickly as possible to avoid evaporative

fractionation. Back in the laboratory, all samples were stored in a refrigerator to avoid moisture loss to evaporation

and subsequent isotope fractionation (as well as to reduce microbial growth and the decomposition of the organic

material) until transportation. All samples were then shipped without cooling and arrived within four weeks of the

final day of each sampling campaign at the laboratory at WSL Birmensdorf in Switzerland, where they were kept

243 at -20°C until cryogenic water extraction.

231

234

237

238

239

240

241

242

244

247

248249

250251

253

254

256

263

264

2.4 Cryogenic vacuum water extraction

Water was extracted from all 692 samples at WSL Birmensdorf using a cryogenic vacuum distillation method as

described in Diao et al. (2022). In brief, the exetainers with the samples were taken from the freezer and fitted with

polypropylene fiber filters (Nozzle protection filter, Socorex Isba SA, Ecublens, Switzerland) to prevent particles

from being drawn into the extraction line. Samples originally stored in other types of vials (N = 90) were

transferred to exetainers that fit the cryogenic vacuum distillation system. Samples were then heated to 80°C in a

water bath, while the extraction line was kept under a vacuum of < 5 Pa (BS2212, Brook Crompton Ltd, Doncaster,

UK). The extracted water was trapped in U-shaped glass tubes, kept in liquid nitrogen. After a minimum of 2

252 hours, water extraction was stopped and atmospheric pressure was established in the extraction line by passing dry

nitrogen gas through it. Then, the U-shaped tubes were removed, the ends of the tubes were closed with rubber

plugs and the water samples were thawed at room temperature. Depending on the extracted water amount, the

water was pipetted to 350 μL or 2 mL glass vials (Infochroma AG, Goldau, Switzerland) and kept frozen at -20°C

until isotope analysis. A few samples that appeared turbid after extraction were filtered with 0.45 μm nylon syringe

257 filters (Infochroma AG).

We determined the sample weight before water extraction ("fw"), after water extraction ("dw1"), and after drying

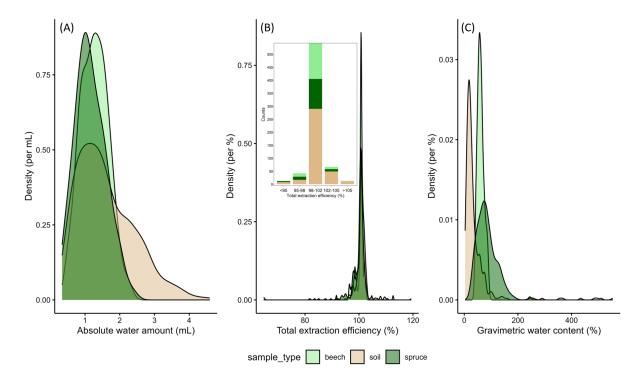
at 105°C for 24 hours (dw2) to estimate the absolute water amount ("awa"), the total extraction efficiency ("tef"),

and the gravimetric water content (gwc) for each sample (for equations, see Table 3). The sample weights (i.e.,

261 "fw", "dw1", "dw2") were corrected for the weight of the exetainer ("exe_weight", Table 3, Supplementary

262 materials S4). The latter was based on the mean weight of approximately thirty exetainers for 8 different types

("exe type") based on different combinations of glass vial shapes, caps with or without a rubber seal, and the


presence of a label (see Table 3 and Supplementary materials S4). The average weight of the exetainers was 13.0

 $\pm 0.2 \text{ g (SD)}.$

Across all soil and stem xylem samples (Figure 2A), the extracted amount of water ("awa") averaged around 1.4

267 mL and was well above the critical threshold for extracted water volume of 0.6 mL for the vast majority of samples

(Diao et al., 2022). The average value for the total extraction efficiency ("tef") was 100.6% (Figure 2B) and was for most samples (N = 543) within the optimal range (Ceperley et al., 2024). The gravimetric water content ("gwc") varied among sample types and averaged 41% for soil, 61% for beech xylem, and 84% for spruce xylem samples (Figure 2C). The very high soil gwc values (> 200%) were all obtained for samples from the ROT site and reflect the high organic matter content (i.e., peat soil) for this site. Note that variations in "awa", "tef", and "gwc", and "tef" values > 100%, may partly be due to uncertainties arising from the exetainer weights ("exe_weight"; Table 3), reflecting an average value rather than the actual weight of each exetainer.

Figure 2: Density plots for (A) the extracted absolute water amounts (awa), (B) the total extraction efficiency (tef), and (C) the gravimetric water content (gwc) for stem xylem (beech and spruce) and soil samples for all samples analysed (i.e., from all sites (and depths) and sampling campaigns). The insert in figure (B) shows the sample count for different types of samples across five different tef classifications.

2.5 Isotope analysis with laser spectrometer and IRMS

The stable isotope ratios of hydrogen (δ^2H) and oxygen ($\delta^{18}O$) of the cryogenically extracted water were measured at WSL Birmensdorf using a laser cavity ring-down spectrometer (L2140-*i*, Picarro Inc., Santa Clara, USA) connected to a micro-combustion module (MCM) to eliminate artefacts caused by co-extracted organic compounds (Martín-Gómez et al., 2015). Each sample was injected eight times and the average of the final five injections was taken to minimize memory effects (Penna et al., 2012). Samples were calibrated with four reference isotope standards spanning from -10.5% to -120.2% for δ^2H and from -3.0% to -16.1% for $\delta^{18}O$ (LGR; Envitec NV, Lessines, Belgium) and normalized to the international Vienna Standard Mean Ocean Water (VSMOW-2) scale. The maximum deviation (i.e., accuracy) of an interspersed in-house laboratory standard (analysed every ~25 samples, δ^2H : -84.9%, $\delta^{18}O$: -9.6%) from the expected value was $\leq 0.2\%$ for $\delta^{18}O$ and $\leq 0.5\%$ for δ^2H . The standard deviation (SD) of the repeated measurements of the laboratory standards (i.e., precision) was $\leq 0.6\%$ for $\delta^{2}H$ and $\leq 0.1\%$ for $\delta^{18}O$.

To check for spectral interferences with plant-produced volatile organic compounds during the isotope analysis with the laser spectrometer, a subset of 83 samples were also analyzed using a thermal combustion/elemental analyzer (TC/EA) coupled to a DeltaPlus XP isotope ratio mass spectrometer (IRMS, Finnigan MAT, Bremen, Germany), with a typical precision of 1.0% for δ^2H and 0.2% for $\delta^{18}O$. This subset contained samples from both sampling campaigns, all sample types (soils from different depths and stem xylem from both tree species), and a range of geographic locations and isotope values. The IRMS data were highly correlated with the data of the laser spectrometer (Figures 3A, 3B). Most of the data were within the range of \pm 1 SD but showed a positive offset for both δ^2H and $\delta^{18}O$ (Figure 3C). The δ^2H and $\delta^{18}O$ offsets between the two types of analysis had mean values around 0.7% and 0.3% across all samples (Figure 3C), respectively. These mean offsets represent the average of the differences between the two methods, accounting for both positive and negative values. The SD of these offsets were 1.4% for δ^2H and 0.5% for $\delta^{18}O$, indicating the variability around the mean offsets, not zero. Additionally, paired t-tests showed that the isotopic offsets in stem xylem samples between the two analytical methods depended on species (P < 0.05), with larger offsets observed in spruce (mean $\delta^2H = 1.1\%$, $\delta^{18}O = 0.7\%$) than in beech (mean $\delta^2H = 0.7\%$, $\delta^{18}O = 0.4\%$). For soil samples, we observed a significant effect only for δ^2H (mean difference = 0.6%).

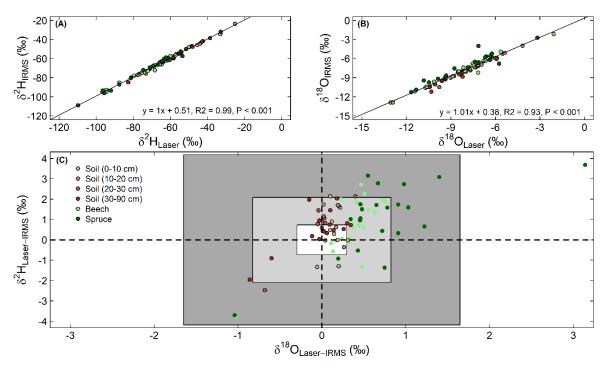


Figure 3: Linear relationships between the $\delta^2 H$ (A) and $\delta^{18}O$ (B) for the water samples analyzed using a laser spectrometer (Laser) and an isotope ratio mass spectrometer (IRMS). Panel (C) displays a biplot of the isotopic offsets between $\delta^{18}O$ and $\delta^2 H$ values for the two instruments. The small white box in the middle of C represents the mean $\delta^2 H$ and $\delta^{18}O$ offsets across stem xylem and soil samples between the two types of analysis, while the light grey and dark grey boxes denote \pm one and two standard deviations of the offsets, respectively.

3 Description of the dataset

The dataset consists of three comma-separated files (.csv) and one zip file (.zip) with photos of the canopy at the sampling sites. All .csv files are encoded in UTF-8 and use commas as delimiters. The first datafile ("WATSON_Metadata.csv") contains all the metadata about the sampling sites including site-, soil- and tree-specific information (Table 2). The second file ("WATSON_Isotopedata.csv") contains the information about sample weights, cryogenic water extraction and the actual hydrogen and oxygen isotope data (Table 3). The third file ("WATSON_Canopydata.csv") contains the information on the canopy cover (Table 4). The photos on which the canopy cover data are based are stored in the "WATSON_Canopy_Pictures.zip" file. Datasets can be linked by the variable site_id, a three-letter identifier representing each sampling site.

Table 2: Description of the columns in the "WATSON_Metadata.csv" file containing all the meta-information about the sampling sites [and units].

Column name	Description
site_id	A three-letter identifier of the sampling site. Note that for the three sites with nearby beech and spruce stands (LIZ, GLS, WEI), an additional number was added, indicating the species: "1" refers to beech and "2" to spruce
site_name	Full site and country name
country_id	A two-letter country code, as defined in ISO 3166-1
latitude	Latitude in decimal degree rounded to three decimals, WGS84 coordinate system
longitude	Longitude in decimal degree rounded to three decimals, WGS84 coordinate system
elevation	Elevation of the sample site [m above sea level]
slope_type	Descriptor of the slope: "flat", "gentle" or "steep"
spruce_site	Descriptor highlighting whether spruce trees were sampled at the site ("yes") or not ("no")
beech_site	Descriptor highlighting whether beech trees were sampled at the site ("yes") or not ("no")
stand_type	Descriptor highlighting whether the stand is a mixed species stand ("mixed") or a monoculture stand ("mono"). Note that "mixed" refers to stands with various species, not limited only beech and spruce
understory	Descriptor highlighting the presence of understory vegetation ("yes") or not ("no")
soil_type	Soil type according to the FAO classification

soil_texture	Soil texture based on either measurements of the sand, silt and clay content or
	hand tests in the field (see Supplementary materials S1, S2)
soil_depth_max	Maximum soil depth [m], for soils deeper than 1 m, > 1 is used
sampling_doy_spring	Day of the year of sample collection for the spring sampling campaign
sampling_doy_summer	Day of the year of sample collection for the summer sampling campaign
sampling_daytime_spring	Time of the day of sample collection (local time) for the spring sampling
	campaign. When a start and end time were given, the middle point is recorded
sampling_daytime_summ	Time of the day of sample collection (local time) for the summer sampling
er	campaign. When a start and end time were given, the middle point is recorded
height_spruce1	(Estimated) Height of spruce tree 1 [m]
height_spruce2	(Estimated) Height of spruce tree 2 [m]
height_spruce3	(Estimated) Height of spruce tree 3 [m]
height_beech1	(Estimated) Height of beech tree 1 [m]
height_beech2	(Estimated) Height of beech tree 2 [m]
height_beech3	(Estimated) Height of beech tree 3 [m]
dbh_spruce1	Diameter at breast height (DBH) of spruce tree 1 [cm]
dbh_spruce2	Diameter at breast height (DBH) of spruce tree 2 [cm]
dbh_spruce3	Diameter at breast height (DBH) of spruce tree 3 [cm]
dbh_beech1	Diameter at breast height (DBH) of beech tree 1 [cm]
dbh_beech2	Diameter at breast height (DBH) of beech tree 2 [cm]
dbh_beech3	Diameter at breast height (DBH) of beech tree 3 [cm]
koppen	Three letter Köppen-Geiger climate code extracted from Beck et al. (2023)
canopy_cover_picture	Descriptor highlighting whether pictures of the canopy cover (see Table 4) are
	available in the WATSON_canopy_photos.zip file ("yes") or not ("no")
canopy_cover	Mean canopy cover (C) for the sampling site, reflecting the average value for all
	photos for the site (varying <i>n</i> per sampling site). Calculation of C as described in
	Supplementary materials S3
gap_fraction	Average gap fraction. One minus the average canopy cover, 1-C
network	Comment field, indicating to which monitoring network the site belongs
website_link	URL of a website describing the sampling site

paper_1	DOI of paper 1 describing the sampling site
paper_2	DOI of paper 2 describing the sampling site
paper_3	DOI of paper 3 describing the sampling site

Table 3: Description of the columns in the "WATSON_Isotopedata.csv" file containing all the isotope data and additional information about the extraction [and units].

Column name	Description
site_id	A three-letter identifier of the sampling site. Note that for the three sites with nearby
	beech and spruce stands (LIZ, GLS, WEI), an additional number was added,
	indicating the species: "1" refers to beech and "2" to spruce
country_id	A two-letter country code, as defined in ISO 3166-1
sampling_date	Date that the sample was collected in yymmdd format
sampling_campaign	Descriptor indicating whether the sample was collected during the "spring" or
	"summer" sampling campaign
sample_type	Descriptor indicating whether the sample was a "beech", "spruce" or "soil" sample
replicate	Number to indicate the tree from which the sample was taken (varying between 1 to
	3, and occasionally between 1 to 6) or the replicate of the soil sample (typically only
	1, but occasionall varying between 1 and 4)
spruce	Descriptor indicating if the sample was a stem xylem sample from a spruce tree or
	if the soil was taken from a site that has spruce trees ("yes"), otherwise left blank
beech	Descriptor indicating if the sample was a stem xylem sample from a spruce tree or
	if the soil was taken from a site that has spruce trees ("yes"), otherwise left blank
both	Descriptor indicating if the soil sample was taken from a site that has both beech
	and spruce trees ("yes"), otherwise left blank
species	Descriptor of stem xylem and soil samples: "beech" and "spruce" refer to samples
	from the respective sites, while "both" indicates soil samples collected at mixed sites
	with beech and spruce trees that could not be assigned to a single species
soil_depth	Depth of the soil sample [cm]. Numbers ranging between 10 and 90, indicating the
	maximum depth of an interval, e.g., 10 for 0-10 cm, 20 for 10-20 cm, and 75 for 65-
	75 cm. For stem xylem samples, the field is left blank
sample_id	A sample identifier used for all laboratory analyses
bark	"yes" when the sample included (remaining) pieces of bark, otherwise "no"

woodcore_length	Average length of wood core [cm]. For sample type "beech" and "spruce," missing			
	values indicate that the wood core was not intact, while for "soil" the field is left			
	blank			
original_vial	The vial type in which the sample was received: exetainer that fit the cryogenic			
	extraction line ("exetainer") or other types of gas-tight glass and plastic vials			
	("others")			
extractionist	ID for the person responsible for cryogenic water extraction (A to D). Note that			
	person D was only responsible for a very small subset of samples			
cvd_slot_id	ID of the slot in the cryogenic water extraction line, where the sample was placed			
	during the extraction			
exe_type	Number (1 to 10) to indicate the type of exetainer (i.e., various combinations of glass			
	vials, caps with rubber seals, and labels). For more details see Supplementary			
	materials S4			
exe_weight	The mean weight of an empty exetainer of the exe_type, including glass vial, cap			
	with rubber seals, and label [mg]. For more details see Supplementary materials S4			
fw	The fresh (field) weight of the sample [mg]			
dw1	The dry weight of the sample after cryogenic extraction [mg]			
dw2	The dry weight of the sample after cryogenic extraction and oven drying at 105°C			
	for 24 h [mg]			
awa	Absolute water amount extracted from the sample during cryogenic extraction [mL],			
	calculated as: awa=(fw-dw1)/1000			
gwc	The gravimetric water content of the sample [%], calculated as: gwc = ((fw-			
	dw1)/dw1)*100)			
tef	Total extraction efficiency [%], calculated as: tef = ((fw-dw1)/(fw-dw2))*100)			
d18O	The $\delta^{18}{\rm O}$ value (relative to VSMOW-2) as determined by the laser spectrometer			
	[‰]			
d2H	The δ^2 H value (relative to VSMOW-2) as determined by the laser spectrometer [‰]			
d18O_irms	The $\delta^{18}{\rm O}$ value (relative to VSMOW-2) as determined by the isotope ratio mass			
	spectrometer [‰]			
d2H_irms	The $\delta^2 H$ value (relative to VSMOW-2) as determined by the isotope ratio mass			
	spectrometer [‰]			

Table 4: Description of the columns in the "WATSON_Canopydata.csv" file describing the canopy cover for the sampling sites for which canopy pictures were available.

Column name	Description
site_id	A three-letter identifier of the sampling site. Note that for the three sites with nearby
	beech and spruce stands (LIZ, GLS, WEI), an additional number was added,
	indicating the species: "1" refers to beech and "2" to spruce
country_id	A two-letter country code, as defined in ISO 3166-1
species	Descriptor indicating the species for which the pictures were taken, either "beech" or
	"spruce" or "canopy" if the picture represents a picture of a mixed site or the overall
	canopy of the site
photo	Name of the file of the photo as given in the WATSON_canopy_photos.zip file. The
	general structure of each file name is: country_site_date_speciesm_xxx.JPG, where
	"country" indicates the country_id, "site" indicates the site_id, "date" the date that
	the picture was taken in yymmdd format, "species" the tree species (beech or spruce),
	"m" the tree number, and "xxx" refers to additional information, such as the distance
	from the tree in meters (1, 3, 5) or the direction in which the picture was taken (N, E,
	S, W). Where "canopy" is used for the "species", the picture shows the overall canopy
	of the forest site
gap_fraction	One minus the canopy cover, 1-C [-]
canopy_cover	The canopy cover (C), calculated as described in Supplementary materials S3 [-]

4 Results and discussion

4.1 Isotopic variation for the spring and summer sampling campaigns

The isotopic composition of the soil and the stem xylem water samples varied spatially (Figure 4). As expected, the samples were more depleted in heavy isotopes at sites located further north and inland. Multiple linear regression analysis showed that latitude, longitude, and elevation were all important variables to explain the observed spatial variation in the isotopic composition of soil and stem xylem water (Table 5). Among the three geographic variables, longitude and latitude explained most of the variance for seven of the eight cases shown in Table 5. Since the total variance explained by latitude, longitude, and elevation was relatively low ($R^2 = 0.17$ to 0.60), other factors likely contributed to the variation in the isotopic composition of the samples. In combination with the gravimetric water content of the soil as a qualitative indicator of soil wetness (i.e., "gwc"; Table 3), gridded climate data, and precipitation isotope data (e.g., Nelson et al., 2021), the data could be useful for new soil and stem xylem water isoscape models and be used as complimentary data in hydrological studies.

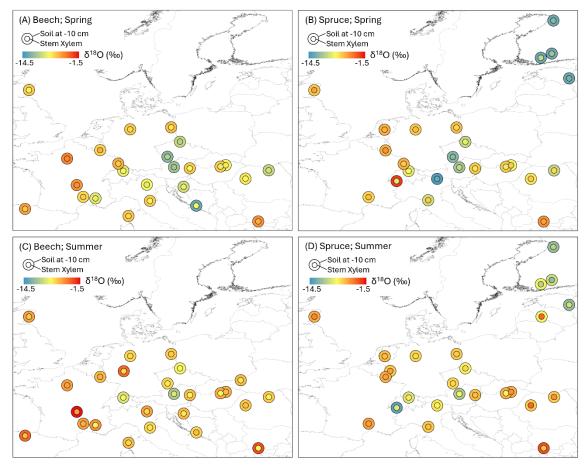


Figure 4: Map showing the $\delta^{18}O$ values for stem xylem water (inner circle) and soil water at 0-10 cm (outer circle) for the spring (A,B) and summer (C,D) sampling campaigns for the beech (A and C) and spruce (B and D) sites. For some sites, the isotopic composition of the stem xylem samples was similar to that of the soil at 0-10 cm depth (both circles have the same color); for others, the differences were large (i.e., the color of the inner and outer circle differs) indicating water uptake from a different (e.g., deeper) water source.

Table 5: Percentage of variance in δ^{18} O values explained by latitude, longitude, and elevation, as determined by multiple linear regression analysis. Values in bold indicate the highest relative contribution of a geographical parameter to the total variance for each sample type for each campaign (Spring/Summer). R^2 reflects the total variance explained by latitude, longitude, and elevation. All linear models were statistically significant (P < 0.001).

Campaign	Sample	R ²	Longitude (%)	Latitude (%)	Elevation (%)
Spring	Stem xylem (spruce)	0.48	25	50	25
	Stem xylem (beech)	0.34	29	33	38
	Soil (0-10 cm)	0.35	50	38	12
	Soil (10-20 cm)	0.46	21	48	31
	Soil (20-30 cm)	0.48	20	50	30
	Soil (30-90 cm)	0.60	35	46	19

Summer	Stem xylem (spruce)	0.32	13	66	21
	Stem xylem (beech)	0.17	56	13	31
	Soil (0-10 cm)	0.29	19	64	17
	Soil (10-20 cm)	0.50	52	39	9
	Soil (20-30 cm)	0.25	35	52	13
	Soil (30-90 cm)	0.38	72	23	5

357

358

359

360

361362

363

364

365

366

367368

369

370

371

372

The isotopic composition of the soil and stem xylem water samples also varied between the two sampling campaigns (Figures 4 and 5). δ^{18} O values were higher in summer compared to those of the spring for stem xylem water of both species and for soil water at 0-10 cm, 10-20 cm and 20-30 cm (unpaired t-test, P < 0.05). The δ^{18} O values of soil water at depths of 30 to 90 cm did not differ seasonally (unpaired t-test, P > 0.05; Figure 5). For the site-level mean δ^{18} O values of stem xylem water (i.e., the average δ^{18} O value for all trees at a site), the median seasonal difference (summer-spring) was 0.6% across all beech sites (ranging from -1.9 to 2.9%) and 0.8% across all spruce sites (ranging from -1.4 to 4.8%). For site-level mean δ^{18} O values of soil water (i.e., the average δ^{18} O value for a soil of a specific depth range; in most cases only a single value), the median seasonal difference was larger and/or more variable, e.g., 1.3% at 0-10 cm depth (ranging from -10.8 to 6.1%) and 0.6% at 30-90 cm depth (ranging from -3.3 to 9.6%). Comparisons across all soil depths shows that in spring, site-level mean δ^{18} O values of soil water at 30–90 cm depth were lower (i.e., more negative) compared to those at 0–10 cm (unpaired t-test, P < 0.05) but not to those at 10-20 cm or 20-30 cm (unpaired t-test, both P > 0.05). In contrast, in summer 8^{18} O values at 30–90 cm depth were lower than those at 0-10, 10-20 and 20-30 cm (unpaired t-test, P < 0.05). Similar seasonal differences for stem xylem and soil water were observed for the δ^2 H values (Figure 5). The data may, therefore, be used to investigate seasonal differences in root water uptake, infiltration of precipitation and snowmelt into the soil, evaporative enrichment of topsoil water, or to test models that simulate these processes.

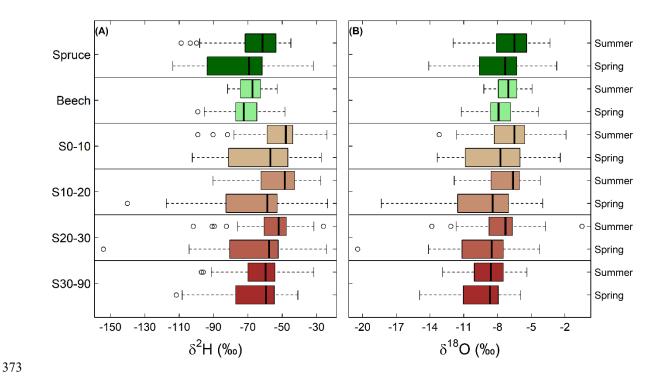


Figure 5: Boxplots for the δ^2 H (A) and δ^{18} O (B) values for stem xylem water of both tree species (beech and spruce) and soil water at 0-10 cm (S0-10), 10-20 cm (S10-20), 20-30 cm (S20-30) and 30-90 cm (S30-90) depth for the spring and summer campaigns. The vertical line within the box indicates the median (50th percentile). The box represents the interquartile range (IQR), spanning from the 25th percentile to the 75th percentile. The whiskers extend to the furthest data points within 1.5 times the IQR from the quartiles. Symbols outside the whiskers represent outliers.

Further, we found that the isotopic composition of the stem xylem water plotted within the range of soil water at the site ("overlap"), though not consistently across all sites (Figure 6). The mean δ^{18} O values for the xylem water was within the variation of the soil water δ^{18} O values for more beech sites (68% in spring, 84% in summer) than spruce sites (41% in spring, 48% in summer). The number of sites for which the δ^{18} O values of the stem xylem water was within the range of soil water samples was larger for the summer than for the spring sampling campaign. In contrast, the mean δ^{2} H values for the xylem water were within the range of the soil water samples for more spruce sites (58% in spring, 68% in summer) than beech sites (28% in spring, 23% summer). A lack of overlap may indicate that the trees used water from other sources, such as recent precipitation events, water stored in organic surface layers, deeper, unsampled soil layers or groundwater. Another explanation might be related to the spatial variation in the isotopic composition of the soil water, and cryogenic water extraction artefacts (see section

(Klein et al., 2014; Brinkmann et al., 2018; Knighton et al., 2020; e.g., Terzer-Wassmuth et al., 2023; Nelson et al., 2021; Allen et al., 2019; Floriancic et al., 2024a; Phillips and Gregg, 2003; Stock et al., 2018; Kirchner, 2023). Our data also shows a clear isotopic difference in stem xylem water between the two tree species (Figure 6). The mean species difference (spruce-beech) in $\delta^2 H$ and $\delta^{18} O$ values across all sites was 5.5% and 0.8% in spring and

on "Cryogenic water extraction biases").

9.5‰ and 1.1‰ in summer, respectively. Thus, the stem xylem water in spruce tended to be isotopically enriched compared to beech xylem water, which is consistent with the generally shallower root system of spruce compared to beech (Goldsmith et al., 2019). The observed isotopic variability in stem xylem water among species and sites suggests that both species-specific differences in root water uptake depth and the environmental drivers of root water uptake across Europe can be inferred from these data.

These initial analyses suggest that the soil and stem xylem data can be used to test models that simulate plant-soil-water dynamics (Klein et al., 2014; Brinkmann et al., 2018; Knighton et al., 2020) and to test how this depends on site-, soil-, and tree-specific information (Table 3). When the data are combined with isotope data of precipitation, such as those from the GNIP network (e.g., Terzer-Wassmuth et al., 2023), or models, such as Piso.AI (Nelson et al., 2021), the data can also be used to study the seasonal origins of tree water uptake and its spatial and temporal variation (Allen et al., 2019; Floriancic et al., 2024a). For sites without overlap between the soil and xylem δ^2 H and δ^{18} O values, the application of mixing models, such as IsoSource (Phillips and Gregg, 2003) or MixSIAR (Stock et al., 2018), might be limited. However, alternative mixing models with incomplete end-members could be tested (Kirchner, 2023).

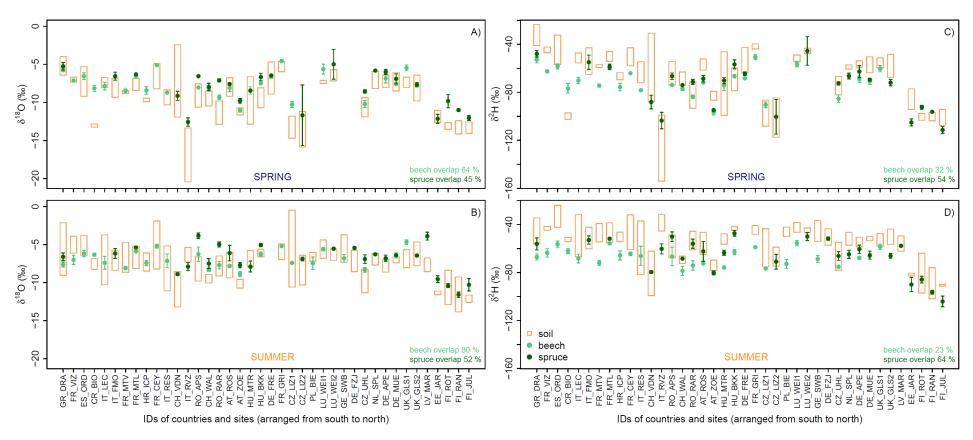


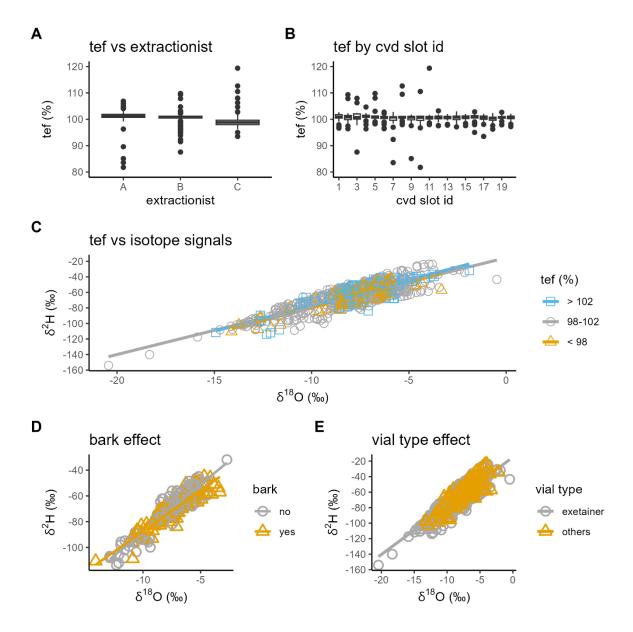
Figure 6: The range in the isotopic composition of soil and stem xylem water for the spring (A, C) and summer (B, D) campaign for oxygen (δ^{18} O) (left) and hydrogen (δ^{2} H) (right). Orange bars indicate the minimum to maximum range for the soil water samples. Mean values and standard errors are shown for the isotopic composition of stem xylem water.

4.2 Cryogenic water extraction biases

The dual isotope plots show that the isotope ratios of the soil were closer to the GMWL than those of stem xylem water for both species (Figure 7). However, particularly in summer, the isotope ratios of the shallower soils at some locations also deviated from the GMWL. This may indicate that the water in the shallow soil was affected by evaporation and that the trees used this enriched water. While evaporation might be responsible for some of the offset between the soil and stem xylem samples, there was no evaporative enrichment for most soil samples. Nevertheless, it should be considered that soil organic matter can cause a bias in the isotopic composition of the extracted water (Ceperley et al., 2024; Orlowski et al., 2016), and that the presence of volatile organic compounds may interfere isotopic analysis with laser spectrometers (Martín-Gómez et al., 2015). The latter, however, should be reduced by the use of the micro-combustion module in our study. Given the relatively small differences between the laser and IRMS measurements (Figure 3), the overall large deviation in δ^2 H from the GMWL for the stem xylem samples is more likely caused by methodological issues related to the cryogenic vacuum distillation method (Chen et al., 2020; Diao et al., 2022; Barbeta et al., 2022). According to these studies, biases might be related to stem water content, heterogeneity in the isotopic composition of different water pools in the stem xylem, the exchange of H-atoms between organic material and water or water vapour, and isotope fractionation related to evaporation and sublimation during the extraction.

To assess potential systematic and technical influences on our data set, we performed several quality checks for cryogenic extraction and sampling handling (Figure 8). There was a significant difference in the total extraction efficiency for the samples handled by the three main lab technicians (one-way ANOVA, P < 0.001; Figure 8A), and this effect remained when accounting for site-level variation in a mixed-effects model. However, since each technician worked on samples for only one sampling season, the observed differences may partially reflect seasonal effects, rather than lab technicians' performance alone. The total extraction efficiency did not depend on the cryogenic vacuum distillation slot (one-way ANOVA, P > 0.05, Figure 8B) and had a weak effect on the δ^2 H and δ^{18} O values (Figure 8C). Although samples with high versus low total extraction efficiency differed by $\sim 5\%$ in δ^{18} O, linear regression showed that extraction efficiency explained less than 2% of the variation in either isotope ($R^2 < 0.02$, P > 0.1).

To further assess possible sample handling effects, we used linear mixed-effects models, including sampling campaign as a fixed effect and site ID as a random effect, to test the effect of bark presence and vial type (Figure 8D–E). Interactions with sampling campaign were included due to uneven site numbers between spring and summer for bark (N = 15 and 6) and vial type (N = 23 and 4), respectively. While sampling campaign was a strong predictor (P < 0.001), we observed no effect of bark presence on either isotope (P > 0.05), nor any interaction with sampling campaign (P > 0.05), suggesting that bark water was either isotopically similar to xylem water or present in insufficient quantity to alter the overall signal. In contrast, vial type significantly interacted with sampling campaign (P < 0.001), with no effect in spring but a more depleted signal for the vial type "others" compared to "exetainer" for the summer sampling campaign. This pattern provides no indication of evaporative isotopic enrichment resulting from sample handling during the warmer summer conditions. Given that the "others" vial type comprises only $\sim 15\%$ of samples, spread across no more than 8 of 40 sites in both campaigns, we consider this effect unlikely to confound the overall dataset, though it may warrant consideration in future analyses.


Figure 7: Dual isotope plots of hydrogen and oxygen stable isotope ratios ($\delta^2 H$, $\delta^{18}O$) for all soil and stem xylem water samples for the spring (top panel) and the summer (bottom panel) campaigns. Isotope values for soil samples are color coded according to soil depth. The line represents that Global Meteoric Water Line (GMWL): $\delta^2 H = 8$ $\delta^{18}O + 10$.

455

456457

458

452

Figure 8: Quality checks for cryogenic extraction and sampling handling. (A) Boxplot of the total extraction efficiency (tef, %) by lab technician (Person A, B, or C) and (B) by cryogenic vacuum distillation slot ID. Dual isotope plots color-coded by (C) tef category for all stem xylem and soil samples, (D) bark presence ("yes") or absence ("no") for stem xylem samples, and (E) vial type ("exetainer" vs. "others") for all stem xylem and soil samples.

5 Concluding remarks

We present a large pan-European dataset of soil and stem xylem water isotopes for two common tree species collected during spring and summer 2023. Establishing this data set with a geographic cover across Europe was feasible because the participants took advantage of an EU Cost Action with members in most European countries. We believe that limiting the number of samples to 6 to 8 per site contributed considerably to the success of the data collection. Centralizing the laboratory and analytical work avoided potential inter-laboratory biases, while the availability of an import license reduced shipping times and lowered the risk of sample loss. Since our observations

- are standardized according to recently published sampling and extraction procedures (Ceperley et al., 2024;
 Scandellari et al., 2024), this data can serve as a baseline for future ecohydrological studies. This dataset is freely
 available and represents a valuable resource for different research topics. These may include the identification of
 the factors that affect tree water uptake depth and the seasonal origin of the water used by trees, calibration and
- 476 constraining isotope-aided ecohydrological models, isoscape models, or studying how biases caused by cryogenic
- water extraction vary by species, soil type, or climate.

Statistics

478

484

- 479 For all statistical analyses we used R version 4.3.1 (R Core Team, 2023). For the multiple linear regression
- analyses, we applied a cube root transformation to the data to address non-normality. We then used the R package
- "relaimpo" (Grömping, 2006) to assess the relative importance of the geographic characteristics in the model. Data
- presented for soil at a depth of 30-90 cm represents all available data points for soil depths greater than 30 cm,
- without any additional modifications of the data.

Funding

- This study was financially supported by the COST Action: "Water isotopes in the critical zone: from groundwater
- 486 recharge to plant transpiration WATSON" CA19120 (www.cost.eu). The extraction of the water and isotope
- analyses were financially supported by the Swiss National Science Foundation ("TreeWater", No. 205492;
- 488 "InsightForest", No. 213367) and by WSL ("Innovative project Oxygen17"). Alicia Correa was supported by the
- 489 German Academic Exchange Service (DAAD) from funds of Federal Ministry for Economic Cooperation (BMZ),
- 490 SDGnexus Network (No. 57526248). Aurel Persoiu and Andrei Popa were supported by UEFISCDI Romania (No.
- 491 PN-III-P2-2.1-PED-2019-4102 & No. PN-III-P4-ID-PCE-2020-2723). Maren Dubbert acknowledges the funding
- by the Deutsche Forschungsgemeinschaft (No. 501530203) and by the Leibniz collaborative excellent grant (No.
- K444/2022), supporting Alberto Iraheta, Charlotte Koeber, and Clara Rohde. Katja Rinne was funded by the
- 494 Academy of Finland (No. 343059). Research part at University of Oulu was supported by Research Council of
- 495 Finland (No. 347348 and No. 356043), and Marie Skłodowska-Curie Postdoctoral Fellowship (No. 101111527).
- Lukas Vlcek acknowledges funding by Czech Science Foundation (No. 22-12837S). Jiri Kocum was supported by
- the Czech Academy of Sciences (RVO: 67985874) and Faculty of Science, Charles University in Prague (SVV
- 498 244-260694).

Acknowledgements

- 500 The pan-European sampling campaign and the data collection initiative was developed during a workshop of the
- 501 COST Action: "WATSON" CA19120 (http://www.cost.eu/; https://watson-cost.eu/) held in March 2023 in
- Dubrovnik, Croatia. We thank Timon Dufner, Christian Gruntz, Sophia Ezhold, Noemi Kammerlander, Jan
- Ziegler, Jonathan Frei, Roger Köchli, David Schweizer, Manuela Oettli for the laboratory assistance, as well as
- 504 Enara Aldai, Wisam Almohamed, Hatice Türk, Patricia Vieira Pompeu, Fernanda Gianasi, Konstantinos
- Voudouris, Ionel Popa, Martine Helfer, Anna Meier, Ladina Gaudy, Dominik Gerber, Simon Bürki, Dominik
- 506 Dubach, Paavo Ojanen, Ellinoora Ekman, Christiaan van der Tol, and Joni Koivula for their help with site
- selection, and/or sample- or metadata collection and laboratory assistance.

509 **Data availability**

- All data is freely available under the agreement "Creative Commons Zero No Rights Reserved (CC0 1.0)" in the
- data repository EnviDat (Lehmann et al., 2024).

512 Competing interests

514

523

The authors declare that they have no conflict of interest.

Author contribution (CRediT)

- 515 The WATSON sampling campaign core organization and writing team consisted of Marco M. Lehmann (MML),
- Josie Geris (JG), Ilja van Meerveld (IvM), Daniele Penna (DP), Youri Rothfuss (YR) and Katrin Meusburger
- 517 (KM). The photographs were analysed by Matteo Verdone (MV). Conceptualization: MML, JG, IvM, DP, YR,
- KM; Data curation: MML, MV; Formal Analysis: MML, JG, IvM, DP, YR, MV, KM; Funding acquisition: MML,
- 519 JG, IvM, DP, YR, KM; Investigation: MML, JG, IvM, DP, YR, KM; Methodology: MML, JG, IvM, DP, YR,
- 520 KM; Project administration: MML, JG, IvM, DP, YR, KM; Resources: MML, KM; Validation: MML, JG, IvM,
- 521 DP, YR, KM; Visualization: MML, JG, IvM, DP, YR, KM; Writing original draft: MML, JG, IvM, DP, YR,
- 522 KM; Writing review & editing: all co-authors.

6 References

- Allen, S. T., Kirchner, J. W., and Goldsmith, G. R.: Predicting spatial patterns in precipitation isotope
- δ^{2} H and δ^{18} O) seasonality using sinusoidal isoscapes, Geophysical Research Letters, 45, 4859-4868,
- 526 10.1029/2018GL077458, 2018.
- Allen, S. T., Kirchner, J. W., Braun, S., Siegwolf, R. T. W., and Goldsmith, G. R.: Seasonal origins of soil
- water used by trees, Hydrol Earth Syst Sc, 23, 1199-1210, 10.5194/hess-23-1199-2019, 2019.
- Bachofen, C., Tumber-Dávila, S. J., Mackay, D. S., McDowell, N. G., Carminati, A., Klein, T., Stocker, B.
- 530 D., Mencuccini, M., and Grossiord, C.: Tree water uptake patterns across the globe, New Phytol, 242,
- 531 1891-1910, https://doi.org/10.1111/nph.19762, 2024.
- Barbeta, A., Burlett, R., Martín-Gómez, P., Fréjaville, B., Devert, N., Wingate, L., Domec, J. C., and Ogée,
- 533 J.: Evidence for distinct isotopic compositions of sap and tissue water in tree stems: consequences for
- 534 plant water source identification, New Phytol, 233, 1121-1132, 10.1111/nph.17857, 2022.
- Beck, H. E., Mcvicar, T. R., Vergopolan, N., Berg, A., Lutsko, N. J., Dufour, A., Zeng, Z. Z., Jiang, X., van
- 536 Dijk, A. I. J. M., and Miralles, D. G.: High-resolution (1 km) Köppen-Geiger maps for 1901-2099 based
- on constrained CMIP6 projections, Sci Data, 10, 10.1038/s41597-023-02549-6, 2023.
- Beyer, M. and Penna, D.: On the spatio-temporal under-representation of isotopic data in
- ecohydrological studies, Front Water, 3, 10.3389/frwa.2021.643013, 2021.
- Bowen, G. J.: Isoscapes: Spatial Pattern in Isotopic Biogeochemistry, Annual Review of Earth and
- 541 Planetary Sciences, Vol 38, 38, 161-187, 10.1146/annurev-earth-040809-152429, 2010.
- Bowling, D. R., Schulze, E. S., and Hall, S. J.: Revisiting streamside trees that do not use stream water:
- can the two water worlds hypothesis and snowpack isotopic effects explain a missing water source?,
- 544 Ecohydrology, 10, e1771, https://doi.org/10.1002/eco.1771, 2017.
- 545 Brinkmann, N., Seeger, S., Weiler, M., Buchmann, N., Eugster, W., and Kahmen, A.: Employing stable
- isotopes to determine the residence times of soil water and the temporal origin of water taken up by
- 547 Fagus sylvatica and Picea abies in a temperate forest, New Phytol, 219, 1300-1313,
- 548 10.1111/nph.15255, 2018.
- 549 Büntgen, U., Urban, O., Krusic, P. J., Rybníček, M., Kolář, T., Kyncl, T., Ač, A., Koňasová, E., Čáslavský, J.,
- Esper, J., Wagner, S., Saurer, M., Tegel, W., Dobrovolný, P., Cherubini, P., Reinig, F., and Trnka, M.:

- 551 Recent European drought extremes beyond Common Era background variability, Nat Geosci, 14, 190–
- 552 196, 10.1038/s41561-021-00698-0, 2021.
- 553 Bussotti, F., Potocic, N., Timmermann, V., Lehmann, M. M., and Pollastrini, M.: Tree crown defoliation
- in forest monitoring: concepts, findings, and new perspectives for a physiological approach in the face
- of climate change, Forestry, 97, 194-212, 10.1093/forestry/cpad066, 2024.
- 556 Cai, M. Y., Wang, L. X., Parkes, S. D., Strauss, J., McCabe, M. F., Evans, J. P., and Griffiths, A. D.: Stable
- water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements,
- 558 J Hydrol, 523, 67-78, 10.1016/j.jhydrol.2015.01.019, 2015.
- 559 Caudullo, G., Welk, E., and San-Miguel-Ayanz, J.: Chorological maps for the main European woody
- species, Data in Brief, 12, 662-666, https://doi.org/10.1016/j.dib.2017.05.007, 2017.
- 561 Ceperley, N., Gimeno, T. E., Jacobs, S. R., Beyer, M., Dubbert, M., Fischer, B., Geris, J., Holko, L., Kuebert,
- A., Le Gall, S., Lehmann, M. M., Llorens, P., Millar, C., Penna, D., Prieto, I., Radolinski, J., Scandellari, F.,
- Stockinger, M., Stumpp, C., Tetzlaff, D., van Meerveld, I., Werner, C., Yildiz, O., Zuecco, G., Barbeta, A.,
- Orlowski, N., and Rothfuss, Y.: Toward a common methodological framework for the sampling,
- extraction, and isotopic analysis of water in the Critical Zone to study vegetation water use, Wires
- 566 Water, 11, 10.1002/wat2.1727, 2024.
- 567 Chen, Y. L., Helliker, B. R., Tang, X. H., Li, F., Zhou, Y. P., and Song, X.: Stem water cryogenic extraction
- biases estimation in deuterium isotope composition of plant source water, P Natl Acad Sci USA, 117,
- 569 33345-33350, 10.1073/pnas.2014422117, 2020.
- 570 Diao, H., Schuler, P., Goldsmith, G. R., Siegwolf, R. T. W., Saurer, M., and Lehmann, M. M.: Technical
- 571 note: On uncertainties in plant water isotopic composition following extraction by cryogenic vacuum
- 572 distillation, Hydrol Earth Syst Sc, 26, 5835-5847, 10.5194/hess-26-5835-2022, 2022.
- 573 Dubbert, M. and Werner, C.: Water fluxes mediated by vegetation: emerging isotopic insights at the
- soil and atmosphere interfaces, New Phytol, 221, 1754-1763, 10.1111/nph.15547, 2019.
- 575 Ellsworth, P. Z. and Sternberg, L. S. L.: Seasonal water use by deciduous and evergreen woody species
- in a scrub community is based on water availability and root distribution, Ecohydrology, 8, 538-551,
- 577 10.1002/eco.1523, 2015.
- 578 Engel, M., Frentress, J., Penna, D., Andreoli, A., van Meerveld, I., Zerbe, S., Tagliavini, M., and Comiti,
- 579 F.: How do geomorphic characteristics affect the source of tree water uptake in restored river
- floodplains?, Ecohydrology, 15, e2443, https://doi.org/10.1002/eco.2443, 2022.
- 581 Erdélyi, D., Kern, Z., Nyitrai, T., and Hatvani, I. G.: Predicting the spatial distribution of stable isotopes
- in precipitation using amachine learning approach: a comparative assessment of random forest
- variants, Gem Int J Geomathema, 14, 10.1007/s13137-023-00224-x, 2023.
- 584 Fabiani, G., Penna, D., Barbeta, A., and Klaus, J.: Sapwood and heartwood are not isolated
- compartments: Consequences for isotope ecohydrology, Ecohydrology, 15, e2478, 10.1002/eco.2478,
- 586 2022.
- 587 Floriancic, M. G., Allen, S. T., and Kirchner, J. W.: Isotopic evidence for seasonal water sources in tree
- 588 xylem and forest soils, Ecohydrology, 10.1002/eco.2641, 2024a.
- 589 Floriancic, M. G., Stockinger, M. P., Kirchner, J. W., and Stumpp, C.: Monthly new water fractions and
- 590 their relationships with climate and catchment properties across Alpine rivers, Hydrol Earth Syst Sc,
- 591 28, 3675-3694, 10.5194/hess-28-3675-2024, 2024b.
- 592 Gessler, A., Bachli, L., Freund, E. R., Treydte, K., Schaub, M., Haeni, M., Weiler, M., Seeger, S., Marshall,
- 593 J., Hug, C., Zweifel, R., Hagedorn, F., Rigling, A., Saurer, M., and Meusburger, K.: Drought reduces water
- uptake in beech from the drying topsoil, but no compensatory uptake occurs from deeper soil layers,
- 595 New Phytol, 233, 194-206, 10.1111/nph.17767, 2022.
- Goldsmith, G. R., Allen, S. T., Braun, S., Engbersen, N., Gonzalez-Quijano, C. R., Kirchner, J. W., and
- 597 Siegwolf, R. T. W.: Spatial variation in throughfall, soil, and plant water isotopes in a temperate forest,
- 598 Ecohydrology, 12, 10.1002/Eco.2059, 2019.
- 599 Grömping, U.: Relative Importance for Linear Regression in R: The Package relaimpo, Journal of
- 600 Statistical Software, 17, 1-27, 2006.

- Haese, B., Werner, M., and Lohmann, G.: Stable water isotopes in the coupled atmosphere-land
- surface model ECHAM5-JSBACH, Geosci Model Dev, 6, 1463-1480, 10.5194/gmd-6-1463-2013, 2013.
- 603 Halder, J., Terzer, S., Wassenaar, L. I., Araguás-Araguás, L. J., and Aggarwal, P. K.: The Global Network
- of Isotopes in Rivers (GNIR): integration of water isotopes in watershed observation and riverine
- 605 research, Hydrol Earth Syst Sc, 19, 3419-3431, 10.5194/hess-19-3419-2015, 2015.
- 606 Kinzinger, L., Mach, J., Haberstroh, S., Schindler, Z., Frey, J., Dubbert, M., Seeger, S., Seifert, T., Weiler,
- 607 M., Orlowski, N., Werner, C., and Meinzer, F.: Interaction between beech and spruce trees in
- temperate forests affects water use, root water uptake pattern and canopy structure, Tree Physiology,
- 609 44, 10.1093/treephys/tpad144, 2024.
- Kirchner, J. W.: Mixing models with multiple, overlapping, or incomplete end-members, quantified
- using time series of a single tracer, Geophysical Research Letters, 50, 10.1029/2023GL104147, 2023.
- Klein, T., Rotenberg, E., Cohen-Hilaleh, E., Raz-Yaseef, N., Tatarinov, F., Preisler, Y., Ogée, J., Cohen, S.,
- and Yakir, D.: Quantifying transpirable soil water and its relations to tree water use dynamics in a
- water- limited pine forest, Ecohydrology, 7, 409-419, 10.1002/eco.1360, 2014.
- 615 Knighton, J., Kuppel, S., Smith, A., Soulsby, C., Sprenger, M., and Tetzlaff, D.: Using isotopes to
- 616 incorporate tree water storage and mixing dynamics into a distributed ecohydrologic modelling
- framework, Ecohydrology, 13, 10.1002/eco.2201, 2020.
- Koeniger, P., Stumpp, C., and Schmidt, A.: Stable isotope patterns of German rivers with aspects on
- scales, continuity and network status, Isotopes in Environmental and Health Studies, 58, 363-379,
- 620 10.1080/10256016.2022.2127702, 2022.
- Lehmann, M. M., Geris, J., van Meerveld, I., Penna, D., Rothfuss, Y., Verdone, M., Ala-Aho, P., Arvai,
- 622 M., Babre, A., Balandier, P., Bernhard, F., Butorac, L., Carrière, S. D., Ceperley, N. C., Chen, Z., Correa,
- A., Diao, H., Dubbert, D., Dubbert, M., Ercoli, F., Floriancic, M. G., Gimeno, T. E., Gounelle, D., Hagedorn,
- 624 F., Hissler, C., Huneau, F., Alberto, I., Jakovljević, T., Kazakis, N., Kern, Z., Knaebel, K., Kobler, J., Kocum,
- J., Koeber, C., Koren, G., Kübert, A., Kupka, D., le Gall, S., Lehtonen, A., Leydier, T., Malagoli, P., Manca
- di Villahermosa, F. S., Marchina, C., Martínez-Carreras, N., Martin-StPaul, N., Marttila, H., Meyer
- Oliveira, A., Monvoisin, G., Orlowski, N., Palmik-Das, K., Persoiu, A., Popa, A., Prikaziuk, E., Quantin, C.,
- Rinne-Garmston, K. T., Rohde, C., Sanda, M., Saurer, M., Schulz, D., Stockinger, M. P., Stumpp, C.,
- 629 Vénisse, J.-S., Vlcek, L., Voudouris, S., Weeser, B., Wilkinson, M., Zuecco, G., and Meusburger, K.: Soil
- 630 and stem xylem water isotope data from two pan-European sampling campaigns [dataset],
- 631 https://www.doi.org/10.16904/envidat.542, 2024.
- Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., Seidl, R., Delzon,
- 633 S., Corona, P., Kolström, M., Lexer, M. J., and Marchetti, M.: Climate change impacts, adaptive capacity,
- and vulnerability of European forest ecosystems, Forest Ecology and Management, 259, 698-709,
- 635 10.1016/j.foreco.2009.09.023, 2010.
- Martín-Gómez, P., Barbeta, A., Voltas, J., Peñuelas, J., Dennis, K., Palacio, S., Dawson, T. E., and Ferrio,
- 637 J. P.: Isotope-ratio infrared spectroscopy: a reliable tool for the investigation of plant-water sources?,
- 638 New Phytol, 207, 914-927, 10.1111/nph.13376, 2015.
- Nelson, D. B., Basler, D., and Kahmen, A.: Precipitation isotope time series predictions from machine
- 640 learning applied in Europe, P Natl Acad Sci USA, 118, e2024107118, 10.1073/pnas.2024107118, 2021.
- Orlowski, N., Breuer, L., and McDonnell, J. J.: Critical issues with cryogenic extraction of soil water for
- stable isotope analysis, Ecohydrology, 9, 1-5, https://doi.org/10.1002/eco.1722, 2016.
- 643 Orlowski, N., Rinderer, M., Dubbert, M., Ceperley, N., Hrachowitz, M., Gessler, A., Rothfuss, Y.,
- 644 Sprenger, M., Heidbüchel, I., Kübert, A., Beyer, M., Zuecco, G., and McCarter, C.: Challenges in studying
- water fluxes within the soil-plant-atmosphere continuum: A tracer-based perspective on pathways to
- 646 progress, Sci Total Environ, 881, 10.1016/j.scitotenv.2023.163510, 2023.
- Orlowski, N., Breuer, L., Angeli, N., Boeckx, P., Brumbt, C., Cook, C. S., Dubbert, M., Dyckmans, J.,
- Gallagher, B., Gralher, B., Herbstritt, B., Herve-Fernandez, P., Hissler, C., Koeniger, P., Legout, A.,
- Macdonald, C. J., Oyarzun, C., Redelstein, R., Seidler, C., Siegwolf, R., Stumpp, C., Thomsen, S., Weiler,
- 650 M., Werner, C., and McDonnell, J. J.: Inter-laboratory comparison of cryogenic water extraction

- 651 systems for stable isotope analysis of soil water, Hydrol Earth Syst Sc, 22, 3619-3637, 10.5194/hess-
- 652 22-3619-2018, 2018.
- Penna, D., Geris, J., Hopp, L., and Scandellari, F.: Water sources for root water uptake: Using stable
- 654 isotopes of hydrogen and oxygen as a research tool in agricultural and agroforestry systems, Agr
- 655 Ecosyst Environ, 291, 10.1016/j.agee.2019.106790, 2020.
- Penna, D., Stenni, B., Sanda, M., Wrede, S., Bogaard, T. A., Michelini, M., Fischer, B. M. C., Gobbi, A.,
- Mantese, N., Zuecco, G., Borga, M., Bonazza, M., Sobotková, M., Cejková, B., and Wassenaar, L. I.:
- Technical Note: Evaluation of between-sample memory effects in the analysis of δ^2 H and δ^{18} O of water
- 659 samples measured by laser spectroscopes, Hydrol Earth Syst Sc, 16, 3925-3933, 10.5194/hess-16-3925-
- 660 2012, 2012.
- 661 Penna, D., Hopp, L., Scandellari, F., Allen, S. T., Benettin, P., Beyer, M., Geris, J., Klaus, J., Marshall, J.
- D., Schwendenmann, L., Volkmann, T. H. M., von Freyberg, J., Amin, A., Ceperley, N., Engel, M.,
- Frentress, J., Giambastiani, Y., McDonnell, J. J., Zuecco, G., Llorens, P., Siegwolf, R. T. W., Dawson, T. E.,
- and Kirchner, J. W.: Ideas and perspectives: Tracing terrestrial ecosystem water fluxes using hydrogen
- 665 and oxygen stable isotopes challenges and opportunities from an interdisciplinary perspective,
- 666 Biogeosciences, 15, 6399-6415, 10.5194/bg-15-6399-2018, 2018.
- Peters, R. L., Speich, M., Pappas, C., Kahmen, A., von Arx, G., Pannatier, E. G., Steppe, K., Treydte, K.,
- Stritih, A., and Fonti, P.: Contrasting stomatal sensitivity to temperature and soil drought in mature
- alpine conifers, Plant, Cell & Environment, 42, 1674-1689, 10.1111/pce.13500, 2019.
- 670 Phillips, D. L. and Gregg, J. W.: Source partitioning using stable isotopes: coping with too many sources,
- 671 Oecologia, 136, 261-269, 10.1007/s00442-003-1218-3, 2003.
- Poca, M., Coomans, O., Urcelay, C., Zeballos, S. R., Bodé, S., and Boeckx, P.: Isotope fractionation during
- 673 root water uptake by is enhanced by arbuscular mycorrhizas, Plant Soil, 441, 485-497, 10.1007/s11104-
- 674 019-04139-1, 2019.
- R Core Team: R: A language and environment for statistical computing., R foundation for statistical
- computing, Vienna, Austria, https://www.r-project.org/, 2023.
- Reckerth, A., Stichler, W., Schmidt, A., and Stumpp, C.: Long-term data set analysis of stable isotopic
- composition in German rivers, J Hydrol, 552, 718-731, 10.1016/j.jhydrol.2017.07.022, 2017.
- 679 Rothfuss, Y. and Javaux, M.: Reviews and syntheses: Isotopic approaches to quantify root water
- uptake: a review and comparison of methods, Biogeosciences, 14, 2199-2224, 10.5194/bg-14-2199-
- 681 **2017**, **2017**.
- Scandellari, F., Attou, T., Barbeta, A., Bernhard, F., D'Amato, C., Dimitrova-Petrova, K., Donaldson, A.,
- Durodola, O., Ferraris, S., Floriancic, M. G., Fontenla-Razzetto, G., Gerchow, M., Han, Q., Khalil, I.,
- Kirchner, J. W., Kühnhammer, K., Liu, Q., Llorens, P., Magh, R. K., Marshall, J., Meusburger, K., Oliveira,
- A. M., Muñoz-Villers, L., Pires, S. S., Todini-Zicavo, D., van Meerveld, I., Voigt, C., Wirsig, L., Beyer, M.,
- 686 Geris, J., Hopp, L., Penna, D., and Sprenger, M.: Using stable isotopes to inform water resource
- 687 management in forested and agricultural ecosystems, J Environ Manage, 365,
- 688 10.1016/j.jenvman.2024.121381, 2024.
- 689 Sobota, M., Li, K. V., Hren, M., and Knighton, J.: Evidence for variations in cryogenic extraction
- deuterium biases of plant xylem water across foundational northeastern US trees, Hydrol Process, 38,
- 691 10.1002/hyp.15079, 2024.
- 692 Spinoni, J., Naumann, G., Carrao, H., Barbosa, P., and Vogt, J.: World drought frequency, duration, and
- 693 severity for 1951-2010, Int J Climatol, 34, 2792-2804, 10.1002/joc.3875, 2014.
- 694 Stock, B. C., Jackson, A. L., Ward, E. J., Parnell, A. C., Phillips, D. L., and Semmens, B. X.: Analyzing mixing
- 695 systems using a new generation of Bayesian tracer mixing models, Peerj, 6, 10.7717/peerj.5096, 2018.
- 696 Terzer-Wassmuth, S., Araguás-Araguás, L. J., Wassenaar, L. I., and Stumpp, C.: Global and local
- meteoric water lines for δ^{17} O/ δ^{18} O and the spatiotemporal distribution of Δ'^{17} O in Earth's precipitation,
- 698 Sci Rep-Uk, 13, 10.1038/s41598-023-45920-8, 2023.
- 699 Terzer, S., Wassenaar, L. I., Araguás-Araguás, L. J., and Aggarwal, P. K.: Global isoscapes for δ¹⁸O and
- δ^2 H in precipitation: improved prediction using regionalized climatic regression models, Hydrol Earth
- 701 Syst Sc, 17, 4713-4728, 10.5194/hess-17-4713-2013, 2013.

- Twining, J., Stone, D., Tadros, C., Henderson-Sellers, A., and Williams, A.: Moisture Isotopes in the
- 703 Biosphere and Atmosphere (MIBA) in Australia: A priori estimates and preliminary observations of
- 704 stable water isotopes in soil, plant and vapour for the Tumbarumba Field Campaign, Global Planet
- 705 Change, 51, 59-72, 10.1016/j.gloplacha.2005.12.005, 2006.
- von Freyberg, J., Allen, S. T., Seeger, S., Weiler, M., and Kirchner, J. W.: Sensitivity of young water
- fractions to hydro-climatic forcing and landscape properties across 22 Swiss catchments, Hydrol Earth
- 708 Syst Sc, 22, 3841-3861, 10.5194/hess-22-3841-2018, 2018.
- Wong, T. E., Nusbaumer, J., and Noone, D. C.: Evaluation of modeled land-atmosphere exchanges with
- a comprehensive water isotope fractionation scheme in version 4 of the Community Land Model, J Adv
- 711 Model Earth Sy, 9, 978-1001, 10.1002/2016ms000842, 2017.
- 712 Zhao, L. J., Liu, X. H., Wang, N. L., Barbeta, A., Zhang, Y., Cernusak, L. A., and Wang, L. X.: The
- determining factors of hydrogen isotope offsets between plants and their source waters, New Phytol,
- 714 **241, 2009-2024, 10.1111/nph.19492, 2024.**