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Abstract. The complexities of urban climate and environmental challenges have garnered significant attention in the 21st 

century. Numerical simulations, offering high spatiotemporal resolution meteorological data, are essential tools in 

meteorological research and atmospheric science. Accurate representation of urban morphology parameters is crucial for 

enhancing the precision of these simulations in urban areas. Despite the availability of urban canopy parameter (UCP) data 

for 44 major cities in the United States and 60 in China for the weather research and forecasting (WRF) model, a 20 

comprehensive global dataset representing urban morphology remains absent. This study addresses this gap by leveraging 

existing global three-dimensional vector data of buildings, including footprints and heights, to compile a global 1 km 

spatially continuous UCP (GloUCP) dataset for the WRF model. Our findings indicate that GloUCP not only surpasses 

existing datasets in accuracy but also provides superior spatial coverage. In key urban agglomerations such as Beijing-

Tianjin-Hebei, the Yangtze River Delta, and the Guangdong-Hong Kong-Macao Greater Bay Area in China, GloUCP offers 25 

detailed and reliable urban morphological information that closely aligns with reference datasets, outperforming other 

available sources. Similarly, in U.S. cities like Seattle, San Francisco, and Philadelphia, GloUCP consistently achieves lower 

RMSE values and higher correlation coefficients, demonstrating its robustness in modeling diverse urban environments. 

Furthermore, GloUCP’s capability to effectively capture the vertical distribution of buildings, particularly in high-rise areas, 
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highlights its utility in urban climate modeling and related applications. As UCPs are pivotal in regulating atmospheric 30 

responses to urbanization, the availability of this globally consistent urban description is a crucial prerequisite for advancing 

model development and informing climate-sensitive urban planning policies. The GloUCP dataset, converted to WRF binary 

file format, is available for download at https://doi.org/10.6084/m9.figshare.27011491 (Liao et al., 2024). 

1 Introduction 

Cities play a crucial role in driving climate change, serve as hotspots for climate impacts, and are central to climate solutions 35 

(Zhao et al., 2021; Liu et al., 2020). The complexity of urban environments, combined with the limited availability of urban-

specific observations, makes it imperative to rely on models to simulate urban processes and their interactions with regional 

and global climates (Oleson et al., 2011). Therefore, numerical models are indispensable for understanding future urban 

climate scenarios and for informing policy and planning (Chen et al., 2011). 

In recent years, regional climate modeling has increasingly focused on hyper-resolution simulations, which aim to resolve 40 

land surface processes at scales of 1 km or finer (Li et al., 2024). This shift towards finer resolutions is driven by the need for 

more accurate operational forecasts, particularly in urban settings where microclimate variations and the frequency of 

extreme events are of significant concern (Deng et al., 2023; Shen et al., 2019). Hyper-resolution modeling not only 

enhances our ability to predict these urban-specific phenomena but also deepens our understanding of the broader impacts of 

urbanization on local weather patterns, including temperature, precipitation, and wind dynamics (Li et al., 2021b; Wang and 45 

Li, 2019; Liao et al., 2015; He et al., 2019). By capturing the fine-scale variability of urban environments, these models are 

crucial for developing targeted strategies to mitigate and adapt to climate change at the urban level, ultimately contributing 

to more resilient and sustainable cities. 

The weather research and forecasting (WRF) model is widely used worldwide in the numerical weather prediction and 

regional climate modeling communities, known for its high precision, innovative schemes, and comprehensive inclusion of 50 

various Earth system processes (Chen et al., 2011). Its applications are becoming increasingly widespread in meteorology 

and related fields, such as weather services, agriculture, forestry, and renewable energy. Studies have shown that coupling 

the WRF model with an urban canopy model (WRF/UCM) can improve the simulation of near-surface meteorological 

elements, effectively enhancing the ability to simulate urban climates (Liao et al., 2014; Shen et al., 2019). However, current 

urban models still exhibit significant deficiencies in the accuracy of basic data descriptions and the completeness of key 55 

process representations, leading to certain limitations in their application (Best and Grimmond, 2015). 

For the urban morphological data required by UCMs, the common approach is to classify urban surfaces based on reference 

imagery and assign building morphological parameters (such as building height and building ratio) and building 

characteristic parameters (such as thermal and radiative properties) through lookup tables. For example, the WRF model 

classifies urban areas simply into low-density residential areas, high-density residential areas, and industrial/commercial 60 

areas (Chen et al., 2011). Similarly, the Community Land Model - Urban (CLMU) model adopts this method but further 
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refines the classifications by country or region (Jackson et al., 2010; Oleson and Feddema, 2020). Furthermore, Stewart and 

Oke (2012) introduced the concept of Local Climate Zones (LCZs), which considers three-dimensional building structures 

and categorizes urban surfaces into 10 types based on factors such as land cover, building structure, materials, and human 

activities. This method has also been applied to the WRF model, improving simulation performance to some extent. 65 

However, the generation of LCZ datasets depends on expert selection and classification of samples, introducing uncertainties 

due to variations in remote sensing imagery or sample selection. 

With the advancement of remote sensing technology and data generation algorithms, urban data is moving towards higher 

resolution and greater comprehensiveness, enabling the mapping of high-resolution three-dimensional urban morphological 

structures. Urban surface classification data has evolved from an early 1 km resolution with three categories to a 100 m 70 

resolution with ten categories (i.e., LCZ datasets) (Demuzere et al., 2022). In addition to developments in the United States, 

Europe, and mainland China (Li et al., 2020), global high-resolution datasets have also been established (Li et al., 2022; 

Esch et al., 2022). To meet the needs of UCMs, detailed three-dimensional urban morphological structure datasets have been 

preliminarily established for some cities in the United States and China (Ching et al., 2009; He et al., 2019; Li et al., 2021a; 

Sun et al., 2021). These datasets include building height, building ratio, and frontal area index, providing a good 75 

representation of urban three-dimensional morphological structures. The National Urban Database and Access Portal Tool 

(NUDAPT) provides grid datasets of urban canopy parameters (UCPs) necessary for urban climate modeling systems for 44 

city downtown areas in North America (Ching et al., 2009). Additionally, Sun et al. (2021) has shared UCP datasets for 60 

cities in China as well. These detailed high-resolution data have begun to be applied in urban simulation studies, showing 

certain advantages. For example, Miao et al. (2009) applied detailed UCPs in simulations of the Beijing area, while Dai et al. 80 

(2019) used similar detailed UCPs in studies of the Pearl River Delta. They both found that this significantly enhancing the 

model’s simulation capability. In addition, other studies have similarly found that the application of high-resolution UCP 

datasets leads to varying degrees of improvement in simulation results (Deng et al., 2023; Sun et al., 2021; Shen et al., 2019). 

Despite this, existing UCP data face challenges in consistency due to differences in data sources and production methods, 

making it difficult to form a comprehensive set of input parameters for regional or global urban modeling. More importantly, 85 

the currently available UCP datasets are limited to only a few cities and have restricted spatial coverage, making them 

insufficient for large-scale urban climate simulations. For study areas without detailed UCP data, urban changes can only be 

described from a two-dimensional perspective, with three-dimensional morphological parameters often represented by a 

fixed value, failing to reflect the true impact of urban three-dimensional structures on local climates. 

The three-dimensional building footprints can provide essential information for calculating fine-scale UCPs. However, 90 

obtaining building-scale footprints with global coverage for calculating detailed global UCPs remain presents a significant 

challenge currently. Even though global three-dimensional urban height data are becoming more available and their spatial 

resolution has improved, these high-resolution raster data typically only represent urban heights at a grid scale and do not 

provide the boundaries and heights of individual buildings, making it difficult to calculate high-resolution UCPs on a global 

scale. In fact, the OpenStreetMap (OSM) dataset includes vector data for some buildings globally, but coverage is uneven 95 
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(Herfort et al., 2023). Microsoft offers a global vector dataset, but it lacks building vector data for East Asia and building 

height data for many regions. However, the latest research has created the first global three-dimensional building footprint 

dataset (3D-GloBFP) based on publicly available multi-source data (Che et al., 2024). This dataset integrates existing 

building data to calculate the boundaries and heights of individual buildings globally in 2020. Therefore, the aim of this 

study is to use this building-scale height map to further produce a global spatially continuous high-resolution UCP dataset 100 

(hereafter referred to as GloUCP), updating the default parameters in the WRF model to improve simulation accuracy. 

2 Data and methods 

2.1 Global building footprint dataset 

Vector data that include building outline and height information are essential for computing UCPs. Currently, many studies 

primarily focus on estimating building heights at the grid scale, often with limited spatial coverage and resolution. This 105 

constraint makes it difficult to derive comprehensive global UCPs. Recently, the first global three-dimensional building 

footprint (3D-GloBFP) dataset was created by leveraging Earth observation data and advanced machine learning techniques 

(Che et al., 2024). This dataset combines global building boundaries derived from Microsoft’s building footprints and the 

research by Shi et al. (2024), achieving average precisions of over 90% and 80%, respectively, across different regions. 

Together, these two open-source datasets provide a thorough global spatially continuous building boundary dataset. 110 

To ensure maximum coverage of reference building heights worldwide, the 3D-GloBFP dataset integrates building footprint 

data with height information from ONEGEO Map, Microsoft building footprints, Baidu Maps, and EMU Analytics (Che et 

al., 2024). Additionally, they developed height estimation models for 33 global subregions using the eXtreme Gradient 

Boosting (XGBoost) regression method, integrating various remote sensing and building morphology features. The height 

estimation models demonstrate good performance globally, with R2 values between 0.66 and 0.96, and root mean square 115 

errors (RMSEs) ranging from 1.9 m to 14.6 m across the 33 subregions. Overall, this dataset is the most comprehensive 

among existing building vector data, making it a robust foundation for calculating UCPs in this study. 

2.2 Development of global 1 km spatially continuous UCPs for the WRF model 

Urban morphological parameters required by the WRF/UCM model can be calculated using building-scale outline and 

height data, allowing the derivation of UCPs at any spatial resolution. These parameters include mean building height, area 120 

weighted mean building height, standard deviation of building height, plan area fraction, building surface to plan area ratio, 

frontal area index, and distribution of building heights, as detailed in Table 1. In this study, all the UCPs are developed 

globally at a resolution of approximately 1 km (i.e., 1/120°). 

Additionally, to ensure the consistency of the calculation area with the existing impervious surface extent, we further use the 

Global Artificial Impervious Area (GAIA) dataset as a mask for UCP calculation. Only grids with an impervious surface 125 

ratio exceeding 1% are retained. The GAIA dataset is generated based on long-term optical remote sensing data from the 
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Landsat series of satellites, supplemented by VIIRS nighttime light data and Sentinel-1 radar data (Gong et al., 2020). It uses 

spatial masking and feature evaluation algorithms to achieve rapid mapping of impervious surfaces, and employs a time 

consistency verification algorithm to filter and infer logical sequences of impervious surfaces, ensuring their spatial and 

temporal rationality. 130 

 

Table 1. Calculation of GloUCP for the WRF model. 

Variable Abbreviation Formula Description 

Mean building height ℎ# 
ℎ# =

1
𝑁'ℎ!

"

!#$

 
ℎ! is the height of building 𝑖; 𝑁 is the total 

number of buildings in the grid; 

Area weighted mean 

building height 

ℎ%& 
ℎ%& =

∑ 𝐴!ℎ!"
!#$

∑ 𝐴!"
!#$

 
𝐴! is the plan area on the ground level of 

building 𝑖; 

Standard deviation of 

building height 

ℎ'() 
ℎ'() = +∑ ,ℎ! − ℎ#."

!#$

𝑁 − 1  
 

Plan area fraction 𝜆* 𝜆* =
𝐴*
𝐴+

 
𝐴* is the total footprint area of buildings in the 

grid; 𝐴+ is the total area of the grid; 

Building surface to 

plan area ratio 

𝜆, 𝜆* =
𝐴- + 𝐴.
𝐴+

 𝐴- is the total roof area of buildings in the grid; 

𝐴. is the total area of non-horizontal roughness 

elements (such as walls); 

Frontal area index 𝜆/ 𝜆/(𝜃) =
𝐴*012
𝐴+

 
𝐴*012 is the total projected area of buildings on 

a plane perpendicular to four wind directions 

(0°, 135°, 45°, 90°,); 𝜃 is the wind direction. 

Distribution of 

building heights 

ℎ)!'(𝑖) ℎ)!'	 (𝑖) =
𝑁)!'	 (𝑖)
𝑁 × 100% 

𝑁)!'	 (𝑖) is the number of buildings vertically 

resolved with 5 m bins spanning 0-75 m. 

2.3 Comparison between new and existing UCPs for the WRF model 

To demonstrate the reliability of the GloUCP dataset generated in this study, we select three major urban agglomerations in 

China (i.e., Beijing-Tianjin-Hebei region, Yangtze River Delta, and Guangdong-Hong Kong-Macao Greater Bay Area) and 135 

https://doi.org/10.5194/essd-2024-408
Preprint. Discussion started: 28 October 2024
c© Author(s) 2024. CC BY 4.0 License.



6 
 

three important cities in the United States (i.e., Seattle, San Francisco, and Philadelphia) as representatives. This selection is 

based on the availability of data and the representativeness of their geographical distribution. We systematically evaluate the 

consistency between reference data, our new dataset, and comparison datasets using the coefficient of determination (R2) and 

RMSE as statistical indicators. 

For China, we use building height data obtained from the Baidu Maps API (https://ditu.baidu.com) as the reference data, and 140 

the UCP dataset released by Sun et al. (2021) (hereafter referred to as Sun2021) as the comparison dataset. Both the GloUCP 

and Sun2021 have a spatial resolution of 1 km, while the Baidu Maps data is at the building scale. Considering the 

differences in resolution among these datasets, we process the building-scale Baidu Maps data in the same method as the 

initial building height estimation dataset, resulting in 1 km resolution urban height data from Baidu Maps. We then conduct 

consistency analysis using the pixel values within the spatial extent where all three datasets overlap. 145 

For the United States, we use a building footprint dataset with height information released by Microsoft in 2017 

(https://wiki.openstreetmap.org/wiki/Microsoft_Building_Footprint_Data#March_2017_Release) as the reference data and 

the NUDAPT dataset, which includes UCPs for 44 cities in the United States developed from airborne LiDAR data (Ching et 

al., 2009), as the comparison dataset. Both our GloUCP dataset and NUDAPT dataset have a spatial resolution of 1 km, 

while the Microsoft data is at the building scale. Similar to the analysis in China, we process the building-scale Microsoft 150 

data to obtain 1 km resolution urban height data and conduct consistency analysis using the overlapping spatial extent of all 

three datasets. 

Additionally, we further compare the spatial distribution of the default UCPs for low-density residential areas, high-density 

residential areas, and industrial/commercial areas defined in the current WRF model with our GloUCP dataset. This 

comparison aims to assess not only the heterogeneity in their geographical distribution but also the differences in their 155 

numerical characteristics. This will provide a basis for further exploring the feasibility of using the new dataset in WRF 

simulations to enhance urban climate modeling performance. 

3 Results and discussion 

3.1 Global distribution of the GloUCP 

Fig. 1 illustrates the spatial distribution of mean building height across global land. Overall, in economically developed and 160 

highly urbanized regions, such as the eastern coast of the United States, Western Europe, Japan, and eastern China, the mean 

building height is relatively high. Conversely, in most parts of Africa and South America, the mean building height is much 

lower. The area-weighted mean building height follows a similar spatial pattern to that of the mean building height, being 

higher in regions with advanced urbanization and lower in areas where urbanization is less developed. 

We further examine the spatial distribution patterns of mean building height within the three study regions: China, the 165 

contiguous United States, and Europe. In China, the mean building height generally follows a pattern of being higher in the 

east than in the west, and higher in coastal areas than in inland regions. For instance, the mean building heights in some 
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eastern coastal cities, such as Shanghai, Beijing, and Tianjin, respectively, which are significantly higher than those in inland 

areas. At the provincial level, most provinces in China are dominated by low-rise buildings, while the proportion of multi-

rise buildings is higher in the eastern region, and high-rise buildings are more prevalent in Hong Kong and Macau (Fig. 1b). 170 

Focusing on the three major urban agglomerations in China, the Yangtze River Delta (YRD) stands out with a larger scale of 

multi-rise and high-rise buildings compared to the other two regions. The mean building height in the YRD is 10.62 m, 

higher than the 9.93 m in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) and the 8.24 m in the Beijing-

Tianjin-Hebei (BTH) region (Figs. 2b1-2d1). 

In the United States, building height distribution follows a general pattern of decreasing heights from coastal areas to inland 175 

regions. The vast agricultural states in the Midwest and western regions have low mean building heights, mostly below 10 m, 

while the northeastern states, as well as California and Florida, have higher mean building heights (Figs. 3b1-3d1). At the 

state level, apart from Washington, D.C., the proportion of high-rise buildings in other states is very small, with the 

proportion of multi-rise buildings decreasing from the coasts to the interior (Fig. 1c). In Europe, the proportion of high-rise 

buildings is generally low across different countries (Fig. 1d). The mean building height in European countries is about 6.81 180 

m, lower than the 8.75 m observed in the United States and the 8.33 m in China. Moreover, the proportion of high-rise 

building area in the city centers of European regions is also less compared to both the United States and China (Figs. 4b1-

4d1). 

The standard deviation of building height reflects the spatial heterogeneity of building distributions and is often used to 

indicate surface roughness. Overall, the standard deviation of building height is larger in major cities in Europe, the eastern 185 

coastal areas of China, Japan and South Korea (Fig. S1b). In China, the standard deviation of building height is about 2.91 m. 

Its spatial distribution exhibits a pattern where southern regions have higher values than northern regions, and coastal areas 

have higher values than inland areas. The YRD (5.71 m) and GBA (6.20 m) have similar standard deviation values, both 

significantly higher than that of the BTH region (3.10 m) (Figs. 2b3-2d3). In the United States, apart from some northeastern 

states, the standard deviation is generally low, with values below 1.5 m in most areas. Specifically, Seattle has a standard 190 

deviation of 2.38 m, San Francisco 5.10 m, and Philadelphia 3.48 m (Figs. 3b3-3d3). In suburban areas, buildings are 

generally low and flat, with significant building height variations occurring only in certain parts of city centers. In Europe, 

the standard deviation of building height is about 2.34 m and is relatively uniform across regions, except in a few countries. 

For instance, Paris has a notably higher standard deviation of 10.84 m, which is significantly larger than those in London 

(3.42 m) and Berlin (4.87 m) (Figs. 4b3-4d3). Overall, the spatial distribution of height standard deviation exhibits a certain 195 

similarity to that of mean building height. Regions with higher mean building heights also tend to have greater height 

standard deviations. 

The plan area fraction and building surface to plan area ratio help to understand building density and land use efficiency. 

These indicators show higher values in major cities in North America, Western Europe, the eastern coastal areas of China, 

Japan, and Southeast Asia, where high urbanization levels lead to extensive surface coverage by tall and densely clustered 200 
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buildings (Fig. S2). The spatial distribution of the frontal area index generally mirrors that of the plan area fraction (Fig. S3). 

Overall, this pattern suggests that building density is higher in Europe, followed by the United States and China. 

 

 
Figure 1. The spatial pattern of mean building height across global land. (b-d) show the spatial distribution of different 205 

building type proportions in China, the contiguous United States, and Europe, as highlighted in (a). Specifically, Low-rise 

buildings are defined as those with heights less than 10 m, multi-rise buildings as those between 10 and 24 m, and high-rise 

buildings as those exceeding 24 m. The pie charts represent the proportion of these three building types in various subregions, 

with the color of each subregion indicating the predominant building type in that area. 

 210 

3.2 Comparison with existing UCP products for the WRF model 

In China, we used Baidu’s building height data as reference data. By comparing this with the Sun2021 dataset, we found that 

our GloUCP dataset significantly outperforms in terms of spatial continuity and coverage. GloUCP effectively fills in gaps in 

existing datasets, particularly for buildings in suburban areas of large cities, as well as in small to medium-sized cities and 

rural areas (Fig. 5). This comprehensive spatial coverage is crucial for regional climate modeling; without it, WRF/UCM 215 

would rely on lookup tables to fill in missing UCP values for areas not covered by data. This could lead to inconsistencies in 

UCPs across the simulation domain, potentially compromising the accuracy of the simulation results. 
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Figure 2. The spatial distribution of UCPs in China. 

(b-d) show the spatial distribution of mean building 

height, area weighted mean building height, standard 

deviation of building height, plan area fraction, building 

surface to plan area ratio, and frontal area index for 

three major urban agglomerations, i.e., Beijing-Tianjin-

Hebei region, Yangtze River Delta, and Guangdong-

Hong Kong-Macao Greater Bay Area, as highlighted in 

(a). 

https://doi.org/10.5194/essd-2024-408
Preprint. Discussion started: 28 October 2024
c© Author(s) 2024. CC BY 4.0 License.



10 
 

 

Figure 3. The spatial distribution of UCPs in the 

contiguous United States. (b-d) show the spatial 

distribution of mean building height, area weighted 

mean building height, standard deviation of building 

height, plan area fraction, building surface to plan area 

ratio, and frontal area index for three major cities, i.e., 

Seattle, San Francisco, and Philadelphia, as highlighted 

in (a). 
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Figure 4. The spatial distribution of UCPs in Europe. 

(b-d) show the spatial distribution of mean building 

height, area weighted mean building height, standard 

deviation of building height, plan area fraction, building 

surface to plan area ratio, and frontal area index for 

three major cities, i.e., London, Paris, and Berlin, as 

highlighted in (a). 
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Fig. 6 shows a pixel-scale comparison of mean building heights in GloUCP, reference data, and Sun2021 across three major 

urban agglomerations in China. In these three regions, the coefficient of determination (R2) for GloUCP is 0.72, 0.70, and 

0.68 in BTH, YRD, and GBA regions, respectively, significantly higher than the 0.44, 0.19, and 0.15 for Sun2021. This 220 

indicates that GloUCP more accurately reflects the true distribution of building heights in these areas. From the perspective 

of RMSE, GloUCP consistently outperforms Sun2021 across all three regions, with lower RMSE values, indicating higher 

accuracy in building height predictions. In the BTH region, GloUCP has an RMSE of 5.02 m, significantly lower than 

Sun2021’s 6.37 m; in the YRD, GloUCP’s RMSE is 9.30 m, well below Sun2021’s 12.92 m; and in the GBA, GloUCP’s 

RMSE is 9.97 m, markedly better than Sun2021’s 17.74 m. Furthermore, when RMSE is compared across different building 225 

height intervals (i.e., ≤10 m, 10-24 m, and >24 m), GloUCP shows lower RMSE values than Sun2021 in nearly all height 

categories, with a particularly noticeable advantage in higher buildings (>24 m). For instance, in the regions with taller 

buildings (>24 m), GloUCP’s RMSE is 13.26 m in the YRD and 13.32 m in the GBA, whereas Sun2021’s RMSE is 

significantly higher at 26.06 m and 21.78 m, respectively. This demonstrates that GloUCP is more accurate in modeling tall 

buildings. In summary, these results indicate that GloUCP has a significant advantage in predicting and accurately modeling 230 

building height data across China, especially in complex urban areas and for high-rise buildings. GloUCP not only better 

reflects the actual distribution of building heights but also exhibits superior coverage and accuracy across different 

geographical regions. 

 

 235 
Figure 5. Comparison of the spatial distribution of mean building heights in GloUCP, reference data, and Sun2021 

across three major urban agglomerations in China. 
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Figure 6. Pixel-scale comparison of mean building heights in GloUCP, reference data, and Sun2021 across three 

major urban agglomerations in China. The red dashed line represents the 1:1 line, while the black solid line indicates the 240 

fitted regression line. 

 

For the results in the United States, we used a building footprint dataset with height information released by Microsoft in 

2017 as the reference data. Comparing this with the NUDAPT dataset, we found that GloUCP also demonstrates a more 

comprehensive distribution of building heights across the three cities. GloUCP’s coverage is more extensive, capturing a 245 

wider area and performing well in both lower and higher building heights, such as in the southern region of Philadelphia (Fig. 

7). In contrast, the NUDAPT data is primarily concentrated in the city centers, with a more limited and concentrated height 

distribution that fails to cover a broader area. This limitation is particularly evident in Seattle and Philadelphia, where 

NUDAPT’s spatial coverage is restricted. 

In terms of building height consistency, GloUCP’s R2 values in Seattle, San Francisco, and Philadelphia are 0.33, 0.65, and 250 

0.30, respectively, which are comparable to or better than NUDAPT’s values of 0.33, 0.64, and 0.20. When looking at 

RMSE, GloUCP’s values for Seattle, San Francisco, and Philadelphia are 4.57 m, 5.65 m, and 4.37 m, respectively, lower 

than NUDAPT’s 10.04 m, 8.24 m, and 7.54 m. This indicates better consistency between GloUCP and the reference data. 

Furthermore, across different building height intervals in all three cities, GloUCP consistently shows lower RMSE values 
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than NUDAPT, particularly in regions with building heights exceeding 15 m. This highlights GloUCP’s superior 255 

performance in predicting high-rise buildings. Overall, GloUCP outperforms NUDAPT in the three U.S. cities, particularly 

in terms of spatial coverage and prediction accuracy of building heights. GloUCP is better at capturing variations in building 

heights both within and around urban areas, and its exceptional performance in predicting high-rise buildings makes it highly 

valuable for urban modeling and climate simulations. 

Nevertheless, using Microsoft’s data as reference does not necessarily imply that its height values are absolutely accurate. 260 

The heights in Microsoft’s dataset were interpolated using a digital terrain model derived from very high-resolution aerial 

photography, with building boundaries that were hand-digitized. NUDAPT’s data were derived from LiDAR measurements, 

which are also highly accurate. Moreover, it is important to note that the NUDAPT dataset was created using data from the 

year around 2009, whereas our dataset is based on data from around 2020, leading to a temporal discrepancy. When directly 

comparing the average building heights between GloUCP and NUDAPT in these three cities, we found that GloUCP 265 

generally shows higher mean building heights than NUDAPT (Fig. S4). Additionally, the R2 values between GloUCP and 

NUDAPT for Seattle, San Francisco, and Philadelphia are 0.60, 0.94, and 0.75, respectively, indicating a strong level of 

consistency between our dataset and the NUDAPT data as well. 

 

 270 
Figure 7. Comparison of the spatial distribution of mean building heights in GloUCP, reference data and NUDAPT 

across three representative cities in the United States. 
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Figure 8. Pixel-scale comparison of mean building heights in GloUCP, reference data and NUDAPT across three 275 

representative cities in the United States. The red dashed line represents the 1:1 line, while the black solid line indicates 

the fitted regression line. 

3.3 Comparison with the default UCPs in the WRF model 

To thoroughly assess the applicability of the dataset constructed in this study for WRF simulations, we compared it with the 

default UCPs currently widely used in the WRF model. To reflect the impact of urban three-dimensional structures on 280 

meteorological processes, the prevailing approach in WRF simulations is to further subdivide urban land cover into three 

categories, i.e., low-density residential areas, high-density residential areas, and commercial areas, each assigned a fixed 

UCP value. Specifically, low-density residential areas have an impervious surface ratio of less than 50%, corresponding to a 

building height of 5 m; high-density residential areas have an impervious surface ratio between 50% and 80%, with a 

building height of 7.5 m; and industrial/commercial areas have an impervious surface ratio greater than 80%, with a building 285 

height of 10 m. We extracted the default mean building height data from the WRF model and compared it with our GloUCP 

dataset to analyze the differences in data characteristics and spatial distribution. 
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Fig. 9 compares the default mean building height in the WRF model with its distribution in GloUCP. Overall, the default 

height significantly underestimates building heights in various urban regions. Whether in the three major urban 

agglomerations in China or the three representative cities in the United States, many buildings in city centers reach heights of 290 

10 m or even over 20 m, which the default data fails to capture, particularly in the case of high-rise buildings.  

Figs. 10 and 11 illustrate the spatial distribution of mean building heights in GloUCP and the default values in the WRF 

model across three major urban agglomerations in China and three representative cities in the United States, respectively. 

From a spatial distribution perspective, the default dataset can to some extent reflect the higher building heights in city center 

areas, but its height values are generally lower than those calculated by the GloUCP dataset. Moreover, GloUCP exhibits 295 

significantly greater spatial heterogeneity, providing a more detailed and accurate depiction of building height variations 

within the study areas. 

 

 
Figure 9. Distribution of mean building height in three major urban agglomerations in China and three 300 

representative cities in the United States. The red dashed lines denote low-density residential areas with a default building 

height of 5 m, high-density residential areas with a default building height of 7.5 m, and industrial/commercial areas with a 

default building height of 10 m, respectively. 
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 305 
Figure 10. Comparison of the spatial distribution of mean building heights in GloUCP and default values in the WRF 

model across three major urban agglomerations in China. 

 

 
Figure 11. Comparison of the spatial distribution of mean building heights in GloUCP and default values in the WRF 310 

model across three representative cities in the United States. 

4 Data availability 

The 1 km GloUCP dataset which is stored as WRF binary file format is publicly available at figshare: 

https://doi.org/10.6084/m9.figshare.27011491 (Liao et al., 2024). 
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5 Conclusions 315 

Urban Canopy Parameters (UCPs) play a critical role in urban climate modeling, as they significantly influence the accuracy 

of simulations that are essential for understanding the impacts of urbanization on local and regional climates. Despite the 

importance of UCPs, publicly available datasets for the WRF model are currently limited, covering only 44 cities in the 

United States and 60 in China. This limitation underscores the need for more comprehensive and globally applicable UCP 

datasets. 320 

In this study, we developed a global 1 km spatially continuous UCP dataset — GloUCP, utilizing the latest available 

building-level information. The GloUCP dataset has proven to be highly effective and accurate in capturing UCPs across 

various regions, including highly urbanized areas in China and key metropolitan areas in the United States. Through 

extensive comparisons with existing datasets, such as Sun2021 in China and NUDAPT in the United States, GloUCP has 

demonstrated superior spatial coverage and improved precision in predicting building heights. These attributes make 325 

GloUCP a comprehensive and reliable dataset for global urban canopy parameterization, offering significant advancements 

over existing datasets. 

The extensive coverage and high-resolution data provided by GloUCP are invaluable for researchers and urban planners 

aiming to enhance the accuracy of urban climate simulations. Such improvements are crucial for better understanding the 

impacts of urbanization on local and regional climates. Previous studies have already confirmed that using accurate UCP 330 

parameters can enhance the precision of urban climate simulations. However, the primary objective of this study was not to 

quantify the extent to which fine-scale and spatially complete UCPs improve simulation accuracy through case studies. 

Instead, our goal was to provide a globally complete and high-resolution UCP dataset that can serve as a foundational tool 

for future urban climate modeling research. We hope that subsequent studies will further explore the potential of this dataset 

to enhance urban climate simulations and contribute to more informed decision-making in urban planning and climate 335 

mitigation efforts. 
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