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Abstract. Landslide inventories are crucial for evaluating susceptibility, hazards, and risks, and for devising resilience 

strategies in mountainous regions. This importance is amplified in the context of climate change, as existing inventories 

might not adequately reflect changing stability conditions. In May 2023, the Emilia-Romagna region of Italy was hit by 

two major rainfall events, leading to widespread flooding and the triggering of thousands of landslides. Predominantly, 15 

these were shallow debris slides and debris flows, occurring on slopes previously deemed stable based on historical data 

with no prior landslides recorded. Our team supported the Civil Protection Agency through field surveys and mapping 

efforts to pinpoint and record these landslides, prioritizing areas critical to immediate public safety and focusing on 

thorough mapping for future recovery planning. The outcome is a detailed map of all landslides induced by these events, 

manually identified using high-resolution aerial photography (0.2 m pixel resolution, RGB+NIR four bands) and 20 

categorized with the help of a 3D viewer. This comprehensive landslide inventory, comprising 80997 polygons, has been 

made openly accessible to the scientific community. 

1 Introduction 

Landslide inventories are crucial for susceptibility, hazard, and risk assessments and management (Soaters & Van Westen, 

1996; Fell et al., 2008; Galli et al., 2008; Corominas et al., 2014). In Europe, landslides inventories are compiled on a 25 

national to a regional basis (Van Den Eeckhaut and Hervás, 2012) and can be supported by advanced landslides 

recognition and monitoring techniques (Guzzetti et al., 2012; Jaboyedoff et al., 2012; Amatya, 2021; Catani, 2021; 

Bhuyan et al., 2023). Landslides inventories should be as complete and spatially accurate as possible and, also, they 

should consistently distinguish and classify different landslides types. These factors are important for improving 

frequency-area analyses (Malamud et al., 2004) and for obtaining reliable statistically-based landslides susceptibility 30 

maps, thanks to complete input data (Steger et al., 2017; Gaidzik et al., 2021) and disjunct analysis of landslides types 

(Zêzere, 2002). 

Generally, inventories of large-scale landslides are quite complete, since their geomorphic features that remain evident 

long after their occurrence and they can have slow movements detectable by remote sensing (Bertolini et al., 2017; Rosi 
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et al., 2018; Luetzenburg et al., 2022; Ardizzone et al., 2023). On the contrary, regional or national inventories might not 35 

include a complete record of past shallow rainfall induced landslides, unless they have been mapped soon after occurrence, 

i.e. before becoming hardly recognizable due to vegetation growth, rill erosion, or land cultivation (Guzzetti et al., 2004; 

Crozier, 2005; Cardinali et al., 2006; Zieher et al., 2016; Hao et al., 2020, Santangelo et al., 2023). Therefore, it is 

important that existing national and regional landslides inventories are updated after each specific intense rainfall event, 

so to collect data that are essential, also, for a more systematic usage of landslide susceptibility maps in land-use planning 40 

(Fell et al., 2008). This is a challenging and important task, as the incidence of shallow rainfall induced landslides is likely 

to increase in Europe due to climate change (Gariano and Guzzetti, 2016; Handwerger et al., 2022; Auflič et al., 2023).  

The Emilia-Romagna Region (Northern Italy), land-use planning and land-use restrictions are based on an inventory map 

of landslides at 1:10.000 scale (Bertolini et al., 2005) and on a catalogue of thousands of records referring to the activation 

or reactivation of landslides in the past (Piacentini et al., 2018). These documents are updated after every occurrence or 45 

reactivation of large-scale landslides and after multiple occurrences of rainfall-induced shallow landslides. In recent years, 

updates have been necessary to include hundreds of debris flows triggered during the rainstorm events that hit Parma 

province in September 2014 (Corsini et al., 2017) and Piacenza province in October 2015 (Scorpio et al., 2018; Ciccarese 

et al., 2020). In May 2023, the entire southern sector of Emilia-Romagna (from Rimini to Reggio Emilia provinces) has 

been hit by two consecutive exceptional rainfall events that triggered thousands of first-failure landslides. A screening of 50 

these landslides has been rapidly provided by Ferrario et al. (2023) and Notti et al. (2024) by using supervised and 

unsupervised satellite-based identification methods. However, these datasets did not aim to, and did not reach, the level 

of completeness, consistency and accuracy required for updating the official landslide inventory that, in turn, determines 

significant practical consequences for the management of the mapped areas and their surroundings. 

In this paper, we present the landslide inventory dataset of the May 2023 Emilia-Romagna events which has been 55 

designated as reference map by the Emilia-Romagna Region and the Po River Authority for the “Special Plan for 

interventions against situations of hydrogeological instability” (approved in preliminary version in April 2024), to aid the 

Commission for Reconstruction in implementing the recovery phase. This spatial dataset is based on expert-based 

identification, mapping and classification of landslides on high-resolution aerial images taken shortly after the second 

event (0.2 m resolution, RGB and near-infrared). Particular attention has been given to the consistency of landslides type 60 

classification, which required development and application of an algorithm for data harmonization across areas surveyed 

by different operators. 

2 The May 2023 Emilia-Romagna event 

The Emilia-Romagna region is located in northern Italy and stretches from the Apennine Mountains to the Po River Valley 

and eastward to the Adriatic Sea (Fig. 1a). It is one of Italy's most economically prosperous regions, with a strong 65 

industrial base in automotive, machinery, food processing, and ceramics. The Po River Valley plays a vital role in 

agriculture, while the eastern coastline is a hub for both domestic and international tourism. By contrast, the Apennine 

Mountains present a more subdued economic landscape. Economic activity and population in these mountains have 

declined since the 1960s, and now focus on agrotourism, ecotourism, and niche markets. Regional initiatives are underway 

to foster economic growth in these mountainous areas. 70 

In May 2023, the Emilia-Romagna region was struck by two exceptional rainfall events. The first, from May 1-3, delivered 

approximately 200 mm of rain over a span of 48 hours. Only two weeks later, on May 16-17, a second event matched this 

intensity, with rainfall totals reaching 200-250 mm within another 48-hour window. The recurrence interval for a single 
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two-day event was estimated to exceed 100-300 years, but the combined effect of these two closely timed events far 

surpassed 500 years (Brath et al., 2023). Both events impacted roughly the same area in the eastern part of the region 75 

(Fig. 1).  

 

Fig. 1. a) Overview map of the Emilia-Romagna region (Italy), illustrating elevation and cumulative rainfall isohyets from May 

1-17, 2023. b) Detailed view of the area most impacted by the event, featuring the geological units referenced in Table 1. 

These rainfalls led to extensive flooding across the Po plain and triggered thousands of landslides in the Apennines. The 80 

total damages have been estimated to surpass 9 billion euros, affecting roads, railways, buildings, and cultural heritage 

sites, along with the destruction of bridges, power facilities, and communication lines. Additionally, agricultural fields, 

https://doi.org/10.5194/essd-2024-407
Preprint. Discussion started: 9 October 2024
c© Author(s) 2024. CC BY 4.0 License.



4 
 

farming operations, and cultivated slopes saw significant disruption over an area of about 1000 km². Fifteen people lost 

their lives due to the flooding and two due to landslides. 

The Emilia-Romagna region and the Italian Government promptly responded to the event mobilizing all necessary 85 

resources. The primary focus was on the Po plain area, which is densely populated and houses the majority of industrial 

and agricultural activities. Consequently, the severe issues caused by landslides in the mountainous regions were initially 

overlooked. Over time, the significance of these issues became apparent, but even a year after the disaster the situation 

remains critical. The impact of landslides in the Apennines has been especially severe due to the local economy's 

vulnerability, the extensive damages to infrastructure, and the significant land loss, all of which have slowed and 90 

complicated the recovery process. 

We assisted local and national agencies and working groups in addressing the problems caused by landslides. The initial 

two weeks following the event were primarily focused on field surveys and rapidly assessment of the most critical 

situations that demanded immediate actions to ensure public safety. Subsequently, our efforts shifted towards landslide 

mapping. In a first stage, it was crucial to identify the roads and buildings affected by landslides to coordinate emergency 95 

interventions and perform an initial damage assessment. Afterward, we completed the landslide inventory to develop a 

comprehensive map detailing all landslides triggered by the event across the area. This map has been officially designated 

as the landslide map for the May 2023 event by the Po River Authority and the Emilia-Romagna region, and it is currently 

being used by the Commission for Reconstruction for implementing the recovery phase. 

3 Methods 100 

This section describes the methodology used to develop the landslide inventory for the May 2023 event. It covers the 

classification of lithological units, the identification and mapping of landslides, their classification, and the quality control 

and data harmonization procedures implemented. 

3.1 Lithological units classification 

In the study area, bedrock geology significantly influences the morphology of the slopes, the mechanical properties of the 105 

weathered soil layer, the vegetation cover and, consequently the proneness to slope instability. As a matter of fact, these 

factors played a crucial role in the behavior of the slopes during the May 2023 event, controlling the type and density of 

landslides. Consequently, bedrock geology is an essential base layer of our landslide inventory. 

The geological map of the Emilia-Romagna region, created by the regional Geological Survey, includes more than 600 

geological formations. These formations are distinguished by unique features that signify variations in depositional 110 

environments, composition, or geological age. The variety and detail of these formations illustrate the region's complex 

geological history and the precision employed in the map's creation. 

For our inventory, we categorized all geological formations into eight distinct units, as depicted in Fig. 1b and detailed in 

Table 1. These units were delineated by merging lithological characteristics with their respective structural domains, 

recognizing that the same rock type can display varying structural and mechanical properties depending on its location 115 

within the orogenic sequence. For example, flysch rocks within the Ligurian domain (unit 5) are generally more fractured, 

less resistant, and prone to deep-seated landslides compared to those in the Tuscan-Umbrian domain (unit 7), due to the 

extensive tectonic stress they endured in the accretionary wedge. 
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Unit 

ID 

Lithology Domain Structural 

position 

Geological Age 

1 Clays, silty clays, and marly clays Padano-

Adriatic 

Outer Foredeep Pliocene to 

Pleistocene 

2 Marls and marly clays  Epiligurian Wedge-top basins Oligocene to 

Miocene 

3 Clay shales, clay breccias, tectonized clays, 

olistostromes 

Ligurian Accretionary wedge Cretaceous to 

Eocene 

4 Massive rocks: basalts, serpentines, 

limestones, arenites 

Ligurian, 

Epiligurian 

Accretionary wedge 

Wedge-top basins 

Cretaceous to 

Miocene 

5 Flysch rocks made of rhythmic alternations 

of sandstones, limestones, pelites, and shales  

Ligurian, 

Epiligurian 

Accretionary wedge 

Wedge-top basins 

Cretaceous to 

Eocene 

6 Weakly cemented sandstones and 

conglomerates 

Padano-

Adriatic 

Outer Foredeep Pliocene to 

Pleistocene 

7 Flysch rocks made of rhythmic alternations 

of sandstones and pelites 

Tuscan-

Umbrian 

Inner Foredeep Miocene 

8 Weakly cemented sandstones with 

interbedded pelitic layers 

Padano-

Adriatic 

Outer Foredeep Pliocene to 

Pleistocene 
Table 1. Classification of the geological formations in the Emilia-Romagna region into eight units, based on their lithological 

composition and geological structural domains. Units 1 to 3 consist mainly of fine-grained rocks, while units 4 to 8 are primarily 120 
composed of coarse-grained rocks. 

The eight units identified were further divided into two broad categories: fine-grained rock masses (units 1 to 3) and 

coarse-grained rocks (units 4 to 8). This categorization aids in the preliminary differentiation of the types of weathered 

soil covers these rocks produce, which experienced widespread landslides during May 2023. Coarse-grained rocks 

typically produce granular soils composed of sand, gravel, and cobbles, with smaller amounts of silt and clay, aligning 125 

with the "debris" category in the Cruden and Varnes (1996) classification. In contrast, fine-grained rocks lead to the 

formation of fine soils predominantly made up of silt and clay, fitting the "earth" classification. These two categories, 

"debris" and "earth," are utilized to classify landslides that occurred on soil-covered slopes. 

3.2 Landslide identification and mapping 

Landslides identification and mapping was conducted manually using high-resolution aerial images. These images were 130 

captured using a Leica DMC III sensor aboard a Cessna 402C aircraft, flying at approximately 4700 meters above sea 

level. The images, taken shortly after the second rainfall on May 23, 2023, have a 0.2 m resolution and include four bands: 

RGB and near-infrared. 

The mapping process was organized as follows. The total area was segmented based on the administrative boundaries of 

the municipalities. These sections were then distributed among three institutions: the University of Bologna, the 135 

University of Modena-Reggio Emilia, and the Geological Survey of the Emilia-Romagna Region. Each institution 

assigned four mappers, with a total of twelve individuals involved in the effort. Landslide detection was conducted in GIS 

environment by comparing pre- (April-July 2020) and post-event images with an on-screen zoom of approximately 

1:1000. Once a landslide was spotted, further inspection was conducted using a 3D viewer with the high-resolution images 

overlaid on a 10 m DEM. Viewing the slope from different angles enhanced the delineation of the affected area and the 140 

interpretation of the type of movement. Following this analysis, each landslide was classified into the specified classes 

described in the next section. The digital mapping of the landslide polygon was then executed at scales ranging from 

1:800 to 1:200, depending on the landslide's size, ensuring precise tracing of the affected perimeter. 

Identifying the landslides was relatively straightforward and objective, but delineating their boundaries was more 

subjective. Many landslides became fluidized upon failure, with the distal debris spreading among trees without removing 145 
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vegetation, thus complicating the mapping of the deposit. Moreover, several slopes experienced complete removal of soil 

cover by adjoining shallow failures, blurring the distinction between individual slides. In these cases, we chose to interpret 

the landslide boundaries rather than just tracing the visible debris edges. For fluidized slides, the polygons were adjusted 

by connecting visible debris patches to include areas obscured by vegetation. For coalescent slides, we attempted to map 

each individual slide by identifying distinctive arcuate shapes along the detachment scarps that signified separate failures. 150 

Although this approach introduced some subjectivity into the manual mapping process, it was essential to create a dataset 

suitable for analyzing the morphometric features of the landslides. 

The manual mapping process was demanding and labor-intensive. Initially, we focused on mapping landslides in the areas 

most severely impacted by the event, particularly around roads and urban centers. This priority was set to align with the 

Civil Protection Agency's needs to identify damages during the emergency response. This initial phase of mapping, which 155 

produced several "damage maps" for the affected municipalities, spanned the first two months following the disaster. 

Subsequently, the landslide inventory was expanded to cover the entire area over the following months. The complete 

process took approximately six months to finish. 

3.3 Landslides classification 

Right from the start of our work, identifying and classifying the landslides triggered by the event was recognized as a 160 

critical task. The primary challenge we faced was distinguishing between various types of debris slides and debris flows, 

since standard classification systems do not clearly separate them. 

Figures 2 and 3 illustrate the problem. According to the Cruden and Varnes (1996) classification, all the six landslides 

depicted in the Fig. 2 can be classified as debris flows. Yet, clear differences are apparent between the upper (a1-3) and 

the lower three (b1-3). The latter are typical debris flows that start on a steep slope and stop as the slope decreases; the 165 

former, while starting similarly on steep slopes, demonstrate extensive propagation and complete fluidization of the 

deposit as they travel much further. None of these cases involve a well-defined channel, thus the classification proposed 

by Hungr et al. (2014) that distinguished channelized debris flows from unchannelized debris avalanches does not apply 

here. A similar challenge presents with debris slides (Fig. 3). Current classifications fail to distinguish between slides of 

different degrees of mobility, a distinction that is clearly visible in the field. Some slides exhibited in fact high mobility, 170 

completely clearing the vegetation (upper pictures a1-3), while others show low mobility, indicated by minimal vegetation 

damage (lower pictures b1-3). Understanding the conditions that lead to these diverse behaviors is crucial for hazard 

assessment and necessitates differentiating these phenomena. 

An additional classification challenge involves rock-block slides. These landslides impacted the homoclinal slopes of the 

Marnoso Arenacea Formation (unit 7 in Fig. 1b) and manifested as massive, translational rock-slab slides along bedding 175 

planes. While classifying these landslides poses no issues, it was necessary to distinguish between rock slides based on 

their degree of evolution. Some experienced movements ranging from several meters to tens of meters, signaling 

paroxysmal failures (Fig. 4 a1-a3), whereas others shifted merely a few centimeters, indicative of incipient, undeveloped 

failures (Fig. 4 b1-b3). The latter represent highly dangerous zones prone to potential collapse and thus required special 

attention. 180 
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Fig. 2. Representative images of the two distinct types of debris flows caused by the May 2023 event. 

 

 

Fig. 3. Representative images of the two distinct types of debris slides caused by the May 2023 event. 185 
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Fig. 4. Representative images of the two distinct types of rock-block slides caused by the May 2023 event. 

 

These classification challenges were extensively discussed by our team. We ultimately decided to adopt the Cruden and 

Varnes (1996) classification system to define the primary types of landslides. These include debris slides (DS), debris 190 

flows (DF), and rock-block slides (RS) in the coarse-grained units (Fig. 1b), along with earth slides (ES) and earth flows 

(EF) in the fine-grained units. Then, we introduced the informal subclasses of: high-mobility debris slides (DS1), low-

mobility debris slides (DS2), long-runout debris flows (DF1), limited-runout debris flows (DF2), fully-developed rock 

slides (RS1), and incipient rock slides (RS2) to capture the varied behaviors observed in the field. Subclasses were not 

assigned to earth slides (ES) and earth flows (EF) because landslides in areas with fine-grained soils were significantly 195 

less frequent and had milder impacts. This is because fine-grained soils have lower permeability and are more likely to 

fail during extended periods of rainfall rather than during brief events, where surface runoff and flooding are more 

prevalent. 

3.4 Quality control 

To ensure the consistency of the results, an experienced geologist conducted a comprehensive review of the entire area 200 

after the completion of the manual mapping. This critical review focused on several key aspects to verify that all mappers 

adopted the same standards of detail and accuracy. Guided by a 1x1 km grid, the reviewer assessed: i) any missed 

landslides; ii) the precision in outlining landslide boundaries; iii) the consistency in interpreting vegetated areas; iv) the 

adherence to the established classification criteria; v) the accurate segmentation of individual slide events.  

The findings from this review were summarized in a report sent to the twelve mappers. The report ranked the need for 205 

revisions in each municipality from "small" to "high" and included a detailed explanation of the necessary adjustments 
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along with screenshots highlighting the errors detected. Each mapper was then tasked to revise their section of the manual 

inventory based on this feedback. This review and revision phase lasted approximately two months. 

Following these adjustments, the manual landslide map was significantly improved. Although some variations persisted 

in the resolution of digitization and in interpreting boundaries obscured by vegetation, the primary discrepancies were 210 

effectively addressed and resolved. The only remaining issue was the variation in landslide classification among mappers, 

that was evident when comparing the inventory maps of different municipalities. To address this, we developed the 

automatic procedure detailed in the next section. 

3.5 Data harmonization 

As mentioned earlier, the criteria for landslide classification were extensively discussed among us. A substantial number 215 

of cases were collectively examined and analyzed to synchronize the mappers' perceptions and foster a unified approach 

to class attribution. These preparatory efforts resulted in a substantial homogeneity in the classification of rock-block slide 

phenomena. However, notable variations were still evident in the final map between different types of debris slides and 

flows, which were influenced by the subjectivity of the mappers. Some determined the classification based on the 

landslide's shape, others on the presence of flow-like features in the deposition area, and yet others on the texture of the 220 

debris within the landslide polygon. On the other hand, such distinction is inherently subjective due to the gradual 

transition between slides and flows, making it challenging to establish a clear-cut boundary or to define strict classification 

rules. The same issue arose with classifying landslides based on their degree of mobility. While it was evident that many 

landslides exhibited complete fluidization and high mobility, significant discrepancies persisted in how the mappers 

categorized these events. 225 

To address this issue, we implemented the automated procedure depicted in the flow chart of Fig. 5. This procedure 

utilizes standardized criteria to ensure uniform classification of landslides throughout the area and to correct inevitable 

errors in such a large dataset. The automated procedure was applied to all landslides except for rock-block slides, which 

have distinctive features that all mappers clearly and consistently recognized. Four key steps were identified to achieve a 

consistent classification of material type, movement type, degree of mobilization of debris slides and degree of 230 

fluidization of debris flows. 

3.5.1 Material type (debris or earth) 

The initial step was verifying the classification of material types. As previously mentioned, landslides on soil-covered 

slopes were divided into "debris" and "earth" categories according to the Cruden and Varnes (1996) classification. In our 

study area, this classification is clearly defined by the underlying bedrock geology; "debris" is derived from coarse-235 

grained rock units, and "earth" from fine-grained units (Fig. 1b). 

All mappers employed this classification system, referencing the geological map of the Emilia-Romagna region at a 

1:10,000 scale, which provided an objective and standardized framework for classifying material types. However, manual 

mapping led to inconsistencies due to human error and subjective judgments, particularly when categorizing landslides 

spanning multiple material types. To address these issues, we overlaid landslide polygons on the lithological map (Fig. 240 

1b) and classified each landslide as either 'debris' or 'earth' based on its polygon's centroid location. This classification 

was achieved through a simple spatial join between the landslide data and the lithological map within the GIS 

environment. 
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 245 

Fig. 5. Flowchart depicting the process used to ensure data quality and standardize the classification of manually mapped 

landslides. 

 

3.5.2 Type of movement (slide or flow) 

To standardize the distinction between slides and flows, we employed a standard Convolutional Neural Network (CNN) 250 

specifically designed to recognize the distinct shapes of slides and flows. The CNN was trained with data from the Casola 

Valsenio municipality. This area was chosen due to its highly accurate manual mapping and the thorough analyses carried 

out using multiple mapping techniques (Berti et al., 2024 - " Automated Mapping During an Emergency: Lessons Learned 

from the 2023 Landslide Event in Romagna, Italy", under review). Moreover, Casola Valsenio served as the initial training 

ground for the mappers and is the area where classification challenges were collaboratively discussed. 255 

The CNN features an input layer, two convolutional layers (each with batch normalization and ReLU activation), and 

subsequent max pooling layers to reduce image dimensions and enhance feature extraction. The input layers processes 

300x300 pixel black/white images of individual landslides, with landslide areas marked in white. These features are then 

categorized into 'slide' or 'flow' through a fully connected layer, followed by a softmax layer that determines the class 

probability. To enhance the model’s ability to generalize, we implemented various data augmentation techniques, 260 

including random horizontal reflections, rotations ranging from -90 to 90 degrees, scaling from 80% to 120% of the 

original size, and translations up to 10 pixels. 
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The network was trained using a randomly selected half of the 4156 debris slides and 1115 debris flows identified in 

Casola Valsenio, while the other half was utilized to fine-tune the network's hyperparameters and to test and assess the 

model's performance. These evaluations showed that the CNN effectively replicates expert classifications of slides and 265 

flows. Utilizing the Adam optimizer with an initial learning rate of 0.001 over 100 epochs, the CNN reaches an F1-score 

of 0.80 on the testing dataset, indicating robust accuracy in terms of both precision and recall. Fig. 6 displays the confusion 

matrix obtained for the testing dataset, alongside a selection of landslide images that were correctly and incorrectly 

classified by the neural network. Of course, as clearly evident looking at the False Positives and False Negatives cases, 

the CNN cannot overcome the inherent ambiguity in classifying landslides that fall between slides and flows, particularly 270 

those that are only partially fluidized and whose polygon shapes are neither distinctly sub-circular nor clearly elongated. 

However, by implementing the network across all the polygons, we ensure that the classification criteria agreed in Casola 

Valsenio are consistently applied throughout the entire area. 

 

Fig. 6. Outcomes from the Convolutional Neural Network model applied to differentiate slides from flows using the shape of 275 
the polygons. The figure displays the confusion matrix for the testing dataset, which includes 50% of the landslides manually 

mapped in the Casola Valsenio municipality: TN=True Negative; FN=False Negative; FP=False Positive; TP=True Positive. 

The small polygons in each category represent example landslides that are correctly (TP, TN) or incorrectly (FP, FN) classified. 

3.5.3 Degree of mobility of debris slides 

Debris slides were classified by mappers into two categories based on their apparent mobility (Fig. 3). The class DS1, 280 

indicating high-mobility slides, was assigned to slides that showed extensive internal disruption and complete removal of 

vegetation. The class DS2, denoting low-mobility slides, was assigned to slides with minimal internal deformation and 

little impact on vegetation. While mappers collectively agreed on these criteria for classifying debris slides, discrepancies 

arose due to variations in personal judgment. 

https://doi.org/10.5194/essd-2024-407
Preprint. Discussion started: 9 October 2024
c© Author(s) 2024. CC BY 4.0 License.



12 
 

To standardize this assessment, we evaluated the mobility of debris slides by examining the remaining vegetation cover 285 

after movement. The Green Leaf Index (GLI) was used to quantify the amount of green vegetation within a landslide 

polygon: 

𝐺𝐿𝐼 =
(2∙𝐺𝑟𝑒𝑒𝑛−𝑅𝑒𝑑−𝐵𝑙𝑢𝑒)

(2∙𝐺𝑟𝑒𝑒𝑛+𝑅𝑒𝑑+𝐵𝑙𝑢𝑒)
 (1) 

Here, Green, Red, Blue denote the reflectance values from the respective color bands. The GLI ranges between -1 and 1, 

with higher values indicating a denser presence of green leaves.  290 

To identify a suitable GLI threshold for distinguishing the two classes, we analyzed the frequency distribution of GLI 

values for DS1 and DS2 in the Casola Valsenio dataset. As shown in Figure 7, a distinct separation is observed in the 

higher categories: 99% of the 4144 high-mobility debris slides (DS1) have GLI values under 0.08, indicating they are 

primarily bare soils with minimal or no vegetation. In contrast, 34% of the 125 low-mobility slides (DS2) exceed this 

threshold, suggesting the presence of vegetation. Such a threshold therefore allows for an effective classification of DS1, 295 

but it risks misclassification of DS2. 

The challenge in distinguishing the two classes stems from the inherent subjectivity involved, especially when vegetation 

is only partially removed. Like the difficulty in differentiating between slides and flows, no automated method can fully 

address this issue. However, in our case, the occurrence of DS2 is significantly less frequent than DS1. Consequently, we 

have chosen to set a GLI threshold of 0.08, acknowledging that this may lead to some misclassification errors with DS2. 300 

This approach classifies nearly intact vegetation slides as low-mobility (DS2) and those with partial vegetation as high-

mobility (DS1). The resulting F1-score is 0.86, and this threshold has proven stable whether computed on a randomly 

selected subsample or a specific segment of the Casola Valsenio area. 

 

Fig. 7. Comparison of the frequency distributions of the Green Leaf Index for high-mobility debris slides (upper) and low-305 
mobility debris slides (lower) manually mapped in Casola Valsenio municipality. The red line marks the optimal threshold 

distinguishing the two landslide types. 
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3.5.4 Degree of fluidization of debris flows 

Debris flows were divided into two distinct classes to highlight differences in fluidization and runout (Fig. 2). The DF1 

category was used for long-runout debris flows, marked by fluidized deposits spreading over relatively flat terrain. 310 

Conversely, DF2 was used for debris flows with more limited fluidization, typically confined to steep, forested slopes. 

Mappers used these criteria but also looked at factors such as the size of the debris flow, the presence of a channel, or the 

location of the initiation area. As a result, the manual classification of DF1 and DF2 was notably inconsistent. 

The classification problems are evident when attempting to define an automatic standardization procedure. Both DF1 and 

DF2 exhibit elongated shapes and absence of vegetation within the landslide areas. Consequently, previous methods that 315 

rely on polygon shape or vegetation cover are not applicable. One potential approach could involve using the mean slope 

of the landslide area, which is generally lower for DF1. However, this metric could introduce bias into the dataset, 

particularly when comparing the morphological characteristics of the different landslides. 

After experimenting with various factors and machine learning techniques, we decided on a simple, reproducible method. 

Using the Casola Valsenio dataset again, we determined that a reliable indicator of debris mobility is the percentage of 320 

the landslide area that extends over Non-Forested Slopes (NFS). NFS encompasses all slopes lacking forest cover, that in 

most cases are shrub and/or grassy areas, areas with sparse or no vegetation, and agricultural lands. Mappers typically 

classified debris flows that overrun these areas as DF1. NFS is simply given by: 

𝑁𝐹𝑆 =
𝐴𝑁𝐹

𝐴𝑇𝑜𝑡
 (2) 

Here ANF is the landslide area on non-forested slopes and A is the total area of the landslide. ANF was detected by 325 

overlapping the landslide polygon with the soil use coverage SU2014 provided by the Emilia-Romagna region. This 

coverage was derived from aerial images captured between May and September 2014, using four bands at a 0.5 m 

resolution, and classified according to the Corine Land Cover directive. All the slopes not categorized as 311 (Broad-

leaved forest), 312 (Coniferous forest), or 313 (Mixed forest) were identified as non-forested. 

In Casola Valsenio, a total of 1053 debris flows were documented. Among these, 471 were notably fluid and mobile 330 

(DF1), whereas the remaining 582 exhibited less mobility (DF2). The Non-Forested Slopes (NFS) values distinctly varied 

between the two classes, with DF1 generally displaying higher NFS values (Fig. 8). An NFS threshold of 0.3 has proven 

to be effective in distinguish between DF1 and DF2: 83% of the DF1 category exceed this threshold, whereas 82% of 

DF2 falls below it. The corresponding F1-score is 0.82, reflecting a high degree of accuracy.  

The harmonization procedure described above resulted in significant modifications to the initial manual classifications. 335 

Approximately 50% of the debris slides with limited mobility (DS2) were reclassified as debris slides with high mobility 

(DS1) due to either heavy or partial clearing of vegetation cover by the movement. About 25% of debris flows (DF1 and 

DF2) were reclassified as debris slides (DS1 or DS2) due to the limited elongation of the deposit, and about 60% of earth 

flows (EF) were reclassified as earth slides (ES) for the same reason. It is important to stress that the harmonization 

process should not be viewed as an automatic classification but rather as an effort to apply consistent classification criteria 340 

across the entire area. 
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Fig. 8. Comparison of debris flows with high fluidity (upper) and low fluidity (lower) in the Casola Valsenio municipality, 345 
analyzed through the ratio of runout over non-forested slopes (NFS). The red line indicates the optimal threshold for 

distinguishing between the two types of landslides. 

 

4 The landslide inventory dataset 

The landslide inventory for the 2023 Emilia-Romagna event includes 80997 polygons, each categorized according to the 350 

classification described in section 3.2. The inventory encompasses landslides triggered by the combined rainfall events 

of May 1-3 and May 15-16, 2023, without distinguishing between the two events. Differentiation between the events is 

feasible only in specific small areas where high-resolution images were available after the first rainfall; however, this 

distinction is not included in the current dataset. 

Figure 9 provides an overview of the inventory, showing landslide points (Fig. 9a) and a kernel density map (Fig. 9b). 355 

Notably there is a strong, though not perfect, correlation between cumulative rainfall and landslide density. In the eastern 

part of the region, known as Romagna, the 300 mm rainfall isohyet roughly outlines the area where landslide density 

exceeds 40 landslides per km². In contrast, the western part of the region, known as Emilia, has a landslide density below 

40 landslides per km² despite receiving the same amount of rainfall. This difference can be attributed to the distinct 

geological settings of the two areas. As shown in Fig. 1b, the Romagna region is primarily characterized by a Miocene 360 

flysch (Marnoso-Arenacea Formation, unit 7), which results in steep slopes and coarse-grained weathered soil. 

Meanwhile, the Emilia region has a more complex geological setting, including extensive areas of fine-grained rocks that 

responded less intensely to these rainfall events. 

 

 365 
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Fig. 9. a) Map showing the distribution of the 80997 landslides triggered by the May 2023 event in the Emilia-Romagna region, 

manually mapped and represented as individual points. b) Density map calculated as the number of landslides per 1 km² cell. 

 

In the Romagna region, landslide density reached an impressive level of over 250 landslides per km². The zone most 370 

heavily affected, with more than 40 landslides per km², stretches across roughly 800 km² and covers the outer sector of 

the Marnoso-Arenacea Formation (red area in Fig. 10). About 64% of the landslides occurred within this zone. The 

landslide index, which is the ratio of landslide area to total area, reaches in this area the 20-25%. These figures are 

particularly significant considering they represent the percentage of the area destabilized during a single episode.  
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A deeper examination of the harmonized inventory underscores the occurrence and main features of various landslide 375 

types, providing insights into their spatial distribution and contributing factors. Figures 11 and 12 display several statistical 

details about the count, dimensions, and slope angles of these landslides. The results from these diagrams are discussed 

below, enhanced with additional observations from manual mapping and field surveys. 

 

Fig. 10 Detail of the Romagna area showing two classes of landslide density (between 10 and 40 landslide/km2 and more than 380 
40 landslide/km2) with the eight lithological units in background. 

 

Debris slides (DS) represent 66% of all landslides by number and 49% by area, marking them as the most common type 

triggered by the event (Fig. 11). These landslides were generally small to very small (area less than 1000 m2, Fig. 12) and 

typically occurred on steep slopes with inclines exceeding 25°-30°. In the region, many of these slopes are covered with 385 

forests, as they are unsuitable for farming; hence, while root reinforcement and rainwater interception by the tree canopies 

exist, they were insufficient to prevent these failures. Approximately 94% of the slides were fast-moving and became 

liquefied after traveling a short distance (DS1). A minor fraction (6%) moved as a coherent mass, showing considerably 

less internal disruption (DS2). Slides with high mobility caused extensive damage to roads, buildings, and infrastructure 

and transported large amounts of debris and wood into rivers. Conversely, low-mobility slides predominantly occurred 390 

on milder slopes and near roadways. These slides might indicate early-stage slides that had not fully developed, secondary 

failures behind landslide headscarps, or slides involving rotational movements. 
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 395 

Fig. 11. Pie charts showing the percentage of landslide types by number (left) and by area (right). 

 

 

Fig. 12. Frequency histograms depicting size of various landslide types. The classes labeled at the top of each chart (VSM=very 

small; SM=small; MED=medium) correspond to the size classification proposed by McColl and Cook (2024). 400 

 

Debris flows (DF) are the second most frequent type of landslides, constituting 15% of the total count and 29% by area 

(Fig. 11). DF were consistently initiated by debris slides on slopes that are generally steeper than 25°-30°. Currently, it 

remains difficult to ascertain why some debris slides transformed into debris flows while others did not. However, it is 
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evident that the predominant failure mechanism during the May 2023 event was shallow sliding of the weathered soil 405 

cover. Together, debris flows and slides represent 81% of the landslides cataloged in the inventory. After the initial failure, 

debris flows generally traveled without following predefined channels, and cleared the vegetation forming straight, 

elongated rectangular shapes. About 50% of these flows had relatively limited runouts halting along steep slopes (DF2), 

while the rest displayed significant higher mobility, spreading extensively across gentle slopes due to complete 

fluidization of the material (DF1). A notable feature of the debris flows triggered during the event, especially DF1, was 410 

their relatively low destructive power. In many cases, these flows approached buildings and roads without causing 

substantial damage and spread over grassy fields without harming the vegetation. The limited damage caused by these 

flows can be linked to their composition, primarily liquefied sand and silt without large cobbles or boulders. This 

composition enabled them to flow downslope as a dense slurry without a destructive bouldery front. The typical 

dimensions of debris flows range from "very small" to "medium" (Fig. 12). 415 

Rock-block slides (RS) constitute less than 2% by number and 5% by area of all landslides (Fig. 11), but they left the 

most profound impression on the public and media. These landslides occurred on homoclinal slopes within the Marnoso-

Arenacea Formation (lithological unit 7) and developed as planar slides along bedding planes that aligned with the slope. 

The thickness of the displaced rock mass varied from about 2 meters to over 30 meters, and several slides extended over 

areas larger than 10 hectares. Compared to debris flows and debris slides, rock-block slides affected more gentle slopes, 420 

typically less than 15° and were bigger in size (class "medium" Fig. 12). Their large volume, high velocity, and the fact 

that they occurred on sloping lands that were heavily urbanized and farmed made these landslides a major concern during 

the event. All rock slides initially traveled as coherent rock blocks, moving translationally for several to tens of meters. 

However, some slides disintegrated during their motion, transforming into rapid flows of debris and fragmented rock. 

This disintegration typically occurred when the displaced blocks tumbled down an existing scarp or struck a lateral slope, 425 

causing the material to break apart. These fragmented rock-block slides were highly mobile and covered long distances. 

Earth slides and earth flows accounted for 12% and 5% of the total number of landslides, and 7% and 10% of the total 

area affected, respectively (Fig. 11). These landslides predominantly occurred within fine-grained units, specifically the 

Pliocene clays (unit 1) and Cretaceous clay shales (unit 3), as illustrated in Figure 1b. These regions generally experienced 

fewer landslides, with less severe impacts compared to areas dominated by coarse-grained rocks in the southern parts. 430 

The distinct patterns of landslides in areas with coarse- and fine-grained lithological units are clearly illustrated in the 

sample maps of Figure 13. While landslides are commonly found on steep slopes in both cases, the coarse-grained units 

also show that even gentle slopes are impacted by extensive long-runout debris flows (DF1 in Fig. 13a) and rock-block 

slides (RS1). Conversely, in the fine-grained units (Fig. 13b), earth flows and earth slides are primarily concentrated in 

the badlands areas, with gentle slopes remaining largely unaffected. Moreover, in Emilia-Romagna, it is typical for earth 435 

slides and especially for earth flows to occur repeatedly at the same locations as reactivations of dormant landslides. This 

recurring pattern was evident during the May 2023 event, with most landslides appearing as reactivations of previously 

known landslides, which were already familiar to the local communities. In contrast, nearly all the landslides in the coarse-

grained units—including debris slides, debris flows, and rock-block slides—represented first-time failures and occurred 

unexpectedly on slopes previously free of documented landslides. 440 
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Fig. 13. Example images from the landslide inventory showing two representative area in coarse-grained units (a) and in fine-445 
grained units (b). 

 

5 Limitations, and future updates 

The landslide inventory was carried out with great care during the constraints imposed by the emergency situation and 

ongoing recovery efforts. Utilizing high-resolution 0.2 m imagery and an automated harmonization process has facilitated 450 

a detailed and consistent record across the region. However, as is typical with any expert-driven inventory, errors and 

inconsistencies are unavoidable. 
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Missed landslides, or false negatives, are likely to occur in shadowed areas like river gorges or steep slopes, as well as in 

forested areas where landslides have occurred without clearing the vegetation. Additionally, landslides with minimal 

ground displacement, although clearly visible on-site, may not be discernible in aerial images and thus may remain 455 

undetected. False positives—areas mistakenly identified as landslides—are also possible but expected to be fewer. These 

may include anthropogenic debris accumulations, excavation activities, or plowed fields that alter the soil surface in a 

manner similar to landslides, or landslides that happened after the pre-event images from April-July 2020 but before the 

May 2023 event. Nevertheless, we estimate that the combined total of missed or incorrectly identified landslides might 

constitute less than 1% of the total inventory. 460 

The primary limitation of the inventory likely lies in the accuracy of the landslide boundaries. Not all mappers across the 

area had sufficient time to delineate the landslide polygons with high-resolution detail, resulting in some boundaries 

appearing jagged and imprecise upon closer inspection. The data quality procedures brought this issue to light, but 

redrawing all the rough-edged polygons would be excessively time-consuming. Given that the locations of these 

landslides are accurate, we chose to publish and make available the inventory in its current state and defer any refinements 465 

to future updated versions that, besides refining polygons, will also incorporate changes recommended by local 

authorities, which are currently underway. In April 2024, the Emilia-Romagna region shared the landslide inventory with 

all municipalities affected by the event, requesting feedback on any overlooked landslides. This information is now being 

gathered, and a first update is scheduled for completion by the end of 2024. Initial feedback primarily concerns small 

landslides that caused damage to private or public properties but were not detected in aerial photographs due to minimal 470 

displacement. These new landslides will be included in Version 2 of the inventory, which will be available in the same 

Zenodo repository. 

6 Data availability 

The landslide inventory is freely accessible in the Zenodo repository (DOI: 10.5281/zenodo.13742643, Pizziolo et al., 

2024). The dataset is available as an ESRI (Environmental Systems Research Institute) shapefile and is compatible with 475 

GIS software. The shapefile encompasses several attributes: polygon ID (IDC), landslide type as manually classified by 

the operator (ClassMan), geological unit of the polygon's centroid (Lito), Green Leaf Index (GLI), percentage of deposit 

over Non-Forested Slopes (NFS), landslide type after applying the harmonization algorithm (ClassNew). 

7 Concluding remarks 

The dataset of the May 2023 Emilia-Romagna event encompasses more than 80.000 rainfall-induced landslides (mostly 480 

first-failure) distributed over an area of more 6000 km², with density reaching as high as 200 landslides/km2. Despite 

some inherent limitations and potential areas for improvement of the dataset, we believe that our landslide inventory 

offers significant value to the scientific community and to the involved institutions for several reasons.  

Firstly, it documents the response of a large area to an exceptional meteorological event, likely linked to ongoing climate 

change. This can support the scientific community in proving that multiple occurrences of rainfall-related landslides are 485 

likely to become more frequent in the coming years, and can make decision makers more aware of the fact that even 

slopes that have been unaffected by landslides in the past, cannot be considered free of risk for the future.  

Secondly, the Emilia-Romagna relatively straightforward geological framework makes it ideal for conducting geospatial 

analyses of landslide susceptibility, and to prove that they can be adopted to support land-use planning in addition to 

landslides inventories. Actually, the Emilia-Romagna region's geoportal provides free access to an extensive range of 490 
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spatial data, including DEMs, lithology, land use, and rainfall data, all of which can be integrated with our landslide map 

to test both traditional and machine-learning-based predictive tools).  

Thirdly, the predominance of shallow planar failures in this event provides an excellent case for testing physically-based 

slope stability models, and to highlight the relevance of such type of landslides in the study area, so to promote a much 

more careful evaluation of the possible impact of such phenomena on existing infrastructures network and for designing 495 

new assets.  

In conclusion, we warmly invite interested colleagues to contact us with any questions, specific needs, or to initiate a 

collaborative research effort that could transform a tragic event into an opportunity to enhance our understanding of 

landslide risk assessment. 
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