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Abstract. In recent years, the demand for rice in Africa has been growing rapidly, and in order to meet this demand, the rice 

cultivation area is also expanding rapidly, thus it is of great significance to monitor the rice cultivation in Africa. The spatial 10 

and temporal distribution of rice cultivation in Africa is complex, making it difficult to use phenology-based rice identification 

methods, and the existing rice distribution products of Africa are all grid-based statistical data with low resolution, unable to 

obtain accurate rice field location and available labels. To address these two difficulties, based on time-series optical and dual-

polarisation Synthetic Aperture Radar (SAR) data, this study proposes a sample set construction method by fast coarse 

positioning assisted visual interpretation, and a feature importance guided supervised classification combining multiple 15 

temporal optical and SAR features to reduce the impact of rice diversity in Africa. Firstly, we use the time-series statistical 

features of VH data for fast coarse positioning and screening of possible rice areas, and combine multiple auxiliary data for 

visual interpretation to construct the sample set; secondly, based on the complementary information in SAR data and optical 

data, the 20 meter Africa rice distribution map of 2023 was completed by combining the object-oriented segmentation results 

of temporal optical images and the pixel-based classification results of temporal SAR data features after feature selection. The 20 

average classification accuracy of the proposed method on the validation set is more than 85%, and the R2 of the linear fit to 

various existing statistical data is more than 0.9, which proves that the proposed method can achieve the spatial distribution 

mapping of rice under the complex climatic conditions in a large region, providing crucial data support for rice monitoring 

and agricultural policy development. The dataset is available at https://doi.org/10.5281/zenodo.13729353 (Jiang et al., 2024). 

1 Introduction 25 

Rice is the staple food for half of the world's population (Kuenzer and Knauer, 2013), providing over a quarter of the 

calories for approximately half of the population (Wu et al., 2022), playing an important role in maintaining global food 

security and also crucial to the economies of many developing countries (Seck et al., 2012; Ajala and Gana, 2015). In 2021, 

rice accounted for approximately 8.3% of the world's major crop production (Fao, 2023). In Africa, rice accounted for 

approximately 3.8% of the main crop yield and 4.7% of the global rice production. Despite its current modest share, the demand 30 
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for rice in sub-Saharan Africa is increasing at over 6% annually due to population growth, urbanization, and changes in 

consumer preferences, surpassing any other staple food (Arouna et al., 2021). In order to meet the higher demand for rice, the 

synchronous growth of local rice production and imports in Africa, and the expansion of rice area rather than the increase in 

production, are the main driving forces for the increase in domestic production. In the past thirty years, the cultivated land area 

has expanded by about 400,000 hectares per year (Yuan et al., 2024). 35 

In 2023, in order to promote food and nutrition security in Africa, the African Rice Center proposed the 2030 Africa Rice 

Research and Innovation Strategy (Africarice, 2023) to transform the rice-based agricultural food system, and the rice area in 

Africa will continue to grow. Meanwhile, rice cultivation and production are important sources of income for a large number 

of African households (Hussain et al., 2020). However, rice cultivation in Africa also faces many challenges. Firstly, Africa 

is highly susceptible to the impacts of climate change, such as extreme weather events, changes in precipitation patterns, and 40 

rising temperatures, which can have a significant impact on agricultural production (Field and Barros, 2014; Ogisi and Begho, 

2023). Land use changes across Africa, particularly urban expansion and deforestation, also influence the distribution of rice 

cultivation areas (Lambin and Geist 2008, Bren d’Amour, Reitsma et al. 2017). Consequently, it is essential to obtain high-

resolution maps of rice spatial distribution in Africa for monitoring the condition of rice cultivation across the continent. 

In recent years, the global crop mapping datasets that include rice in Africa mainly include SPAM2010 (Yu et al., 2020), 45 

GAEZ+2015 (Global Agro Ecological Zones) (Frolking et al., 2020), SPAMAF2017 (International Food Policy Research, 

2020), and CROPGRIDS (Tang et al., 2023). SPAM2010 and SPAMAF2017 datasets are based on the SPAM model (Spatial 

Production Allocation Model) developed by the International Food Policy Research Institute (IFPRI), which utilizes 

geographic spatial data such as land use types and crop statistical data as inputs to make reasonable estimates of crop 

distribution within the decomposed units using a cross entropy approach, with a spatial resolution of 5 minite (~10km). 50 

GAEZ+2015 utilized the GAEZ model and FAO's crop statistical data to generate grid distribution products for 26 crops, with 

a spatial resolution of 5 minite (~10km). CROPGRIDS has generated the latest global georeferenced dataset of 173 crops using 

26 published grid datasets, with a spatial resolution of 0.05° (~5.5km). The existing datasets have low resolution and are all 

gridded datasets rather than high resolution distribution maps. Moreover, these data is generally outdated, making them of 

limited significance for monitoring rice cultivation in Africa. 55 

Due to the complementarity of information between SAR data and optical remote sensing data, current large-scale rice mapping 

benefits from multi-source data that combines SAR data and optical remote sensing data as data sources (Han et al., 2021; 

Shen et al., 2023; Ginting et al., 2024). Current rice mapping methods are usually divided into: 1) Phenology-based 

classification methods. For example, Qiu (Qiu et al., 2015) utilized the CCVS (the Combined Consideration of Vegetation 

phenology and Surface water variations) index, constructed using the Land Surface Water Index (LSWI) and Enhanced 60 

Vegetation Index (EVI) during the rice heading and transplanting stages, to map rice in the complex terrain of southern China. 

Similarly, Zhang (Zhang et al., 2023) employed the SPRI (SAR-based Rice Mapping Index) index, which describes the growth 

status from the transplanting to maturity stages, to achieve sample-free mapping of double-cropping rice. These methods do 
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not require sample data but rely heavily on accurate phenological information. 2) Methods leveraging time-series curve 

similarity measures, such as DTW (Dynamic Time Warping) (Guan et al., 2016) and its improved version TWDTW (Time 65 

Weighted Dynamic Time Warping) (Singh et al., 2021; Tian et al., 2024), requiring only a small number of rice samples to 

obtain a standard rice growth curve; 3) Supervised classification methods, including various machine learning methods (Wang 

et al., 2020; Zhang et al., 2020; You et al., 2021a) and rapidly developing deep learning methods in recent years (Zhu et al., 

2021; Sun et al., 2023). These methods offer several advantages for rice mapping. They do not require phenological 

information, making them adaptable to different regions and growing conditions. Additionally, they provide high classification 70 

accuracy and robustness when large amounts of labeled sample data are available. This allows for more precise identification 

and mapping of rice fields, even in complex landscapes or where other methods struggle. However, the effectiveness of these 

approaches depends on the availability and quality of the training data. 

The first challenge in mapping rice in Africa lies in the significant temporal and spatial variability of rice cultivation due to its 

tropical and subtropical climate, as illustrated in Fig. 1. The data in this figure is derived from the rice calendar product 75 

RiceAtlas (Laborte et al., 2017) published in 2017, annotating the months when the main and secondary seasons of rice planting 

in Africa end and harvest begins. African rice cultivation includes both single and double cropping systems, with variations in 

planting times and growth durations across different seasons. This makes it difficult to apply a uniform phenological 

description for mapping rice across the entire continent. Notably, large areas of rainfed rice cultivation (Balasubramanian et 

al., 2007) in Africa lack the distinct flooding signals typical of irrigated rice, which are commonly used in widely adopted rice 80 

mapping methods that rely on detecting flooding periods (Guo et al., 2019; Zhan et al., 2021; Wei et al., 2022). Consequently, 

phenology-based rice mapping methods are challenging to apply in Africa. Similarly, DTW-based approaches are difficult to 

implement due to the variability in rice cropping intensity and phenology, which hinders the identification of a standard rice 

growth curve. Therefore, integrating time-series data with supervised classification emerges as the primary strategy for 

mapping rice spatial distribution in Africa. However, the main challenge of this approach lies in constructing the sample set. 85 

Existing rice distribution products for Africa are grid-based, making it difficult to quickly identify rice-growing areas for 

sample set construction. Moreover, the diversity of rice cultivation in Africa—spanning phenology (including cropping 

intensity), farming practices (irrigated/rainfed), and environmental conditions (plains, hills)—complicates the identification of 

rice fields and makes it challenging to ensure the representativeness and completeness of the samples.  
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Figure 1. Rice planting calendar: (a) main rice season planting end date, (b) secondary rice season planting end date, (c) main rice 

season harvest start date, and (d) secondary rice season harvest start date. Data sourced from RiceAtlas. 

In recent years, the Google Earth Engine (GEE) platform has provided robust support for high-resolution crop mapping. GEE 

integrates extensive remote sensing data and geographic information system tools, enabling rapid processing and analysis of 

massive time-series datasets (Gorelick et al., 2017). In particular, Sentinel satellite data (Sentinel-1 and Sentinel-2) have been 95 

widely applied in crop monitoring and mapping due to their high spatial resolution and frequent temporal coverage (Saad El 

Imanni et al., 2022; Waleed et al., 2022; Luo et al., 2023; Zoungrana et al., 2024). Additionally, the GEE platform supports 
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various supervised classification methods, including Random Forest (RF), Support Vector Machine (SVM), and Classification 

and Regression Trees (CART) (Liu et al., 2020; You et al., 2021b; Avcı et al., 2023). By integrating multi-source time-series 

Sentinel data with these supervised classification algorithms available on the GEE platform, it has become feasible to achieve 100 

large-scale, high-resolution, and high-accuracy mapping of rice distribution in Africa. 

In summary, this study employs a multi-source time series data approach combined with classification algorithms to produce 

large-scale and high-resolution rice distribution maps across Africa. Specifically, to address the challenge of sample collection, 

time-series statistical features from Sentinel-1 VH data are used for fast coarse positioning of potential rice-planting areas, 

followed by visual interpretation using various auxiliary datasets to create reliable samples. During the classification stage, 105 

object-based segmentation results derived from Sentinel-2 optical time-series data are integrated with feature importance 

guided Random Forest classification results from Sentinel-1 SAR time-series to obtain more precise rice paddy boundaries 

and reduce noise in heterogeneous landscapes. This approach successfully generated a 20-meter resolution rice distribution 

map for Africa in 2023. The research could provide scientific support for rice management in Africa, contribute to improving 

rice yields, ensure food security, and offer data for addressing climate change. The findings are expected to be valuable for 110 

policymakers, agricultural scientists, and farmers alike. 

2 Materials 

2.1 Study site 

In this study, 34 countries with harvested rice areas exceeding 5,000 hectares, as reported by FAO (Food and Agriculture 

Organization of the United Nations) statistics in 2022, were selected as the study regions for rice spatial distribution mapping 115 

(Fao, 2022), shown in Fig. 2. These include 3 countries in Northern Africa (Egypt, Morocco, Sudan), 15 countries in Western 

Africa (Benin, Burkina Faso, Côte d’Ivoire, Gambia, Ghana, Guinea, Guinea-Bissau, Liberia, Mali, Mauritania, Niger, Nigeria, 

Senegal, Sierra Leone, Togo), 5 countries in Central Africa (Angola, Cameroon, Central African Republic, Chad, Democratic 

Republic of the Congo), and 11 countries in Eastern Africa (Burundi, Ethiopia, Kenya, Madagascar, Malawi, Mozambique, 

Rwanda, South Sudan, Uganda, Tanzania, Zambia). The regional division follows the United Nations’ Geoscheme (United 120 

Nations 2013). 
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Figure 2. Study site: 34 countries in Africa with rice harvest areas exceeding 5000 hectares in 2022 according to FAO (diagonally 

marked area). GIS country boundaries in Figure 2 are available from GADM (https://gadm.org) 

The climatic variations across different sub-regions of Africa result in diverse rice cultivation practices. In Northern Africa, 125 

dominated by desert and Mediterranean climates, the hot and arid conditions, coupled with scarce rainfall, limit rice cultivation 

to areas with stable water resources, such as the Nile River basin. Rice is primarily cultivated as a single-season crop, relying 

heavily on irrigation systems. In Western Africa, coastal regions experience tropical rainforest climates, while the interior 

regions have tropical savanna climates. Rainfall decreases progressively from the coast to inland, leading to rainfed rice 

cultivation predominantly in coastal areas during the rainy season, which typically spans from May to October, allowing for 130 

single-season planting. In inland areas, rice cultivation often depends on flood irrigation or irrigation systems, enabling multi-

season cropping. Central Africa also features a tropical rainforest and savanna climate but with uneven rainfall distribution 

across seasons. As a result, phenological patterns of rainfed rice vary widely in rainforest areas, while rice cultivation in 

savanna areas partly depends on seasonal flooding or irrigation. In Eastern Africa, the highland regions are characterized by 

warm and humid mountain climates, where rice cultivation primarily relies on natural rainfall, with the main rainy seasons 135 

occurring from April to June and October to December. In contrast, lowland areas have tropical savanna climates, requiring 

irrigation support for rice cultivation. 

https://gadm.org/
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2.2 Data source 

2.2.1 Satellite data 

The main data sources in the study are time-series SAR data and optical data for their high temporal and spatial coverage. 140 

Specifically, the monthly average VH and VV data of Sentinel-1 satellite for the whole year of 2023 were obtained as SAR 

data input on the GEE platform. Because rice is sensitive to NDWI (Normalized Difference Water Index) and NDVI 

(Normalized Difference Vegetation Index)(Zhang et al., 2019; De Lima et al., 2021), the monthly average B3, B4, B8, and 

B8A band data of Sentinel-2 satellite for the whole year of 2023 were obtained as optical data input to composite NDWI and 

NDVI. The substantial volume of data, covering multiple spectral and temporal dimensions, enhances the model’s capability 145 

to detect seasonal variations and accurately map rice fields in diverse agro-ecological zones across Africa. Table 1 presents 

the number of satellite images utilized for the monthly average composite across each country within the study site. A total of 

29,722 Sentinel-1 (S1) images and 387,439 Sentinel-2 (S2) images were employed in the experiment. 

Table 1. Number of satellite images used in the study 

No. Country 

Number 

of S1 

images 

Number 

of S2 

images 

No. Country 

Number 

of S1 

images 

Number 

of S2 

images 

1 Angola 418 19765 18 Madagascar 1106 15324 

2 Benin 365 2142 19 Malawi 441 3008 

3 Burkina Faso 486 5126 20 Mali 1400 20949 

4 Burundi 207 1126 21 Mauritania 1274 17083 

5 Cameroon 1319 8253 22 Morocco 1448 8933 

6 
Central African 

Republic 
963 9542 23 Mozambique 1877 26645 

7 Chad 1139 19564 24 Niger 1565 18297 

8 Côte d'Ivoire 514 5575 25 Nigeria 1677 14716 

9 
Democratic Republic 

of Congo 
3762 55967 26 Rwanda 238 917 

10 Egypt 1052 16529 27 Senegal 379 4192 

11 Ethiopia 1625 17062 28 Sierra Leone 213 1872 

12 Gambia 86 791 29 South Sudan 659 9882 

13 Ghana 413 4407 30 Sudan 488 29213 

14 Guinea 515 4704 31 Togo 120 1822 

15 Guinea-Bissau 142 1233 32 Uganda 639 4534 

16 Kenya 972 8917 33 
United Republic of 

Tanzania 
1427 14807 

17 Liberia 245 2304 34 Zambia 548 12238 
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2.2.2 Land cover data 150 

During the sample set construction phase, cropland data from the European Space Agency's (ESA) WorldCover data for 2020 

and 2021 were used as a reference. By integrating land cover data from two consecutive years, the study ensured better temporal 

consistency and reliability in sample selection. The use of this land cover data also facilitated the initial separation of rice and 

non-rice areas, supporting more precise training and validation in the subsequent classification processes. 

2.2.3 Rice Grid Data 155 

During the sample set construction phase, rice grid data from the CROPGRIDS (Tang et al., 2023) grid distribution product 

released in 2023 was used as a reference. 

2.2.4 Statistical data 

Three kinds of statistical data were used in the study, as shown in Table 2. 

Table 2. Statistical data on rice area used in the study 160 

Statistical Data Data Time Retrieve Time 

USDA(United States Department of Agriculture): 

Rice planting/harvesting area in African countries 

(Usda, 2023) 

2023 2024/02 

FAO(Food and Agriculture Organization of the 

United Nations): Rice harvesting area in African 

countries (Fao, 2022) 

2022 2024/03 

CARD(COALITION for African Rice 

Development): Rice planting/harvesting area in 

CARD countries (Card, 2022) 

2020/2021 2024/05 

2.2.5 Administrative distribution data of rice planting intensity 

In the comparison stage with statistical data, the administrative distribution data of rice planting intensity in RiceAtlas (Fig. 3) 

product (Laborte et al., 2017) were used to map the rice paddy area in the mapping results to planting/harvesting area to 

compare with statistical data since the area data they provide are all planting/harvesting area other than paddy area. The areas 

without single/double season information were defaulted to planting single-season rice. 165 
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Figure 3. Administrative distribution map of rice intensity from ©RiceAtlas 

To calculate the planting area, the paddy area is first derived from the mapping result. Then paddy area is allocated to the 

single season paddy area and the double season area according to the rice intensity map. Where 

Paddy Area =  Single Season Paddy Area + Double Season Paddy Area (1) 170 

Then the planting area is calculated using: 

Planting Area =  Single Season Paddy Area + 2 ∗ Double Season Paddy Area (2) 
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3 Method 

 

Figure 4. Flowchart of the proposed rice mapping method (Optical images are from ©GoogleEarth) 175 

The workflow for mapping the spatial distribution of rice in Africa at a 20-meter resolution is depicted in Fig. 4. The study 

adopts a multi-source time-series data approach combined with a supervised classifier to achieve large-scale, high-resolution 

mapping of rice distribution in Africa. The workflow is primarily divided into two main stages: sample set construction and 

object-based classification guided by feature importance. 

During the sample set construction phase, visual interpretation is conducted referring to ESA WorldCover cropland data, 180 

CROPGRIDS rice grid map, and optical image, with statistical features from VH time series aiding in the fast coarse 

positioning of potential rice-growing regions. 

During the classification phase, classification experiments were conducted in every country separately. Object-based 

segmentation is first performed on optical images to obtain super-pixel results, which helps mitigate the effects of speckle 

noise in SAR imagery, enhances classification accuracy, and better captures the complex spatial patterns of rice fields. The 185 

mean values of SAR data (VH, VV) and various radar vegetation indices derived from SAR data within these super-pixels are 

then used as input features. A random forest classifier is applied to train the model, which gives ranks of the importance of the 

input features. The most important features of different sub-regions of Africa are selected for a subsequent classification to 

produce the rice paddy distribution map. Finally, accuracy validation is conducted using statistical data and validation datasets. 
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3.1 Sample set construction: fast coarse positioning aided visual interpretation 190 

3.1.1 Fast coarse positioning of rice planting area 

Sun used the statistical features (max, min, variance) of VH time-series data for pseudo-color composite in rice mapping in 

Southeast Asia as input features for rice extraction (Sun et al., 2023), In the pseudo-color feature map (R: VHmax, G: VHmin, B: 

VHvariance), rice appears purple because VHmin is small, while VHmax and VHvariance are larger mainly caused by the drop of VH 

backscattering during flooding period. This is true with both irrigated rice and rainfed rice in Southeast Asia in the literature. 195 

In the experiment, it was found that rice in Africa also exhibits similar behaviour, as shown in Fig. 5, for it is a common 

phenomenon for rainfed rice to experience temporary floods of different durations and depths caused by rainfall though not 

the same with the stable flooding period of irrigated rice (Yamamoto et al., 2012; Kwesiga et al., 2019; Panda and Barik, 2021; 

Mwakyusa et al., 2023). And it can be seen from Fig.5 that the rice planting region stands out distinctly in the feature map, 

making it easy to locate the general rice planting region. But it cannot be completely distinguished from ground objects like 200 

wetlands for their similarity in the feature map. Therefore, the feature map was only used for fast coarse positioning and 

preliminary screening of rice regions. Specific examples of selected rice fields are presented in Fig. 6. 

 

Figure 5. Pseudo-color composite image (R: VHmax, G: VHmin, B: VHvariance) used for fast coarse positioning, and corresponding 

optical image in Africa (From ©Google Earth) (a) irrigated region in Egypt(Mathieu, 2022) (b) rainfed lowland region in 205 

Mozambique(Kajisa and Vu, 2023). Examples of rice fields selected from these areas of Egypt and Mozambique are presented in 

Fig. 6. 
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3.1.2 Rice sample set construction  

During the experiment, it was found that wetlands and other land cover types prone to misclassification with rice also appear 

as purple in the pseudo-color composite image described in Section 3.1.1. Therefore, multiple auxiliary datasets were used for 210 

visual interpretation to construct the rice sample set. Specifically, the process begins with positioning potential rice-planting 

areas using the fast coarse positioning feature. The intersection of the high-value rice grid map from CROPGRIDS and the 

cropland distribution map is then utilized to further narrow down these areas. Finally, rice plots are selected and confirmed as 

rice samples through visual interpretation of optical imagery. The cropland distribution maps used the union of the cropland 

classes from WorldCover for the years 2020 and 2021. Additionally, in some countries, existing studies or reports, as listed in 215 

Table 3, were consulted. 

Table 3. Reference for rice sample set construction in some countries 

Country Reference 

Benin (Loko et al., 2022) 

Burkina Faso (Barro et al., 2021) 

Egypt (Mathieu, 2022) 

South Sudan (Fewsnet, 2018) 

Generally, the rice plots have these features on optical images: (1) circular irrigation fields or fields with internal blocks or 

strips to retain water, especially near water, rivers, lakes, etc. (2) very uniform greenness and texture during the growing season. 

If the features are not clear enough, the time series curve of VH data would be examined for obvious fluctuations since the 220 

backscatter of VH polarized data of rice has a clear drop during the flooding period. Fig. 6 presents some examples of rice 

fields and the VH backscattering coefficient time series of the red-marked point. The field in Egypt is an example of the typical 

circular irrigated rice paddy during the growing season that can be located refer to the literature(Mathieu, 2022). The fields in 

Mali are in the irrigated region around Niono(Diuk-Wasser et al., 2007). The fields in Mozambique are an example of rainfed 

rice paddy during the growing season that can be located referring to the literature(Kajisa and Vu, 2023). The fields in Kenya 225 

are in the concentrated rice planting area in Mwea and can be located from (Menge et al., 2024), which are examples of rice 

fields with internal blocks or strips. The fields in Chad are part of the China-aided Bongor Rice Demonstration Base in Chad, 

which is an example of rice fields in the non-growing season (Liang et al., 2017). The fields in Madagascar are in Mahitsy 

where rice cultivation has a long history(Voahanyinirina and Elie, 2007). The corresponding pseudo-color composite feature 

map in Fig.6 also proves the effectiveness of the fast coarse positioning method. 230 
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Figure 6. Examples of rice fields (a) Pseudo-color composite image (R: VHmax, G: VHmin, B: VHvariance) (b) Optical image(From 

©Google Earth) (c) VH backscattering coefficient time series curve of the point marked in (b)  

In the experiment, 50-300 rice plots were selected for each country, and 2000 rice points were randomly sampled from these 

plots as positive samples for the classifier input in each country's classification experiment. 235 

3.1.3 Negative sample set 

In the classification experiments conducted for each country, dozens of plots for each land cover type (non-rice cropland, built-

up areas, water bodies, wetlands, forests, grasslands, etc.) were uniformly selected by visual interpretation based on optical 

imagery and the WorldCover product. For each land cover type, 300 sample points were randomly selected within these plots 

as negative samples for the classifier input. 240 

 

Figure 7. Example of positive and negative sample regions (a) Optical image (From ©Google Earth) (b) WorldCover2021 from ESA 

(c) the pseudo-color feature map (R: VHmax, G: VHmin, B: VHvariance) 
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3.1.4 Validation dataset 

The validation dataset was constructed similarly to the training sample set. For each country, the validation dataset includes 245 

1,000 rice sample points. Non-rice sample points were uniformly selected based on the number of land cover categories present 

in the WorldCover product for that country, with 100 sample points chosen for each category (with the cropland category 

containing only non-rice cropland samples). 

3.2 Object-oriented supervised classification guided by feature importance 

3.2.1 SNIC object-oriented segmentation 250 

Monthly mean time series of NDWI and NDVI data from 2023 were used as inputs to perform object-based segmentation 

using the Simple Non-Iterative Clustering (SNIC) algorithm (Achanta and Susstrunk, 2017). This approach was adopted to 

reduce the fragmentation of rice paddy extraction results and enhance the clarity of rice paddy boundaries. The SNIC algorithm 

is a super-pixel segmentation method based on the principles of K-means clustering. It initializes seed points on a regular grid 

as initial cluster centers and assigns each pixel to the nearest cluster based on its distance from the cluster center in both color 255 

and spatial dimensions. Since the SNIC algorithm is non-iterative, it requires less computation time and memory while 

ensuring connectivity, resulting in good segmentation performance. It is widely used in remote sensing applications (Tassi and 

Vizzari, 2020; Wang et al., 2024). 

In the experiment, the SNIC algorithm was implemented on the GEE platform with the following parameter settings: seed 

distance (size) = 10, segmentation compactness = 0.5, connectivity = 8, and neighbourhood size = 100. The effect of 260 

segmentation is demonstrated in Fig.8. 

3.2.2 Feature importance guided supervised classification  

To address the limitations of optical imagery caused by cloud cover in large-scale mapping, SAR features were utilized after 

object-based segmentation based on time-series NDVI and NDWI data. The mean values of the SAR features within the 

segmented super-pixels were used as inputs for supervised classification to achieve more accurate large-scale, high-resolution 265 

rice mapping results. This part of the study employed the Random Forest algorithm available on the GEE platform. Supervised 

classification experiments were first conducted for each country, with all SAR data features used as inputs to determine feature 

importance rankings. The top-ranked features for each sub-region were then selected, and a second round of supervised 

classification was performed using these selected features to obtain the final mapping results. 

The SAR features used in the experiment included VH, VV, and four commonly used radar vegetation indices: RVI (Radar 270 

Vegetation Index), PRVI (Polarimetric Radar Vegetation Index), RFDI (Radar Forest Degradation Index), and DpRVIc (Dual-

pol radar vegetation index for GRD (Ground Range Detected) data). The statistical features (max, mean, min, variance) for 

these indices in 2023 were utilized, as defined in Table 4. 

Table 4. Index definition 
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 Simplified Formula 

RVI 

4∗𝜎𝐻𝑉

𝜎𝑉𝑉+𝜎𝐻𝑉
  

 (Charbonneau et al., 2005; Li and Wang, 2018) 

PRVI 
(1 −

𝜎𝑉𝑉

𝜎𝑉𝐻+𝜎𝑉𝑉
) ∗ 𝜎𝑉𝐻  

 (Chang et al., 2018; Sun et al., 2024) 

RFDI 

𝜎𝐻𝐻−𝜎𝐻𝑉

𝜎𝐻𝐻+𝜎𝐻𝑉
  

 (Chhabra et al., 2022) 

DpRVIc 
𝑞 ∗

𝑞+3

(𝑞+1)2 , 𝑞 =
𝜎𝐻𝐻

𝜎𝐻𝑉
  

 (Bhogapurapu et al., 2022) 

3.3 Accuracy on validation set 275 

The validation section first performs on the validation set, calculating the user accuracy (UA), producer accuracy (PA), F1-

score, and overall classification accuracy (OA) for rice and non-rice categories: 

UA =
TP

TP + FP
  (3) 

PA =
TP

TP + FN
 (4) 

F1 = 2 ×
UA × PA

UA + PA
 (5) 280 

OA =
TN + TP

TN + TP + FN + FP
 (6) 

Where TP is true positive, FP is false positive, TN is true negative, and FN is false negative. 

4 Results 

In this section, the results and accuracy will be presented from five aspects: feature screening results, mapping and analysis of 

rice spatial distribution, comparison of rice area statistics results, validation set accuracy, and comparison of optical images. 285 

4.1 Feature importance 

Due to the few coverage of SAR images in Angola and Sudan, these two countries only use optical images as classification 

input features. In the experiments of the remaining 32 countries, a total of 24 statistical features (max, mean, min, and variance) 

of VH, VV, RVI, PRVI, RFDI, and DpRVIc were input into random forest training to obtain feature importance ranking results. 

The frequency of each feature in the top 25% of feature importance ranking for each country was calculated according to the 290 
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UN (United Nations) divided African sub-region, as shown in Fig. 8 (a). The features marked red are the selected features used 

in classification experiments for final mapping. 
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Figure 8. Feature importance (a) Regional statistics on the frequency of features appearing in the top 25% of importance rankings 

(descending order) (b) Regional statistics on the frequency of features appearing in the top 25% of importance rankings (sort by 295 
feature) 

In Fig.8 (a), the features highlighted in red represent those with the highest frequency within the top 25% of importance 

rankings for each region (including features with tied frequencies). It can be observed that the top 25% features vary 

significantly across sub-regions, with the only common feature being VH_variance. Therefore, in the Random Forest 

supervised classification, each sub-region used the features ranked in the top 25% in frequency for that specific sub-region. 300 

Fig. 9 illustrates an example of selected features, focusing on an area southwest of Lake Alaotra in Madagascar. The 

classification features used in the supervised classification for this region include six features specific to East Africa: VH_mean, 

PRVI_mean, VV_mean, VH_variance, VH_min, and VV_variance. These features were combined into two groups for pseudo-

color composites, where clear distinctions between rice fields and other land cover types, including wetlands and grasslands 

that are prone to misclassification, can be observed. Zoomed-in images are provided in the third column. The contrast of rice 305 

and non-rice fields, the field ridges, and the consistency with optical images can be observed clearly. This demonstrates that 

the selected features effectively differentiate rice from other land cover types, enabling accurate spatial mapping of rice 

distribution. Additionally, the mean values calculated from object-based segmentation of optical imagery improved the 

representation of SAR image noise and fragmented plots while preserving clear boundaries. 
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Figure 9. Example of pseudo-color composites using selected time-series SAR features: (a) optical image(From ©Google Earth) (b) 

pseudo-color composite 1 (R: VH_min, G: VH_variance, B: VH_mean) (c) mean values of pseudo-color composite 1 overlaid on the 

object-based segmentation result from NDVI time series (d) pseudo-color composite 2 (R: VV_variance, G: VV_mean, B: 

PRVI_mean); (e) mean values of pseudo-color composite 2 overlaid on the object-based segmentation result from NDVI time series. 

4.2 Results of rice spatial distribution map 315 

Fig. 10 shows the final 20-meter resolution spatial distribution map of rice across Africa. The green areas represent rice. The 

map on the right displays the gridded result at a 0.5-degree resolution, with the value in the lower left corner of each grid 

indicating the rice area, measured in 100 hectares per grid. 

 

Figure 10. Rice mapping result in Africa (a) 20-meter spatial distribution map (b) corresponding 0.5°grid map 320 

Table 5. Country-level statistics of rice paddy area in Africa based on the 20m spatial distribution map for 2023. 

No. Country Paddy Area/Ha No. Country Paddy Area/Ha 

1 Angola 30375 18 Madagascar 865405 

2 Benin 149095 19 Malawi 120866 

3 Burkina Faso 205356 20 Mali 502970 

4 Burundi 53626 21 Mauritania 63672 

5 Cameroon 210191 22 Morocco 40454 

6 Central African Republic 70545 23 Mozambique 415471 

7 Chad 283113 24 Niger 45410 
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8 Côte d'Ivoire 727320 25 Nigeria 2446413 

9 Democratic Republic of the Congo 841988 26 Rwanda 30984 

10 Egypt 689114 27 Senegal 202077 

11 Ethiopia 155157 28 Sierra Leone 694314 

12 Gambia 103316 29 South Sudan 48605 

13 Ghana 355311 30 Sudan 52553 

14 Guinea 1580359 31 Togo 97076 

15 Guinea-Bissau 178277 32 Uganda 199103 

16 Kenya 29610 33 United Republic of Tanzania 1088377 

17 Liberia 135214 34 Zambia 83916 

 

Table 5 presents the country-level statistics of rice paddy area in Africa based on the 20m spatial distribution map for 2023.  

The total rice paddy area across Africa in 2023 is approximately 12,795,631 hectares. Among the countries, three have rice 

areas exceeding 1 million hectares: Nigeria, Guinea, and Tanzania. Six countries fall within the range of 500,000 to 1 million 325 

hectares: Madagascar, the Democratic Republic of Congo (DRC), Côte d'Ivoire, Sierra Leone, Egypt, and Mali. Thirteen 

countries have rice areas between 100,000 and 500,000 hectares: Mozambique, Ghana, Chad, Cameroon, Burkina Faso, 

Senegal, Uganda, Guinea-Bissau, Ethiopia, Benin, Liberia, Malawi, and Gambia. Lastly, twelve countries have rice areas 

between 50,000 and 100,000 hectares: Togo, Zambia, Central African Republic, Mauritania, Burundi, Sudan, South Sudan, 

Niger, Morocco, Kenya, Rwanda, and Angola. The proportion of rice area by country is illustrated in Fig. 11(a). 330 

 

Figure 11. The proportions of rice paddy area in Africa (a) by country (others: aggregate of countries with areas less than 500,000 

hectares). (b) by sub-region 
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Fig. 11(b) shows the distribution of rice area by sub-region in Africa. It can be seen that rice planting is primarily concentrated 

in Western Africa, followed by Eastern Africa and Central Africa, with the least in Northern Africa. The specific distribution 335 

of major production areas is detailed in Table 6. 

Table 6. Distribution of Major Rice-Producing Regions in Africa 

Northern Africa 

Egypt Predominantly located in the Nile Delta and the Faiyum Oasis. 

Western Africa 

Nigeria Concentrated along the western side of the Kainji Reservoir, as well as along the Niger, Benue, 

Sokoto, and other rivers and their tributaries. 

Guinea Mainly distributed in the coastal plains of the Boffa region in the west, the plains of the Koundara 

region in the northwest, and along the Niger and Sankarani rivers and their tributaries in the east. 

Mali Primarily located along the Niger River and its tributaries in the central and eastern regions. 

Sierra Leone Concentrated in the western plains. 

Côte d'Ivoire Mainly found along the Bandama River in the northwest, the Bafing region in the west, and the 

northern areas. 

Central Africa 

Democratic 

Republic of the 

Congo 

Predominantly located near Kinshasa and around Lake Mukamba. 

Eastern Africa 

Tanzania Concentrated in the Mapogoro and Itambaleo regions, the southern areas of Lake Victoria, 

southern Morogoro, and the Kilimanjaro region. 

Madagascar Mainly distributed in the western regions of Lake Alaotra, southwestern areas, and the 

Ankililoaka region. 

4.3 Comparison of rice area and statistical data 

Table 7 presents the statistical data of rice planting areas for 34 African countries with more than 5,000 hectares of rice area, 

listed in alphabetical order. The first column shows the rice planting/harvest area reported by the Coalition for African Rice 340 

Development (CARD) for its member countries in 2020/2021. The second column provides the 2022 rice harvest area data 

from FAO. The third column shows the 2023 rice planting/harvest area reported by USDA. The fourth column presents the 

2023 rice planting area derived from this study using the rice intensity data of RiceAtlas. All area units are in hectares. 

Table 7. Rice Area Statistics for African Countries 
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No. Country 
2020/2021 

CARD /Ha 

2022 FAO 

Harvest/ Ha 
2023 USDA/Ha 

Planting 

Area/Ha 

1 Angola 8572 8572 8000 30375 

2 Benin 134840 134840 135000 215851 

3 Burkina Faso 221052 198473 220000 273063 

4 Burundi 50478 54441 0 102335 

5 Cameroon 296209 156739 285000 403379 

6 Central African Republic 8596 36981 / 70545 

7 Chad 184086 177108 190000 501287 

8 Côte d'Ivoire 581766 688201 730000 727320 

9 Democratic Republic of the Congo 1442356 1888472 1660000 1523243 

10 Egypt / 646316 630000 689114 

11 Ethiopia 60000 60000 60000 155157 

12 Gambia 60097 46418 65000 206632 

13 Ghana 414027 305000 325000 709060 

14 Guinea 1650217 1627939 1650000 1580359 

15 Guinea-Bissau 126654 130291 120000 178277 

16 Kenya 82330 29615 30000 59220 

17 Liberia 240000 257000 240000 135214 

18 Madagascar 1600000 1598207 1600000 1537131 

19 Malawi 76962 75787 / 120866 

20 Mali 874031 888116 920000 914169 

21 Mauritania / 71000 75000 126846 

22 Morocco / 6320 8000 40454 

23 Mozambique 282000 290000 290000 415471 

24 Niger 12566 32414 30000 85573 

25 Nigeria 4320100 4580000 3500000 4889668 

26 Rwanda 31676 32253 / 61969 

27 Senegal 370750 372413 370000 384397 

28 Sierra Leone 944450 688549 825000 694314 

29 South Sudan / 30718 / 48605 

30 Sudan 8513 10753 / 52553 
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31 Togo 98133 99958 94000 194153 

32 Uganda 101325 260000 200000 368356 

33 United Republic of Tanzania 955729 998000 1100000 1160821 

34 Zambia 59601 39581 / 83916 

 345 

Figure 12. The linear fitting results between the 2023 rice planting area derived from this study and the existing statistical data, with 

mapping results as the x-axis and existing statistical data as the y-axis. The red dashed line represents the y = x line. (a) fitting results 

for all 34 countries, (b) fitting results for 30 countries after excluding those with missing data from the CARD dataset (c) fitting 

results for 27 countries after excluding those with missing data from the USDA dataset. 

The comparison between the calculated rice planting areas from the mapping result and the rice intensity distribution data, 350 

alongside existing statistical data, reveals a strong linear relationship, as shown in Fig. 13. For all 34 countries, the R² value 

for fitting with CARD data (2020/2021) is 0.9616, with FAO data (2022) is 0.9756, and with USDA data (2023) is 0.9431. 

After excluding countries with missing data, the R² for fitting with CARD data (30 countries) improves to 0.9781, while for 

USDA data (27 countries) it is 0.9385, demonstrating strong consistency. 

The figures and tables indicate that in countries with relatively low rice cultivation, the mapped areas generally exceed existing 355 

statistical data, shown as points below the y = x line in the fitting plot. In contrast, for countries with larger rice cultivation 

areas—such as the Democratic Republic of the Congo, Egypt, Guinea, Madagascar, Mali, and Tanzania—the mapped areas 

closely match existing statistics, with data points near the y = x line. While in Nigeria, the mapped rice cultivation area is 

significantly higher than existing statistics, represented by points far below the y = x line. 

These discrepancies may be attributed to several factors. In developing countries in Africa, data collection and reporting 360 

systems are often incomplete and inconsistent, leading to major gaps in the accuracy of reported rice cultivation areas. The 

issue is further compounded by the dominance of smallholder farming systems, where individual farm sizes are smaller and 

scattered, making them even harder to track and report on accurately. This often results in underreporting or outdated figures 

in official statistics. Additionally, rice cultivation in these regions has undergone rapid changes in recent years, with some 

areas seeing significant increases in planting that aren’t being fully captured by traditional reporting methods. Although 365 

multiple auxiliary datasets were integrated when constructing the rice sample set for this study, the process still heavily relied 
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on expert knowledge. This is particularly challenging in countries with limited rice cultivation, where rice fields are more 

difficult to identify, leading to sample errors that directly affect mapping accuracy. Moreover, the rice intensity distribution 

information used to estimate planting areas was published in 2017 and may not fully capture the present situation in 2023, 

contributing to discrepancies between the mapped data and reported cultivation areas.  370 

4.4 Classification accuracy on the validation set 

The validation results for rice and non-rice classifications across 34 African countries provide a comprehensive insight into 

the model’s performance. Fig. 13 displays key metrics, including user accuracy (UA), producer accuracy (PA), F1 scores, and 

overall accuracy (OA). Analyzing these metrics offers an understanding of the spatial variations and classification challenges 

encountered across different regions. 375 

Rice Classification Performance: 

User Accuracy (UA): The UA for rice classification ranges from 65.26% in South Sudan to 97.51% in Rwanda. The lower 

values in countries like South Sudan and Niger highlight challenges in correctly identifying rice fields, possibly due to 

fragmented land use or small cultivation areas. 

Producer Accuracy (PA): The PA for rice classification spans from 70.78% in South Sudan to 93.17% in Guinea. Higher PA 380 

values indicate the model's ability to correctly classify most rice areas, while lower values in regions like South Sudan suggest 

a tendency for rice areas to be misclassified as non-rice. 

F1 Score: The F1 scores, combining precision and recall, vary from 67.91% in South Sudan to 94.54% in Guinea. While most 

countries maintain F1 scores above 80%, lower scores in regions like Angola and Niger highlight difficulties in balancing 

precision and recall. 385 

Non-Rice Classification Performance: 

User Accuracy (UA): The UA for non-rice ranges from 74.09% in South Sudan to 92.18% in Guinea, with most countries 

over 85%. High UA values across most countries indicate effective identification of non-rice areas. 

Producer Accuracy (PA): The PA ranges from 68.92% in South Sudan to 96.55% in Rwanda. Most countries exceed 80%, 

underscoring consistent performance, though lower values in South Sudan indicate difficulties in distinguishing non-rice areas. 390 

F1 Score: The F1 scores for non-rice range from 71.41% in South Sudan to 93.74% in Guinea. Countries with lower scores, 

such as Niger and Sudan, highlight specific regional challenges in sample set construction with very limited rice cultivation. 

Overall Accuracy (OA): 

The overall accuracy (OA) ranges from 69.76% in South Sudan to 94.17% in Guinea, with a mean of around 86.30%. Of all 

countries in the study site, one country has OA under 70% (South Sudan), 4 countries between 70% and 80% (Niger, Zambia, 395 

Angola, and Sudan). All these countries have small area of rice, posing extra challenges to sample set construction. When the 

rice paddy area of a country is too small compared to the total land area, the rice plots we can locate are very limited since 

wetlands are similar to rice paddies in the feature map, which has far larger area causing rice paddies to look like scattered 

noise, hence the relatively lower OA in these countries. But countries with extensive rice cultivation, such as Ghana and 
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Senegal, show OAs above 90%, reflecting the model’s robustness in regions with more homogeneous and concentrated rice 400 

production. 

Key Insights and Implications: 

Regional Variations: The variations in accuracy metrics indicate that regional agricultural practices, land use complexity, and 

data quality play significant roles in model performance. Regions with small, fragmented rice fields or mixed cropping systems, 

such as South Sudan, Niger, and Angola, present classification challenges that lead to lower accuracy scores. 405 

Outliers and Challenges: The box plot (Fig.14 (b)) analysis reveals stable and consistent performance across most countries, 

with median values clustering between 85% and 90%. However, outliers such as South Sudan, Angola, and Niger show lower 

accuracy scores, mainly caused by lack of sufficient rice samples, suggesting that additional refinement is needed for these 

regions. 

Model Reliability: The overall consistency in accuracy metrics across most countries highlights the robustness of the rice 410 

mapping methodology. Future improvements could focus on addressing the specific challenges faced in regions with complex 

agricultural landscapes or limited data availability. 

The findings underscore the importance of tailored approaches when applying classification models across diverse African 

environments. Addressing regional discrepancies will be crucial in enhancing data accuracy and supporting better agricultural 

policy development across Africa.  415 

 

Figure 13. Performance on the validation set (a) heat map of validation accuracy across 34 African countries (b) corresponding box 

plot 
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4.5 Comparison of rice mapping results with optical imagery 

Fig. 14 illustrates the comparison between the rice mapping results and corresponding optical images for selected regions in 420 

nine major rice-producing countries in Africa (with rice field areas exceeding 500,000 hectares). The examples include both 

concentrated plantation zones and dispersed smallholder farming areas. The results show a strong alignment between the 

mapped outputs and the optical images. Additionally, due to the incorporation of the object-based segmentation step, the 

mapping results exhibit clear boundaries, minimal scattered noise, and fewer misclassifications. 

 425 

Figure 14. Examples of rice mapping results and corresponding optical imagery for major rice-producing countries in Africa. For 

each country, the first row shows the optical imagery (from ©Google Earth), while the second row presents the rice mapping results, 

with green areas representing rice fields. 

5 Discussion 

5.1 Strengths and limitations 430 

To produce large-scale, high-resolution rice distribution maps across Africa, this study proposed a method effectively 

combining Sentinel-1 SAR and Sentinel-2 optical imagery, addressing key challenges in sample collection and classification. 

By leveraging time-series statistical features from Sentinel-1 VH data for initial fast coarse positioning of potential rice-

planting areas and complementing this with visual interpretation using auxiliary datasets, the study efficiently generates 
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reliable samples. During the classification phase, the approach integrates object-based segmentation results from Sentinel-2 435 

optical time-series data with feature importance guided Random Forest classification results from Sentinel-1 SAR time-series 

data. This combination enhances the precision of rice paddy boundaries and reduces noise in heterogeneous landscapes, 

showing a significant improvement over pixel-based methods. Additionally, the proposed method requires no phenology 

information, allowing for a more adaptable mapping process across diverse rice-growing regions like Africa, avoiding the 

inaccuracies that arise from seasonal variability and diverse planting practices, which are common challenges in phenology-440 

based methods. Collectively, these strengths underscore the method's robustness, efficiency, and scalability, positioning it as 

a reliable tool for high-resolution agricultural monitoring across Africa. 

Despite these strengths, the study acknowledges limitations related to the SNIC algorithm, particularly in the calibration of 

key parameters—seed distance and neighbourhood size, which affects the size and definition of segmented objects. In this 

study, it was primarily achieved through a process of trial and visual inspection. While this method provided a practical solution 445 

within the context of this research, the robustness of the method needs to be further strengthened. Future research should focus 

on developing more systematic approaches to parameter optimization. This could involve the use of automated tuning 

algorithms or machine learning techniques that adjust parameters dynamically based on the characteristics of the input data, 

thereby improving the accuracy, consistency, and scalability of the segmentation process. 

Another potential problem is when comparing with statistical data, the administrative distribution data of rice planting intensity 450 

in RiceAtlas product is utilized to calculate the planting area from the paddy area of the mapping result. This dataset of the 

year 2017 could lead to gaps among the calculated planting area, actual planting area, and statistical data since rice cultivation 

has expanded rapidly in recent years as mentioned in section 4.3. However, there is no up-to-date dataset of rice intensity in 

Africa. And other datasets including rice intensity in Africa like GCI (Global Cropping Intensity) from year 2001 to 2019 (Liu 

et al., 2021), and GCI30(Zhang et al., 2021) from year 2016 to 2018, are pixel-level datasets, which are assumed to change 455 

more than administrative-level data over time. Therefore, RiceAtlas is chosen as the rice intensity source to balance consistency 

and data availability and only used to fit with statistics to demonstrate the reliability of our result. Nevertheless, more up-to-

data intensity data can provide more insight into the rice planting status in Africa. 

Moreover, the sample set in this study was constructed through visual interpretation, assisted by the fast coarse positioning 

feature. As discussed in the overall accuracy part of Section 4.4, when conducting sample set construction in countries with 460 

very small areas of rice (such as South Sudan, Niger, Zambia, Angola, and Sudan), the difficulty to locate rice plots is still 

huge since ground objects like wetlands are similar to but much more than rice paddies in the feature map, resulting lower OA 

in these countries. To enhance the mapping accuracy in such countries, the current mapping results could serve as a reference 

to develop an expanded sample set for a new round of training and classification in future work. Given the relatively small 

spatial extent of these regions compared to the entire African continent, the spatial heterogeneity is significantly reduced. This 465 

allows for a more detailed analysis of rice phenology, which could substantially improve mapping performance. To improve 

the effectiveness of the proposed method of mapping rice at a large scale, weakly supervised learning algorithms could be 



30 

 

employed to automatically augment the training sample set and improve classification accuracy in future studies. The sample 

expansion process could still be guided by feature importance to ensure the reliability and robustness of the generated samples. 

5.2 Enlightenment and implications 470 

The experiment result highlights regional variations in the importance of specific features for rice mapping across Africa. 

Despite these variations, temporal statistical features from SAR data—particularly VH, VV, and PRVI—consistently 

demonstrated their utility in capturing the temporal dynamics of rice cultivation. By further exploring and experimenting with 

these temporal SAR features, future studies could refine rice detection models to be more sensitive to regional differences and 

temporal changes in Africa. This could involve integrating these features with additional data sources, such as optical imagery 475 

or other environmental variables, to create more robust and comprehensive mapping models.  

The rice distribution map generated in this study has significant implications for agricultural monitoring and food security 

across Africa. By providing an accurate baseline for rice distribution, this study supports government and research initiatives 

focused on food resource management, land use planning, and climate impact assessments. Unlike current rice mapping studies 

in Africa, which have been constrained by limited spatial resolution and are primarily represented as gridded data, this approach 480 

offers a reliable, scalable framework that aligns with Africa’s need for consistent agricultural data. 

5.3 Progress and gaps in the National Rice Development Strategy (NRDS) of CARD countries towards 2030 targets  

Comparing existing rice planting/harvesting statistics from African countries with the rice planting area results obtained in this 

study reveals that although rice cultivation in most African countries has fluctuated, there is still a slow upward trend. This 

aligns with the policy direction of promoting rice cultivation in these countries, though there remains a significant gap to 485 

achieve the 2030 Rice Research and Innovation Strategy for Africa target. Table 8 and Fig. 15 present the targets of rice 

planting area and the completed percentage of countries in CARD. Among the countries assessed, 15 have achieved over 80% 

of the 2030 target, 5 have achieved 60–80%, 7 have achieved 40–60%, and 3 have achieved less than 40%. Of the 9 countries 

with completion rates below 60%, Tanzania, Senegal, Sierra Leone, and Burkina Faso currently have substantial rice 

cultivation areas (greater than 200,000 hectares) but have set high targets. Ethiopia, Liberia, Sudan, Niger, and Kenya have 490 

smaller targets but still lag in their current rice cultivation. Countries should develop and adjust their rice cultivation strategies 

accordingly to achieve the “Transformation of Rice-based Agri-food Systems for Food and Nutrition Security in Africa” and 

enhance local food self-sufficiency, ultimately contributing to the SDGs (Sustainable Development Goals) of zero hunger. 

Table 8. Current rice cultivation areas and 2030 targets for CARD countries (CARD 2022), sorted by completion percentage 

No. Country Result Target/Ha Ratio Region 

1 Angola 30375 11531 263% Central 

2 Central African Republic 70545 30350 232% Central 

3 Chad 501287 254580 197% Central 
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4 Democratic Republic of the Congo 1523243 776000 196% Central 

5 Ghana 709060 372330 190% Western 

6 Burundi 102335 68244 150% Eastern 

7 Malawi 120866 82621 146% Eastern 

8 Uganda 368356 280000 132% Eastern 

9 Cameroon 403379 334764 120% Central 

10 Guinea-Bissau 178277 155046 115% Western 

11 Zambia 83916 80266 105% Eastern 

12 Rwanda 61969 60000 103% Eastern 

13 Togo 194153 193000 101% Western 

14 Benin 215851 242000 89% Western 

15 Gambia 206632 247009 84% Western 

16 Madagascar 1537131 2105690 73% Eastern 

17 Mozambique 415471 570272 73% Eastern 

18 Côte d'Ivoire 727320 1003580 72% Western 

19 Mali 914169 1283970 71% Western 

20 Guinea 1580359 2547881 62% Western 

21 Nigeria 4889668 8523687 57% Western 

22 United Republic of Tanzania 1160821 2200000 53% Eastern 

23 Senegal 384397 775053 50% Western 

24 Ethiopia 155157 327252 47% Eastern 

25 Burkina Faso 273063 627587 44% Western 

26 Sierra Leone 694314 1602103 43% Western 

27 Liberia 135214 326183 41% Western 

28 Sudan 52553 142856 37% Northern 

29 Niger 85573 252507 34% Western 

30 Kenya 59220 222000 27% Eastern 
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 495 

 

Figure 15. Comparison of current rice planting areas and 2030 targets for CARD countries 

6 Data Availability 

The 20m Africa Rice Distribution Map of 2023 can be accessed in the Zenodo data set from the following DOI: 

https://doi.org/10.5281/zenodo.13729353 (Jiang et al., 2024). The spatial reference system of the data set is 500 

EPSG:4326(WGS84). 

7 Conclusion 

This study employs temporal SAR data and optical imagery, combined with object-oriented segmentation, and feature 

importance guided random forest algorithms, to conduct rice extraction experiments in 34 African countries with annual rice 

planting areas exceeding 5,000 hectares, achieving 20-meter resolution spatial distribution mapping of rice in Africa for 2023. 505 

https://doi.org/10.5281/zenodo.13729353
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The average classification accuracy on the validation set exceeded 85%, and the R² values for linear fitting with existing 

statistical data all surpassed 0.9, demonstrating the effectiveness of the proposed mapping method.  

This study marks the first time a high-resolution rice spatial distribution map has been generated for the entire African continent, 

offering significant advancements in monitoring rice cultivation patterns in the region. The map provides crucial data support 

for rice yield estimation, climate resilience assessments, and the development of targeted agricultural policies. Moreover, the 510 

insights derived from this research can aid in optimizing resource allocation, enhancing food security, and informing decision-

making processes for stakeholders ranging from policymakers to local farmers across Africa. 
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