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Abstract. River discharge is a crucial measurement, indicating the volume of water flowing through a river cross-section at any

given time. However, the existing network of river discharge gauges faces significant issues, largely due to the declining number

of active gauges and temporal gaps. Remote sensing, especially radar-based techniques, offers an effective means to this issue.

This study introduces the Satellite Altimetry-based Extension of the global-scale in situ river discharge Measurements (SAEM)

data set, which utilizes multiple satellite altimetry missions and estimates discharge using the existing worldwide networks5

of national and international gauges. In SAEM, we have explored 47 000 gauges and estimated height-based discharge for

8 730 of them which is approximately three times the number of gauges of the largest existing remote sensing-based data set.

These gauges cover approximately 88% of the total gauged discharge volume. The height-based discharge estimates in SAEM

demonstrate a median Kling-Gupta Efficiency (KGE) of 0.48, outperforming current global data sets. In addition to the river

discharge time series, the SAEM data set comprises three more products, each contributing a unique facet to better usage of our10

data: (1) A catalog of Virtual Stations (VSs), defined by certain predefined criteria. In addition to each station’s coordinates,

this catalog provides information on satellite altimetry missions, distance to the discharge gauge, and relevant quality flags.

(2) The altimetric water level time series of those VSs are included, for which we ultimately obtained good-quality discharge

data. These water level time series are sourced from both existing Level-3 water level time series and newly generated ones

within this study. The Level-3 data are gathered from pre-existing data sets, including Hydroweb.Next (former Hydroweb), the15

Database of Hydrological Time Series of Inland Waters (DAHITI), the Global River Radar Altimeter Time Series (GRRATS),

and HydroSat. (3) SAEM’s third product is rating curves for the defined VSs, which map water level values into discharge

values, derived using a Nonparametric Stochastic Quantile Mapping Function approach. The SAEM data set can be used

to improve hydrological models, inform water resource management, and address non-linear water-related challenges under

climate change. The SAEM data set is available from (Saemian et al., 2024) https://doi.org/10.18419/darus-4475 during the20

review process.
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1 Introduction

Freshwater is essential for sustaining life on Earth, serving as a critical resource for drinking, agriculture, industry, and ecosys-

tems (e.g., Vörösmarty et al., 2005; Dudgeon et al., 2006; Schewe et al., 2014). Accurate accounting of changes in freshwater

availability is vital for informed water resource management, sustainable development, and addressing the challenges posed by25

climate change (e.g., Bhaduri et al., 2016; Döll et al., 2016; Garrick et al., 2017). To understand global freshwater dynamics,

knowledge of river discharge—the volume of water passing through a river cross-section at any given moment—plays a major

role (Tarpanelli et al., 2023). Monitoring river discharge across various river systems relies on a global network of national and

international gauges. However, the existing network confronts several challenges, particularly stemming from the decreasing

number of operational gauges. The decline in monitoring capability is especially pronounced in regions crucial for understand-30

ing global water dynamics, such as Africa and Asia (Elmi et al., 2024; Do et al., 2018). Moreover, existing data sets often suffer

from delays in accessibility, hampering real-time insights into river discharge dynamics (Riggs et al., 2023). These challenges

have prompted the development of alternative methods for monitoring discharge on a large scale.

Unlike discharge, various hydrological and hydraulic variables, such as river water level, river width, and river slope can

be directly measured through remote sensing data (e.g., Smith, 1997; Alsdorf et al., 2007; Tang et al., 2009; Birkinshaw35

et al., 2010, 2014). By utilizing these observable variables, one can estimate discharge beyond the gauge records through the

use of rating curves. Rating curves are developed by correlating in situ discharge measurements with these river parameters;

for example, water levels derived from satellite altimetry observations (elevation-based rating curves) (Kouraev et al., 2004;

Tourian et al., 2013, 2017; Papa et al., 2012, 2010a; Frappart et al., 2015) or river width from satellite imagery (width-based

rating curves) (Smith, 1997; Pavelsky, 2014; Elmi et al., 2015; Tarpanelli et al., 2018). These rating curves can subsequently40

be utilized to estimate discharge solely from remote sensing-based observations.

Several studies have used remote sensing techniques to estimate river discharge on a global scale. One such study by Riggs

et al. (2023) employs remote sensing width observations from Landsat and Sentinel-2 satellites to estimate river discharge

across a worldwide network of stations. However, this study only generated rating curves for stations with simultaneous width-

discharge data available, limiting the data set to only 2168 gauges. Another notable effort is the Remote Sensing Extension45

for the GRDC (RSEG) data set, which extends river discharge records for the Global Runoff Data Centre (GRDC) stations by

incorporating river width estimates from satellite imagery (Elmi and Tourian, 2023) and water level estimates from satellite

altimetry (Elmi et al., 2024). Despite the advantages of RSEG in providing extensive spatial and temporal coverage, it still faces

limitations with satellite imagery, encountering difficulties in accurately estimating discharge in narrower rivers and regions

with limited satellite data availability due to cloud coverage. Additionally, the data set primarily relies on GRDC stations,50

further restricting its applicability to areas not covered by the GRDC network.

The objective of this study is to expand and improve the global river discharge records by employing satellite altimetry

measurements alongside a comprehensive network of national and international river discharge gauges. Our data set, named

the Satellite Altimetry-based Extension of global-scale in situ river discharge Measurements (SAEM) includes:

1. Altimetry-based river discharge estimates along with uncertainty and quality metrics.55
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2. Water level-discharge non-parametric mapping functions for the defined VSs. These curves model the transformation of

water level time series into discharge data using a Nonparametric Stochastic Quantile Mapping Function approach.

3. Water level time series for VSs where good-quality discharge estimates were obtained. We provide SAEM WLs alongside

the data set. For the water level time series from Level-3 databases, we only include the specific IDs introduced by the

database providers.60

4. A catalog of VSs for each gauge that forms the foundation of the SAEM data set. These VSs are defined based on specific

criteria and provide information on satellite altimetry missions, SWORD reach ID, distance to the discharge gauge, and

quality flags.

SAEM extends the temporal records of inactive stations by combining satellite altimetry and river gauge data, enhancing

the availability of global river discharge measurements. This data set supports better water resource assessments and informed65

decision-making in areas such as sustainable development and climate change adaptation.

2 Data sources

2.1 SWORD

The SWOT a priori river database (SWORD) developed by Altenau et al. (2021) includes reach boundaries, high-resolution

river centerlines, and fixed node locations for river networks worldwide. SWORD contains a consistent topological system and70

includes crucial hydrological variables such as average surface water elevation, river reach width, and slope at mean river flow

for rivers wider than 30 meters. In this study, we utilize the high-resolution river centerlines and reach boundaries provided by

SWORD. Referred to hereafter as river reaches, these components serve as the backbone for our investigation to locate the

nearest satellite altimetry’s VSs.

2.2 In-Situ River Discharge75

In this study, we use the daily gauge data curated by Riggs et al. (2023), which includes a comprehensive compilation from

both international and national organizations (Table 1). The data set and software package (Riggs et al., 2024) form a global

gauge database (Figure 1). In the data set, when multiple gauges are within approximately 100 meters of each other, the gauge

with a longer data record is prioritized to avoid redundancy. All gauge databases utilized in our analysis are publicly accessible

through the RivRetrieve software package (Riggs et al., 2024, 2023) except the Chinese Hydrology Project gauge data, which80

constitutes less than 1% of the gauges considered in this study. Figure 1 demonstrates the number of gauges at each basin. The

distribution reveals a higher density of gauges in North America and Europe, while regions such as Africa and parts of Asia

have significantly fewer gauges. While gauges can provide data at various temporal resolutions, such as daily or monthly, in

the SAEM data set, we have exclusively used daily discharge data from the gauges.
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Table 1. Gauge data sources used in this analysis.

Reference N Gauges Record Start-End Date of Access Reference

ArcticNET 116 1913–2003 05/2021 www.r-arcticnet.sr.unh.edu

Australian Bureau of Meteorology 4,340 1899–2021 09/2021 www.bom.gov.au/waterdata

Brazil National Water Agency 1,342 1920–2021 09/2021 www.snirh.gov.br/hidroweb/serieshistoricas

Canada National Water Data Archive 6,066 1860–2021 10/2021 www.canada.ca/en/environment-climate-change

Chile Center for Climate and Resilience Research 501 1913–2020 09/2021 https://explorador.cr2.cl/

Chinese Hydrology Project 141 1953–1987 09/2021 (Henck et al., 2010; Schmidt et al., 2011)

The Global Runoff Data Centre 6,614 1806–2021 09/2021 https://portal.grdc.bafg.de

India Water Resources Information System 549 1960–2020 06/2021 https://indiawris.gov.in

Japanese Water Information System 1,023 1954–2019 09/2021 www1.river.go.jp

Spain Anuario de Aforos 1,385 1912–2018 09/2021 http://datos.gob.es

Thailand Royal Irrigation Department 126 1980–1999 09/2021 http://hydro.iis.u-tokyo.acjp

U.S. Geological Survey 23,634 1857–2021 09/2021 https://waterdata.usgs.gov

Chinese National Real-time Rain and Water Situation Database 23,634 2000–2019 09/2021 http://xxfb.mwr.cn

Figure 1. Distribution of gauges by basin worldwide. The data set of gauges is sourced from various data centres listed in Table 1.
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2.3 Satellite altimetry data85

We utilize water level time series from two sources: (1) existing databases that provide Level-3 water level time series, and (2)

we generate water levels from satellite altimetry measurements for those stations without any time series in level-3 databases,

referred to as SAEM WL. Figure 2 illustrates the distribution of VSs from various data providers. To generate SAEM WL, we

follow the methodology described in Tourian et al. (2022) (also described in subsection 3.2), and utilize Level-2 altimetry data

described in subsubsection 2.3.2. The following subsections describe the Level-2 and Level-3 altimetry data used in the SAEM90

data set.

2.3.1 Level-3 satellite altimetric water level from existing databases

Level-3 water level time series are gathered from the following sources (listed in Table 2):

1. Hydroweb.Next: The Hydroweb.Next (former Hydroweb) database, accessible at https://hydroweb.next.theia-land.fr/, is

developed and maintained by the Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS) in France95

(Da Silva et al., 2010; Normandin et al., 2018). It offers valuable water level time series for more than 24000 VSs

globally. The database integrates measurements from satellites including ERS-1, Topex/Poseidon, ERS-2, GFO, Jason-

1, Envisat, Jason-2, Saral/Altika, Jason-3, Sentinel-3A, Sentinel-3B and Sentinel-6A. Hyroweb’s processing procedures,

as outlined in Crétaux et al. (2011), involve various data sources, including bathymetry maps, Landsat, CBERS-2, SRTM

data, and ENVISAT radar images.100

2. DAHITI: The Database of Hydrological Time Series of Inland Waters (DAHITI) was developed by the German Geodetic

Research Institute at the Technical University of Munich (DGFI-TUM) (Schwatke et al., 2015). Employing an extended

outlier rejection and Kalman filter approach, DAHITI integrates cross-calibrated altimeter data from Envisat, ERS-2,

Jason-1, Jason-2, TOPEX/Poseidon, SARAL/AltiKa, Sentinel-3, and Sentinel-6., yielding comprehensive time series

for rivers and lakes globally. DAHITI, as a global database, currently provides 10,758 water level time series distributed105

across all continents except Antarctica.

3. GRRATS: The Global River Radar Altimeter Time Series (GRRATS) database, spanning from 2002 to 2016, is a globally

distributed collection of radar altimeter data from Envisat and Jason-2. This database focuses on ocean-draining rivers

with widths exceeding 900 m, encompassing 39 rivers and 1869 VSs. Utilizing an unsupervised method at the virtual

station level, GRRATS processed nearly 1.5 million altimeter measurements after quality control. The latest version of110

GRRATS can be downloaded from https://doi.org/10.5067/PSGRA-SA2V2.

4. HydroSat: This database developed by the Institute of Geodesy, University of Stuttgart, offers geometric quantities

of the global water cycle from geodetic satellites. It includes time series and uncertainty estimates for water level from

satellite altimetry, surface water extent from satellite imagery, terrestrial water storage anomaly from satellite gravimetry,

lake and reservoir water volume anomaly, and river discharge (Tourian et al., 2022). The database is accessible via115

http://hydrosat.gis.uni-stuttgart.de.
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5. Water level over the Congo basin: Kitambo et al. (2022a) utilizes a data set of historical and contemporary river water

stages (WSs) and discharge observations, obtained through collaboration with the Congo Basin Water Resources Re-

search Center (CRREBaC). Specifically, the database includes detailed measurements of water levels across the Congo

River Basin (CRB). The study has developed a comprehensive water level database, which includes water level records120

for 1272 VSs. These VSs came from Hydroweb.Next (former Hydroweb) or processed manually using AlTiS (Altimetry

Time Series) software.

Table 2. Details of Level-3 water level databases used in SAEM.

Database Operated by # VSs used in this study Source

Hydroweb.Next CNES 24042 https://hydroweb.next.theia-land.fr/

DAHITI Deutsches Geodätisches 9968 https://dahiti.dgfi.tum.de

Forschungsinstitut (DGFI)

HydroSat Insititute of Geodesy, 2036 http://hydrosat.gis.uni-stuttgart.de

University of Stuttgart

GRRATS Copernicus, European commission 1869 https://blue-dot-observatory.com

ESA, USGS, Amazon Web Services

Congo basin database (Kitambo et al., 2022b) 1272 https://hess.copernicus.org/articles/26/1857/2022/

2.3.2 Level-2 altimetry Data

For each gauge and any orbit family, if Level-3 water level data is unavailable in the existing databases, we generate water

levels using available altimetry missions. To this end, measurements are obtained from a range of satellite altimetry missions,125

including (1) Envisat, (2) Saral/AltiKa, (3) Jason-1, (4) Jason-2, (5) Jason-3, (6) Sentinel-3A, (7) Sentinel-3B, and (8) Sentinel-

6MF. The timeline of the aforementioned satellite altimetry missions is presented in Figure A1.

3 Methodology

3.1 VS Generation and Selection

A VS in satellite altimetry refers to a specific geographical point where the ground tracks of a satellite altimetry mission130

intersect with a water body, such as a river (Calmant and Seyler, 2006; Frappart et al., 2006). The process of generating and

selecting VSs for the SAEM data set involves integrating multiple sources and several key steps (see Figure 3). Initially, various

data sources such as SWORD data, satellite reference orbits, water occurrence from the Global Surface Water (GSW) data set

(Pekel et al., 2016), and the geolocation of hydrological gauges are collected. VSs are identified at points where the SWORD

river location intersects with the orbital tracks of satellites. After generating all the possible VSs, we need to select the VSs135

for each gauge located in the vicinity and hydraulically consistent with discharge behaviour. To this end, we have two types of
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Hydroweb

Dahiti

GRRATS

Congo Study

HydroSat

SAEM WL

Figure 2. Distribution of virtual stations from various data providers used for estimating discharge, including Hydroweb, Dahiti, GRRATS,

Congo Study, HydroSat, and SAEM WL.

gauges: the ones located on the tributaries of a river system and the ones over the main stem. For gauges located in tributaries,

VSs are selected within the same tributary if no dams or reservoirs exist between the gauge and the VS. For gauges on the main

river stem, we select those in the mainstream with no intervening dams or reservoirs in between. This selection ensures that the

VSs accurately represent the hydrological conditions at the gauge locations. The outcome of this procedure is a set of VSs for140

each gauge, which is one of the SAEM products and is referred to as the VS catalog.

To maximize temporal coverage, we include satellite missions from four different orbit families: Envisat series (including

Envisat, Envisat Extended, and Saral/AltiKa, ERS1, and ERS2), Topex/Jason series (including Topex/Poseidon, Jason 1, Jason

2, Jason 3, and Sentinel 6FM), Sentinel 3A, and Sentinel 3B. It is important to note that after July 2016, SARAL/AltiKa entered

a drifting orbit, which provided increased spatial coverage but reduced the temporal consistency at specific locations. For each145

gauge, at least one available VS is identified from the VS catalog within each orbit category. Next, the availability of water

level time series in Level 3 databases for each VS is checked (see subsubsection 2.3.1 for details about Level 3 databases). If

available, the data is collected; if not, water level time series are generated from Level 2 data. The details about the Level-2

data are described in subsubsection 2.3.2, and the methodology to generate the water level is described in subsection 3.2.
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Reference Orbit
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For each VS: 
Do L3 databases 

(Hydroweb, HydroSat, 
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level time series?

VS generation and 
selection based on:

• Dam or Reservoirs
• Distance to gauge
• Mission
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SAEM WLs
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(GSW dataset)

Quality control 
and WL selection

Gauges location

Yes

Figure 3. Flowchart illustrating the generation of Virtual Stations (VSs), the selection of VSs for each gauge, and the extraction of water

level time series using both existing Level-3 databases and newly generated data for this study (SAEM WL).

3.2 Generation of water level time series150

We attempt to generate water level time series for those VSs that lack in Level 3 databases. For this purpose, for each VS we

first crop all altimetry data with the VS boundaries determined by a static 2 km radius. We then utilize the GSW occurrence

map and mask out all data with water occurrence values below 75%.

The altimetry-derived range measurements ρi are obtained from a retracking algorithm. Instead of generating our own

retracking results, we use existing retrackers available in the geophysical data record (GDR). For Envisat and Saral/AltiKa155

missions, we employ the Ice-1 retracker—a model-free algorithm known for precisely locating the Offset Centre of Gravity of

the waveform. In the case of Jason-1 and Jason-3, we utilize the Ice retracker, which employs a similar retracking methodology

as Ice-1. For Jason-2, we rely on the results from the PISTACH project and use the Ice-3 retracker. For Sentinel-3A and

Sentinel-3B missions, we utilize the OCOG retracker results applied to the SAR waveforms, while for Sentinel-6MF, we

benefit from the MLE retracking algorithm. These selections are based on our experience and analysis of various retracking160

algorithms across different missions over different inland water bodies.

The range measurements undergo further refinement to account for various geophysical effects. This refinement includes

corrections for solid earth tide δρsolid
i , pole tide δρpole

i , as well as atmospheric path delays such as wet tropospheric δρwet
i ,

dry tropospheric δρdry
i , and ionospheric corrections δρiono

i . For the wet and dry tropospheric corrections, for all missions, we

consistently rely on the models provided by the European Centre for Medium-Range Weather Forecasts (ECMWF), and for165

the ionospheric correction, we use the results from Global Ionospheric Map (GIM) (Komjathy and Born, 1999). For the pole

tide for all missions, the model by Wahr (1985) is used and for the solid Earth tide, the model by Cartwright and Edden (1973).

The corrected range, along with the geoid height N , are subtracted from the satellite altitude Hi to derive the orthometric

surface water height hi:
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hi = Hi− (ρi + δρdry
i + δρwet

i + δρiono
i + δρsolid

i + δρpole
i )−N170

The geoid height N is determined using static gravity field models, specifically referencing XGM2019e (Pail et al., 2018).

Subsequently, for each time epoch, the representative surface water height ĥ within a VS is computed as the median of all

M estimated height values hi:

ĥ = median
i∈1,..M

(hi)

Accompanying this estimation is the calculation of the standard deviation σĥ, which serves as a measure of uncertainty for175

the estimated water height:

σĥ =

√√√√ 1
M − 1

M∑

i=1

(hi− h̄)2

where h̄ denotes the mean of water height estimates.

Once the water level time series is generated, we identify and remove outliers through an automated, data-driven outlier

identification methodology integrated within an iterative, non-parametric adjustment scheme (Tourian et al., 2022).Finally,180

quality control is conducted on the generated water level time series to select those with the best quality. This evaluation

includes aspects such as the length of the time series, statistical characteristics, and alignment with Digital Elevation Model

(DEM) information. Those time series passing the quality control, are referred to as SAEM WL. The SAEM WL together with

water level time series from Level 3 databases, are used as inputs to generate discharge estimates.

3.3 Non-parametric Rating Curve Modeling and River Discharge Estimation185

Developing an empirical model between the ground- and space-based measurements is the most straightforward approach for

extending the discharge record of an inactive gauge station using satellite data. Elmi et al. (2021) developed a nonparametric

approach, based on Monte Carlo simulation, for developing a mapping function that transforms remote sensing-based river

water level or width time series into discharge estimates, hereafter as NPQM. This method overcomes the limitations of

conventional linear regression techniques, since:190

– it does not necessitate simultaneous gauge-based and space-based measurements,

– it assumes no specific predefined linear or power-law relationship between river discharge and height,

– it provides more realistic discharge uncertainty estimates.

The flowchart in Figure 4 describes the procedure of the algorithm.

NPQM performs the following steps to develop the stochastic quantile mapping function:195
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Figure 4. Flowchart of the stochastic quantile mapping function algorithm (adapted from Elmi et al. (2021) and Elmi et al. (2024))

– generating a stack of river discharge and altimetric water height time series using a Monte Carlo simulation,

– deriving a collection of river water height-discharge mapping functions by matching all possible permutations of the

quantile functions of river discharge and height,

– estimating the mean river height-discharge mapping function together with the uncertainty for each percentile,

– evaluating the performance of the derived model by comparing the estimated and measured discharge of the evaluation200

sample performing a 3σ test. If available, the evaluation sample consists of simultaneous gauge- and space measurements.

Otherwise, measurements from both data sets within the same quantile are included in the evaluation sample,

– updating the measurement uncertainties with respect to the result of the 3σ test,

– terminating the algorithm if the root mean square error (RMSE) from the previous step does not change significantly,

otherwise, the algorithm returns to the first stage.205

In the initial iteration, the algorithm considers a multiplicative uncertainty of 10% of the signal for the input time series.

As the algorithm progresses, it refines its estimates by updating the measurement uncertainties at each iteration. This iterative

process continues until the termination condition is met.

Through the procedure, the algorithm generates a stack of quantile mapping functions by propagating the input measure-

ments based on their respective uncertainties. The distortion observed in the collection of mapping functions illustrates the210

model’s accuracy in estimating discharge at various percentiles. The discharge estimation model uncertainties are later ex-

ploited to obtain the uncertainty of the RS-based discharge estimates. Once the model is developed, the discharge value, along

with its associated uncertainty, can be estimated using solely the predictor variable.
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3.4 Quality Control of the Estimated Discharge

After employing the NPQM to generate discharge estimates, we implement a quality control process to ensure the reliability of215

these estimates (Figure 5). This process combines statistical tests and visual inspections to identify and exclude low-quality or

anomalous data. We have two different cases: (1) where simultaneous time series for discharge and water level are available,

and (2) where simultaneous data is not available. For case 1, the initial assessment involves calculating the Kling-Gupta

Efficiency (KGE) (Kling et al., 2012) between the in-situ and the estimated height-based discharge; KGE values range from

−∞ to 1, where 1 represents a perfect match between observed and estimated discharge while values below −0.4 indicates220

no skill beyond the mean discharge. A KGE greater than 0 is considered acceptable, as this threshold has been found to

produce quality hydrographs based on our experimental analysis. Additionally, the Kolmogorov-Smirnov (KS) (Lopes et al.,

2007) test compares the distribution of estimated and measured discharges. The KS test helps determine if there is a significant

difference between these distributions. We expect that if the distributions are similar, it indicates that the height-based estimates

are comparable to the gauge measurements. Only those datasets that pass the KS test are retained for further analysis. In225

cases where simultaneous data are unavailable (Case 2), first, we check the KGE to be greater than −0.4, which indicates

an improvement over using the mean observed river discharge. We then assess using the Shapiro-Wilk (SW) test (Shapiro

and Wilk, 1965) to check the normality of the difference between the mean monthly discharge of in-situ and estimated, and

only those passing the tests are retained. Subsequently, the KS test determines if the estimated and measured discharge values

follow the same distribution. Beyond these statistical tests, a visual inspection is conducted to detect anomalies not captured230

by quantitative methods. This inspection focuses on identifying unusual long-term patterns, significant variations or anomalies

(sudden spikes, drops, or erratic fluctuations), and outliers or extreme values. In such a quality control procedure, about 1400

cases are rejected, ensuring that only reliable and accurate discharge estimates are included in the final data set, thereby

enhancing the robustness and credibility of our results.

Altimetry-based
discharge estimates

In situ river discharge
measurements

Simultaneous
estimated and 
gauge data?

KGE > 0

KGE > −𝟎. 𝟒

Yes
(15425) 

No
(29589)

Is KS test
passed?

Yes

Yes

Yes SAEM 
discharge

Criteria for 
visual 

inspection 
fulfilled?

Is SW test
passed?

Yes
(~43600)

Yes

Figure 5. Flowchart of the quality assessment procedure for SAEM discharge. We calculate the KGE for non-simultaneous cases between

the long-term monthly mean of in-situ data and estimated discharge. The KS test refers to the Kolmogorov-Smirnov test, and the SW test

refers to the Shapiro–Wilk test.
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4 Products235

The SAEM data set offers a multi-faceted perspective on river system dynamics, combining raw observational data with

carefully derived products. This section outlines the key components of the data set, including the Catalog of VSs, Altimetric

Water Level Time Series, River height-discharge mapping functions, and Discharge estimates with Uncertainty.

4.1 Catalog of Virtual Stations

This catalog comprises VSs selected based on predefined criteria, as detailed in subsection 3.1. Each VS is characterized by240

coordinate information (latitude and longitude), a unique identifier, and the reach ID from the nearest reach in the SWORD

data set. Information related to satellite altimetry, such as the satellite and ground track number, is also included. Two essential

flags (flag_wl, and flag_dis) denote the quality of the water level and the feasibility of generating discharge from each VS. This

catalog serves as a foundation for subsequent products.

4.2 Altimetric Water Level Time Series245

For VSs with accepted discharge records, we provide the water level time series generated specifically for this study (SAEM

WL). Moreover, for existing Level-3 water level databases, we include the specific IDs introduced by the database providers.

The origin of water level data is explicitly indicated in the ’provider’ attribute, differentiating between externally sourced

Level-3 products and internally generated SAEM data.

4.3 Height-discharge Mapping Functions250

The height-discharge mapping functions represent the intermediary step in transforming water level time series into discharge

data. This product includes non-parametric quantile mapping functions specifically for VSs where the final discharge data

achieved at least a minimum quality. The inclusion of rating curves allows users to generate discharge using their own water

level time series.

4.4 Discharge with Uncertainty255

The main product in the SAEM data set is the discharge time series together with the uncertainty estimates for gauges that

successfully passed the quality control assessments. Each epoch of the time series is associated with a VS identifier stored in a

separate vector called VS_id. Additionally, information from the quality control process is embedded in this product, providing

insights into the reliability and accuracy of the derived discharge data.

5 Results and Validation260

In the SAEM data set, we have monitored around 47 000 gauges worldwide in which 8 730 gauges meet the requirements

discussed in subsection 3.4 and are included in the SAEM. By implementing our height-based rating curve method across
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8 730 gauges, we contribute 1 048 303 day epoch discharge observations to global records. Of these, 614 155 observations

extend the gauge records beyond their original periods, while 434 148 observations fill historical gaps in the data. Figure 6

shows the discharge network across different continents. The gauges are divided into four categories: those for which discharge265

was successfully estimated and passed visual inspection (SAEM), those for which discharge estimation did not pass our visual

inspection (Rejected), those without sufficient water level data or no VSs catalog (No WL data), and those with a mean daily

discharge below 10 m3/s. In each continent, the share of each group of gauges is shown in rings and their associated color. The

outer ring represents the proportion of discharge volume, while the inner ring indicates the proportion in terms of the number

of gauges.270

The overall analysis shows that despite the selective nature of the gauge inclusion process, which reduced the number of

gauges, the most significant gauges in terms of discharge volume are retained. For instance, Africa, Asia, and South America

show that the selected gauges account for almost 100 % of the total discharge. Even continents with fewer selected gauges, like

Australia and North America, maintain high coverage of total discharge volume (91 % and 98 %, respectively). The SAEM

data set, which includes gauges that passed visual inspection, still covers a substantial portion of the total discharge, such as275

72 % in Africa, 89 % in Europe, and 85 % in North America. The highest percentage of the total discharge coverage is achieved

over South America (92 %) followed by Asia and Europe (each 89 %). The minimum portion of the estimated discharge for

the total discharge has happened in Australia (50 %), which is due to the high level of rejection in the process of the SAEM

data set. Additionally, the majority of the gauges (83 %) in Australia have a long-term mean monthly discharge below 10 m3/s,

meaning they were not selected in the first round of the SAEM data set.280

Figure 7 compares the estimated discharge to in-situ discharge measurements across a selection of gauges that represent

various continents and data centers. For the gauges with simultaneous data in both SAEM and in-situ records, scatter plots and

the corresponding correlation coefficients are provided. In three selected cases where simultaneous data were unavailable, the

comparison is presented through monthly mean discharge values. The selected gauges include cases where in-situ data ceased

but discharge estimation continued in the SAEM data set (cases 1 to 10). Additionally, there are cases with minimal to no recent285

in-situ data, yet the SAEM data set successfully estimates discharge for these periods (as seen in cases 12 to 14). The results

show a high correlation between SAEM estimates and in-situ measurements, with correlation coefficients mostly exceeding

0.76, indicating robust performance of the SAEM data set. In cases without simultaneous data, the distribution of discharge

shown by the gauge is accurately captured and reflected in the estimated discharge. The high levels of correlation demonstrate

the reliability of SAEM in estimating discharge accurately, even in the absence of continuous in-situ data.290
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Inner ring: # of gauges
Outer ring: discharge

SAEM

Rejected

No WL data

𝐐𝐚𝐯𝐠<𝟏𝟎 [𝐦𝟑/𝐬]

55.8 [𝟏𝟎𝟑 𝐤𝐦𝟑/yr]
# 31315

24 [𝟏𝟎𝟑 𝐤𝐦𝟑/yr]
# 2705

2 [𝟏𝟎𝟑 𝐤𝐦𝟑/yr]
# 5057

5.7 [𝟏𝟎𝟑 𝐤𝐦𝟑/yr]
# 1303

8.7 [𝟏𝟎𝟑 𝐤𝐦𝟑/yr]
# 3955

82 [𝟏𝟎𝟑 𝐤𝐦𝟑/yr]
# 2544

Figure 6. Distribution of discharge gauges across different continents categorized based on data availability and discharge estimation status.

The outer rings represent the percentage of total discharge volume captured by each category, while the inner rings show the percentage

based on the number of gauges. Categories include gauges with successful discharge estimation (SAEM), rejected estimates, insufficient

water level data, and gauges with low mean daily discharge or insufficient data duration.
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(1)
Skeena

(2)

Nelson

(3)

Altamaha

(4)

Rio Uaupes

(5)
Black river

(6)
Rio Araguaia(7)

Paraguay

(8)
Zaire

(12)
Chari

(13)

Ob

(9)

Danube

(14)

Ea Krong

(11)
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(10) In-situ discharge
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Figure 7. Comparison of estimated discharge from the SAEM data set with in-situ discharge measurements across selected gauges from

various continents and data centers. For cases 1 to 11, where simultaneous data were available, the time series plots are shown alongside

scatter plots and their corresponding correlation coefficients (displayed to the right of each time series plot). For cases without simultaneous

data between SAEM and gauged discharge (cases 12, 13, and 14), the monthly means are compared. It should be noted that in the scatter

plots, the values are normalized by the maximum discharge value among the simultaneous gauge and SAEM data sets.
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We have assessed the performance of the estimated discharge in the SAEM data set against the gauged discharge. Figure 8

presents a detailed comparison of SAEM discharge estimates with in-situ discharge measurements for gauges with simulta-

neous data, covering approximately 57% of the SAEM data set. The first row showcases the spatial distribution of the Kling-

Gupta Efficiency (KGE) and the correlation coefficient (Corr.), with color gradients indicating the performance of the SAEM

estimates across various locations. The second row highlights the spatial distribution of the Normalized Root Mean Square295

Error (NRMSE) on the left and a scatter plot of the mean daily discharge versus KGE on the right. The bottom row provides

cumulative distribution functions (CDFs) for KGE, Corr., and NRMSE metrics.

The spatial plots reveal notable regional patterns in the performance of the SAEM estimates. High KGE and correlation

values are predominantly observed in North America, Europe, and parts of South America, indicating that the SAEM model

performs exceptionally well in these regions. Conversely, regions like parts of Africa and Asia show more variability in perfor-300

mance, with some gauges exhibiting lower KGE and higher NRMSE values. This pattern may be attributed to the density and

quality of the in-situ data available in these regions, as well as regional hydrological complexities that may impact the accuracy

of the SAEM estimates. The distribution of gauges with simultaneous data is denser in North America, South America, and

Europe while being more sparse in regions like Africa and parts of Asia.

The overall high accuracy of the SAEM estimates is evident from the CDF plots. Our findings reveal median values for305

the KGE, Correlation Coefficient, and the NRMSE of 0.48, 0.64, and 73%, respectively. Moreover, we have evaluated the

estimated discharge against in-situ observation for each orbit family (Figure A2). Sentinel 3A stands out with the best overall

performance, achieving a median KGE of 0.44, followed by the Envisat series with a median of 0.35. The KGE distribution

highlights Sentinel 3A’s consistent superiority, particularly at higher performance levels. Meanwhile, the correlation analysis

further supports the strength of Sentinel 3A and Envisat, which both show higher correlation coefficients compared to Sentinel310

3B (median KGE = 0.27) and Topex/Jason (median KGE = 0.26). The NRMSE panel reveals that Sentinel 3A and Envisat

not only have lower error rates but also maintain tighter distributions, while Topex/Jason exhibits the widest spread in error,

indicating less consistency.

5.1 Comparison of discharge time series with existing data sets

We compare the SAEM discharge time series against three existing data sets, namely the Remote Sensing-based Extension for315

the GRDC (RSEG) (Elmi et al., 2024), the data set developed by Riggs et al. (2023), and data from ESA Climate Change Ini-

tiative (CCI) River Discharge project (Gal et al., 2024) (hereafter simply CCI). The RSEG data set includes monthly discharge

time series for 3377 GRDC gauges worldwide, utilizing river water level estimations from satellite altimetry observations, river

width estimations from satellite imagery applying the algorithm introduced in (Elmi and Tourian, 2023), or a combination of

both in some gauges. Riggs et al. (2023) benefited from river width observations from Landsat and Sentinel-2 satellites and320

filled the missing records at 2168 gauges worldwide. Finally, CCI has developed parametric height-based rating curves for 46

gauges to extent the river discharge measurements. CCI aims to create over 20-year climate data records of river discharge

for selected basins using satellite remote sensing (altimetry and multispectral images) and supporting data. It also serves as a
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Figure 8. Global performance of the SAEM discharge estimates compared to in-situ measurements. The first row displays the spatial distri-

bution of the Kling-Gupta Efficiency (KGE) and correlation coefficients (Corr.) for gauges with simultaneous data. The second row shows

the spatial distribution of Normalized Root Mean Square Error (NRMSE) and a scatter plot of mean daily discharge versus KGE. The bottom

row presents cumulative distribution functions (CDFs) for KGE, Corr., and NRMSE, illustrating the overall accuracy and reliability of the

SAEM data set across different regions.

proof-of-concept for a potential River Discharge Essential Climate Variable (ECV) product to meet Global Climate Observing

System requirements (for more information visit https://climate.esa.int/en/projects/river-discharge/).325

Figure 9 presents the results from the comparison of SAEM with RSEG and Riggs et al. (2023). Between the SAEM and

RSEG data sets, there are 2259 gauges in common. We can divide these gauges into three categories based on their input

remote sensing data in RSEG: (1) 91 gauges are based solely on height, (2) 1745 gauges are based solely on width, and (3)

423 gauges use a combination of both in the RSEG data set. The distribution of the RSEG (in grey) gauges and the common
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gauges (in green) is shown in Figure 9 (a). To compare these common gauges with in-situ measurements, we first up-scaled the330

SAEM time series to a monthly time scale, as the RSEG data set provides only monthly estimations. We then included only the

periods where at least 24 values were available for all three data sources: SAEM, RSEG, and in situ. Finally, we ended up with

938 gauges that met this condition. The CDF of the KGE for these gauges from SAEM and RSEG data sets is displayed in

Figure 9 (c). The results indicate a slightly better performance of the SAEM data set for the common gauges, with an average

improvement of about 0.1 KGE. The slightly better performance of the SAEM data set compared to RSEG may be attributed335

to the superior sampling frequency of altimetry compared to satellite imagery, particularly in the high latitude regions, where

cloud coverage often limits the effectiveness of satellite imagery. Furthermore, as shown in the Figure 9 (a), there are over 1 100

gauges included in the RSEG data set that are not part of SAEM, particularly in Asia and Siberia. This suggests that RSEG and

SAEM can complement each other, offering a more comprehensive data set with about 10 000 gauges for monitoring global

river discharge.340

With the data from Riggs et al. (2023), we have 1972 gauges (out of 2 168) in common. The distribution of these gauges is

shown in Figure 9 (b). All the input in Riggs et al. (2023) is based on the width estimation from satellite imagery (Landsat and

Sentinel-2). To conduct the comparison, we utilized the width-based discharge time series estimated by Riggs et al. (2023).

First, we upscaled both data sets to a monthly scale. We then selected gauges that had at least 24 values across all three data

sets: Riggs et al. (2023), SAEM, and in-situ measurements. KGE values were calculated for these gauges, resulting in a final345

set of 1 362 gauges. The CDF of the KGE for these 1 362 gauges, comparing Riggs et al. (2023) with in-situ data and SAEM

with in-situ data, is displayed in Figure 9 (d). Overall, SAEM demonstrates a slightly better performance, with an average

improvement of approximately 0.15 KGE. This improvement can be attributed to SAEM’s use of altimetry data, which offers

more representative measurements with a better sampling compared to satellite imagery, particularly in regions where cloud

cover impedes satellite measurements.350

Due to the thorough care given to obtaining rating curves and river discharge time series within the CCI project (Gal et al.,

2024), we use its results as a benchmark for the quality assurance of our product. Out of 46 gauges in CCI, 36 gauges are in

common with SAEM. Overall our results agree well with those from CCI. Figure 10 illustrates the comparison between the

SAEM data set and the CCI project for the gauge 1134900 of GRDC over the Niger River. The bottom-left plot compares the

water level time series from the four mission series in SAEM with those from the CCI River Discharge project. The scatter plot355

in the bottom right shows a strong correlation between the water levels in SAEM and CCI. This high correlation is because,

for most of the time series, both data sets have used similar water level measurements to generate their respective discharge

estimates.

The top-left plot compares discharge time series from four mission series in SAEM with those obtained from the CCI

project and in-situ measurements. The SAEM data includes contributions of water level from Sentinel 3A (Dahiti), Sentinel 3B360

(Hydroweb), Envisat (Dahiti), and TOPEX/Jasons (Hydroweb). The CCI, on the other hand, relies on the Hydroweb database

for its estimates. The gauged discharge is also shown in green but only covers till 2001. The discharge time series from

both SAEM and CCI exhibit similar patterns. In the top-right plot, the rating curves derived from each of these time series

are compared. SAEM uses a non-parametric approach proposed by Elmi et al. (2021), whereas the CCI employs a parametric
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Riggs et al. (2023) 

In Riggs et al. (2023) &  
SAEM 

RSEG

Riggs et al. (2023) 

SAEM

(a) (b)

(c) (d)

Figure 9. Comparison of the developed SAEM data set with two existing data sets: RSEG and the data set from Riggs et al. (2023). (a)

Spatial distribution of the gauges in RSEG in grey and the gauges common with SAEM in green. (b) Same as (a) but between SAEM and

Riggs et al. (2023). (c) CDF of the KGE values for the common gauges between SAEM and RSEG with simultaneous in-situ data. (d) Same

as (c) but between SAEM and Riggs et al. (2023).

approach and uses a global optimization algorithm based on the Monte Carlo Markov Chain and Bayesian framework proposed365

by Paris et al. (2016) to develop the rating curves. The nonparametric quantile mapping functions from SAEM align well with

the rating curves from CCI.

5.2 Applications

The products in the SAEM data set can be used in various applications in water resource management, monitoring, and climate

change studies. For example, the rating curves produced by this study can be used together with operational satellite altimetry370

missions (Sentinel-3 and Sentinel-6MF) to improve access to Near Real-Time (NRT) discharge estimates. Moreover, SAEM

discharge estimates with high accuracy (high KGE and very low RMSE) can serve as prior estimates for the SWOT satellite

mission, which aims to provide global discharge estimates. In SAEM, we provide a catalog for each gauge that includes

information such as the distance to the gauge, availability of water level data in the Level-3 databases, and a flag indicating its

contribution to the final discharge estimates. Such information can be used further for optimizing the calibration and validation375
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Figure 10. Comparison of discharge and water level time series between SAEM and the CCI project for the Niger River. (Top-left) Discharge

time series from SAEM’s four mission series and CCI, alongside in-situ measurements. (Top-right) Rating curves were derived from each

time series using non-parametric (SAEM) and parametric (CCI) approaches. (Bottom-left) Water level time series from SAEM and CCI.

(Bottom-right) Scatter plot showing the correlation between water levels in SAEM and CCI data sets. The consistency across data sets

highlights the reliability of satellite-derived measurements for river discharge estimation.

processes of hydrological models, enhancing the quality of predictive analytics, and guiding targeted maintenance or upgrades

to existing monitoring infrastructure.

For many applications, such as drought characterization, a continuous data set over a long period (more than 30 years) is

needed. SAEM includes extended discharge estimates for 354 gauges, which feature at least 30 years of data and gaps of less

than 3 years from 1991 to 2020 and have estimated discharge for all months of the year 2021 over the continental United380

States (CONUS). Here, we use these gauges to explore climate change through continuous gauge records. Figure 11 shows

the deviation of the mean annual discharge in 2021 from the mean annual discharge calculated for 1991-2020 at the selected

gauges. To better understand the results, we categorized the deviations into five groups: discharge conditions for 2021 are

classified as much below normal if they fall below the 10th percentile, below normal if they are between the 10th and 25th

percentiles, ’normal’ if they fall between the 25th and 75th percentiles, above normal if they are between the 75th and 90th385

percentiles, and much above normal if they are at or above the 90th percentile. The percentiles are calculated from the long-term
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annual discharge time series (1991–2020). The analysis of 354 gauges across the CONUS for 2021 reveals diverse hydrological

responses to climate variability. Over half of the gauges (about 55%) showed normal discharge levels, indicating that many

regions maintained hydrological stability in 2021 compared to the past three decades. However, approximately 15% of gauges

fell into the much below normal category, and another 18% were below normal, pointing to significant areas with lower-than-390

average water availability—likely linked to drought or reduced water supply. Conversely, about 8% of gauges recorded above

normal discharge, and 5% were much above normal, suggesting increased rainfall or other factors driving higher runoff in

those areas.

Much Below Normal

Below Normal

Normal

Above Normal

Much Above Normal

Figure 11. Geographic distribution of 2021 discharge deviations among 354 SAEM gauges across the continental U.S., each with at least

30 years of data and minimal gaps from 1991 to 2020, showing variations from much below normal to much above normal relative to the

historical average.

5.3 Discussion

While the SAEM data set offers a comprehensive suite of products, including estimated discharge, a catalog of altimetry VS,395

rating curves, and water levels at VSs, it is important to address the inherent limitations of satellite altimetry, particularly

when applied to riverine environments. Altimetry can be challenging over narrow rivers due to the difficulty in accurately

detecting and tracking the water surface within the confines of the riverbanks (Calmant and Seyler, 2006). Such a challenge

is exacerbated during the summer months when reduced water levels and increased vegetation can further complicate signal

retrieval. Additionally, the challenges posed by ice-covered river surfaces and the difficulty in deriving reliable time series400

limit the availability of altimetric water level data at high latitudes, resulting in sparse coverage in these regions (Berry et al.,

2005). Despite these challenges, the inclusion of a catalog of virtual stations in the SAEM data set holds significant value.

This catalog provides a foundation for developing dedicated retracking algorithms tailored to specific riverine conditions,
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potentially mitigating some of the limitations. By refining these algorithms, it is possible to enhance the accuracy of water

level measurements and discharge estimates, thereby improving the utility of satellite altimetry for hydrological studies and405

water resource management (Papa et al., 2010b).

Another significant limitation of satellite altimetry is its temporal sampling. Satellite altimetry missions often provide coarse-

sample measurements in time, which can be insufficient for capturing the dynamics of river discharge, especially during rapid

hydrological events. However, this limitation can be mitigated by generating densification algorithms as demonstrated by

(Tourian et al., 2016; Boergens et al., 2019; Nielsen et al., 2022). By integrating these methods with the SAEM data set, it is410

possible to overcome the temporal sampling limitations and obtain dense discharge time series.

Further, we acknowledge the assumption of stationarity made in our discharge estimation method, which could lead to extra

uncertainty in discharge especially when simultaneous data of water level and discharge are not available. Such an assumption

implies that the statistical properties of the relationship between water level and discharge do not change over time, which may

not always hold in dynamic river systems. Variations in climatic conditions, land use, and river morphology can all influence415

this relationship, potentially introducing errors into our discharge estimates (Tourian et al., 2013). Recognizing this limitation

is crucial for interpreting our results and underscores the need for developing more robust methods that can account for non-

stationary conditions in hydrological studies. Future research should focus on incorporating adaptive algorithms and additional

environmental variables to improve the accuracy and reliability of discharge estimations.

While the non-parametric method for discharge estimation faces challenges related to stationarity, it represents a significant420

advancement over classical parametric rating curve models. Traditional parametric models often rely on predefined functional

forms and can be limited by their inability to adapt to the inherent variability and complexity of river channels (Elmi et al.,

2021). In contrast, the non-parametric method used in this study offers greater flexibility by allowing the data itself to determine

the relationship between water levels and discharge, which can result in more accurate and reliable estimations of discharge

(Elmi et al., 2021).425

6 Conclusions

River discharge serves as a vital metric, capturing the volume of water passing through a river cross-section at any given

moment. However, existing river discharge data sets face several challenges, particularly due to the decreasing number of

operational gauges. To address that, we have developed the Satellite Altimetry-based Extension of global-scale in situ river

discharge Measurements (SAEM v1.1). We have assessed 47 000 gauges worldwide and obtained discharge estimates for430

8 730 gauges, more than the existing data sets. In the following, we summarize the benefits of the SAEM data set:

1. SAEM utilizes the multi-satellite altimetry missions and estimates the discharge using the existing global network of

national and international gauges.

2. In addition to providing extended river discharge measurements and their uncertainties, SAEM delivers a catalog of

Virtual Stations (VSs) for each gauge. This catalog forms the backbone of the SAEM data set. The catalog, along with435
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the gauge coordinates, provides information about the VSs around each gauge, including their satellite mission, track

number, distance to the discharge gauge, and a flag indicating whether the VS is used for estimating discharge.

3. Furthermore, SAEM includes water level time series generated specifically for this study, as well as the ID and informa-

tion of water level time series from Level-3 databases. The Level-3 data are sourced from pre-existing databases (more

than 40 000 VSs) including Hydroweb, the Database of Hydrological Time Series of Inland Waters (DAHITI), the Global440

River Radar Altimeter Time Series (GRRATS), HydroSat, and the data set developed by (Kitambo et al., 2022a).

4. The transformation of water level time series into discharge data is modeled through rating curves, derived using a

Nonparametric Stochastic Quantile Mapping Function approach developed by Elmi et al. (2021). SAEM delivers rating

curves (more than 43 600 rating curves) for a selected set of VSs, tailored for each VS and mission separately.

Validation against the in-situ data shows that the majority of the KGE values are positive with more than 40% of the445

cases exhibiting KGE>0.4, Corr.>0.5, and NRMSE<15%. We assessed also the estimated discharge for each orbit family

by comparing it with in-situ observations. Based on KGE values, the best performance belongs to Sentinel 3A (median =

0.44), followed by the Envisat series (median = 0.35), Sentinel 3B (median = 0.27), and Topex/Jason series (median = 0.26).

Furthermore, the SAEM discharge time series are compared with two other global-scale discharge data sets, RSEG and Riggs

et al. (2023), along with the CCI project. SAEM generally performs similarly to or better than RSEG across 2085 common450

gauges and shows higher accuracy than Riggs et al. (2023) in 1926 out of 2168 shared gauges. The comparison with CCI

further highlights the reliability of SAEM’s non-parametric approach, which effectively captures the water level-discharge

relationship. Looking ahead, with the advent of the SWOT mission as a new tool for discharge estimates globally, SAEM

has the potential to serve as a benchmark product for globally assessing discharge estimates, particularly as it continues to be

extended and refined.455

7 Data availability

The SAEM data set is openly available on DaRUS, the data repository of the University of Stuttgart (Saemian et al., 2024)

(https://doi.org/10.18419/darus-4475). The following gauge databases are publicly accessible: ArcticNet (www.r-arcticnet.sr.

unh.edu/v4.0/AllData/index.html), Australian Bureau of Meteorology (www.bom.gov.au/waterdata/), Chile Center for Climate

and Resilience Research (https://explorador.cr2.cl/), Canada National Water Data Archive (www.canada.ca/en/environment\460

protect\penalty\z@-climate-change/services/water-overview/quantity/monitoring/survey/data-products-services/national-arch\

protect\penalty\z@ive-hydat.html), Brazil National Water Agency (www.snirh.gov.br/hidroweb/serieshistoricas), the Global

Runoff Data Centre (https://portal.grdc.bafg.de/applications/public.html?publicuser=PublicUser), India Water Resources In-

formation System (https://indiawris.gov.in/wris/#/RiverMonitoring), Spain Annuario de Aforos (https://datos.gob.es/en/), Thai-

land Royal Irrigation Department (http://hydro.iis.u-tokyo.ac.jp/GAMET/GAIN-T/routine/rid-river/disc_d.html), Japanese Wa-465

ter Information System (www1.river.go.jp/), and the U.S. Geological Survey (https://waterdata.usgs.gov/nwis/rt). The Chinese

Hydrology Project data is not publicly available and was provided by the authors of the data set (Henck et al., 2010; Schmidt
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et al., 2011). The GRADES hydrological model outputs are publicly available online (www.reachhydro.org/home/records/

grades).

In our research, we utilized Level-3 databases of water levels sourced from several key repositories. The databases were470

acquired from Hydroweb operated by CNES, which provided 24,042 virtual stations (VSs) (see http://hydroweb.theia-land.fr);

DAHITI managed by Deutsches Geodätisches Forschungsinstitut (DGFI), contributing 9,968 VSs (available at https://dahiti.

dgfi.tum.de); HydroSat from the Institute of Geodesy at the University of Stuttgart, offering 2,036 VSs (accessible via http:

//hydrosat.gis.uni-stuttgart.de); and GRRATS supported by Copernicus, European Commission, ESA, USGS, and Amazon

Web Services, providing 1,869 VSs (details at https://blue-dot-observatory.com). Additionally, the Congo basin database,475

described in Kitambo et al. (2022), contributed 1,272 VSs (found at https://hess.copernicus.org/articles/26/1857/2022/).
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Appendix A485

Figure A1. The timeline depicts satellite altimetry missions, highlighting operational (in green) and non-operational (in red) periods.

Figure A2. Comparison of SAEM discharge estimates with in-situ measurements across four orbit families—Envisat series (En), TOPEX/-

Jason series (TPJs), Sentinel 3A (S3A), and Sentinel 3B (S3B)—evaluated using Kling-Gupta Efficiency (KGE), Correlation Coefficient

(Corr.), and Normalized Root Mean Square Error (NRMSE).
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